blob: 8f50e91d8295cd509205016c99dd209edda1391a [file] [log] [blame] [edit]
#pragma once
#include <c10/util/Exception.h>
#include <c10/util/MaybeOwned.h>
#include <atomic>
#include <climits>
#include <memory>
#include <type_traits>
namespace pybind11 {
template <typename, typename...>
class class_;
}
namespace c10 {
class intrusive_ptr_target;
namespace raw {
namespace weak_intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
namespace intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
// constructor tag used by intrusive_ptr constructors
struct DontIncreaseRefcount {};
} // namespace raw
namespace detail {
constexpr uint32_t kImpracticallyHugeReferenceCount = 0x0FFFFFFF;
} // namespace detail
/**
* intrusive_ptr<T> is an alternative to shared_ptr<T> that has better
* performance because it does the refcounting intrusively
* (i.e. in a member of the object itself).
* Your class T needs to inherit from intrusive_ptr_target to allow it to be
* used in an intrusive_ptr<T>. Your class's constructor should not allow
*`this` to escape to other threads or create an intrusive_ptr from `this`.
*/
// Note [Stack allocated intrusive_ptr_target safety]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A well known problem with std::enable_shared_from_this is that it
// allows you to create a std::shared_ptr from a stack allocated object,
// which is totally bogus because the object will die once you return
// from the stack. In intrusive_ptr, we can detect that this has occurred,
// because we set the refcount/weakcount of objects which inherit from
// intrusive_ptr_target to zero, *unless* we can prove that the object
// was dynamically allocated (e.g., via make_intrusive).
//
// Thus, whenever you transmute a T* into a intrusive_ptr<T>, we check
// and make sure that the refcount isn't zero (or, a more subtle
// test for weak_intrusive_ptr<T>, for which the refcount may validly
// be zero, but the weak refcount better not be zero), because that
// tells us if the object was allocated by us. If it wasn't, no
// intrusive_ptr for you!
// NOLINTNEXTLINE(cppcoreguidelines-virtual-class-destructor)
class C10_API intrusive_ptr_target {
// Note [Weak references for intrusive refcounting]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Here's the scheme:
//
// - refcount == number of strong references to the object
// weakcount == number of weak references to the object,
// plus one more if refcount > 0
// An invariant: refcount > 0 => weakcount > 0
//
// - c10::StorageImpl stays live as long as there are any strong
// or weak pointers to it (weakcount > 0, since strong
// references count as a +1 to weakcount)
//
// - finalizers are called and data_ptr is deallocated when refcount == 0
//
// - Once refcount == 0, it can never again be > 0 (the transition
// from > 0 to == 0 is monotonic)
//
// - When you access c10::StorageImpl via a weak pointer, you must
// atomically increment the use count, if it is greater than 0.
// If it is not, you must report that the storage is dead.
//
mutable std::atomic<uint32_t> refcount_;
mutable std::atomic<uint32_t> weakcount_;
template <typename T, typename NullType>
friend class intrusive_ptr;
friend inline void raw::intrusive_ptr::incref(intrusive_ptr_target* self);
template <typename T, typename NullType>
friend class weak_intrusive_ptr;
friend inline void raw::weak_intrusive_ptr::incref(
intrusive_ptr_target* self);
template <typename T>
friend struct ExclusivelyOwnedTensorTraits;
protected:
// protected destructor. We never want to destruct intrusive_ptr_target*
// directly.
virtual ~intrusive_ptr_target() {
// Disable -Wterminate and -Wexceptions so we're allowed to use assertions
// (i.e. throw exceptions) in a destructor.
// We also have to disable -Wunknown-warning-option and -Wpragmas, because
// some other compilers don't know about -Wterminate or -Wexceptions and
// will show a warning about unknown warning options otherwise.
