blob: 1643ba1abe079e9ef9c51dced5d7ede3acc182bc [file] [log] [blame] [edit]
#include <gtest/gtest.h>
#include <torch/torch.h>
#include <algorithm>
#include <memory>
#include <vector>
#include <test/cpp/api/support.h>
using namespace torch::nn;
using namespace torch::test;
struct ParameterDictTest : torch::test::SeedingFixture {};
TEST_F(ParameterDictTest, ConstructFromTensor) {
ParameterDict dict;
torch::Tensor ta = torch::randn({1, 2}, torch::requires_grad(true));
torch::Tensor tb = torch::randn({1, 2}, torch::requires_grad(false));
torch::Tensor tc = torch::randn({1, 2});
ASSERT_TRUE(ta.requires_grad());
ASSERT_FALSE(tb.requires_grad());
dict->insert("A", ta);
dict->insert("B", tb);
dict->insert("C", tc);
ASSERT_EQ(dict->size(), 3);
ASSERT_TRUE(torch::all(torch::eq(dict["A"], ta)).item<bool>());
ASSERT_TRUE(dict["A"].requires_grad());
ASSERT_TRUE(torch::all(torch::eq(dict["B"], tb)).item<bool>());
ASSERT_FALSE(dict["B"].requires_grad());
}
TEST_F(ParameterDictTest, ConstructFromOrderedDict) {
torch::Tensor ta = torch::randn({1, 2}, torch::requires_grad(true));
torch::Tensor tb = torch::randn({1, 2}, torch::requires_grad(false));
torch::Tensor tc = torch::randn({1, 2});
torch::OrderedDict<std::string, torch::Tensor> params = {
{"A", ta}, {"B", tb}, {"C", tc}};
auto dict = torch::nn::ParameterDict(params);
ASSERT_EQ(dict->size(), 3);
ASSERT_TRUE(torch::all(torch::eq(dict["A"], ta)).item<bool>());
ASSERT_TRUE(dict["A"].requires_grad());
ASSERT_TRUE(torch::all(torch::eq(dict["B"], tb)).item<bool>());
ASSERT_FALSE(dict["B"].requires_grad());
}
TEST_F(ParameterDictTest, InsertAndContains) {
ParameterDict dict;
dict->insert("A", torch::tensor({1.0}));
ASSERT_EQ(dict->size(), 1);
ASSERT_TRUE(dict->contains("A"));
ASSERT_FALSE(dict->contains("C"));
}
TEST_F(ParameterDictTest, InsertAndClear) {
ParameterDict dict;
dict->insert("A", torch::tensor({1.0}));
ASSERT_EQ(dict->size(), 1);
dict->clear();
ASSERT_EQ(dict->size(), 0);
}
TEST_F(ParameterDictTest, InsertAndPop) {
ParameterDict dict;
dict->insert("A", torch::tensor({1.0}));
ASSERT_EQ(dict->size(), 1);
ASSERT_THROWS_WITH(dict->pop("B"), "Parameter 'B' is not defined");
torch::Tensor p = dict->pop("A");
ASSERT_EQ(dict->size(), 0);
ASSERT_TRUE(torch::eq(p, torch::tensor({1.0})).item<bool>());
}
TEST_F(ParameterDictTest, SimpleUpdate) {
ParameterDict dict;
ParameterDict wrongDict;
ParameterDict rightDict;
dict->insert("A", torch::tensor({1.0}));
dict->insert("B", torch::tensor({2.0}));
dict->insert("C", torch::tensor({3.0}));
wrongDict->insert("A", torch::tensor({5.0}));
wrongDict->insert("D", torch::tensor({5.0}));
ASSERT_THROWS_WITH(dict->update(*wrongDict), "Parameter 'D' is not defined");
rightDict->insert("A", torch::tensor({5.0}));
dict->update(*rightDict);
ASSERT_EQ(dict->size(), 3);
ASSERT_TRUE(torch::eq(dict["A"], torch::tensor({5.0})).item<bool>());
}
TEST_F(ParameterDictTest, Keys) {
torch::OrderedDict<std::string, torch::Tensor> params = {
{"a", torch::tensor({1.0})},
{"b", torch::tensor({2.0})},
{"c", torch::tensor({1.0, 2.0})}};
auto dict = torch::nn::ParameterDict(params);
std::vector<std::string> keys = dict->keys();
std::vector<std::string> true_keys{"a", "b", "c"};
ASSERT_EQ(keys, true_keys);
}
TEST_F(ParameterDictTest, Values) {
torch::Tensor ta = torch::randn({1, 2}, torch::requires_grad(true));
torch::Tensor tb = torch::randn({1, 2}, torch::requires_grad(false));
torch::Tensor tc = torch::randn({1, 2});
torch::OrderedDict<std::string, torch::Tensor> params = {
{"a", ta}, {"b", tb}, {"c", tc}};
auto dict = torch::nn::ParameterDict(params);
std::vector<torch::Tensor> values = dict->values();
std::vector<torch::Tensor> true_values{ta, tb, tc};
for (auto i = 0U; i < values.size(); i += 1) {
ASSERT_TRUE(torch::all(torch::eq(values[i], true_values[i])).item<bool>());
}
}
TEST_F(ParameterDictTest, Get) {
ParameterDict dict;
torch::Tensor ta = torch::randn({1, 2}, torch::requires_grad(true));
torch::Tensor tb = torch::randn({1, 2}, torch::requires_grad(false));
torch::Tensor tc = torch::randn({1, 2});
ASSERT_TRUE(ta.requires_grad());
ASSERT_FALSE(tb.requires_grad());
dict->insert("A", ta);
dict->insert("B", tb);
dict->insert("C", tc);
ASSERT_EQ(dict->size(), 3);
ASSERT_TRUE(torch::all(torch::eq(dict->get("A"), ta)).item<bool>());
ASSERT_TRUE(dict->get("A").requires_grad());
ASSERT_TRUE(torch::all(torch::eq(dict->get("B"), tb)).item<bool>());
ASSERT_FALSE(dict->get("B").requires_grad());
}
TEST_F(ParameterDictTest, PrettyPrintParameterDict) {
torch::OrderedDict<std::string, torch::Tensor> params = {
{"a", torch::tensor({1.0})},
{"b", torch::tensor({2.0, 1.0})},
{"c", torch::tensor({{3.0}, {2.1}})},
{"d", torch::tensor({{3.0, 1.3}, {1.2, 2.1}})}};
auto dict = torch::nn::ParameterDict(params);
ASSERT_EQ(
c10::str(dict),
"torch::nn::ParameterDict(\n"
"(a): Parameter containing: [Float of size [1]]\n"
"(b): Parameter containing: [Float of size [2]]\n"
"(c): Parameter containing: [Float of size [2, 1]]\n"
"(d): Parameter containing: [Float of size [2, 2]]\n"
")");
}