blob: 9d4d381742e1bf0f0947dedd3066af345af6ffed [file] [log] [blame] [edit]
#include <gtest/gtest.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <c10/util/tempfile.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <cstdio>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
using namespace torch::test;
using namespace torch::nn;
using namespace torch::optim;
namespace {
Sequential xor_model() {
return Sequential(
Linear(2, 8),
Functional(at::sigmoid),
Linear(8, 1),
Functional(at::sigmoid));
}
torch::Tensor save_and_load(torch::Tensor input) {
std::stringstream stream;
torch::save(input, stream);
torch::Tensor tensor;
torch::load(tensor, stream);
return tensor;
}
} // namespace
template <typename DerivedOptions>
void is_optimizer_param_group_equal(
const OptimizerParamGroup& lhs,
const OptimizerParamGroup& rhs) {
const auto& lhs_params = lhs.params();
const auto& rhs_params = rhs.params();
ASSERT_TRUE(lhs_params.size() == rhs_params.size());
for (const auto j : c10::irange(lhs_params.size())) {
ASSERT_TRUE(torch::equal(lhs_params[j], rhs_params[j]));
}
ASSERT_TRUE(
static_cast<const DerivedOptions&>(lhs.options()) ==
static_cast<const DerivedOptions&>(rhs.options()));
}
template <typename DerivedOptimizerParamState>
void is_optimizer_state_equal(
const ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>&
lhs_state,
const ska::flat_hash_map<void*, std::unique_ptr<OptimizerParamState>>&
rhs_state) {
ASSERT_TRUE(lhs_state.size() == rhs_state.size());
for (const auto& value : lhs_state) {
auto found = rhs_state.find(value.first);
ASSERT_TRUE(found != rhs_state.end());
const DerivedOptimizerParamState& lhs_curr_state =
static_cast<const DerivedOptimizerParamState&>(*(value.second.get()));
const DerivedOptimizerParamState& rhs_curr_state =
static_cast<const DerivedOptimizerParamState&>(*(found->second.get()));
ASSERT_TRUE(lhs_curr_state == rhs_curr_state);
}
}
template <
typename OptimizerClass,
typename DerivedOptimizerOptions,
typename DerivedOptimizerParamState>
void test_serialize_optimizer(
DerivedOptimizerOptions options,
bool only_has_global_state = false) {
torch::manual_seed(0);
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers
auto optim1 = OptimizerClass(
{torch::optim::OptimizerParamGroup(model1->parameters())}, options);
auto optim2 = OptimizerClass(model2->parameters(), options);
auto optim2_2 = OptimizerClass(model2->parameters(), options);
auto optim3 = OptimizerClass(model3->parameters(), options);
auto optim3_2 = OptimizerClass(model3->parameters(), options);
for (auto& param_group : optim3_2.param_groups()) {
const double lr = param_group.options().get_lr();
// change the learning rate, which will be overwritten by the loading
// otherwise, test cannot check if options are saved and loaded correctly
param_group.options().set_lr(lr + 0.01);
}
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 1 step of model 3
step(optim3, model3);
// save the optimizer
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
auto& optim3_2_param_groups = optim3_2.param_groups();
auto& optim3_param_groups = optim3.param_groups();
auto& optim3_2_state = optim3_2.state();
auto& optim3_state = optim3.state();
// optim3_2 and optim1 should have param_groups and state of size 1 and
// state_size respectively
ASSERT_TRUE(optim3_2_param_groups.size() == 1);
// state_size = 2 for all optimizers except LBFGS as LBFGS only maintains one
// global state
unsigned state_size = only_has_global_state ? 1 : 2;
ASSERT_TRUE(optim3_2_state.size() == state_size);
// optim3_2 and optim1 should have param_groups and state of same size
ASSERT_TRUE(optim3_2_param_groups.size() == optim3_param_groups.size());
ASSERT_TRUE(optim3_2_state.size() == optim3_state.size());
// checking correctness of serialization logic for optimizer.param_groups_ and
// optimizer.state_
for (const auto i : c10::irange(optim3_2_param_groups.size())) {
is_optimizer_param_group_equal<DerivedOptimizerOptions>(
optim3_2_param_groups[i], optim3_param_groups[i]);
is_optimizer_state_equal<DerivedOptimizerParamState>(
optim3_2_state, optim3_state);
}
// Do step2 for model 3
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
/// Utility function to save a value of `int64_t` type.
void write_int_value(
torch::serialize::OutputArchive& archive,
const std::string& key,
const int64_t& value) {
archive.write(key, c10::IValue(value));
}
// Utility function to save a vector of buffers.
template <typename BufferContainer>
void write_tensors_to_archive(
torch::serialize::OutputArchive& archive,
const std::string& key,
const BufferContainer& buffers) {
archive.write(
key + "/size", torch::tensor(static_cast<int64_t>(buffers.size())));
for (const auto index : c10::irange(buffers.size())) {
archive.write(
key + "/" + std::to_string(index), buffers[index], /*is_buffer=*/true);
}
}
// Utility function to save a vector of step buffers.