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning( \
disable : 4297) // function assumed not to throw an exception but does
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wterminate"
#pragma GCC diagnostic ignored "-Wexceptions"
#endif
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
// Second condition is there to accommodate
// unsafe_adapt_non_heap_allocated: since we are doing our own
// deallocation in that case, it is correct for each
// expected_decref to have happened (some user code tried to
// decref and thus free the object, but it didn't happen right
// away) or not (no user code tried to free the object, and
// now it's getting destroyed through whatever mechanism the
// caller of unsafe_adapt_non_heap_allocated wanted to
// use). We choose our reference count such that the count
// will not dip below kImpracticallyHugeReferenceCount regardless.
refcount_.load() == 0 ||
refcount_.load() >= detail::kImpracticallyHugeReferenceCount,
"Tried to destruct an intrusive_ptr_target that still has intrusive_ptr to it; refcount was ",
refcount_.load());
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
// See ~intrusive_ptr for optimization that will frequently result in 1
// at destruction time.
weakcount_.load() == 1 || weakcount_.load() == 0 ||
weakcount_.load() == detail::kImpracticallyHugeReferenceCount - 1 ||
weakcount_.load() == detail::kImpracticallyHugeReferenceCount,
"Tried to destruct an intrusive_ptr_target that still has weak_intrusive_ptr to it");
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#else
#pragma GCC diagnostic pop
#endif
}
constexpr intrusive_ptr_target() noexcept : refcount_(0), weakcount_(0) {}
// intrusive_ptr_target supports copy and move: but refcount and weakcount
// don't participate (since they are intrinsic properties of the memory
// location)
intrusive_ptr_target(intrusive_ptr_target&& /*other*/) noexcept
: intrusive_ptr_target() {}
intrusive_ptr_target& operator=(intrusive_ptr_target&& /*other*/) noexcept {
return *this;
}
intrusive_ptr_target(const intrusive_ptr_target& /*other*/) noexcept
: intrusive_ptr_target() {}
intrusive_ptr_target& operator=(
const intrusive_ptr_target& /*other*/) noexcept {
return *this;
}
private:
/**
* This is called when refcount reaches zero.
* You can override this to release expensive resources.
* There might still be weak references, so your object might not get
* destructed yet, but you can assume the object isn't used anymore,
* i.e. no more calls to methods or accesses to members (we just can't
* destruct it yet because we need the weakcount accessible).
*
* If there are no weak references (i.e. your class is about to be
* destructed), this function WILL NOT be called.
*/
virtual void release_resources() {}
};
namespace detail {
template <class TTarget>
struct intrusive_target_default_null_type final {
static constexpr TTarget* singleton() noexcept {
return nullptr;
}
};
template <class TTarget, class ToNullType, class FromNullType>
TTarget* assign_ptr_(TTarget* rhs) {
if (FromNullType::singleton() == rhs) {
return ToNullType::singleton();
} else {
return rhs;
}
}
// Increment needs to be acquire-release to make use_count() and
// unique() reliable.
inline uint32_t atomic_refcount_increment(std::atomic<uint32_t>& refcount) {
return refcount.fetch_add(1, std::memory_order_acq_rel) + 1;
}
// weak_use_count() is only used for testing, so we don't need it to
// be reliable. Relaxed should be fine.
inline uint32_t atomic_weakcount_increment(std::atomic<uint32_t>& weakcount) {
return weakcount.fetch_add(1, std::memory_order_relaxed) + 1;
}
// Both decrements need to be acquire-release for correctness. See
// e.g. std::shared_ptr implementation.
inline uint32_t atomic_refcount_decrement(std::atomic<uint32_t>& refcount) {
return refcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
inline uint32_t atomic_weakcount_decrement(std::atomic<uint32_t>& weakcount) {
return weakcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
} // namespace detail
template <class TTarget, class NullType>
class weak_intrusive_ptr;
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class intrusive_ptr final {
private:
// the following static assert would be nice to have but it requires
// the target class T to be fully defined when intrusive_ptr<T> is instantiated
// this is a problem for classes that contain pointers to themselves
// static_assert(
// std::is_base_of<intrusive_ptr_target, TTarget>::value,
// "intrusive_ptr can only be used for classes that inherit from
// intrusive_ptr_target.");
#ifndef _WIN32
// This static_assert triggers on MSVC
// error C2131: expression did not evaluate to a constant
static_assert(
// NOLINTNEXTLINE(misc-redundant-expression)
NullType::singleton() == NullType::singleton(),
"NullType must have a constexpr singleton() method");
#endif
static_assert(
std::is_base_of_v<
TTarget,
std::remove_pointer_t<decltype(NullType::singleton())>>,
"NullType::singleton() must return a element_type* pointer");
TTarget* target_;
template <typename T>
friend struct ExclusivelyOwnedTensorTraits;
template <class TTarget2, class NullType2>
friend class intrusive_ptr;
friend class weak_intrusive_ptr<TTarget, NullType>;
// Make pybind11::class_ be a friend class of intrusive_ptr, so that custom
// smart holder in pybind11 could access the private constructor of
// intrusive_ptr(T*) which took the ownership of the object. This is required
// by customer holder macro PYBIND11_DECLARE_HOLDER_TYPE, where it uses
// intrusive_ptr(TTarget*) to initialize and take ownership of the object. For
// details, see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
template <typename, typename...>
friend class pybind11::class_;
void retain_() {
if (target_ != NullType::singleton()) {
uint32_t new_refcount =
detail::atomic_refcount_increment(target_->refcount_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_refcount != 1,
"intrusive_ptr: Cannot increase refcount after it reached zero.");
}
}
void reset_() noexcept {
if (target_ != NullType::singleton() &&
detail::atomic_refcount_decrement(target_->refcount_) == 0) {
// See comment above about weakcount. As long as refcount>0,
// weakcount is one larger than the actual number of weak references.
// So we need to decrement it here.
bool should_delete =
target_->weakcount_.load(std::memory_order_acquire) == 1;
if (!should_delete) {
// justification for const_cast: release_resources is basically a
// destructor and a destructor always mutates the object, even for const
// objects. NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<std::remove_const_t<TTarget>*>(target_)->release_resources();
should_delete =
detail::atomic_weakcount_decrement(target_->weakcount_) == 0;
}
if (should_delete) {
delete target_;
}
}
}
// raw pointer constructors are not public because we shouldn't make
// intrusive_ptr out of raw pointers except from inside the make_intrusive(),
// reclaim() and weak_intrusive_ptr::lock() implementations.
// This constructor will increase the ref counter for you.
// This constructor will be used by the make_intrusive(), and also pybind11,
// which wrap the intrusive_ptr holder around the raw pointer and incref
// correspondingly (pybind11 requires raw pointer constructor to incref by
// default).
explicit intrusive_ptr(TTarget* target)
: intrusive_ptr(target, raw::DontIncreaseRefcount{}) {
if (target_ != NullType::singleton()) {
// We just created result.target_, so we know no other thread has
// access to it, so we know we needn't care about memory ordering.
// (On x86_64, a store with memory_order_relaxed generates a plain old
// `mov`, whereas an atomic increment does a lock-prefixed `add`, which is
// much more expensive: https://godbolt.org/z/eKPzj8.)
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
target_->refcount_ == 0 && target_->weakcount_ == 0,
"intrusive_ptr: Newly-created target had non-zero refcounts. Does its "
"constructor do something strange like incref or create an "
"intrusive_ptr from `this`?");
target_->refcount_.store(1, std::memory_order_relaxed);
target_->weakcount_.store(1, std::memory_order_relaxed);
}
}
public:
using element_type = TTarget;
intrusive_ptr() noexcept
: intrusive_ptr(NullType::singleton(), raw::DontIncreaseRefcount{}) {}
intrusive_ptr(std::nullptr_t) noexcept
: intrusive_ptr(NullType::singleton(), raw::DontIncreaseRefcount{}) {}
// This constructor will not increase the ref counter for you.
