blob: 8cd13836928819adcb522b784d0c8579b7d746bd [file] [log] [blame] [edit]
torch.utils.tensorboard
===================================
.. automodule:: torch.utils.tensorboard
Before going further, more details on TensorBoard can be found at
https://www.tensorflow.org/tensorboard/
Once you've installed TensorBoard, these utilities let you log PyTorch models
and metrics into a directory for visualization within the TensorBoard UI.
Scalars, images, histograms, graphs, and embedding visualizations are all
supported for PyTorch models and tensors as well as Caffe2 nets and blobs.
The SummaryWriter class is your main entry to log data for consumption
and visualization by TensorBoard. For example:
.. code:: python
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = datasets.MNIST('mnist_train', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
model = torchvision.models.resnet50(False)
# Have ResNet model take in grayscale rather than RGB
model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
images, labels = next(iter(trainloader))
grid = torchvision.utils.make_grid(images)
writer.add_image('images', grid, 0)
writer.add_graph(model, images)
writer.close()
This can then be visualized with TensorBoard, which should be installable
and runnable with::
pip install tensorboard
tensorboard --logdir=runs
Lots of information can be logged for one experiment. To avoid cluttering
the UI and have better result clustering, we can group plots by naming them
hierarchically. For example, "Loss/train" and "Loss/test" will be grouped
together, while "Accuracy/train" and "Accuracy/test" will be grouped separately
in the TensorBoard interface.
.. code:: python
from torch.utils.tensorboard import SummaryWriter
import numpy as np
writer = SummaryWriter()
for n_iter in range(100):
writer.add_scalar('Loss/train', np.random.random(), n_iter)
writer.add_scalar('Loss/test', np.random.random(), n_iter)
writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
writer.add_scalar('Accuracy/test', np.random.random(), n_iter)
Expected result:
.. image:: _static/img/tensorboard/hier_tags.png
:scale: 75 %
|
|
.. currentmodule:: torch.utils.tensorboard.writer
.. autoclass:: SummaryWriter
.. automethod:: __init__
.. automethod:: add_scalar
.. automethod:: add_scalars
.. automethod:: add_histogram
.. automethod:: add_image
.. automethod:: add_images
.. automethod:: add_figure
.. automethod:: add_video
.. automethod:: add_audio
.. automethod:: add_text
.. automethod:: add_graph
.. automethod:: add_embedding
.. automethod:: add_pr_curve
.. automethod:: add_custom_scalars
.. automethod:: add_mesh
.. automethod:: add_hparams
.. automethod:: flush
.. automethod:: close