void write_step_buffers(
torch::serialize::OutputArchive& archive,
const std::string& key,
const std::vector<int64_t>& steps) {
std::vector<torch::Tensor> tensors;
tensors.reserve(steps.size());
for (const auto& step : steps) {
tensors.push_back(torch::tensor(static_cast<int64_t>(step)));
}
write_tensors_to_archive(archive, key, tensors);
}
#define OLD_SERIALIZATION_LOGIC_WARNING_CHECK(funcname, optimizer, filename) \
{ \
WarningCapture warnings; \
funcname(optimizer, filename); \
ASSERT_EQ( \
count_substr_occurrences(warnings.str(), "old serialization"), 1); \
}
TEST(SerializeTest, KeysFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (const auto i : c10::irange(3)) {
output_archive.write(
"element/" + std::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
std::vector<std::string> keys = input_archive.keys();
ASSERT_EQ(keys.size(), 3);
for (const auto i : c10::irange(keys.size())) {
ASSERT_EQ(keys[i], "element/" + std::to_string(i));
}
}
TEST(SerializeTest, TryReadFunc) {
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
for (const auto i : c10::irange(3)) {
output_archive.write(
"element/" + std::to_string(i), c10::IValue(static_cast<int64_t>(i)));
}
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue;
ASSERT_FALSE(input_archive.try_read("1", ivalue));
ASSERT_TRUE(input_archive.try_read("element/1", ivalue));
ASSERT_EQ(ivalue.toInt(), 1);
}
TEST(SerializeTest, Basic) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, MathBits) {
torch::manual_seed(0);
auto options = torch::TensorOptions{}.dtype(torch::kComplexFloat);
auto x = torch::randn({5, 5}, options);
{
auto expected = torch::conj(x);
auto actual = save_and_load(expected);
ASSERT_TRUE(actual.defined());
ASSERT_EQ(actual.sizes().vec(), expected.sizes().vec());
ASSERT_TRUE(actual.allclose(expected));
}
{
auto expected = torch::_neg_view(x);
auto actual = save_and_load(expected);
ASSERT_TRUE(actual.defined());
ASSERT_EQ(actual.sizes().vec(), expected.sizes().vec());
ASSERT_TRUE(actual.allclose(expected));
}
{
auto expected = torch::conj(torch::_neg_view(x));
auto actual = save_and_load(expected);
ASSERT_TRUE(actual.defined());
ASSERT_EQ(actual.sizes().vec(), expected.sizes().vec());
ASSERT_TRUE(actual.allclose(expected));
}
{
// We don't support serializing `ZeroTensor` as it is not public facing yet.
// If in future, `ZeroTensor` serialization is supported, this test should
// start failing!
auto t = torch::_efficientzerotensor({5, 5});
ASSERT_THROWS_WITH(save_and_load(t), "ZeroTensor is not serializable,");
}
}
TEST(SerializeTest, BasicToFile) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
auto tempfile = c10::make_tempfile();
torch::save(x, tempfile.name);
torch::Tensor y;
torch::load(y, tempfile.name);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, BasicViaFunc) {
torch::manual_seed(0);
auto x = torch::randn({5, 5});
std::string serialized;
torch::save(x, [&](const void* buf, size_t n) {
serialized.append(reinterpret_cast<const char*>(buf), n);
return n;
});
torch::Tensor y;
torch::load(y, serialized.data(), serialized.size());
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
torch::Tensor z;
torch::load(
z,
[&](uint64_t pos, void* buf, size_t n) -> size_t {
if (pos >= serialized.size())
return 0;
size_t nbytes =
std::min(static_cast<size_t>(pos) + n, serialized.size()) - pos;
memcpy(buf, serialized.data() + pos, nbytes);
return nbytes;
},
[&]() -> size_t { return serialized.size(); });
ASSERT_TRUE(z.defined());
ASSERT_EQ(x.sizes().vec(), z.sizes().vec());
ASSERT_TRUE(x.allclose(z));
}
TEST(SerializeTest, Resized) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x.resize_({5, 5});
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, Sliced) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(0, 1, 5);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, NonContiguous) {
torch::manual_seed(0);
auto x = torch::randn({11, 5});
x = x.slice(1, 1, 4);
auto y = save_and_load(x);
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
TEST(SerializeTest, ErrorOnMissingKey) {
struct B : torch::nn::Module {
B(const std::string& name_c) {
register_buffer(name_c, torch::ones(5, torch::kFloat));
}
};
struct A : torch::nn::Module {
A(const std::string& name_b, const std::string& name_c) {
register_module(name_b, std::make_shared<B>(name_c));
}
};
struct M : torch::nn::Module {
M(const std::string& name_a,
const std::string& name_b,
const std::string& name_c) {
register_module(name_a, std::make_shared<A>(name_b, name_c));
}
};
// create a hierarchy of models with names differing below the top level
auto model1 = std::make_shared<M>("a", "b", "c");
auto model2 = std::make_shared<M>("a", "b", "x");
auto model3 = std::make_shared<M>("a", "x", "c");
std::stringstream stream;
torch::save(model1, stream);
// We want the errors to contain hierarchy information, too.
ASSERT_THROWS_WITH(
torch::load(model2, stream), "No such serialized tensor 'a.b.x'");
stream.seekg(0, stream.beg);
ASSERT_THROWS_WITH(
torch::load(model3, stream), "No such serialized submodule: 'a.x'");
}
TEST(SerializeTest, XOR) {
// We better be able to save and load an XOR model!
auto getLoss = [](Sequential model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (const auto i : c10::irange(batch_size)) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(SerializeTest, