blob: 68d41cb163d5140802fe8500bb796e733ec1ae59 [file] [log] [blame] [edit]
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
namespace F = torch::nn::functional;
using namespace torch::nn;
struct FunctionalTest : torch::test::SeedingFixture {};
TEST_F(FunctionalTest, Conv1d) {
auto x = torch::arange(30, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({2, 3, 5});
auto weight =
torch::arange(18, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({2, 3, 3});
auto y = F::conv1d(x, weight, F::Conv1dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{312., 348., 384.}, {798., 915., 1032.}},
{{852., 888., 924.}, {2553., 2670., 2787.}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv1d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, Conv2dEven) {
auto x = torch::arange(75, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({1, 3, 5, 5});
auto weight =
torch::arange(54, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({2, 3, 3, 3});
auto y = F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{15219., 15570., 15921.},
{16974., 17325., 17676.},
{18729., 19080., 19431.}},
{{37818., 38898., 39978.},
{43218., 44298., 45378.},
{48618., 49698., 50778.}}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv2d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, Conv2dUneven) {
auto x = torch::arange(60, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({1, 3, 5, 4});
auto weight =
torch::arange(36, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({2, 3, 3, 2});
auto y = F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{5289., 5442., 5595.}, {5901., 6054., 6207.}, {6513., 6666., 6819.}},
{{13227., 13704., 14181.},
{15135., 15612., 16089.},
{17043., 17520., 17997.}}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv2d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, Conv3d) {
auto x = torch::arange(375, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({1, 3, 5, 5, 5});
auto weight =
torch::arange(162, torch::dtype(torch::kFloat).requires_grad(true))
.reshape({2, 3, 3, 3, 3});
auto y = F::conv3d(x, weight, F::Conv3dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{{700704., 703944., 707184.},
{716904., 720144., 723384.},
{733104., 736344., 739584.}},
{{781704., 784944., 788184.},
{797904., 801144., 804384.},
{814104., 817344., 820584.}},
{{862704., 865944., 869184.},
{878904., 882144., 885384.},
{895104., 898344., 901584.}}},
{{{1724220., 1734021., 1743822.},
{1773225., 1783026., 1792827.},
{1822230., 1832031., 1841832.}},
{{1969245., 1979046., 1988847.},
{2018250., 2028051., 2037852.},
{2067255., 2077056., 2086857.}},
{{2214270., 2224071., 2233872.},
{2263275., 2273076., 2282877.},
{2312280., 2322081., 2331882.}}}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv3d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, MaxPool1d) {
auto x = torch::ones({1, 1, 5});
auto y = F::max_pool1d(x, F::MaxPool1dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 2}));
}
TEST_F(FunctionalTest, MaxPool2d) {
auto x = torch::ones({2, 5, 5});
auto y = F::max_pool2d(x, F::MaxPool2dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2}));
}
TEST_F(FunctionalTest, MaxPool2dBackward) {
auto input = torch::rand(
{1, 2, 4, 4}, torch::dtype(torch::kFloat).requires_grad(true));
auto output = F::max_pool2d(input, F::MaxPool2dFuncOptions(2));
auto s = output.sum();
s.backward();
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, MaxPool3d) {
auto x = torch::ones({2, 5, 5, 5});
auto y = F::max_pool3d(x, F::MaxPool3dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2}));
}
TEST_F(FunctionalTest, AvgPool1d) {
auto x = torch::ones({1, 1, 5});
auto y = F::avg_pool1d(x, F::AvgPool1dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 2}));
}
TEST_F(FunctionalTest, AvgPool2d) {
auto x = torch::ones({2, 5, 5});
auto y = F::avg_pool2d(x, F::AvgPool2dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2}));
}
TEST_F(FunctionalTest, AvgPool3d) {
auto x = torch::ones({2, 5, 5, 5});
auto y = F::avg_pool3d(x, F::AvgPool3dFuncOptions(3).stride(2));
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2}));
}
TEST_F(FunctionalTest, FractionalMaxPool2d) {
auto x = torch::ones({2, 5, 5});
auto y = F::fractional_max_pool2d(
x, F::FractionalMaxPool2dFuncOptions(3).output_size(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2}));
auto y_with_indices = F::fractional_max_pool2d_with_indices(
x, F::FractionalMaxPool2dFuncOptions(3).output_size(2));
ASSERT_TRUE(torch::equal(y, std::get<0>(y_with_indices)));
ASSERT_TRUE(torch::allclose(
std::get<1>(y_with_indices),
torch::tensor({{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}})));
ASSERT_EQ(
std::get<1>(y_with_indices).sizes(), std::vector<int64_t>({2, 2, 2}));
auto x1 = torch::ones({2, 2, 5, 5});
auto y1 = F::fractional_max_pool2d(
x1, F::FractionalMaxPool2dFuncOptions(3).output_size(2));
ASSERT_EQ(y1.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y1, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(y1.sizes(), std::vector<int64_t>({2, 2, 2, 2}));
auto y1_with_indices = F::fractional_max_pool2d_with_indices(
x1, F::FractionalMaxPool2dFuncOptions(3).output_size(2));
ASSERT_TRUE(torch::equal(y1, std::get<0>(y1_with_indices)));
ASSERT_TRUE(torch::allclose(
std::get<1>(y1_with_indices),
torch::tensor(
{{{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}},
{{{0, 2}, {10, 12}}, {{0, 2}, {10, 12}}}})));
ASSERT_EQ(
std::get<1>(y1_with_indices).sizes(), std::vector<int64_t>({2, 2, 2, 2}));
}
TEST_F(FunctionalTest, FractionalMaxPool3d) {
auto x = torch::ones({2, 5, 5, 5});
auto y = F::fractional_max_pool3d(
x, F::FractionalMaxPool3dFuncOptions(3).output_size(2));
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 2, 2, 2})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 2, 2, 2}));
auto y_with_indices = F::fractional_max_pool3d_with_indices(
x, F::FractionalMaxPool3dFuncOptions(3).output_size(2));
ASSERT_TRUE(torch::equal(y, std::get<0>(y_with_indices)));
ASSERT_TRUE(torch::allclose(
std::get<1>(y_with_indices),
torch::tensor(
{{{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}},
{{{0, 2}, {10, 12}}, {{50, 52}, {60, 62}}}})));
ASSERT_EQ(
std::get<1>(y_with_indices).sizes(), std::vector<int64_t>({2, 2, 2, 2}));
}
TEST_F(FunctionalTest, LPPool1d) {
int norm_type = 2;
int stride = 2;
int kernel_size = 3;
auto x = torch::ones({1, 1, 5});
auto y = F::lp_pool1d(
x, F::LPPool1dFuncOptions(norm_type, kernel_size).stride(stride));
auto expected =
(torch::pow(torch::tensor({{{1, 1}}}, torch::kFloat), norm_type) *
kernel_size)
.pow(1. / norm_type);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 2}));
}
TEST_F(FunctionalTest, LPPool2d) {
int norm_type = 2;
int stride = 2;
std::vector<int64_t> kernel_size({2, 3});
auto x = torch::ones({1, 1, 2, 5});
auto y = F::lp_pool2d(
x, F::LPPool2dFuncOptions(norm_type, kernel_size).stride(stride));
auto expected =
(torch::pow(torch::tensor({{{{1, 1}}}}, torch::kFloat), norm_type) *
(kernel_size[0] * kernel_size[1]))
.pow(1. / norm_type);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 2}));
}
TEST_F(FunctionalTest, LPPool3d) {
int norm_type = 2;
int stride = 2;
std::vector<int64_t> kernel_size({1, 2, 3});
auto x = torch::ones({1, 1, 1, 2, 5});
auto y = F::lp_pool3d(
x, F::LPPool3dFuncOptions(norm_type, kernel_size).stride(stride));
auto expected =
(torch::pow(torch::tensor({{{{{1, 1}}}}}, torch::kFloat), norm_type) *
(kernel_size[0] * kernel_size[1] * kernel_size[2]))
.pow(1. / norm_type);
ASSERT_EQ(y.ndimension(), 5);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 1, 1, 2}));
}
TEST_F(FunctionalTest, CosineSimilarity) {
auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat);
auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat);
auto output = F::cosine_similarity(
input1, input2, F::CosineSimilarityFuncOptions().dim(1));
auto expected = torch::tensor({0.8078, 0.8721}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
TEST_F(FunctionalTest, SmoothL1LossDefaultOptions) {
auto input = torch::tensor(
{0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto output = F::smooth_l1_loss(input, target);
auto expected = torch::tensor(0.0233335, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, SmoothL1LossBeta) {
auto input = torch::tensor(
{0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto output =
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,bugprone-argument-comment)
F::smooth_l1_loss(
input, target, /*reduction=*/torch::kMean, /*beta=*/0.5);
auto expected = torch::tensor(1.67, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, SmoothL1LossBetaOptions) {
auto input = torch::tensor(
{0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto output =
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
F::smooth_l1_loss(
input,
target,
F::SmoothL1LossFuncOptions().reduction(torch::kMean).beta(0.5));
auto expected = torch::tensor(1.67, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, SmoothL1LossNoReduction) {
auto input = torch::tensor(
{0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto output =
// NOLINTNEXTLINE(bugprone-argument-comment)
F::smooth_l1_loss(input, target, /*reduction=*/torch::kNone);
auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, HuberLossDefaultOptions) {
auto input = torch::tensor(
{0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto output = F::huber_loss(input, target);
auto expected = torch::tensor(0.0233335, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, HuberLossDelta) {
auto input = torch::tensor(
{0.1, 1.5, 10.0}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto options = F::HuberLossFuncOptions().reduction(torch::kMean).delta(0.5);
auto output = F::huber_loss(input, target, options);
auto expected = torch::tensor(1.67 * 0.5, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, HuberLossNoReduction) {
auto input = torch::tensor(
{0.1, 1.2, 4.7}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({0., 1., 5.}, torch::kFloat);
auto options = F::HuberLossFuncOptions().reduction(torch::kNone);
auto output = F::huber_loss(input, target, options);
auto expected = torch::tensor({0.005, 0.02, 0.045}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(input.sizes() == input.grad().sizes());
}
TEST_F(FunctionalTest, SoftMarginLossDefaultOptions) {
auto input = torch::tensor(
{2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat);
auto output = F::soft_margin_loss(input, target);
auto expected = torch::tensor({1.3767317}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, MultiLabelSoftMarginLossDefaultOptions) {
auto input = torch::tensor(
{{0., 2., 2., 0.}, {2., 1., 0., 1.}},
torch::dtype(torch::kFloat).requires_grad(true));
auto target =
torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat);
auto output = F::multilabel_soft_margin_loss(input, target);
auto expected = torch::tensor({0.7608436}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, SoftMarginLossNoReduction) {
auto input = torch::tensor(
{2., 4., 1., 3.}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({-1., 1., 1., -1.}, torch::kFloat);
auto output = F::soft_margin_loss(input, target, torch::kNone);
auto expected = torch::tensor(
{2.1269281, 0.01814993, 0.3132617, 3.0485873}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, MultiLabelSoftMarginLossWeightedNoReduction) {
auto input = torch::tensor(
{{0., 2., 2., 0.}, {2., 1., 0., 1.}},
torch::dtype(torch::kFloat).requires_grad(true));
auto target =
torch::tensor({{0., 0., 1., 0.}, {1., 0., 1., 1.}}, torch::kFloat);
auto weight = torch::tensor({0.1, 0.6, 0.4, 0.8}, torch::kFloat);
auto options = F::MultilabelSoftMarginLossFuncOptions()
.reduction(torch::kNone)
.weight(weight);
auto output = F::multilabel_soft_margin_loss(input, target, options);
auto expected = torch::tensor({0.4876902, 0.3321295}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, PairwiseDistance) {
auto input1 = torch::tensor({{1, 2, 3}, {4, 5, 6}}, torch::kFloat);