// We use the tagged dispatch mechanism to explicitly mark this constructor
// to not increase the refcount
explicit intrusive_ptr(TTarget* target, raw::DontIncreaseRefcount) noexcept
: target_(target) {}
explicit intrusive_ptr(std::unique_ptr<TTarget> rhs) noexcept
: intrusive_ptr(rhs.release()) {}
intrusive_ptr(intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
rhs.target_ = NullType::singleton();
}
template <class From, class FromNullType>
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
/* implicit */ intrusive_ptr(intrusive_ptr<From, FromNullType>&& rhs) noexcept
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move constructor got pointer of wrong type.");
rhs.target_ = FromNullType::singleton();
}
intrusive_ptr(const intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
template <class From, class FromNullType>
/* implicit */ intrusive_ptr(const intrusive_ptr<From, FromNullType>& rhs)
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy constructor got pointer of wrong type.");
retain_();
}
~intrusive_ptr() noexcept {
reset_();
}
intrusive_ptr& operator=(intrusive_ptr&& rhs) & noexcept {
// NOLINTNEXTLINE(*assign*)
return this->template operator= <TTarget, NullType>(std::move(rhs));
}
template <class From, class FromNullType>
intrusive_ptr& operator=(intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move assignment got pointer of wrong type.");
intrusive_ptr tmp = std::move(rhs);
swap(tmp);
return *this;
}
// Assignment is implemented using copy and swap. That's safe for self
// assignment.
// NOLINTNEXTLINE(bugprone-unhandled-self-assignment)
intrusive_ptr& operator=(const intrusive_ptr& rhs) & noexcept {
// NOLINTNEXTLINE(*assign-operator, *assignment-signature)
return this->template operator= <TTarget, NullType>(rhs);
}
template <class From, class FromNullType>
intrusive_ptr& operator=(
const intrusive_ptr<From, NullType>& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy assignment got pointer of wrong type.");
intrusive_ptr tmp = rhs;
swap(tmp);
return *this;
}
TTarget* get() const noexcept {
return target_;
}
TTarget& operator*() const noexcept {
return *target_;
}
TTarget* operator->() const noexcept {
return target_;
}
operator bool() const noexcept {
return target_ != NullType::singleton();
}
void reset() noexcept {
reset_();
target_ = NullType::singleton();
}
void swap(intrusive_ptr& rhs) noexcept {
std::swap(target_, rhs.target_);
}
// We do a lot of null-pointer checks in our code, good to have this be cheap.
bool defined() const noexcept {
return target_ != NullType::singleton();
}
uint32_t use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->refcount_.load(std::memory_order_acquire);
}
uint32_t weak_use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->weakcount_.load(std::memory_order_acquire);
}
bool unique() const noexcept {
return use_count() == 1;
}
/**
* Returns an owning (!) pointer to the underlying object and makes the
* intrusive_ptr instance invalid. That means the refcount is not decreased.
* You *must* put the returned pointer back into a intrusive_ptr using
* intrusive_ptr::reclaim(ptr) to properly destruct it.
* This is helpful for C APIs.
*/
TTarget* release() noexcept {
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
TTarget* result = target_;
target_ = NullType::singleton();
return result;
}
/**
* Takes an owning pointer to TTarget* and creates an intrusive_ptr that takes
* over ownership. That means the refcount is not increased.
* This is the counter-part to intrusive_ptr::release() and the pointer
* passed in *must* have been created using intrusive_ptr::release().
*/
static intrusive_ptr reclaim(TTarget* owning_ptr) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
owning_ptr == NullType::singleton() ||
owning_ptr->refcount_.load() == 0 || owning_ptr->weakcount_.load(),
"TTarget violates the invariant that refcount > 0 => weakcount > 0");
return intrusive_ptr(owning_ptr, raw::DontIncreaseRefcount{});
}
/**
* Takes an owning pointer to TTarget* and creates an intrusive_ptr
* representing a new reference, i.e. the raw pointer retains
* ownership.
*/
static intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
auto ret = reclaim(owning_ptr);
ret.retain_();
return ret;
}
/**
* Allocate a heap object with args and wrap it inside a intrusive_ptr and
* incref. This is a helper function to let make_intrusive() access private
* intrusive_ptr constructors.
