| #include <gtest/gtest.h> |
| |
| #include <c10/util/irange.h> |
| #include <torch/torch.h> |
| |
| #include <test/cpp/api/support.h> |
| |
| #include <cmath> |
| #include <cstdlib> |
| #include <random> |
| |
| using namespace torch::nn; |
| using namespace torch::test; |
| |
| const double kPi = 3.1415926535898; |
| |
| class CartPole { |
| // Translated from openai/gym's cartpole.py |
| public: |
| double gravity = 9.8; |
| double masscart = 1.0; |
| double masspole = 0.1; |
| double total_mass = (masspole + masscart); |
| double length = 0.5; // actually half the pole's length; |
| double polemass_length = (masspole * length); |
| double force_mag = 10.0; |
| double tau = 0.02; // seconds between state updates; |
| |
| // Angle at which to fail the episode |
| double theta_threshold_radians = 12 * 2 * kPi / 360; |
| double x_threshold = 2.4; |
| int steps_beyond_done = -1; |
| |
| torch::Tensor state; |
| double reward; |
| bool done; |
| int step_ = 0; |
| |
| torch::Tensor getState() { |
| return state; |
| } |
| |
| double getReward() { |
| return reward; |
| } |
| |
| double isDone() { |
| return done; |
| } |
| |
| void reset() { |
| state = torch::empty({4}).uniform_(-0.05, 0.05); |
| steps_beyond_done = -1; |
| step_ = 0; |
| } |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init) |
| CartPole() { |
| reset(); |
| } |
| |
| void step(int action) { |
| auto x = state[0].item<float>(); |
| auto x_dot = state[1].item<float>(); |
| auto theta = state[2].item<float>(); |
| auto theta_dot = state[3].item<float>(); |
| |
| auto force = (action == 1) ? force_mag : -force_mag; |
| auto costheta = std::cos(theta); |
| auto sintheta = std::sin(theta); |
| auto temp = (force + polemass_length * theta_dot * theta_dot * sintheta) / |
| total_mass; |
| auto thetaacc = (gravity * sintheta - costheta * temp) / |
| (length * (4.0 / 3.0 - masspole * costheta * costheta / total_mass)); |
| auto xacc = temp - polemass_length * thetaacc * costheta / total_mass; |
| |
| x = x + tau * x_dot; |
| x_dot = x_dot + tau * xacc; |
| theta = theta + tau * theta_dot; |
| theta_dot = theta_dot + tau * thetaacc; |
| state = torch::tensor({x, x_dot, theta, theta_dot}); |
| |
| done = x < -x_threshold || x > x_threshold || |
| theta < -theta_threshold_radians || theta > theta_threshold_radians || |
| step_ > 200; |
| |
| if (!done) { |
| reward = 1.0; |
| } else if (steps_beyond_done == -1) { |
| // Pole just fell! |
| steps_beyond_done = 0; |
| reward = 0; |
| } else { |
| if (steps_beyond_done == 0) { |
| AT_ASSERT(false); // Can't do this |
| } |
| } |
| step_++; |
| } |
| }; |
| |
| template <typename M, typename F, typename O> |
| bool test_mnist( |
| size_t batch_size, |
| size_t number_of_epochs, |
| bool with_cuda, |
| M&& model, |
| F&& forward_op, |
| O&& optimizer) { |
| std::string mnist_path = "mnist"; |
| if (const char* user_mnist_path = getenv("TORCH_CPP_TEST_MNIST_PATH")) { |
| mnist_path = user_mnist_path; |
| } |
| |
| auto train_dataset = |
| torch::data::datasets::MNIST( |
| mnist_path, torch::data::datasets::MNIST::Mode::kTrain) |
| .map(torch::data::transforms::Stack<>()); |
| |
| auto data_loader = |
| torch::data::make_data_loader(std::move(train_dataset), batch_size); |
| |
| torch::Device device(with_cuda ? torch::kCUDA : torch::kCPU); |