auto input2 = torch::tensor({{1, 8, 3}, {2, 1, 6}}, torch::kFloat);
auto output = F::pairwise_distance(
input1, input2, F::PairwiseDistanceFuncOptions().p(1));
auto expected = torch::tensor({6, 6}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, PDist) {
{
auto input = torch::tensor({{-1.0, -5.0, -1.0}, {2.0, 4.0, 6.0}});
auto output = F::pdist(input);
auto expected = torch::tensor({11.7898});
ASSERT_TRUE(output.allclose(expected));
}
{
auto input = torch::tensor({{1.0, -1.0}, {1.0, 3.0}, {3.0, 3.0}});
auto output = F::pdist(input, 1.5);
auto expected = torch::tensor({4.0, 4.8945, 2.0});
ASSERT_TRUE(output.allclose(expected));
}
}
TEST_F(FunctionalTest, AdaptiveMaxPool1d) {
auto x = torch::ones({1, 1, 5});
auto y = F::adaptive_max_pool1d(x, F::AdaptiveMaxPool1dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3}));
}
TEST_F(FunctionalTest, AdaptiveMaxPool2d) {
auto x = torch::ones({2, 5, 5});
auto y = F::adaptive_max_pool2d(x, F::AdaptiveMaxPool2dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3}));
}
TEST_F(FunctionalTest, AdaptiveMaxPool3d) {
auto x = torch::ones({2, 5, 5, 5});
auto y = F::adaptive_max_pool3d(x, F::AdaptiveMaxPool3dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3, 3}));
}
TEST_F(FunctionalTest, AdaptiveAvgPool1d) {
auto x = torch::ones({1, 1, 5});
auto y = F::adaptive_avg_pool1d(x, F::AdaptiveAvgPool1dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({1, 1, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3}));
}
TEST_F(FunctionalTest, AdaptiveAvgPool2d) {
auto x = torch::ones({2, 5, 5});
auto y = F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3}));
}
TEST_F(FunctionalTest, AdaptiveAvgPool3d) {
auto x = torch::ones({2, 5, 5, 5});
auto y = F::adaptive_avg_pool3d(x, F::AdaptiveAvgPool3dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 4);
ASSERT_TRUE(torch::allclose(y, torch::ones({2, 3, 3, 3})));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 3, 3, 3}));
}
TEST_F(FunctionalTest, L1Loss) {
auto input = torch::randn({5, 6}, torch::requires_grad());
auto target = torch::empty({5, 6}).random_(2);
auto output = F::l1_loss(torch::sigmoid(input), target);
auto s = output.sum();
s.backward();
ASSERT_EQ(output.sizes(), torch::IntArrayRef());
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, MSELoss) {
auto input = torch::randn({5, 6}, torch::requires_grad());
auto target = torch::empty({5, 6}).random_(2);
auto output = F::mse_loss(torch::sigmoid(input), target);
auto s = output.sum();
s.backward();
ASSERT_EQ(output.sizes(), torch::IntArrayRef());
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, BCELoss) {
auto input = torch::randn({5, 6}, torch::requires_grad());
auto target = torch::empty({5, 6}).random_(2);
auto output = F::binary_cross_entropy(torch::sigmoid(input), target);
auto s = output.sum();
s.backward();
ASSERT_EQ(output.sizes(), torch::IntArrayRef());
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, KLDivLoss) {
KLDivLoss loss;
auto input = torch::randn({5, 6}, torch::requires_grad());
auto target = torch::empty({5, 6}).random_(2);
auto output = F::kl_div(torch::sigmoid(input), target);
auto s = output.sum();
s.backward();
ASSERT_EQ(output.sizes(), torch::IntArrayRef());
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, HingeEmbeddingLoss) {
auto input = torch::tensor({{2, 22, 4}, {20, 10, 0}}, torch::kFloat);
auto target = torch::tensor({{2, 6, 4}, {1, 10, 0}}, torch::kFloat);
auto output = F::hinge_embedding_loss(
input, target, F::HingeEmbeddingLossFuncOptions().margin(2));
auto expected = torch::tensor({10}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, GridSample) {
auto input =
torch::arange(9, torch::kFloat).view(std::vector<int64_t>({1, 1, 3, 3}));
auto grid = torch::tensor(
{{{{-2., -1.}, {-1., -1.}, {0., -1.}},
{{-1., 0.}, {0., 0.}, {1., 0.}},
{{0., 1.}, {1., 1.}, {2., 1.}}}},
torch::kFloat);
// bilinear, zeros, true
auto options = F::GridSampleFuncOptions()
.mode(torch::kBilinear)
.padding_mode(torch::kZeros)
.align_corners(true);
auto output = F::grid_sample(input, grid, options);
auto expected = torch::tensor(
{{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 0.}}}}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
// bilinear, zeros, false
options = F::GridSampleFuncOptions()
.mode(torch::kBilinear)
.padding_mode(torch::kZeros)
.align_corners(false);
output = F::grid_sample(input, grid, options);
expected = torch::tensor(
{{{{0., 0., 0.5}, {1.5, 4., 2.5}, {3.5, 2., 0.}}}}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
// default options (bilinear, zeros, false) same result as above
output = F::grid_sample(input, grid);
ASSERT_TRUE(output.allclose(expected));
// nearest, zeros, true
options = F::GridSampleFuncOptions()
.mode(torch::kNearest)
.padding_mode(torch::kZeros)
.align_corners(true);
output = F::grid_sample(input, grid, options);
expected = torch::tensor(
{{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 0.}}}}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
// bilinear, border, true
options = F::GridSampleFuncOptions()
.mode(torch::kBilinear)
.padding_mode(torch::kBorder)
.align_corners(true);
output = F::grid_sample(input, grid, options);
expected = torch::tensor(
{{{{0., 0., 1.}, {3., 4., 5.}, {7., 8., 8.}}}}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
// bilinear, reflection, true
options = F::GridSampleFuncOptions()
.mode(torch::kBilinear)
.padding_mode(torch::kReflection)
.align_corners(true);
output = F::grid_sample(input, grid, options);
expected = torch::tensor(
{{{{1., 0., 1.}, {3., 4., 5.}, {7., 8., 7.}}}}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, AffineGrid) {
{
// 2D affine.
auto theta = torch::arange(1., 13).view(std::vector<int64_t>({2, 2, 3}));
auto size = std::vector<int64_t>({2, 3, 2, 2});
auto align_corners = true;
auto output = F::affine_grid(theta, size, !align_corners);
auto expected = torch::tensor(
{{{{1.50, 1.50}, {2.50, 5.50}}, {{3.50, 6.50}, {4.50, 10.50}}},
{{{1.50, 1.50}, {8.50, 11.50}}, {{9.50, 12.50}, {16.50, 22.50}}}});
auto output_aligned = F::affine_grid(theta, size, align_corners);
auto expected_aligned = torch::tensor(
{{{{0.0, -3.0}, {2.0, 5.0}}, {{4.0, 7.0}, {6.0, 15.0}}},
{{{-6.0, -9.0}, {8.0, 11.0}}, {{10.0, 13.0}, {24.0, 33.0}}}});
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(output_aligned.allclose(expected_aligned));
}
{
// 3D affine.
auto theta = torch::arange(1., 13).view(std::vector<int64_t>({1, 3, 4}));
auto size = std::vector<int64_t>({1, 1, 3, 2, 2});
auto align_corners = true;
auto output = F::affine_grid(theta, size, !align_corners);
auto expected = torch::tensor(
{{{{{0.5000, -2.1667, -4.8333}, {1.5000, 2.8333, 4.1667}},
{{2.5000, 3.8333, 5.1667}, {3.5000, 8.8333, 14.1667}}},
{{{2.5000, 2.5000, 2.5000}, {3.5000, 7.5000, 11.5000}},
{{4.5000, 8.5000, 12.5000}, {5.5000, 13.5000, 21.5000}}},
{{{4.5000, 7.1667, 9.8333}, {5.5000, 12.1667, 18.8333}},
{{6.5000, 13.1667, 19.8333}, {7.5000, 18.1667, 28.8333}}}}});
auto output_aligned = F::affine_grid(theta, size, align_corners);
auto expected_aligned = torch::tensor(
{{{{{-2.0, -10.0, -18.0}, {0.0, 0.0, 0.0}},
{{2.0, 2.0, 2.0}, {4.0, 12.0, 20.0}}},
{{{1.0, -3.0, -7.0}, {3.0, 7.0, 11.0}},
{{5.0, 9.0, 13.0}, {7.0, 19.0, 31.0}}},
{{{4.0, 4.0, 4.0}, {6.0, 14.0, 22.0}},
{{8.0, 16.0, 24.0}, {10.0, 26.0, 42.0}}}}});
ASSERT_TRUE(output.allclose(expected, 1e-2));
ASSERT_TRUE(output_aligned.allclose(expected_aligned));
}
{
auto theta = torch::empty({1, 2, 3}, torch::kDouble);
auto size = std::vector<int64_t>({1, 1, 2, 2});
ASSERT_THROWS_WITH(
F::affine_grid(torch::empty({2, 2, 3}), {-1, 1, 2, 2}),
"Expected non-zero, positive output size. Got [-1, 1, 2, 2]");
ASSERT_THROWS_WITH(
F::affine_grid(torch::empty({2, 2, 3}, torch::kInt), size),
"Expected theta to have floating point type, but got int");
ASSERT_THROWS_WITH(
F::affine_grid(theta[0], size),
"Expected a batch of 2D affine matrices of shape Nx2x3 for size "
"[1, 1, 2, 2]. Got [2, 3].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.unsqueeze(0), size),
"Expected a batch of 2D affine matrices of shape Nx2x3 for size "
"[1, 1, 2, 2]. Got [1, 1, 2, 3].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.repeat({1, 2, 1}), size),
"Expected a batch of 2D affine matrices of shape Nx2x3 for size "
"[1, 1, 2, 2]. Got [1, 4, 3].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.repeat({1, 1, 2}), size),
"Expected a batch of 2D affine matrices of shape Nx2x3 for size "
"[1, 1, 2, 2]. Got [1, 2, 6].");
}
{
auto theta = torch::empty({1, 3, 4}, torch::kDouble);
auto size = std::vector<int64_t>({1, 1, 2, 2, 3});
ASSERT_THROWS_WITH(
F::affine_grid(theta[0], size),
"Expected a batch of 3D affine matrices of shape Nx3x4 for size "
"[1, 1, 2, 2, 3]. Got [3, 4].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.unsqueeze(0), size),
"Expected a batch of 3D affine matrices of shape Nx3x4 for size "
"[1, 1, 2, 2, 3]. Got [1, 1, 3, 4].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.repeat({1, 2, 1}), size),
"Expected a batch of 3D affine matrices of shape Nx3x4 for size "
"[1, 1, 2, 2, 3]. Got [1, 6, 4].");
ASSERT_THROWS_WITH(
F::affine_grid(theta.repeat({1, 1, 2}), size),
"Expected a batch of 3D affine matrices of shape Nx3x4 for size "
"[1, 1, 2, 2, 3]. Got [1, 3, 8].");
ASSERT_THROWS_WITH(
F::affine_grid(theta, {1, 1, 1, 2, 2, 3}),
"affine_grid only supports 4D and 5D sizes, for 2D and 3D affine "
"transforms, respectively. Got size [1, 1, 1, 2, 2, 3]");
ASSERT_THROWS_WITH(
F::affine_grid(theta, {1, 1}),
"affine_grid only supports 4D and 5D sizes, for 2D and 3D affine "
"transforms, respectively. Got size [1, 1]");
}
}
TEST_F(FunctionalTest, MultiMarginLoss) {
auto weight = torch::tensor({0.3, 0.3, 0.4}, torch::kFloat);
auto input = torch::tensor(
{{0.2, 0.2, 0.6}, {0.1, 0.8, 0.1}, {0.9, 0.09, 0.01}},
torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({2, 1, 0}, torch::kLong);
auto output = F::multi_margin_loss(
input, target, F::MultiMarginLossFuncOptions().margin(2).weight(weight));
auto expected = torch::tensor({0.305556}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
TEST_F(FunctionalTest, CosineEmbeddingLoss) {
auto input1 = torch::tensor({{2, 3, 4}, {6, 2, 4}});
auto input2 = torch::tensor({{2, 3, 5}, {9, 12, 0}});
auto target = torch::tensor({1, -1});
auto output = F::cosine_embedding_loss(
input1, input2, target, F::CosineEmbeddingLossFuncOptions().margin(0.5));
auto expected = torch::tensor({0.1004}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-4));
}
TEST_F(FunctionalTest, MultiLabelMarginLossDefaultOptions) {
auto input = torch::tensor(
{{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong);
auto output = F::multilabel_margin_loss(input, target);
auto expected = torch::tensor({0.8500}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, MultiLabelMarginLossNoReduction) {
auto input = torch::tensor(
{{0.1, 0.2, 0.4, 0.8}}, torch::dtype(torch::kFloat).requires_grad(true));
auto target = torch::tensor({{3, 0, -1, 1}}, torch::kLong);
auto output = F::multilabel_margin_loss(input, target, torch::kNone);
auto expected = torch::tensor({0.8500}, torch::kFloat);
auto s = output.sum();
s.backward();
ASSERT_TRUE(output.allclose(expected));
ASSERT_EQ(input.sizes(), input.grad().sizes());
}
TEST_F(FunctionalTest, TripletMarginLoss) {
auto anchor = torch::tensor({{3., 3.}}, torch::kFloat);
auto positive = torch::tensor({{2., 2.}}, torch::kFloat);
auto negative = torch::tensor({{0., 0.}}, torch::kFloat);
auto output = F::triplet_margin_loss(
anchor,
positive,
negative,
F::TripletMarginLossFuncOptions().margin(1.0));
auto expected = torch::tensor({0.}, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
TEST_F(FunctionalTest, TripletMarginWithDistanceLossDefaultParity) {
// Check that if we use torch::pairwise_distance with the default
// TripletMarginLoss options as our distance function, the outputs
// are equal (i.e., equal under defaults).