*/
template <class... Args>
static intrusive_ptr make(Args&&... args) {
return intrusive_ptr(new TTarget(std::forward<Args>(args)...));
}
/**
* Turn a new instance of TTarget (e.g., literally allocated
* using new TTarget(...) into an intrusive_ptr. If possible,
* use intrusive_ptr::make instead which statically guarantees
* that the allocation was done properly.
*
* At the moment, the only reason this method exists is because
* pybind11 holder types expect to be able to allocate in
* this way (because pybind11 handles the new allocation itself).
*/
static intrusive_ptr unsafe_steal_from_new(TTarget* raw_ptr) {
return intrusive_ptr(raw_ptr);
}
/**
* Turn an instance of TTarget that should not be reference counted
* (e.g., allocated into an arena with placement new) into an
* intrusive_ptr. This is gratuitously unsafe and should only be
* used if you can guarantee that the pointer will not escape and be
* refcounted as normal.
*
* `expected_decrefs` is a debugging parameter: it indicates the
* number of strong owners the intrusive_ptr_target in question is
* expected to get. In most use cases, this will likely be 1.
*
* The reason this method exists is for manually sharing
* StorageImpls across Tensors in the static runtime. It needs
* access to private intrusive_ptr members so that the refcounts can
* be initialized to custom values.
*/
static intrusive_ptr unsafe_adapt_non_heap_allocated(
TTarget* raw_ptr,
uint32_t expected_decrefs) {
intrusive_ptr result(raw_ptr, raw::DontIncreaseRefcount{});
// kImpracticallyHugeReferenceCount is impractically huge for a reference
// count, while being in no danger of overflowing uint32_t. We actually only
// need to initialize the refcount to 2 -- we are just doing an unbalanced
// incref to prevent the non-heap-allocated target from being
// freed, and we are optimizing that incref by directly
// initializing the refcounts rather than doing an expensive
// atomic increment. The reason to use kImpracticallyHugeReferenceCount is
// to accommodate the debug assertions in ~intrusive_ptr_target.
#ifdef NDEBUG
expected_decrefs = 0;
#endif
result.target_->refcount_.store(
detail::kImpracticallyHugeReferenceCount + expected_decrefs,
std::memory_order_relaxed);
result.target_->weakcount_.store(
detail::kImpracticallyHugeReferenceCount, std::memory_order_relaxed);
return result;
}
/**
* Turn a **non-owning raw pointer** to an intrusive_ptr. It is
* the moral equivalent of enable_shared_from_this on a shared pointer.
*
* This method is only valid for objects that are already live. If
* you are looking for the moral equivalent of unique_ptr<T>(T*)
* constructor, see steal_from_new.