| model->to(device); |
| |
| for (const auto epoch : c10::irange(number_of_epochs)) { |
| (void)epoch; // Suppress unused variable warning |
| // NOLINTNEXTLINE(performance-for-range-copy) |
| for (torch::data::Example<> batch : *data_loader) { |
| auto data = batch.data.to(device); |
| auto targets = batch.target.to(device); |
| torch::Tensor prediction = forward_op(std::move(data)); |
| // NOLINTNEXTLINE(performance-move-const-arg) |
| torch::Tensor loss = torch::nll_loss(prediction, std::move(targets)); |
| AT_ASSERT(!torch::isnan(loss).any().item<int64_t>()); |
| optimizer.zero_grad(); |
| loss.backward(); |
| optimizer.step(); |
| } |
| } |
| |
| torch::NoGradGuard guard; |
| torch::data::datasets::MNIST test_dataset( |
| mnist_path, torch::data::datasets::MNIST::Mode::kTest); |
| auto images = test_dataset.images().to(device), |
| targets = test_dataset.targets().to(device); |
| |
| auto result = std::get<1>(forward_op(images).max(/*dim=*/1)); |
| torch::Tensor correct = (result == targets).to(torch::kFloat32); |
| return correct.sum().item<float>() > (test_dataset.size().value() * 0.8); |
| } |
| |
| struct IntegrationTest : torch::test::SeedingFixture {}; |
| |
| TEST_F(IntegrationTest, CartPole) { |
| torch::manual_seed(0); |
| auto model = std::make_shared<SimpleContainer>(); |
| auto linear = model->add(Linear(4, 128), "linear"); |
| auto policyHead = model->add(Linear(128, 2), "policy"); |
| auto valueHead = model->add(Linear(128, 1), "action"); |
| auto optimizer = torch::optim::Adam(model->parameters(), 1e-3); |
| |
| std::vector<torch::Tensor> saved_log_probs; |
| std::vector<torch::Tensor> saved_values; |
| std::vector<float> rewards; |
| |
| auto forward = [&](torch::Tensor inp) { |
| auto x = linear->forward(inp).clamp_min(0); |
| torch::Tensor actions = policyHead->forward(x); |
| torch::Tensor value = valueHead->forward(x); |
| return std::make_tuple(torch::softmax(actions, -1), value); |
| }; |
| |
| auto selectAction = [&](torch::Tensor state) { |
| // Only work on single state right now, change index to gather for batch |
| auto out = forward(state); |
| auto probs = torch::Tensor(std::get<0>(out)); |
| auto value = torch::Tensor(std::get<1>(out)); |
| auto action = probs.multinomial(1)[0].item<int32_t>(); |
| // Compute the log prob of a multinomial distribution. |
| // This should probably be actually implemented in autogradpp... |
| auto p = probs / probs.sum(-1, true); |
| auto log_prob = p[action].log(); |
| saved_log_probs.emplace_back(log_prob); |
| saved_values.push_back(value); |
| return action; |
| }; |
| |
| auto finishEpisode = [&] { |
| auto R = 0.; |
| // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions) |
| for (int i = rewards.size() - 1; i >= 0; i--) { |
| R = rewards[i] + 0.99 * R; |
| rewards[i] = R; |
| } |
| auto r_t = torch::from_blob( |
| rewards.data(), {static_cast<int64_t>(rewards.size())}); |
| r_t = (r_t - r_t.mean()) / (r_t.std() + 1e-5); |
| |
| std::vector<torch::Tensor> policy_loss; |
| std::vector<torch::Tensor> value_loss; |
| for (const auto i : c10::irange(0U, saved_log_probs.size())) { |
| auto advantage = r_t[i] - saved_values[i].item<float>(); |
| policy_loss.push_back(-advantage * saved_log_probs[i]); |
| value_loss.push_back( |