std::vector<TripletMarginWithDistanceLossOptions::reduction_t> reductions = {
torch::kSum, torch::kMean, torch::kNone};
std::vector<float> margins = {0.5, 1.0, 1.5};
std::vector<bool> swaps = {true, false};
for (auto& reduction : reductions) {
for (auto& margin : margins) {
for (const auto& swap : swaps) {
auto anchor = torch::randn(
{100, 128}, torch::dtype(torch::kFloat).requires_grad(true));
auto positive = torch::randn(
{100, 128}, torch::dtype(torch::kFloat).requires_grad(true));
auto negative = torch::randn(
{100, 128}, torch::dtype(torch::kFloat).requires_grad(true));
auto basicOptions = F::TripletMarginLossFuncOptions()
.reduction(reduction)
.margin(margin)
.swap(swap);
auto distanceOptions = F::TripletMarginWithDistanceLossFuncOptions()
.reduction(reduction)
.margin(margin)
.swap(swap);
TripletMarginLoss basicLoss(basicOptions);
TripletMarginWithDistanceLoss distanceLoss(distanceOptions);
auto basicOutput =
F::triplet_margin_loss(anchor, positive, negative, basicOptions);
auto distanceOutput = F::triplet_margin_with_distance_loss(
anchor, positive, negative, distanceOptions);
ASSERT_TRUE(distanceOutput.allclose(basicOutput, 1e-6, 1e-6));
// handle for torch::kNone reduction
auto sum = distanceOutput.sum();
sum.backward();
ASSERT_EQ(anchor.sizes(), anchor.grad().sizes());
ASSERT_EQ(positive.sizes(), positive.grad().sizes());
ASSERT_EQ(negative.sizes(), negative.grad().sizes());
}
}
}
}
TEST_F(FunctionalTest, NLLLoss) {
auto input = torch::tensor(
{{-0.1315, -3.1315, -2.5315},
{-3.7038, -0.1038, -2.6038},
{-2.3422, -1.3422, -0.4422}},
torch::kFloat);
auto target = torch::tensor({1, 0, 2}, torch::kLong);
auto output = F::nll_loss(
input,
target,
F::NLLLossFuncOptions().ignore_index(-100).reduction(torch::kMean));
auto expected = torch::tensor(2.4258, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
ASSERT_TRUE(F::nll_loss(input, target).allclose(expected, 1e-04));
}
TEST_F(FunctionalTest, CrossEntropy) {
auto input = torch::tensor({{3., 3.}, {2., 2.}}, torch::kFloat);
auto target = torch::tensor({0, 1}, torch::kLong);
auto output = F::cross_entropy(
input,
target,
F::CrossEntropyFuncOptions().ignore_index(-100).reduction(torch::kMean));
auto expected = torch::tensor(0.6931, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
ASSERT_TRUE(F::cross_entropy(input, target).allclose(expected, 1e-04));
// label smoothing with class indices
input = torch::tensor({{3., 1.}, {1., 2.}}, torch::kFloat);
output = F::cross_entropy(
input,
target,
F::CrossEntropyFuncOptions().label_smoothing(0.15).reduction(
torch::kMean));
expected = torch::tensor(0.3326, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
// label smoothing with target probabilities
target = torch::tensor({{0.8, 0.2}, {0.1, 0.9}}, torch::kFloat);
output = F::cross_entropy(
input,
target,
F::CrossEntropyFuncOptions().label_smoothing(0.2).reduction(
torch::kMean));
expected = torch::tensor(0.5701, torch::kFloat);
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
TEST_F(FunctionalTest, MaxUnpool1d) {
auto x = torch::tensor(
{{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true));
auto indices = torch::tensor({{{1, 3, 4}}}, torch::kLong);
auto y = F::max_unpool1d(x, indices, F::MaxUnpool1dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(
y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 9}));
x = torch::tensor(
{{2, 4, 5}}, torch::dtype(torch::kFloat).requires_grad(true));
indices = torch::tensor({{1, 3, 4}}, torch::kLong);
y = F::max_unpool1d(x, indices, F::MaxUnpool1dFuncOptions(3));
ASSERT_EQ(y.ndimension(), 2);
ASSERT_TRUE(torch::allclose(
y, torch::tensor({{0, 2, 0, 4, 5, 0, 0, 0, 0}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 9}));
x = torch::tensor(
{{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true));
indices = torch::tensor({{{1, 3, 4}}}, torch::kLong);
y = F::max_unpool1d(
x,
indices,
F::MaxUnpool1dFuncOptions(3).output_size(
std::vector<int64_t>({1, 1, 9})));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(
y, torch::tensor({{{0, 2, 0, 4, 5, 0, 0, 0, 0}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 9}));
x = torch::tensor(
{{{2, 4, 5}}}, torch::dtype(torch::kFloat).requires_grad(true));
indices = torch::tensor({{{1, 3, 4}}}, torch::kLong);
y = F::max_unpool1d(
x, indices, F::MaxUnpool1dFuncOptions(3).stride(2).padding(1));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(
torch::allclose(y, torch::tensor({{{0, 2, 0, 4, 5}}}, torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 5}));
}
TEST_F(FunctionalTest, MaxUnpool2d) {
auto indices = torch::tensor(
{{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}},
{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}}},
torch::kLong);
auto x = torch::tensor(
{{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}},
{{{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}}},
torch::dtype(torch::kFloat).requires_grad(true));
auto y = F::max_unpool2d(
x, indices, F::MaxUnpool2dFuncOptions(3).stride(2).padding(1));
ASSERT_EQ(y.dim(), 4);
ASSERT_TRUE(torch::allclose(
y,
torch::tensor(
{{{{0, 0, 0, 0, 0},
{0, 6, 0, 8, 9},
{0, 0, 0, 0, 0},
{0, 16, 0, 18, 19},
{0, 21, 0, 23, 24}}},
{{{0, 0, 0, 0, 0},
{0, 31, 0, 33, 34},
{0, 0, 0, 0, 0},
{0, 41, 0, 43, 44},
{0, 46, 0, 48, 49}}}},
torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 1, 5, 5}));
indices = torch::tensor(
{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}},
{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}}},
torch::kLong);
x = torch::tensor(
{{{6, 8, 9}, {16, 18, 19}, {21, 23, 24}},
{{31, 33, 34}, {41, 43, 44}, {46, 48, 49}}},
torch::dtype(torch::kFloat).requires_grad(true));
y = F::max_unpool2d(
x, indices, F::MaxUnpool2dFuncOptions(3).stride(2).padding(1));
ASSERT_EQ(y.dim(), 3);
ASSERT_TRUE(torch::allclose(
y,
torch::tensor(
{{{0, 0, 0, 0, 0},
{0, 6, 0, 8, 9},
{0, 0, 0, 0, 0},
{0, 16, 0, 18, 19},
{0, 21, 0, 23, 24}},
{{0, 0, 0, 0, 0},
{0, 31, 0, 33, 34},
{0, 0, 0, 0, 0},
{0, 41, 0, 43, 44},
{0, 46, 0, 48, 49}}},
torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({2, 5, 5}));
}
TEST_F(FunctionalTest, MaxUnpool3d) {
auto indices = torch::tensor({{{{{26}}}}}, torch::kLong);
auto x = torch::tensor(
{{{{{26}}}}}, torch::dtype(torch::kFloat).requires_grad(true));
auto y = F::max_unpool3d(x, indices, F::MaxUnpool3dFuncOptions(3));
ASSERT_EQ(y.dim(), 5);
ASSERT_TRUE(torch::allclose(
y,
torch::tensor(
{{{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
{{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}}},
torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 1, 3, 3, 3}));
indices = torch::tensor({{{{26}}}}, torch::kLong);
x = torch::tensor(
{{{{26}}}}, torch::dtype(torch::kFloat).requires_grad(true));
y = F::max_unpool3d(x, indices, F::MaxUnpool3dFuncOptions(3));
ASSERT_EQ(y.dim(), 4);
ASSERT_TRUE(torch::allclose(
y,
torch::tensor(
{{{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}},
{{0, 0, 0}, {0, 0, 0}, {0, 0, 26}}}},
torch::kFloat)));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({1, 3, 3, 3}));
}
TEST_F(FunctionalTest, ELU) {
const auto size = 3;
for (const auto inplace : {false, true}) {
for (const auto alpha : {0.0, 0.42, 1.0, 4.2, 42.42}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto x_bf16 =
torch::linspace(-10.0, 10.0, size * size * size).to(torch::kBFloat16);
x_bf16.resize_({size, size, size});
auto y_exp = torch::max(torch::zeros_like(x), x) +
torch::min(torch::zeros_like(x), alpha * (torch::exp(x) - 1.0));
auto y = F::elu(x, F::ELUFuncOptions().alpha(alpha).inplace(inplace));
auto y_bf16 =
F::elu(x_bf16, F::ELUFuncOptions().alpha(alpha).inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
ASSERT_TRUE(torch::allclose(x_bf16.to(torch::kFloat), y, 1e-2, 1e-2));
}
}
}
ASSERT_TRUE(F::elu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, SELU) {
{
const double scale = 1.0507009873554804934193349852946;
const double alpha = 1.6732632423543772848170429916717;
for (const auto inplace : {false, true}) {
auto input = torch::randn({5, 5});
auto input_bf16 = input.clone().to(torch::kBFloat16);
auto expected = scale *
(torch::max(torch::zeros_like(input), input) +
torch::min(
torch::zeros_like(input), alpha * (torch::exp(input) - 1)));
auto output = F::selu(input, inplace);
auto output_bf16 = F::selu(input_bf16, inplace);
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(output_bf16.to(torch::kFloat).allclose(output, 1e-2, 1e-2));
if (inplace) {
ASSERT_TRUE(input.allclose(expected));
ASSERT_TRUE(input_bf16.to(torch::kFloat).allclose(output, 1e-2, 1e-2));
}
}
}
{
auto input = torch::arange(0, 9, torch::kDouble).view({3, 3});
auto output = F::selu(input);
auto expected = F::selu(input, false);
ASSERT_TRUE(output.allclose(expected));
}
ASSERT_TRUE(F::selu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, GLU) {
int64_t dim = 1;
auto input = torch::randn({4, 2}, torch::requires_grad());
auto output = F::glu(input, dim);
auto input_size = input.sizes()[dim] / 2;
auto first_half = input.narrow(dim, 0, input_size);
auto second_half = input.narrow(dim, input_size, input_size);
auto expected = first_half * torch::sigmoid(second_half);
ASSERT_TRUE(output.allclose(expected));
ASSERT_TRUE(F::glu(input).allclose(expected));
}
TEST_F(FunctionalTest, GELU) {
const auto x = torch::linspace(-3.0, 3.0, 100);
const auto y_exp = x * 0.5 * (1.0 + torch::erf(x / std::sqrt(2.0)));
const auto y = F::gelu(x, F::GELUFuncOptions().approximate("none"));
ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05));
}
TEST_F(FunctionalTest, TanhGELU) {
const auto x = torch::linspace(-3.0, 3.0, 100);
const auto inner = std::sqrt(2 / M_PI) * (x + 0.044715 * x.pow(3.0));
const auto y_exp = 0.5 * x * (1.0 + inner.tanh());
const auto y = F::gelu(x, F::GELUFuncOptions().approximate("tanh"));
ASSERT_TRUE(torch::allclose(y, y_exp, 1.4e-06, 1e-05));
}
TEST_F(FunctionalTest, Hardshrink) {
const auto size = 3;
for (const auto lambda : {-4.2, -1.0, -0.42, 0.0, 0.42, 1.0, 4.2, 42.42}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size}).set_requires_grad(true);
auto y = F::hardshrink(x, F::HardshrinkFuncOptions().lambda(lambda));
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
auto y_exp = (x.abs() > lambda) * x;
ASSERT_TRUE(torch::allclose(y, y_exp));
}
}
TEST_F(FunctionalTest, OneHot) {
{ // Test #1
auto x = torch::arange(0, 5, torch::kLong);
auto y = F::one_hot(x % 3);
auto expected = torch::tensor(
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0}, {0, 1, 0}}, torch::kLong);
ASSERT_EQ(y.ndimension(), 2);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({5, 3}));
}
{ // Test #2
auto x = torch::arange(0, 5, torch::kLong);
auto y = F::one_hot(x % 3, 5);
auto expected = torch::tensor(
{{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0}},
torch::kLong);
ASSERT_EQ(y.ndimension(), 2);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({5, 5}));
}
{ // Test #3
auto x = torch::arange(0, 6, torch::kLong);
auto y = F::one_hot(x.view(std::vector<int64_t>({3, 2})) % 3);
auto expected = torch::tensor(
{{{1, 0, 0}, {0, 1, 0}},
{{0, 0, 1}, {1, 0, 0}},
{{0, 1, 0}, {0, 0, 1}}},
torch::kLong);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_TRUE(torch::allclose(y, expected));
ASSERT_EQ(y.sizes(), std::vector<int64_t>({3, 2, 3}));
}
}
TEST_F(FunctionalTest, Hardtanh) {
const auto size = 3;
for (const auto min_val : {-4.2, -1.0, -0.42, 0.0}) {
for (const auto max_val : {0.0, 0.42, 1.0, 4.2}) {
for (const auto inplace : {false, true}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y_exp = (x < min_val) * min_val +
((x >= min_val) * (x <= max_val)) * x + (x > max_val) * max_val;
auto y = F::hardtanh(
x,
F::HardtanhFuncOptions().min_val(min_val).max_val(max_val).inplace(
inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