*
* TODO: https://github.com/pytorch/pytorch/issues/56482
*/
static intrusive_ptr unsafe_reclaim_from_nonowning(TTarget* raw_ptr) {
// See Note [Stack allocated intrusive_ptr_target safety]
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
raw_ptr == NullType::singleton() || raw_ptr->refcount_.load() > 0,
"intrusive_ptr: Can only reclaim pointers that are owned by someone");
auto ptr = reclaim(raw_ptr); // doesn't increase refcount
ptr.retain_();
return ptr;
}
};
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>,
class... Args>
inline intrusive_ptr<TTarget, NullType> make_intrusive(Args&&... args) {
return intrusive_ptr<TTarget, NullType>::make(std::forward<Args>(args)...);
}
template <class TTarget, class NullType>
inline void swap(
intrusive_ptr<TTarget, NullType>& lhs,
intrusive_ptr<TTarget, NullType>& rhs) noexcept {
lhs.swap(rhs);
}
// To allow intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.get() < rhs.get();
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.get() == rhs.get();
}
template <class TTarget1, class NullType1>
inline bool operator==(
const intrusive_ptr<TTarget1, NullType1>& lhs,
std::nullptr_t) noexcept {
return lhs.get() == nullptr;
}
template <class TTarget2, class NullType2>
inline bool operator==(
std::nullptr_t,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return nullptr == rhs.get();
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(lhs, rhs);
}
template <class TTarget1, class NullType1>
inline bool operator!=(
const intrusive_ptr<TTarget1, NullType1>& lhs,
std::nullptr_t) noexcept {
return !operator==(lhs, nullptr);
}
template <class TTarget2, class NullType2>
inline bool operator!=(
std::nullptr_t,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(nullptr, rhs);
}
template <typename T>
struct MaybeOwnedTraits<c10::intrusive_ptr<T>> {
using owned_type = c10::intrusive_ptr<T>;
using borrow_type = c10::intrusive_ptr<T>;
static borrow_type createBorrow(const owned_type& from) {
return borrow_type::reclaim(from.get());
}
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
lhs.release();
lhs = borrow_type::reclaim(rhs.get());
}
static void destroyBorrow(borrow_type& toDestroy) {
toDestroy.release();
}
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
return borrow;
}
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
return &borrow;
}
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
return true;
}
};
template <
typename TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class weak_intrusive_ptr final {
private:
static_assert(
std::is_base_of_v<intrusive_ptr_target, TTarget>,
"intrusive_ptr can only be used for classes that inherit from intrusive_ptr_target.");
#ifndef _WIN32
// This static_assert triggers on MSVC
// error C2131: expression did not evaluate to a constant
static_assert(
NullType::singleton() == NullType::singleton(),
"NullType must have a constexpr singleton() method");
#endif
static_assert(
std::is_base_of_v<
TTarget,
std::remove_pointer_t<decltype(NullType::singleton())>>,
"NullType::singleton() must return a element_type* pointer");
TTarget* target_;
template <class TTarget2, class NullType2>
friend class weak_intrusive_ptr;
void retain_() {
if (target_ != NullType::singleton()) {
uint32_t new_weakcount =
detail::atomic_weakcount_increment(target_->weakcount_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_weakcount != 1,
"weak_intrusive_ptr: Cannot increase weakcount after it reached zero.");
}
}
void reset_() noexcept {
if (target_ != NullType::singleton() &&
detail::atomic_weakcount_decrement(target_->weakcount_) == 0) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDelete)
delete target_;
}
target_ = NullType::singleton();
}
constexpr explicit weak_intrusive_ptr(TTarget* target) : target_(target) {}
public:
using element_type = TTarget;
explicit weak_intrusive_ptr(const intrusive_ptr<TTarget, NullType>& ptr)
: weak_intrusive_ptr(ptr.get()) {
retain_();
}
weak_intrusive_ptr(weak_intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
rhs.target_ = NullType::singleton();
}
template <class From, class FromNullType>
/* implicit */ weak_intrusive_ptr(
// NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
weak_intrusive_ptr<From, FromNullType>&& rhs) noexcept
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr move constructor got pointer of wrong type.");
rhs.target_ = FromNullType::singleton();
}
weak_intrusive_ptr(const weak_intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
template <class From, class FromNullType>
/* implicit */ weak_intrusive_ptr(
const weak_intrusive_ptr<From, FromNullType>& rhs)
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr copy constructor got pointer of wrong type.");
retain_();
}
~weak_intrusive_ptr() noexcept {
reset_();
}
weak_intrusive_ptr& operator=(weak_intrusive_ptr&& rhs) & noexcept {
// NOLINTNEXTLINE(*assign*)
return this->template operator= <TTarget, NullType>(std::move(rhs));
}
template <class From, class FromNullType>
weak_intrusive_ptr& operator=(
weak_intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr move assignment got pointer of wrong type.");
weak_intrusive_ptr tmp = std::move(rhs);
swap(tmp);
return *this;
}
weak_intrusive_ptr& operator=(const weak_intrusive_ptr& rhs) & noexcept {
if (this == &rhs) {
return *this;
}
// NOLINTNEXTLINE(*assign*)
return this->template operator= <TTarget, NullType>(rhs);
}
weak_intrusive_ptr& operator=(
const intrusive_ptr<TTarget, NullType>& rhs) & noexcept {
weak_intrusive_ptr tmp(rhs);
swap(tmp);
return *this;
}
template <class From, class FromNullType>
weak_intrusive_ptr& operator=(
const weak_intrusive_ptr<From, NullType>& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr copy assignment got pointer of wrong type.");
weak_intrusive_ptr tmp = rhs;
swap(tmp);
return *this;
}
void reset() noexcept {
reset_();
}
void swap(weak_intrusive_ptr& rhs) noexcept {
TTarget* tmp = target_;
target_ = rhs.target_;
rhs.target_ = tmp;
}
// NB: This should ONLY be used by the std::hash implementation
// for weak_intrusive_ptr. Another way you could do this is
// friend std::hash<weak_intrusive_ptr>, but this triggers two
// bugs:
//
// (1) It triggers an nvcc bug, where std::hash in a friend class
// declaration gets preprocessed into hash, which then cannot
// actually be found. The error in this case looks like:
//
// error: no template named 'hash'; did you mean 'std::hash'?