| torch::smooth_l1_loss(saved_values[i], torch::ones(1) * r_t[i])); |
| } |
| |
| auto loss = |
| torch::stack(policy_loss).sum() + torch::stack(value_loss).sum(); |
| |
| optimizer.zero_grad(); |
| loss.backward(); |
| optimizer.step(); |
| |
| rewards.clear(); |
| saved_log_probs.clear(); |
| saved_values.clear(); |
| }; |
| |
| auto env = CartPole(); |
| double running_reward = 10.0; |
| for (size_t episode = 0;; episode++) { |
| env.reset(); |
| auto state = env.getState(); |
| int t = 0; |
| for (; t < 10000; t++) { |
| auto action = selectAction(state); |
| env.step(action); |
| state = env.getState(); |
| auto reward = env.getReward(); |
| auto done = env.isDone(); |
| |
| rewards.push_back(reward); |
| if (done) |
| break; |
| } |
| |
| running_reward = running_reward * 0.99 + t * 0.01; |
| finishEpisode(); |
| /* |
| if (episode % 10 == 0) { |
| printf("Episode %i\tLast length: %5d\tAverage length: %.2f\n", |
| episode, t, running_reward); |
| } |
| */ |
| if (running_reward > 150) { |
| break; |
| } |
| ASSERT_LT(episode, 3000); |
| } |
| } |
| |
| TEST_F(IntegrationTest, MNIST_CUDA) { |
| torch::manual_seed(0); |
| auto model = std::make_shared<SimpleContainer>(); |
| auto conv1 = model->add(Conv2d(1, 10, 5), "conv1"); |
| auto conv2 = model->add(Conv2d(10, 20, 5), "conv2"); |
| auto drop = Dropout(0.3); |
| auto drop2d = Dropout2d(0.3); |
| auto linear1 = model->add(Linear(320, 50), "linear1"); |
| auto linear2 = model->add(Linear(50, 10), "linear2"); |
| |
| auto forward = [&](torch::Tensor x) { |
| x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu(); |
| x = conv2->forward(x); |
| x = drop2d->forward(x); |
| x = torch::max_pool2d(x, {2, 2}).relu(); |
| |
| x = x.view({-1, 320}); |
| x = linear1->forward(x).clamp_min(0); |
| x = drop->forward(x); |
| x = linear2->forward(x); |
| x = torch::log_softmax(x, 1); |
| return x; |
| }; |
| |
| auto optimizer = torch::optim::SGD( |
| model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5)); |
| |
| ASSERT_TRUE(test_mnist( |
| 32, // batch_size |
| 3, // number_of_epochs |
| true, // with_cuda |
| model, |
| forward, |
| optimizer)); |
| } |
| |
| TEST_F(IntegrationTest, MNISTBatchNorm_CUDA) { |
| torch::manual_seed(0); |
| auto model = std::make_shared<SimpleContainer>(); |
| auto conv1 = model->add(Conv2d(1, 10, 5), "conv1"); |
| auto batchnorm2d = model->add(BatchNorm2d(10), "batchnorm2d"); |
| auto conv2 = model->add(Conv2d(10, 20, 5), "conv2"); |
| auto linear1 = model->add(Linear(320, 50), "linear1"); |
| auto batchnorm1 = model->add(BatchNorm1d(50), "batchnorm1"); |
| auto linear2 = model->add(Linear(50, 10), "linear2"); |
| |
| auto forward = [&](torch::Tensor x) { |
| x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu(); |
| x = batchnorm2d->forward(x); |
| x = conv2->forward(x); |
| x = torch::max_pool2d(x, {2, 2}).relu(); |
| |
| x = x.view({-1, 320}); |
| x = linear1->forward(x).clamp_min(0); |
| x = batchnorm1->forward(x); |
| x = linear2->forward(x); |
| x = torch::log_softmax(x, 1); |
| return x; |
| }; |
| |
| auto optimizer = torch::optim::SGD( |
| model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5)); |
| |
| ASSERT_TRUE(test_mnist( |
| 32, // batch_size |
| 3, // number_of_epochs |
| true, // with_cuda |
| model, |
| forward, |
| optimizer)); |
| } |