}
}
}
ASSERT_TRUE(F::hardtanh(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, LeakyReLU) {
const auto size = 3;
for (const auto negative_slope : {0.0, 0.42, 1.0}) {
for (const auto inplace : {false, true}) {
for (const auto type : {torch::kFloat, torch::kBFloat16}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type);
x.resize_({size, size, size});
auto y_exp = (x < 0) * x * negative_slope + (x >= 0) * x;
auto y = F::leaky_relu(
x,
F::LeakyReLUFuncOptions()
.negative_slope(negative_slope)
.inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
}
}
}
ASSERT_TRUE(F::leaky_relu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, LogSigmoid) {
const auto size = 3;
LogSigmoid model;
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y = F::logsigmoid(x);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
auto y_exp = torch::log(
torch::ones_like(x) / (torch::ones_like(x) + torch::exp(torch::neg(x))));
ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7));
}
TEST_F(FunctionalTest, GumbelSoftmax) {
// Test 1: No-options
{
auto logits = torch::randn({5});
int expected_count = 1;
auto y_draw = F::gumbel_softmax(logits);
// All values positive
ASSERT_GE(y_draw.min().item<int>(), 0);
// Shape unchanged
ASSERT_TRUE(y_draw.sizes() == logits.sizes());
// One choice per draw
ASSERT_TRUE(torch::allclose(
y_draw.sum(), torch::tensor(expected_count, torch::kFloat)));
}
// Test 2: 1D shape, 0 and -1 dim
for (const auto dim : {0, -1}) {
auto logits = torch::randn({5});
int expected_count = 1;
auto y_draw = F::gumbel_softmax(
logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(dim));
// All values positive
ASSERT_GE(y_draw.min().item<int>(), 0);
// Shape unchanged
ASSERT_TRUE(y_draw.sizes() == logits.sizes());
// One choice per draw
ASSERT_TRUE(torch::allclose(
y_draw.sum(), torch::tensor(expected_count, torch::kFloat)));
}
{ // Test 3: 2D shape, 1 dim
auto logits = torch::randn({5, 4});
int expected_count = 5;
auto y_draw = F::gumbel_softmax(
logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(1));
// All values positive
ASSERT_GE(y_draw.min().item<int>(), 0);
// Shape unchanged
ASSERT_TRUE(y_draw.sizes() == logits.sizes());
// One choice per draw
ASSERT_TRUE(torch::allclose(
y_draw.sum(), torch::tensor(expected_count, torch::kFloat)));
}
// Test 4: 3D shape, 1 and -1 dim
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
int dims[] = {1, -1};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers)
int expected[] = {5 * 3, 5 * 4};
for (const auto i : c10::irange(2)) {
auto logits = torch::randn({5, 4, 3});
int expected_count = expected[i];
auto y_draw = F::gumbel_softmax(
logits, F::GumbelSoftmaxFuncOptions().hard(true).dim(dims[i]));
// All values positive
ASSERT_GE(y_draw.min().item<int>(), 0);
// Shape unchanged
ASSERT_TRUE(y_draw.sizes() == logits.sizes());
// One choice per draw
ASSERT_TRUE(torch::allclose(
y_draw.sum(), torch::tensor(expected_count, torch::kFloat)));
}
{ // Test 5: Straight through
int num_draws = 100;
auto logits = torch::tensor({{0.2, 0.8, 0.1}});
logits = logits.reshape({1, 3});
logits.requires_grad();
auto probs = logits.softmax(-1);
auto counts = torch::zeros_like(logits);
torch::Tensor y_draw;
for (const auto i : c10::irange(num_draws)) {
(void)i; // Suppress unused variable warning
y_draw =
F::gumbel_softmax(logits, F::GumbelSoftmaxFuncOptions().hard(true));
counts += y_draw;
}
// All values positive
ASSERT_GE(y_draw.min().item<int>(), 0);
// Each experiment should result in 1 draw
ASSERT_EQ(counts.sum().item<int>(), num_draws);
// Check results are asymptotically as expected
auto expected = probs * num_draws;
// ~z is approximately N(0,1) for unbiased count
auto z = (counts - expected) / (expected * (1 - probs)).sqrt();
// A (lazy) approximate 99% two-sided test:
// occurs with prob alpha~>=0.01 if unbiased
ASSERT_LT(z.abs().max().item<float>(), 2.58);
}
}
TEST_F(FunctionalTest, Softmax) {
auto input = torch::arange(10, torch::kFloat).reshape({2, 5});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto output = F::softmax(input, /*dim=*/1);
auto sum = torch::sum(torch::exp(input), 1);
for (const auto i : c10::irange(2)) {
auto expected = torch::exp(input[i]) / sum[i];
ASSERT_TRUE(torch::allclose(output[i], expected));
}
}
TEST_F(FunctionalTest, Softmin) {
auto input = torch::arange(10, torch::kFloat).reshape({2, 5});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto output = F::softmin(input, /*dim=*/1);
auto sum = torch::sum(torch::exp(-input), 1);
for (const auto i : c10::irange(2)) {
auto expected = torch::exp(-input[i]) / sum[i];
ASSERT_TRUE(torch::allclose(output[i], expected));
}
}
TEST_F(FunctionalTest, LogSoftmax) {
auto input = torch::arange(10, torch::kFloat).reshape({2, 5});
// NOLINTNEXTLINE(bugprone-argument-comment)
auto output = F::log_softmax(input, /*dim=*/1);
auto sum = torch::sum(torch::exp(input), 1);
for (const auto i : c10::irange(2)) {
auto expected = torch::log(torch::exp(input[i]) / sum[i]);
ASSERT_TRUE(torch::allclose(output[i], expected));
}
}
TEST_F(FunctionalTest, PReLU) {
const auto x = torch::rand({42, 24}) * 200 - 100;
const auto w = torch::rand(24) * 200 - 100;
const auto y = F::prelu(x, w);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({42, 24}));
const auto y_exp = (x < 0) * w * x + (x >= 0) * x;
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, LayerNorm) {
const auto input = torch::randn({2, 2});
auto y = F::layer_norm(input, F::LayerNormFuncOptions({2, 2}).eps(2e-5));
auto y_exp =
torch::layer_norm(input, {2, 2}, torch::Tensor(), torch::Tensor(), 2e-5);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, GroupNorm) {
const auto input = torch::randn({2, 2});
auto y = F::group_norm(input, F::GroupNormFuncOptions(2).eps(2e-5));
auto y_exp =
torch::group_norm(input, 2, torch::Tensor(), torch::Tensor(), 2e-5);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, LocalResponseNorm) {
const auto x = torch::arange(100, 118).resize_({3, 3, 2});
const auto y = F::local_response_norm(x, F::LocalResponseNormFuncOptions(2));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 2}));
const auto y_exp = torch::tensor(
{{{73.7788, 74.1462}, {60.1942, 60.3302}, {60.4609, 60.5865}},
{{75.8729, 76.2011}, {60.9331, 61.0390}, {61.1403, 61.2370}},
{{77.7387, 78.0303}, {61.5011, 61.5807}, {61.6563, 61.7279}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, y_exp, 1e-4, 1e-7));
}
TEST_F(FunctionalTest, Linear) {
{
const auto x = torch::arange(100., 118).resize_({3, 3, 2});
const auto w = torch::arange(200., 206).resize_({3, 2});
const auto b = torch::arange(300., 303);
const auto y = F::linear(x, w, b);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 3}));
const auto y_exp = torch::tensor(
{{{40601, 41004, 41407}, {41403, 41814, 42225}, {42205, 42624, 43043}},
{{43007, 43434, 43861}, {43809, 44244, 44679}, {44611, 45054, 45497}},
{{45413, 45864, 46315}, {46215, 46674, 47133}, {47017, 47484, 47951}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
{
const auto x = torch::arange(100., 118).resize_({3, 3, 2});
const auto w = torch::arange(200., 206).resize_({3, 2});
const auto y = F::linear(x, w);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({3, 3, 3}));
const auto y_exp = torch::tensor(
{{{40301, 40703, 41105}, {41103, 41513, 41923}, {41905, 42323, 42741}},
{{42707, 43133, 43559}, {43509, 43943, 44377}, {44311, 44753, 45195}},
{{45113, 45563, 46013}, {45915, 46373, 46831}, {46717, 47183, 47649}}},
torch::kFloat);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
}
TEST_F(FunctionalTest, Embedding) {
const auto input = torch::tensor({{1, 2, 4, 5}, {4, 3, 2, 9}}, torch::kLong);
auto weight = torch::empty({10, 3});
torch::nn::init::normal_(weight);
auto y = F::embedding(input, weight);
auto y_exp = torch::embedding(weight, input.contiguous(), -1, false, false);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, EmbeddingBag) {
const auto input = torch::tensor({1, 2, 4, 5, 4, 3, 2, 9}, torch::kLong);
auto offsets = torch::tensor({0, 4}, torch::kLong);
auto weight = torch::empty({10, 3});
torch::nn::init::normal_(weight);
auto y = F::embedding_bag(
input,
weight,
F::EmbeddingBagFuncOptions()
.mode(torch::kSum)
.offsets(offsets)
.padding_idx(4));
auto y_exp = std::get<0>(torch::embedding_bag(
weight, input, offsets, false, 0, false, torch::Tensor(), false, 4));
ASSERT_TRUE(torch::allclose(y, y_exp));
// no options test
const auto input_ = torch::tensor({{1, 2, 4, 5}, {4, 3, 2, 9}}, torch::kLong);
auto offsets_ = torch::arange(
0,
input_.numel(),
input_.size(1),
torch::TensorOptions().dtype(torch::kLong).device(input.device()));
y = F::embedding_bag(input_, weight);
y_exp = std::get<0>(torch::embedding_bag(
weight, input_.reshape(-1), offsets_, false, 1, false, torch::Tensor()));
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, Bilinear) {
auto input1 = torch::tensor({{1, 2, 3}, {7, 6, 5}});
auto input2 = torch::tensor({{7, 4}, {8, 9}});
auto weight = torch::tensor({{{2, 3}, {9, 7}, {8, 6}}});
auto bias = torch::tensor({1});
auto y_with_bias = F::bilinear(input1, input2, weight, bias);
ASSERT_EQ(y_with_bias.ndimension(), 2);
ASSERT_EQ(y_with_bias.sizes(), torch::IntArrayRef({2, 1}));
auto y_with_bias_exp = torch::tensor({{449}, {1702}}).reshape({2, 1});
ASSERT_TRUE(torch::allclose(y_with_bias, y_with_bias_exp, 1e-4, 1e-7));
auto y_no_bias = F::bilinear(input1, input2, weight);
ASSERT_EQ(y_no_bias.ndimension(), 2);
ASSERT_EQ(y_no_bias.sizes(), torch::IntArrayRef({2, 1}));
auto y_no_bias_exp = torch::tensor({{448, 1701}}).reshape({2, 1});
ASSERT_TRUE(torch::allclose(y_no_bias, y_no_bias_exp, 1e-4, 1e-7));
input1 = input1.to(torch::kFloat64);
input2 = input2.to(torch::kInt32);
weight = weight.to(torch::kInt32);
ASSERT_THROWS_WITH(
F::bilinear(input1, input2, weight),
"All tensors must have the same dtype, got input1: double, input2: int, weight: int");
}
TEST_F(FunctionalTest, Normalize) {
const auto expected = torch::tensor(
{{{0.00000000, 0.10000000, 0.2000, 0.30000000, 0.40000000},
{0.14285715, 0.17142858, 0.2000, 0.22857143, 0.25714287}}},
torch::requires_grad().dtype(torch::kFloat));
{ // Test #1
auto input = torch::tensor(
{{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}}},
torch::dtype(torch::kFloat).requires_grad(true));
auto norm = F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1));
// reduce to scalar to call .backward()
torch::Tensor s = norm.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(input.grad().numel(), 10);
ASSERT_TRUE(torch::allclose(norm, expected));
}
{ // Test #2 Check variations of optional arguments
auto input = torch::tensor(
{{{0, 1, 2, 3, 4}, {5, 6, 7, 8, 9}}}, torch::dtype(torch::kFloat));
auto output = torch::randn({1, 2, 5}, torch::dtype(torch::kFloat));
// non-null output argument
F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1).out(output));
// default options
F::normalize(input);
ASSERT_TRUE(torch::allclose(output, expected));
}
{ // Test #3 Base case of scalar tensor
auto input = torch::randn({}, torch::requires_grad());
torch::Tensor norm =
F::normalize(input, F::NormalizeFuncOptions().p(1).dim(-1));
norm.backward();
ASSERT_EQ(input.grad().numel(), 1);
}
}
TEST_F(FunctionalTest, ReLU) {
const auto size = 3;
for (const auto inplace : {false, true}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y_exp = (x < 0) * 0 + (x >= 0) * x;
auto y = F::relu(x, F::ReLUFuncOptions().inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
// NOLINTNEXTLINE(bugprone-argument-comment)
y = F::relu(x, /*inplace=*/inplace);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
}
ASSERT_TRUE(F::relu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, ReLUDefaultOptions) {
const auto size = 3;