//
// (2) On OS X, std::hash is declared as a struct, not a class.
// This twings:
//
// error: class 'hash' was previously declared as a struct
// [-Werror,-Wmismatched-tags]
//
// Both of these are work-aroundable, but on the whole, I decided
// it would be simpler and easier to make work if we just expose
// an unsafe getter for target_
//
TTarget* _unsafe_get_target() const noexcept {
return target_;
}
uint32_t use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->refcount_.load(
std::memory_order_acquire); // refcount, not weakcount!
}
uint32_t weak_use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->weakcount_.load(std::memory_order_acquire);
}
bool expired() const noexcept {
return use_count() == 0;
}
intrusive_ptr<TTarget, NullType> lock() const noexcept {
if (expired()) {
return intrusive_ptr<TTarget, NullType>();
} else {
auto refcount = target_->refcount_.load(std::memory_order_seq_cst);
do {
if (refcount == 0) {
// Object already destructed, no strong references left anymore.
// Return nullptr.
return intrusive_ptr<TTarget, NullType>();
}
} while (
!target_->refcount_.compare_exchange_weak(refcount, refcount + 1));
return intrusive_ptr<TTarget, NullType>(
target_, raw::DontIncreaseRefcount{});
}
}
/**
* Returns an owning (but still only weakly referenced) pointer to the
* underlying object and makes the weak_intrusive_ptr instance invalid.
* That means the weakcount is not decreased.
* You *must* put the returned pointer back into a weak_intrusive_ptr using
* weak_intrusive_ptr::reclaim(ptr) to properly destruct it.
* This is helpful for C APIs.
*/
TTarget* release() noexcept {
TTarget* result = target_;
target_ = NullType::singleton();
return result;
}
/**
* Takes an owning (but must be weakly referenced) pointer to TTarget* and
* creates a weak_intrusive_ptr that takes over ownership.
* This means that the weakcount is not increased.
* This is the counter-part to weak_intrusive_ptr::release() and the pointer
* passed in *must* have been created using weak_intrusive_ptr::release().
*/
static weak_intrusive_ptr reclaim(TTarget* owning_weak_ptr) {
// See Note [Stack allocated intrusive_ptr_target safety]
// if refcount > 0, weakcount must be >1 for weak references to exist.
// see weak counting explanation at top of this file.
// if refcount == 0, weakcount only must be >0.
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
owning_weak_ptr == NullType::singleton() ||
owning_weak_ptr->weakcount_.load() > 1 ||
(owning_weak_ptr->refcount_.load() == 0 &&
owning_weak_ptr->weakcount_.load() > 0),
"weak_intrusive_ptr: Can only weak_intrusive_ptr::reclaim() owning pointers that were created using weak_intrusive_ptr::release().");
return weak_intrusive_ptr(owning_weak_ptr);
}
/**
* Takes a pointer to TTarget* (may be weak or strong) and creates a
* new weak_intrusive_ptr representing a new weak reference, i.e.
