blob: 706ea44fe3def2979a5e15f1efa25fcf6da85d04 [file] [log] [blame] [edit]
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <test/cpp/api/support.h>
#include <torch/torch.h>
// Naive DFT of a 1 dimensional tensor
torch::Tensor naive_dft(torch::Tensor x, bool forward = true) {
TORCH_INTERNAL_ASSERT(x.dim() == 1);
x = x.contiguous();
auto out_tensor = torch::zeros_like(x);
const int64_t len = x.size(0);
// Roots of unity, exp(-2*pi*j*n/N) for n in [0, N), reversed for inverse
// transform
std::vector<c10::complex<double>> roots(len);
const auto angle_base = (forward ? -2.0 : 2.0) * M_PI / len;
for (const auto i : c10::irange(len)) {
auto angle = i * angle_base;
roots[i] = c10::complex<double>(std::cos(angle), std::sin(angle));
}
const auto in = x.data_ptr<c10::complex<double>>();
const auto out = out_tensor.data_ptr<c10::complex<double>>();
for (const auto i : c10::irange(len)) {
for (const auto j : c10::irange(len)) {
out[i] += roots[(j * i) % len] * in[j];
}
}
return out_tensor;
}
// NOTE: Visual Studio and ROCm builds don't understand complex literals
// as of August 2020
TEST(FFTTest, fft) {
auto t = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::fft(t);
auto expect = naive_dft(t);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_real) {
auto t = torch::randn(128, torch::kDouble);
auto actual = torch::fft::fft(t);
auto expect = torch::fft::fft(t.to(torch::kComplexDouble));
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_pad) {
auto t = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::fft(t, 200);
auto expect = torch::fft::fft(torch::constant_pad_nd(t, {0, 72}));
ASSERT_TRUE(torch::allclose(actual, expect));
actual = torch::fft::fft(t, 64);
expect = torch::fft::fft(torch::constant_pad_nd(t, {0, -64}));
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_norm) {
auto t = torch::randn(128, torch::kComplexDouble);
// NOLINTNEXTLINE(bugprone-argument-comment)
auto unnorm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/{});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"forward");
ASSERT_TRUE(torch::allclose(unnorm / 128, norm));
// NOLINTNEXTLINE(bugprone-argument-comment)
auto ortho_norm = torch::fft::fft(t, /*n=*/{}, /*axis=*/-1, /*norm=*/"ortho");
ASSERT_TRUE(torch::allclose(unnorm / std::sqrt(128), ortho_norm));
}
TEST(FFTTest, ifft) {
auto T = torch::randn(128, torch::kComplexDouble);
auto actual = torch::fft::ifft(T);
auto expect = naive_dft(T, /*forward=*/false) / 128;
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, fft_ifft) {
auto t = torch::randn(77, torch::kComplexDouble);
auto T = torch::fft::fft(t);
ASSERT_EQ(T.size(0), 77);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::ifft(T);
ASSERT_EQ(t_round_trip.size(0), 77);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
TEST(FFTTest, rfft) {
auto t = torch::randn(129, torch::kDouble);
auto actual = torch::fft::rfft(t);
auto expect = torch::fft::fft(t.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, rfft_irfft) {
auto t = torch::randn(128, torch::kDouble);
auto T = torch::fft::rfft(t);
ASSERT_EQ(T.size(0), 65);
ASSERT_EQ(T.scalar_type(), torch::kComplexDouble);
auto t_round_trip = torch::fft::irfft(T);
ASSERT_EQ(t_round_trip.size(0), 128);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}
TEST(FFTTest, ihfft) {
auto T = torch::randn(129, torch::kDouble);
auto actual = torch::fft::ihfft(T);
auto expect = torch::fft::ifft(T.to(torch::kComplexDouble)).slice(0, 0, 65);
ASSERT_TRUE(torch::allclose(actual, expect));
}
TEST(FFTTest, hfft_ihfft) {
auto t = torch::randn(64, torch::kComplexDouble);
t[0] = .5; // Must be purely real to satisfy hermitian symmetry
auto T = torch::fft::hfft(t, 127);
ASSERT_EQ(T.size(0), 127);
ASSERT_EQ(T.scalar_type(), torch::kDouble);
auto t_round_trip = torch::fft::ihfft(T);
ASSERT_EQ(t_round_trip.size(0), 64);
ASSERT_EQ(t_round_trip.scalar_type(), torch::kComplexDouble);
ASSERT_TRUE(torch::allclose(t, t_round_trip));
}