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y_exp = (x < 0) * 0 + (x >= 0) * x;
auto y = F::relu(x);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, ReLU6) {
const auto size = 3;
for (const auto inplace : {false, true}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6;
auto y = F::relu6(x, F::ReLU6FuncOptions().inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
// NOLINTNEXTLINE(bugprone-argument-comment)
y = F::relu6(x, /*inplace=*/inplace);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
}
ASSERT_TRUE(F::relu6(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, ReLU6DefaultOptions) {
const auto size = 3;
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto y_exp = (x < 0) * 0 + ((x >= 0) * (x <= 6)) * x + (x > 6) * 6;
auto y = F::relu6(x);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, RReLU) {
const auto size = 3;
for (const auto lower : {0.01, 0.1, 0.2}) {
for (const auto upper : {0.3, 0.4, 0.5}) {
for (const auto inplace : {false, true}) {
for (const auto type : {torch::kFloat, torch::kBFloat16}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type);
x.resize_({size, size, size});
auto x_copy = x.clone();
auto y = F::rrelu(
x,
F::RReLUFuncOptions().lower(lower).upper(upper).inplace(inplace));
auto z =
((x_copy >= 0) * (x_copy == y) +
(x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) *
1.0;
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(z, torch::ones_like(z)));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y));
}
}
}
}
}
ASSERT_TRUE(F::rrelu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, RReLUDefaultOptions) {
const auto size = 3;
const auto lower = 1.0 / 8.0;
const auto upper = 1.0 / 3.0;
for (const auto type : {torch::kFloat, torch::kBFloat16}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size).to(type);
x.resize_({size, size, size});
auto x_copy = x.clone();
auto y = F::rrelu(x);
auto z = ((x_copy >= 0) * (x_copy == y) +
(x_copy < 0) * (y >= x_copy * upper) * (y <= lower * x_copy)) *
1.0;
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(z, torch::ones_like(z)));
}
}
TEST_F(FunctionalTest, CELU) {
const auto size = 3;
for (const auto inplace : {false, true}) {
for (const auto alpha : {0.42, 1.0, 4.2, 42.42}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto x_bf16 = x.clone().to(torch::kBFloat16);
auto y_exp = torch::max(torch::zeros_like(x), x) +
torch::min(torch::zeros_like(x),
alpha * (torch::exp(x / alpha) - 1.0));
auto y = F::celu(x, F::CELUFuncOptions().alpha(alpha).inplace(inplace));
auto y_bf16 =
F::celu(x_bf16, F::CELUFuncOptions().alpha(alpha).inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
ASSERT_TRUE(torch::allclose(x_bf16.to(torch::kFloat), y, 1e-2, 1e-2));
}
}
}
ASSERT_TRUE(F::celu(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, CELUDefaultOptions) {
const auto size = 3;
const auto alpha = 1.0;
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size});
auto x_bf16 = x.clone().to(torch::kBFloat16);
auto y_exp = torch::max(torch::zeros_like(x), x) +
torch::min(torch::zeros_like(x), alpha * (torch::exp(x / alpha) - 1.0));
auto y = F::celu(x);
auto y_bf16 = F::celu(x_bf16);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
ASSERT_TRUE(torch::allclose(y_bf16.to(torch::kFloat), y, 1e-2, 1e-2));
}
TEST_F(FunctionalTest, PixelShuffle) {
auto x = torch::tensor(
{{{{-17, 19}, {-1, 2}},
{{7, 14}, {-3, 1}},
{{0, -2}, {-12, 14}},
{{-15, 0}, {-3, 9}}}},
torch::kFloat);
auto y_exp = torch::tensor(
{{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}},
torch::kFloat);
auto y = F::pixel_shuffle(x, 2);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 1, 4, 4}));
ASSERT_TRUE(y.allclose(y_exp));
}
TEST_F(FunctionalTest, PixelUnshuffle) {
auto x = torch::tensor(
{{{{-17, 7, 19, 14}, {0, -15, -2, 0}, {-1, -3, 2, 1}, {-12, -3, 14, 9}}}},
torch::kFloat);
auto y_exp = torch::tensor(
{{{{-17, 19}, {-1, 2}},
{{7, 14}, {-3, 1}},
{{0, -2}, {-12, 14}},
{{-15, 0}, {-3, 9}}}},
torch::kFloat);
auto y = F::pixel_unshuffle(x, 2);
ASSERT_EQ(y.ndimension(), 4);
ASSERT_EQ(y.sizes(), torch::IntArrayRef({1, 4, 2, 2}));
ASSERT_TRUE(y.allclose(y_exp));
}
TEST_F(FunctionalTest, Softplus) {
const auto size = 3;
for (const auto beta : {0.5, 1.0, 2.0}) {
for (const auto threshold : {1.0, 3.0, 5.0}) {
auto x = torch::linspace(-3.0, 3.0, 61);
x.resize_({size, size, size});
auto y_exp =
(x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta +
(x > threshold) * x;
auto y = F::softplus(
x, F::SoftplusFuncOptions().beta(beta).threshold(threshold));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
}
}
}
TEST_F(FunctionalTest, SoftplusDefaultOptions) {
const auto size = 3;
const auto beta = 1.0;
const auto threshold = 20.0;
auto x = torch::linspace(-3.0, 3.0, 61);
x.resize_({size, size, size});
auto y_exp = (x <= threshold) * torch::log(1 + torch::exp(x * beta)) / beta +
(x > threshold) * x;
auto y = F::softplus(x);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, Fold) {
auto input = torch::ones({1, 3 * 2 * 2, 2}, torch::kDouble);
auto output = F::fold(input, F::FoldFuncOptions({3, 2}, {2, 2}));
auto expected = torch::tensor(
{{{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}},
{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}},
{{1.0, 1.0}, {2.0, 2.0}, {1.0, 1.0}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 3, 3, 2}));
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, Unfold) {
auto input = torch::arange(0, 12, torch::kDouble).view({1, 2, 2, 3});
auto output =
F::unfold(input, F::UnfoldFuncOptions({2, 2}).padding(1).stride(2));
auto expected = torch::tensor(
{{{0.0, 0.0, 0.0, 4.0},
{0.0, 0.0, 3.0, 5.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 2.0, 0.0, 0.0},
{0.0, 0.0, 0.0, 10.0},
{0.0, 0.0, 9.0, 11.0},
{0.0, 7.0, 0.0, 0.0},
{6.0, 8.0, 0.0, 0.0}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 8, 4}));
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, Softshrink) {
const auto size = 3;
for (const auto lambda : {0.0, 0.42, 1.0, 4.2, 42.42}) {
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size}).set_requires_grad(true);
// NOLINTNEXTLINE(bugprone-argument-comment)
auto y = F::softshrink(x, /*lambda=*/lambda);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
}
TEST_F(FunctionalTest, SoftshrinkDefaultOptions) {
const auto size = 3;
const auto lambda = 0.5;
auto x = torch::linspace(-10.0, 10.0, size * size * size);
x.resize_({size, size, size}).set_requires_grad(true);
auto y = F::softshrink(x);
torch::Tensor s = y.sum();
s.backward();
ASSERT_EQ(s.ndimension(), 0);
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
auto y_exp = (x < -lambda) * (x + lambda) + (x > lambda) * (x - lambda);
}
TEST_F(FunctionalTest, Softsign) {
auto x = torch::randn(100) * 10;
auto y_exp = x / (1 + x.abs());
auto y = F::softsign(x);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, Mish) {
auto x = torch::randn(100) * 10;
auto y_exp = x * x.exp().log1p().tanh();
auto y = F::mish(x);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, Tanhshrink) {
auto x = torch::randn(100) * 10;
auto y_exp = x - x.tanh();
auto y = F::tanhshrink(x);
ASSERT_TRUE(torch::allclose(y, y_exp));
}
TEST_F(FunctionalTest, Threshold) {
const auto size = 3;
for (const auto threshold : {0.5, 1.0, 2.0}) {
for (const auto value : {0.5, 1.0, 2.0}) {
for (const auto inplace : {false, true}) {
auto x = torch::linspace(-3.0, 3.0, 61);
x.resize_({size, size, size});
auto y_exp = (x <= threshold) * value + (x > threshold) * x;
auto y = F::threshold(
x, F::ThresholdFuncOptions(threshold, value).inplace(inplace));
ASSERT_EQ(y.ndimension(), 3);
ASSERT_EQ(y.sizes(), std::vector<int64_t>({size, size, size}));
ASSERT_TRUE(torch::allclose(y, y_exp));
if (inplace) {
ASSERT_TRUE(torch::allclose(x, y_exp));
}
}
}
}
ASSERT_TRUE(F::threshold(torch::tensor(1.), F::ThresholdFuncOptions(0.5, 0.5))
.defined());
}
TEST_F(FunctionalTest, BatchNorm1d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input = torch::randn({2, 5});
auto mean = torch::randn(5);
auto variance = torch::rand(5);
auto weight = torch::ones({num_features});
auto bias = torch::zeros({num_features});
auto output = F::batch_norm(
input,
mean,
variance,
F::BatchNormFuncOptions()
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps)
.training(false));
auto expected = (input - mean) / torch::sqrt(variance + eps);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, BatchNorm1dDefaultOptions) {
auto input = torch::randn({2, 5});
auto mean = torch::randn(5);
auto variance = torch::rand(5);
auto output = F::batch_norm(input, mean, variance);
auto expected = (input - mean) / torch::sqrt(variance + 1e-5);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, BatchNorm2d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input = torch::randn({2, num_features, 4, 4});
auto mean = torch::randn(num_features);
auto variance = torch::rand(num_features);
auto weight = torch::ones({num_features});
auto bias = torch::zeros({num_features});
auto output = F::batch_norm(
input,
mean,
variance,
F::BatchNormFuncOptions()
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps)
.training(false));
auto expected = torch::transpose(
(torch::transpose(input, 1, 3) - mean) / torch::sqrt(variance + eps),
1,
3);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, BatchNorm2dDefaultOptions) {
int num_features = 5;
double eps = 1e-05;
auto input = torch::randn({2, num_features, 4, 4});
auto mean = torch::randn(num_features);
auto variance = torch::rand(num_features);
auto output = F::batch_norm(input, mean, variance);
auto expected = torch::transpose(
(torch::transpose(input, 1, 3) - mean) / torch::sqrt(variance + eps),
1,
3);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, BatchNorm3d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input = torch::randn({2, num_features, 2, 2, 2});
auto mean = torch::randn(num_features);
auto variance = torch::rand(num_features);
auto weight = torch::ones({num_features});
auto bias = torch::zeros({num_features});
auto output = F::batch_norm(
input,
mean,
variance,
F::BatchNormFuncOptions()
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps)
.training(false));
auto expected = torch::transpose(
(torch::transpose(input, 1, 4) - mean) / torch::sqrt(variance + eps),
1,
4);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, BatchNorm3dDefaultOptions) {
int num_features = 5;
double eps = 1e-05;
auto input = torch::randn({2, num_features, 2, 2, 2});
auto mean = torch::randn(num_features);
auto variance = torch::rand(num_features);
auto output = F::batch_norm(input, mean, variance);
auto expected = torch::transpose(
(torch::transpose(input, 1, 4) - mean) / torch::sqrt(variance + eps),
1,
4);
ASSERT_TRUE(output.allclose(expected));
}
TEST_F(FunctionalTest, InstanceNorm1d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input = torch::arange(40.).view({2, 5, 4});
auto mean = torch::arange(5.);
auto variance = torch::arange(5.);
auto weight = torch::arange((double)num_features);
auto bias = torch::arange((double)num_features);
auto output = F::instance_norm(
input,
F::InstanceNormFuncOptions()
.running_mean(mean)
.running_var(variance)
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps));
auto expected = torch::tensor(
{{{0.0000, 0.0000, 0.0000, 0.0000},
{-0.3416, 0.5528, 1.4472, 2.3416},
{-0.6833, 1.1056, 2.8944, 4.6833},
{-1.0249, 1.6584, 4.3416, 7.0249},
{-1.3665, 2.2112, 5.7888, 9.3665}},
{{0.0000, 0.0000, 0.0000, 0.0000},
{-0.3416, 0.5528, 1.4472, 2.3416},
{-0.6833, 1.1056, 2.8944, 4.6833},
{-1.0249, 1.6584, 4.3416, 7.0249},
{-1.3665, 2.2112, 5.7888, 9.3665}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, InstanceNorm1dDefaultOptions) {
auto input = torch::arange(40.).view({2, 5, 4});
auto output = F::instance_norm(input);