* the raw pointer retains ownership.
*/
static weak_intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
auto ret = reclaim(owning_ptr);
ret.retain_();
return ret;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
friend bool operator<(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
friend bool operator==(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
};
template <class TTarget, class NullType>
inline void swap(
weak_intrusive_ptr<TTarget, NullType>& lhs,
weak_intrusive_ptr<TTarget, NullType>& rhs) noexcept {
lhs.swap(rhs);
}
// To allow weak_intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.target_ < rhs.target_;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.target_ == rhs.target_;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(lhs, rhs);
}
// Alias for documentary purposes, to more easily distinguish
// weak raw intrusive pointers from intrusive pointers.
using weak_intrusive_ptr_target = intrusive_ptr_target;
// This namespace provides some methods for working with
// raw pointers that subclass intrusive_ptr_target. They are not provided
// as methods on intrusive_ptr_target, because ideally you would not need these
// methods at all (use smart pointers), but if you are dealing with legacy code
// that still needs to pass around raw pointers, you may find these quite
// useful.
//
// An important usage note: some functions are only valid if you have a
// strong raw pointer to the object, while others are only valid if you
// have a weak raw pointer to the object. ONLY call intrusive_ptr namespace
// functions on strong pointers, and weak_intrusive_ptr namespace functions
// on weak pointers. If you mix it up, you may get an assert failure.
namespace raw {
namespace intrusive_ptr {
// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void incref(intrusive_ptr_target* self) {
if (self) {
detail::atomic_refcount_increment(self->refcount_);
}
}
// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void decref(intrusive_ptr_target* self) {
// Let it die
c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
// NB: Caller still has 'self' pointer, but it's now invalid.
// If you want more safety, used the actual c10::intrusive_ptr class
}
template <typename T>
inline T* make_weak(T* self) {
// NB: 'this' is a strong pointer, but we return a weak pointer
auto ptr = c10::intrusive_ptr<T>::reclaim(self);
c10::weak_intrusive_ptr<T> wptr(ptr);
ptr.release();
return wptr.release();
}
inline uint32_t use_count(intrusive_ptr_target* self) {
auto ptr = c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
auto r = ptr.use_count();
ptr.release();
return r;
}
} // namespace intrusive_ptr
namespace weak_intrusive_ptr {
inline void incref(weak_intrusive_ptr_target* self) {
detail::atomic_weakcount_increment(self->weakcount_);
}
inline void decref(weak_intrusive_ptr_target* self) {
// Let it die
c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
// NB: You still "have" the 'self' pointer, but it's now invalid.
// If you want more safety, used the actual c10::weak_intrusive_ptr class
}
template <typename T>
inline T* lock(T* self) {
auto wptr = c10::weak_intrusive_ptr<T>::reclaim(self);
auto ptr = wptr.lock();
wptr.release();
return ptr.release();
}
// This gives the STRONG refcount of a WEAK pointer
inline uint32_t use_count(weak_intrusive_ptr_target* self) {
auto wptr = c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
auto r = wptr.use_count();
wptr.release();
return r;
}
} // namespace weak_intrusive_ptr
} // namespace raw
} // namespace c10
namespace std {
// To allow intrusive_ptr and weak_intrusive_ptr inside std::unordered_map or
// std::unordered_set, we need std::hash
template <class TTarget, class NullType>
struct hash<c10::intrusive_ptr<TTarget, NullType>> {
size_t operator()(const c10::intrusive_ptr<TTarget, NullType>& x) const {
return std::hash<TTarget*>()(x.get());
}
};
template <class TTarget, class NullType>
struct hash<c10::weak_intrusive_ptr<TTarget, NullType>> {
size_t operator()(const c10::weak_intrusive_ptr<TTarget, NullType>& x) const {
return std::hash<TTarget*>()(x._unsafe_get_target());
}
};
} // namespace std