auto expected = torch::tensor(
{{{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416}},
{{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416},
{-1.3416, -0.4472, 0.4472, 1.3416}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, InstanceNorm2d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input =
torch::arange(2. * num_features * 2 * 2).view({2, num_features, 2, 2});
auto mean = torch::arange((double)num_features);
auto variance = torch::arange((double)num_features);
auto weight = torch::arange((double)num_features);
auto bias = torch::arange((double)num_features);
auto output = F::instance_norm(
input,
F::InstanceNormFuncOptions()
.running_mean(mean)
.running_var(variance)
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps));
auto expected = torch::tensor(
{{{{0.0000, 0.0000}, {0.0000, 0.0000}},
{{-0.3416, 0.5528}, {1.4472, 2.3416}},
{{-0.6833, 1.1056}, {2.8944, 4.6833}},
{{-1.0249, 1.6584}, {4.3416, 7.0249}},
{{-1.3665, 2.2112}, {5.7888, 9.3665}}},
{{{0.0000, 0.0000}, {0.0000, 0.0000}},
{{-0.3416, 0.5528}, {1.4472, 2.3416}},
{{-0.6833, 1.1056}, {2.8944, 4.6833}},
{{-1.0249, 1.6584}, {4.3416, 7.0249}},
{{-1.3665, 2.2112}, {5.7888, 9.3665}}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, InstanceNorm2dDefaultOptions) {
int num_features = 5;
auto input =
torch::arange(2. * num_features * 2 * 2).view({2, num_features, 2, 2});
auto output = F::instance_norm(input);
auto expected = torch::tensor(
{{{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}}},
{{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}},
{{-1.3416, -0.4472}, {0.4472, 1.3416}}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, InstanceNorm3d) {
int num_features = 5;
double eps = 1e-05;
double momentum = 0.1;
auto input = torch::arange(2. * num_features * 2 * 2 * 2)
.view({2, num_features, 2, 2, 2});
auto mean = torch::arange((double)num_features);
auto variance = torch::arange((double)num_features);
auto weight = torch::arange((double)num_features);
auto bias = torch::arange((double)num_features);
auto output = F::instance_norm(
input,
F::InstanceNormFuncOptions()
.running_mean(mean)
.running_var(variance)
.weight(weight)
.bias(bias)
.momentum(momentum)
.eps(eps));
auto expected = torch::tensor(
{{{{{0.0000, 0.0000}, {0.0000, 0.0000}},
{{0.0000, 0.0000}, {0.0000, 0.0000}}},
{{{-0.5275, -0.0911}, {0.3453, 0.7818}},
{{1.2182, 1.6547}, {2.0911, 2.5275}}},
{{{-1.0550, -0.1822}, {0.6907, 1.5636}},
{{2.4364, 3.3093}, {4.1822, 5.0550}}},
{{{-1.5826, -0.2733}, {1.0360, 2.3453}},
{{3.6547, 4.9640}, {6.2733, 7.5826}}},
{{{-2.1101, -0.3644}, {1.3814, 3.1271}},
{{4.8729, 6.6186}, {8.3644, 10.1101}}}},
{{{{0.0000, 0.0000}, {0.0000, 0.0000}},
{{0.0000, 0.0000}, {0.0000, 0.0000}}},
{{{-0.5275, -0.0911}, {0.3453, 0.7818}},
{{1.2182, 1.6547}, {2.0911, 2.5275}}},
{{{-1.0550, -0.1822}, {0.6907, 1.5636}},
{{2.4364, 3.3093}, {4.1822, 5.0550}}},
{{{-1.5826, -0.2733}, {1.0360, 2.3453}},
{{3.6547, 4.9640}, {6.2733, 7.5826}}},
{{{-2.1101, -0.3644}, {1.3814, 3.1271}},
{{4.8729, 6.6186}, {8.3644, 10.1101}}}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, InstanceNorm3dDefaultOptions) {
int num_features = 5;
auto input = torch::arange(2. * num_features * 2 * 2 * 2)
.view({2, num_features, 2, 2, 2});
auto output = F::instance_norm(input);
auto expected = torch::tensor(
{{{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}}},
{{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}},
{{{-1.5275, -1.0911}, {-0.6547, -0.2182}},
{{0.2182, 0.6547}, {1.0911, 1.5275}}}}});
ASSERT_TRUE(output.allclose(expected, 2e-04));
}
TEST_F(FunctionalTest, Interpolate) {
{
// 1D interpolation
auto input = torch::ones({1, 1, 2});
auto options = F::InterpolateFuncOptions()
.size(std::vector<int64_t>({4}))
.mode(torch::kNearest);
auto output = F::interpolate(input, options);
auto expected = torch::ones({1, 1, 4});
ASSERT_TRUE(output.allclose(expected));
}
{
// 2D interpolation
for (const auto align_corners : {true, false}) {
// test float scale factor up & down sampling
for (const auto scale_factor : {0.5, 1.5, 2.0}) {
auto input = torch::ones({1, 1, 2, 2});
auto options =
F::InterpolateFuncOptions()
.scale_factor(std::vector<double>({scale_factor, scale_factor}))
.mode(torch::kBilinear)
.align_corners(align_corners);
auto output = F::interpolate(input, options);
auto expected_size =
static_cast<int64_t>(std::floor(input.size(-1) * scale_factor));
auto expected = torch::ones({1, 1, expected_size, expected_size});
ASSERT_TRUE(output.allclose(expected));
}
}
}
{
// 3D interpolation
for (const auto align_corners : {true, false}) {
for (const auto scale_factor : {0.5, 1.5, 2.0}) {
auto input = torch::ones({1, 1, 2, 2, 2});
auto options = F::InterpolateFuncOptions()
.scale_factor(std::vector<double>(
{scale_factor, scale_factor, scale_factor}))
.mode(torch::kTrilinear)
.align_corners(align_corners);
auto output = F::interpolate(input, options);
auto expected_size =
static_cast<int64_t>(std::floor(input.size(-1) * scale_factor));
auto expected =
torch::ones({1, 1, expected_size, expected_size, expected_size});
ASSERT_TRUE(output.allclose(expected));
}
}
}
{
ASSERT_THROWS_WITH(
F::interpolate(
torch::randn({1}),
F::InterpolateFuncOptions().size(std::vector<int64_t>({1}))),
"Input Error: Only 3D, 4D and 5D input Tensors supported (got 1D) ");
}
{
auto input = torch::randn({3, 2, 2});
ASSERT_THROWS_WITH(
F::interpolate(
input[0],
F::InterpolateFuncOptions().size(std::vector<int64_t>({4, 4}))),
"Input Error: Only 3D, 4D and 5D input Tensors supported (got 2D) "
"for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)");
ASSERT_THROWS_WITH(
F::interpolate(
torch::reshape(input, {1, 1, 1, 3, 2, 2}),
F::InterpolateFuncOptions().size(
std::vector<int64_t>({1, 1, 1, 3, 4, 4}))),
"Input Error: Only 3D, 4D and 5D input Tensors supported (got 6D) "
"for the modes: nearest | linear | bilinear | bicubic | trilinear (got kNearest)");
ASSERT_THROWS_WITH(
F::interpolate(input, F::InterpolateFuncOptions()),
"either size or scale_factor should be defined");
ASSERT_THROWS_WITH(
F::interpolate(
input,
F::InterpolateFuncOptions()
.size(std::vector<int64_t>({3, 4, 4}))
.scale_factor(std::vector<double>({0.5}))),
"only one of size or scale_factor should be defined");
ASSERT_THROWS_WITH(
F::interpolate(
input,
F::InterpolateFuncOptions().scale_factor(
std::vector<double>({3, 2}))),
"scale_factor shape must match input shape. "
"Input is 1D, scale_factor size is [3, 2]");
ASSERT_THROWS_WITH(
F::interpolate(
input,
F::InterpolateFuncOptions()
.mode(torch::kNearest)
.align_corners(true)),
"align_corners option can only be set with the "
"interpolating modes: linear | bilinear | bicubic | trilinear");
}
{
auto tensor = torch::rand({2, 3, 32, 32});
std::vector<int64_t> osize = {8, 10};
auto expected =
at::native::_upsample_nearest_exact2d(tensor, osize, torch::nullopt);
auto options = F::InterpolateFuncOptions()
.size(osize)
.mode(torch::kNearestExact)
.align_corners(false);
auto output = F::interpolate(tensor, options);
ASSERT_TRUE(output.allclose(expected));
}
{
auto tensor = torch::rand({2, 3, 32, 32});
std::vector<int64_t> osize = {8, 10};
auto expected = at::native::_upsample_bilinear2d_aa(
tensor, osize, false, torch::nullopt);
auto options = F::InterpolateFuncOptions()
.size(osize)
.mode(torch::kBilinear)
.align_corners(false)
.antialias(true);
auto output = F::interpolate(tensor, options);
ASSERT_TRUE(output.allclose(expected));
}
{
auto tensor = torch::rand({2, 3, 32, 32});
std::vector<int64_t> osize = {8, 10};
auto expected = at::native::_upsample_bicubic2d_aa(
tensor, osize, false, torch::nullopt);
auto options = F::InterpolateFuncOptions()
.size(osize)
.mode(torch::kBicubic)
.align_corners(false)
.antialias(true);
auto output = F::interpolate(tensor, options);
ASSERT_TRUE(output.allclose(expected));
}
}
TEST_F(FunctionalTest, Pad1) {
{
auto input = torch::arange(6, torch::kDouble).reshape({1, 2, 3});
auto output =
F::pad(input, F::PadFuncOptions({1, 2}).mode(torch::kCircular));
auto expected = torch::tensor(
{{{2., 0., 1., 2., 0., 1.}, {5., 3., 4., 5., 3., 4.}}}, torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 2, 6}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad2) {
{
auto input = torch::arange(9, torch::kDouble).reshape({1, 1, 3, 3});
auto output =
F::pad(input, F::PadFuncOptions({3, 3, 3, 1}).mode(torch::kCircular));
auto expected = torch::tensor(
{{{{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 7, 9}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad3) {
{
auto input = torch::arange(12, torch::kDouble).reshape({1, 1, 2, 2, 3});
auto output = F::pad(
input, F::PadFuncOptions({3, 3, 2, 1, 2, 2}).mode(torch::kCircular));
auto expected = torch::tensor(
{{{{{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.}},
{{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.}},
{{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.}},
{{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.}},
{{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.},
{3., 4., 5., 3., 4., 5., 3., 4., 5.},
{0., 1., 2., 0., 1., 2., 0., 1., 2.}},
{{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.},
{9., 10., 11., 9., 10., 11., 9., 10., 11.},
{6., 7., 8., 6., 7., 8., 6., 7., 8.}}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 6, 5, 9}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad4) {
{
auto input = torch::arange(16, torch::kDouble).reshape({2, 2, 2, 2});
auto output =
F::pad(input, F::PadFuncOptions({1, 1, 1, 1}).mode(torch::kReflect));
auto expected = torch::tensor(
{{{{3., 2., 3., 2.},
{1., 0., 1., 0.},
{3., 2., 3., 2.},
{1., 0., 1., 0.}},
{{7., 6., 7., 6.},
{5., 4., 5., 4.},
{7., 6., 7., 6.},
{5., 4., 5., 4.}}},
{{{11., 10., 11., 10.},
{9., 8., 9., 8.},
{11., 10., 11., 10.},
{9., 8., 9., 8.}},
{{15., 14., 15., 14.},
{13., 12., 13., 12.},
{15., 14., 15., 14.},
{13., 12., 13., 12.}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({2, 2, 4, 4}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad5) {
{
auto input = torch::arange(12, torch::kDouble).reshape({1, 1, 2, 2, 3});
auto output = F::pad(
input, F::PadFuncOptions({1, 2, 2, 1, 1, 2}).mode(torch::kReplicate));
auto expected = torch::tensor(
{{{{{0., 0., 1., 2., 2., 2.},
{0., 0., 1., 2., 2., 2.},
{0., 0., 1., 2., 2., 2.},
{3., 3., 4., 5., 5., 5.},
{3., 3., 4., 5., 5., 5.}},
{{0., 0., 1., 2., 2., 2.},
{0., 0., 1., 2., 2., 2.},
{0., 0., 1., 2., 2., 2.},
{3., 3., 4., 5., 5., 5.},
{3., 3., 4., 5., 5., 5.}},
{{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{9., 9., 10., 11., 11., 11.},
{9., 9., 10., 11., 11., 11.}},
{{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{9., 9., 10., 11., 11., 11.},
{9., 9., 10., 11., 11., 11.}},
{{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{6., 6., 7., 8., 8., 8.},
{9., 9., 10., 11., 11., 11.},
{9., 9., 10., 11., 11., 11.}}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 5, 5, 6}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad6) {
{
auto input = torch::arange(18, torch::kDouble).reshape({1, 1, 3, 2, 3});
auto output = F::pad(
input, F::PadFuncOptions({0, 2, 1, 0, 1, 2}).mode(torch::kReflect));
auto expected = torch::tensor(
{{{{{9., 10., 11., 10., 9.},
{6., 7., 8., 7., 6.},
{9., 10., 11., 10., 9.}},
{{3., 4., 5., 4., 3.}, {0., 1., 2., 1., 0.}, {3., 4., 5., 4., 3.}},
{{9., 10., 11., 10., 9.},
{6., 7., 8., 7., 6.},
{9., 10., 11., 10., 9.}},
{{15., 16., 17., 16., 15.},
{12., 13., 14., 13., 12.},
{15., 16., 17., 16., 15.}},
{{9., 10., 11., 10., 9.},
{6., 7., 8., 7., 6.},
{9., 10., 11., 10., 9.}},
{{3., 4., 5., 4., 3.},
{0., 1., 2., 1., 0.},
{3., 4., 5., 4., 3.}}}}},
torch::kDouble);
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 6, 3, 5}));
ASSERT_TRUE(output.allclose(expected, 1e-04));
}
}
TEST_F(FunctionalTest, Pad7) {
{
auto input = torch::ones({1, 1, 1, 1}, torch::kDouble);
auto output = F::pad(
input, F::PadFuncOptions({1, 1}).mode(torch::kConstant).value(0));
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 1, 3}));
auto expected = torch::tensor({{{{0., 1., 0.}}}}, torch::kDouble);
}
}
TEST_F(FunctionalTest, Pad8) {
{
auto input = torch::ones({1, 1, 1, 1}, torch::kDouble);
auto output = F::pad(input, F::PadFuncOptions({1, 1}));
ASSERT_EQ(output.sizes(), std::vector<int64_t>({1, 1, 1, 3}));
auto expected = torch::tensor({{{{0., 1., 0.}}}}, torch::kDouble);
}
}
TEST_F(FunctionalTest, CTCLoss) {
{ // test CTCLoss typechecks
const auto target_lengths = torch::tensor({30, 25, 20});
const auto input_lengths = torch::tensor({50, 50, 50});
const auto targets =
torch::randint(1, 15, {target_lengths.sum().item<int>()}, torch::kInt);
const auto log_probs =
torch::randn({50, 3, 15}, torch::kFloat).log_softmax(2);
const auto _input_lengths = input_lengths.to(torch::kFloat);
ASSERT_THROWS_WITH(
F::ctc_loss(log_probs, targets, _input_lengths, target_lengths),
"input_lengths must be integral");
const auto target_lengths_ = target_lengths.to(torch::kFloat);
ASSERT_THROWS_WITH(
F::ctc_loss(log_probs, targets, input_lengths, target_lengths_),
"target_lengths must be integral");
}
{ // test CTCLoss length checks
const auto target_lengths = torch::tensor({30, 25, 20});
const auto input_lengths = torch::tensor({50, 50, 50});
const auto targets = torch::randint(1, 15, {3, 29}, torch::kInt);
const auto log_probs =
torch::randn({50, 3, 15}, torch::kFloat).log_softmax(2);
ASSERT_THROWS_WITH(
F::ctc_loss(log_probs, targets, input_lengths, target_lengths),
"Expected tensor to have size at least 30 at dimension 1");
}
{ // test CTCLoss empty target
{
const auto target_lengths = torch::tensor({0, 0, 0});
const auto input_lengths = torch::tensor({50, 50, 50});
const auto targets =
torch::randint(1, 15, at::IntArrayRef({0}), torch::kLong);
const auto log_probs =
torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2);
const auto loss = F::ctc_loss(
log_probs,
targets,
input_lengths,
target_lengths,
F::CTCLossFuncOptions().reduction(torch::kNone));
ASSERT_TRUE(loss.ge(0).all().item<bool>());
ASSERT_TRUE(torch::allclose(
-log_probs.sum(0).slice(1, 0, 1).view_as(loss), loss));
}
{
const auto target_lengths = torch::tensor({0, 9, 0});
const auto input_lengths = torch::tensor({50, 50, 50});
const auto targets = torch::randint(1, 15, {9}, torch::kLong);
const auto log_probs =
torch::randn({50, 3, 15}, torch::kDouble).log_softmax(2);
const auto loss = F::ctc_loss(
log_probs,
targets,
input_lengths,
target_lengths,
F::CTCLossFuncOptions().reduction(torch::kNone));
ASSERT_TRUE(loss.ge(0).all().item<bool>());
ASSERT_TRUE(torch::allclose(
-log_probs.sum(0)
.index_select(0, torch::tensor({0, 2}, torch::kLong))
.slice(1, 0, 1)
.view({2}),
loss.index_select(0, torch::tensor({0, 2}, torch::kLong))));
}
}
}
TEST_F(FunctionalTest, PoissonNLLLoss) {
const auto input = torch::tensor({0.5, 1.5, 2.5});
const auto target = torch::tensor({1., 2., 3.});
const auto component_wise_loss = torch::exp(input) - target * input;
ASSERT_TRUE(torch::allclose(
torch::mean(component_wise_loss), F::poisson_nll_loss(input, target)));
ASSERT_TRUE(torch::allclose(
component_wise_loss,
F::poisson_nll_loss(
input,
target,
F::PoissonNLLLossFuncOptions().reduction(torch::kNone))));
ASSERT_TRUE(torch::allclose(
torch::sum(component_wise_loss),
F::poisson_nll_loss(
input,
target,
F::PoissonNLLLossFuncOptions().reduction(torch::kSum))));
ASSERT_TRUE(torch::allclose(
torch::mean(component_wise_loss),
F::poisson_nll_loss(
input,
target,
F::PoissonNLLLossFuncOptions().reduction(torch::kMean))));
}
TEST_F(FunctionalTest, MarginRankingLoss) {
{
const auto input1 = torch::randn(15) * 10;
const auto input2 = torch::randn(15) * 10;
const auto target = torch::randn(15).sign();
ASSERT_TRUE(torch::allclose(
F::margin_ranking_loss(input1, input2, target),
(-target * (input1 - input2)).clamp(0).mean()));
}
{
const auto input1 = torch::randn(15) * 10;
const auto input2 = torch::randn(15) * 10;
const auto target = torch::randn(15).sign();
const auto margin = 0.5;
ASSERT_TRUE(torch::allclose(
F::margin_ranking_loss(
input1,
input2,
target,
F::MarginRankingLossFuncOptions().margin(0.5).reduction(
torch::kSum)),
(-target * (input1 - input2) + margin).clamp(0).sum()));
}
{
const auto input1 = torch::randn(15) * 10;
const auto input2 = torch::randn(15) * 10;
const auto target = torch::randn(15).sign();
const auto margin = 0.5;
ASSERT_TRUE(torch::allclose(
F::margin_ranking_loss(
input1,
input2,
target,
F::MarginRankingLossFuncOptions().margin(0.5).reduction(
torch::kMean)),
(-target * (input1 - input2) + margin).clamp(0).mean()));
}
}
TEST_F(FunctionalTest, ConvTranspose1d) {
auto x = torch::arange(20.).view({2, 2, 5});
auto weight = torch::arange(18.).view({2, 3, 3});
auto y =
F::conv_transpose1d(x, weight, F::ConvTranspose1dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{45., 104., 179., 212., 245., 188., 107.},
{60., 140., 242., 293., 344., 260., 146.},
{75., 176., 305., 374., 443., 332., 185.}},
{{135., 304., 509., 542., 575., 428., 237.},
{210., 460., 752., 803., 854., 620., 336.},
{285., 616., 995., 1064., 1133., 812., 435.}}});
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv_transpose1d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, ConvTranspose2dEven) {
auto x = torch::arange(50.).view({1, 2, 5, 5});
auto weight = torch::arange(54.).view({2, 3, 3, 3});
auto y =
F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{675., 1402., 2183., 2270., 2357., 1634., 849.},
{1560., 3240., 5044., 5236., 5428., 3760., 1952.},
{2685., 5574., 8673., 8988., 9303., 6438., 3339.},
{3180., 6594., 10248., 10563., 10878., 7518., 3894.},
{3675., 7614., 11823., 12138., 12453., 8598., 4449.},
{2820., 5832., 9040., 9268., 9496., 6544., 3380.},
{1605., 3314., 5129., 5252., 5375., 3698., 1907.}},
{{900., 1870., 2912., 3053., 3194., 2210., 1146.},
{2100., 4356., 6772., 7072., 7372., 5092., 2636.},
{3630., 7518., 11670., 12147., 12624., 8706., 4500.},
{4395., 9078., 14055., 14532., 15009., 10326., 5325.},
{5160., 10638., 16440., 16917., 17394., 11946., 6150.},
{3900., 8028., 12388., 12724., 13060., 8956., 4604.},
{2190., 4502., 6938., 7115., 7292., 4994., 2564.}},
{{1125., 2338., 3641., 3836., 4031., 2786., 1443.},
{2640., 5472., 8500., 8908., 9316., 6424., 3320.},
{4575., 9462., 14667., 15306., 15945., 10974., 5661.},
{5610., 11562., 17862., 18501., 19140., 13134., 6756.},
{6645., 13662., 21057., 21696., 22335., 15294., 7851.},
{4980., 10224., 15736., 16180., 16624., 11368., 5828.},
{2775., 5690., 8747., 8978., 9209., 6290., 3221.}}}});
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv_transpose2d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, ConvTranspose2dUneven) {
auto x = torch::arange(40.).view({1, 2, 5, 4});
auto weight = torch::arange(36.).view({2, 3, 3, 2});
auto y =
F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{360., 758., 796., 834., 440.},
{832., 1752., 1836., 1920., 1012.},
{1432., 3014., 3152., 3290., 1732.},
{1696., 3566., 3704., 3842., 2020.},
{1960., 4118., 4256., 4394., 2308.},
{1504., 3152., 3252., 3352., 1756.},
{856., 1790., 1844., 1898., 992.}},
{{480., 1010., 1072., 1134., 596.},
{1120., 2352., 2484., 2616., 1372.},
{1936., 4058., 4268., 4478., 2344.},
{2344., 4898., 5108., 5318., 2776.},
{2752., 5738., 5948., 6158., 3208.},
{2080., 4328., 4476., 4624., 2404.},
{1168., 2426., 2504., 2582., 1340.}},
{{600., 1262., 1348., 1434., 752.},
{1408., 2952., 3132., 3312., 1732.},
{2440., 5102., 5384., 5666., 2956.},
{2992., 6230., 6512., 6794., 3532.},
{3544., 7358., 7640., 7922., 4108.},
{2656., 5504., 5700., 5896., 3052.},
{1480., 3062., 3164., 3266., 1688.}}}});
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv_transpose2d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, ConvTranspose3d) {
auto x = torch::arange(16.).view({1, 2, 2, 2, 2});
auto weight = torch::arange(32.).view({2, 2, 2, 2, 2});
auto y =
F::conv_transpose3d(x, weight, F::ConvTranspose3dFuncOptions().stride(1));
auto expected = torch::tensor(
{{{{{128., 280., 154.}, {304., 664., 364.}, {184., 400., 218.}},
{{352., 768., 420.}, {832., 1808., 984.}, {496., 1072., 580.}},
{{256., 552., 298.}, {592., 1272., 684.}, {344., 736., 394.}}},
{{{192., 424., 234.}, {464., 1016., 556.}, {280., 608., 330.}},
{{544., 1184., 644.}, {1280., 2768., 1496.}, {752., 1616., 868.}},
{{384., 824., 442.}, {880., 1880., 1004.}, {504., 1072., 570.}}}}});
ASSERT_TRUE(torch::allclose(y, expected));
auto y_no_options = F::conv_transpose3d(x, weight);
ASSERT_TRUE(torch::allclose(y_no_options, expected));
}
TEST_F(FunctionalTest, AlphaDropout) {
auto input = torch::randn(5000);
auto input_mean = input.mean();
auto input_std = input.std();
for (const auto rate : {0.2, 0.5, 0.8}) {
for (const auto inplace : {false, true}) {
auto input_ = input.clone();
auto output = F::alpha_dropout(
input_,
F::AlphaDropoutFuncOptions().p(rate).training(false).inplace(
inplace));
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
if (inplace) {
ASSERT_TRUE(torch::allclose(input_, output));
}
}
}
auto output = F::detail::alpha_dropout(input, 0.5, false, false);
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
}
TEST_F(FunctionalTest, FeatureAlphaDropout) {
auto input = torch::randn(5000);
auto input_mean = input.mean();
auto input_std = input.std();
for (const auto rate : {0.2, 0.5, 0.8}) {
for (const auto inplace : {false, true}) {
auto input_ = input.clone();
auto output = F::feature_alpha_dropout(
input_,
F::FeatureAlphaDropoutFuncOptions().p(rate).training(false).inplace(
inplace));
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
if (inplace) {
ASSERT_TRUE(torch::allclose(input_, output));
}
}
}
auto output = F::feature_alpha_dropout(input);
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.1));
ASSERT_TRUE(torch::allclose(input_std, output.std(), 0.1));
}
TEST_F(FunctionalTest, Dropout) {
auto input = torch::randn(5000);
auto input_mean = input.mean();
auto input_std = input.std();
for (const auto rate : {0.2, 0.5, 0.8}) {
auto output = F::dropout(input, F::DropoutFuncOptions().p(rate));
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
ASSERT_TRUE((input_std <= output.std()).all().item<bool>());
}
auto output = F::dropout(input);
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
ASSERT_TRUE((input_std <= output.std()).all().item<bool>());
ASSERT_TRUE(F::dropout(torch::tensor(1.)).defined());
}
TEST_F(FunctionalTest, Dropout2d) {
auto input = torch::randn({2, 2, 50, 100});
auto input_mean = input.mean();
auto input_std = input.std();
for (const auto rate : {0.2, 0.5, 0.8}) {
auto output = F::dropout2d(input, F::Dropout2dFuncOptions().p(rate));
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
}
auto output = F::dropout2d(input);
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
ASSERT_TRUE(F::dropout2d(torch::randn({2, 50, 100})).defined());
}
TEST_F(FunctionalTest, Dropout3d) {
auto input = torch::randn({2, 2, 50, 10, 10});
auto input_mean = input.mean();
auto input_std = input.std();
for (const auto rate : {0.2, 0.5, 0.8}) {
auto output = F::dropout3d(input, F::Dropout3dFuncOptions().p(rate));
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
}
auto output = F::dropout3d(input);
ASSERT_TRUE(torch::allclose(input_mean, output.mean(), 0.01, 0.05));
ASSERT_TRUE(F::dropout3d(torch::randn({2, 50, 10, 10})).defined());
}
template <c10::ScalarType S, typename T>
void test_isfinite(const at::Device& device) {
const std::vector<T> values = {
std::numeric_limits<T>::lowest(),
0,
1,
42,
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max()};
for (const auto value : values) {
const auto x = torch::full(
{3, 3}, value, torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::isfinite(x).all().template item<bool>());
}
if (std::numeric_limits<T>::has_infinity) {
const auto inf = std::numeric_limits<T>::infinity();
const auto x = torch::tensor(
{-inf,
std::numeric_limits<T>::lowest(),
static_cast<T>(0),
static_cast<T>(1),
static_cast<T>(42),
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max(),
inf},
torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(
// torch::allclose does not support comparing torch::kBool
torch::isfinite(x).toType(torch::kInt),
torch::tensor(
{false, true, true, true, true, true, true, false},
torch::TensorOptions().device(device))
.toType(torch::kInt)));
}
if (std::numeric_limits<T>::has_quiet_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::quiet_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_FALSE(torch::isfinite(x).all().template item<bool>());
}
if (std::numeric_limits<T>::has_signaling_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::signaling_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_FALSE(torch::isfinite(x).all().template item<bool>());
}
}
TEST_F(FunctionalTest, isfinite) {
const at::Device device("cpu");
test_isfinite<torch::kUInt8, uint8_t>(device);
test_isfinite<torch::kInt8, int8_t>(device);
test_isfinite<torch::kInt16, int16_t>(device);
test_isfinite<torch::kInt32, int32_t>(device);
test_isfinite<torch::kInt64, int64_t>(device);
test_isfinite<torch::kFloat32, float>(device);
test_isfinite<torch::kFloat64, double>(device);
}
TEST_F(FunctionalTest, isfinite_CUDA) {
const at::Device device("cuda");
test_isfinite<torch::kUInt8, uint8_t>(device);
test_isfinite<torch::kInt8, int8_t>(device);
test_isfinite<torch::kInt16, int16_t>(device);
test_isfinite<torch::kInt32, int32_t>(device);
test_isfinite<torch::kInt64, int64_t>(device);
test_isfinite<torch::kFloat32, float>(device);
test_isfinite<torch::kFloat64, double>(device);
test_isfinite<torch::kFloat16, c10::Half>(device);
}
template <c10::ScalarType S, typename T>
void test_isinf(const at::Device& device) {
const std::vector<T> values = {
std::numeric_limits<T>::lowest(),
0,
1,
42,
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max()};
for (const auto value : values) {
const auto x = torch::full(
{3, 3}, value, torch::TensorOptions().dtype(S).device(device));
ASSERT_FALSE(torch::isinf(x).all().template item<bool>());
}
if (std::numeric_limits<T>::has_infinity) {
const auto inf = std::numeric_limits<T>::infinity();
const auto x = torch::tensor(
{-inf,
std::numeric_limits<T>::lowest(),
static_cast<T>(0),
static_cast<T>(1),
static_cast<T>(42),
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max(),
inf},
torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(
// torch::allclose does not support comparing torch::kBool
torch::isinf(x).toType(torch::kInt),
torch::tensor(
{true, false, false, false, false, false, false, true},
torch::TensorOptions().device(device))
.toType(torch::kInt)));
}
if (std::numeric_limits<T>::has_quiet_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::quiet_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_FALSE(torch::isinf(x).all().template item<bool>());
}
if (std::numeric_limits<T>::has_signaling_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::signaling_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_FALSE(torch::isinf(x).all().template item<bool>());
}
}
TEST_F(FunctionalTest, isinf) {
const at::Device device("cpu");
test_isinf<torch::kUInt8, uint8_t>(device);
test_isinf<torch::kInt8, int8_t>(device);
test_isinf<torch::kInt16, int16_t>(device);
test_isinf<torch::kInt32, int32_t>(device);
test_isinf<torch::kInt64, int64_t>(device);
test_isinf<torch::kFloat32, float>(device);
test_isinf<torch::kFloat64, double>(device);
}
TEST_F(FunctionalTest, isinf_CUDA) {
const at::Device device("cuda");
test_isinf<torch::kUInt8, uint8_t>(device);
test_isinf<torch::kInt8, int8_t>(device);
test_isinf<torch::kInt16, int16_t>(device);
test_isinf<torch::kInt32, int32_t>(device);
test_isinf<torch::kInt64, int64_t>(device);
test_isinf<torch::kFloat32, float>(device);
test_isinf<torch::kFloat64, double>(device);
test_isinf<torch::kFloat16, c10::Half>(device);
}
template <c10::ScalarType S, typename T>
void test_allclose(const at::Device& device) {
const std::vector<T> values = {
std::numeric_limits<T>::lowest(),
0,
1,
42,
std::numeric_limits<T>::min(),
std::numeric_limits<T>::max()};
for (const auto value : values) {
const auto x =
torch::full({1}, value, torch::TensorOptions().dtype(S).device(device));
const auto y =
torch::full({1}, value, torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(x, x));
ASSERT_TRUE(torch::allclose(x, y));
ASSERT_TRUE(torch::allclose(y, x));
ASSERT_FALSE(torch::allclose(1.1 * x + 0.1, 1.0 * x));
ASSERT_TRUE(torch::allclose(0.99 * x + 0.1, 1.0 * x, 1.1, 0.1));
}
if (std::numeric_limits<T>::has_infinity) {
const auto inf = std::numeric_limits<T>::infinity();
const auto x = torch::tensor(
{-inf, inf}, torch::TensorOptions().dtype(S).device(device));
const auto y = torch::tensor(
{-inf, inf}, torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(x, x));
ASSERT_TRUE(torch::allclose(x, y));
ASSERT_TRUE(torch::allclose(y, x));
}
if (std::numeric_limits<T>::has_quiet_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::quiet_NaN()},
torch::TensorOptions().dtype(S).device(device));
const auto y = torch::tensor(
{std::numeric_limits<T>::quiet_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(x, x, 1.0, 0.0, /*equal_nan=*/true));
ASSERT_TRUE(torch::allclose(x, y, 1.0, 0.0, /*equal_nan=*/true));
ASSERT_TRUE(torch::allclose(y, x, 1.0, 0.0, /*equal_nan=*/true));
}
if (std::numeric_limits<T>::has_signaling_NaN) {
const auto x = torch::tensor(
{std::numeric_limits<T>::signaling_NaN()},
torch::TensorOptions().dtype(S).device(device));
const auto y = torch::tensor(
{std::numeric_limits<T>::signaling_NaN()},
torch::TensorOptions().dtype(S).device(device));
ASSERT_TRUE(torch::allclose(x, x, 1.0, 0.0, /*equal_nan=*/true));
ASSERT_TRUE(torch::allclose(x, y, 1.0, 0.0, /*equal_nan=*/true));
ASSERT_TRUE(torch::allclose(y, x, 1.0, 0.0, /*equal_nan=*/true));
}
}
TEST_F(FunctionalTest, AllClose) {
const at::Device device("cpu");
test_allclose<torch::kUInt8, uint8_t>(device);
test_allclose<torch::kInt8, int8_t>(device);
test_allclose<torch::kInt16, int16_t>(device);
test_allclose<torch::kInt32, int32_t>(device);
test_allclose<torch::kInt64, int64_t>(device);
test_allclose<torch::kFloat32, float>(device);
test_allclose<torch::kFloat64, double>(device);
}
TEST_F(FunctionalTest, AllClose_CUDA) {
const at::Device device("cuda");
test_allclose<torch::kUInt8, uint8_t>(device);
test_allclose<torch::kInt8, int8_t>(device);
test_allclose<torch::kInt16, int16_t>(device);
test_allclose<torch::kInt32, int32_t>(device);
test_allclose<torch::kInt64, int64_t>(device);
test_allclose<torch::kFloat32, float>(device);
test_allclose<torch::kFloat64, double>(device);
test_allclose<torch::kFloat16, c10::Half>(device);
}
TEST_F(FunctionalTest, BCEWithLogitsLoss) {
{ // test BCE with logits raises if target and input are different size
{
const auto target = torch::rand(5);
const auto input = torch::rand({5, 1});
ASSERT_THROWS_WITH(
F::binary_cross_entropy_with_logits(input, target),
"must be the same as input size");
}
{
const auto target = torch::rand({5, 1});
const auto input = torch::rand(5);
ASSERT_THROWS_WITH(
F::binary_cross_entropy_with_logits(input, target),
"must be the same as input size");
}
}
{ // test BCE with logits gives same result as sigmoid and bce loss
auto sigmoid = Sigmoid();
auto target = torch::rand({64, 4});
auto output = torch::rand({64, 4}) - 0.5;
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(output, target),
F::binary_cross_entropy(sigmoid(output), target)));
auto weight = torch::rand(4);
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)),
F::binary_cross_entropy(
sigmoid(output),
target,
F::BinaryCrossEntropyFuncOptions().weight(weight))));
target = torch::zeros({4, 1}, torch::kFloat);
output = torch::empty({4, 1}, torch::kFloat).fill_(-100);
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(output, target),
F::binary_cross_entropy(sigmoid(output), target)));
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(
torch::kNone)),
F::binary_cross_entropy(
sigmoid(output),
target,
F::BinaryCrossEntropyFuncOptions().reduction(torch::kNone))));
weight = torch::rand({1}, torch::kFloat);
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight)),
F::binary_cross_entropy(
sigmoid(output),
target,
F::BinaryCrossEntropyFuncOptions().weight(weight))));
}
{ // test BCE with logits has correct grad at zero
const auto output = torch::zeros({3, 1}, torch::requires_grad());
const auto target = torch::zeros({3, 1});
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().reduction(torch::kSum))
.backward();
const auto expected_grad = torch::empty({3, 1}).fill_(0.5);
ASSERT_TRUE(torch::allclose(output.grad(), expected_grad));
}
{ // test BCE with logits broadcasts weights
const auto target = torch::rand({16, 4});
const auto output = torch::rand({16, 4}) - 0.5;
auto weight = torch::rand(4);
auto out1 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight));
weight = weight.expand({16, 4}).contiguous();
auto out2 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight));
ASSERT_TRUE(torch::allclose(out1, out2));
weight = torch::rand({16, 1});
out1 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight));
weight = weight.expand({16, 4}).contiguous();
out2 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().weight(weight));
ASSERT_TRUE(torch::allclose(out1, out2));
}
{ // test BCE with logits ones in pos weights are the same as none
const auto target = torch::rand({64, 4});
const auto output = torch::rand({64, 4}) - 0.5;
const auto pos_weight = torch::ones({64, 4});
ASSERT_TRUE(torch::allclose(
F::binary_cross_entropy_with_logits(output, target),
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(
pos_weight))));
}
{ // test BCE with logits broadcasts pos weights
const auto target = torch::rand({64, 4});
const auto output = torch::rand({64, 4}) - 0.5;
const auto pos_weight = torch::rand(4);
const auto out1 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight));
const auto pos_weight1 = pos_weight.expand({1, 4});
const auto out2 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight));
const auto pos_weight2 = pos_weight.expand({64, 4});
const auto out3 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight));
ASSERT_TRUE(torch::allclose(out1, out2));
ASSERT_TRUE(torch::allclose(out1, out3));
}
{ // test BCE with logits with pos weight has correct grad at zero
const auto output = torch::zeros({3, 1}, torch::requires_grad());
const auto target = torch::zeros({3, 1});
const auto pos_weight = torch::ones({3, 1});
F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions()
.pos_weight(pos_weight)
.reduction(torch::kSum))
.backward();
const auto expected_grad = torch::empty({3, 1}).fill_(0.5);
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
const auto grad = output.grad();
ASSERT_TRUE(torch::allclose(grad, expected_grad));
}
{ // test BCE with logits stability
const auto output = torch::tensor({0., -120.});
const auto target = torch::tensor({0., 1.});
const auto pos_weight = torch::tensor({1., 1.});
const auto out1 = F::binary_cross_entropy_with_logits(output, target);
ASSERT_TRUE(torch::isfinite(out1).all().item<bool>());
const auto out2 = F::binary_cross_entropy_with_logits(
output,
target,
F::BinaryCrossEntropyWithLogitsFuncOptions().pos_weight(pos_weight));
ASSERT_TRUE(torch::isfinite(out2).all().item<bool>());
}
}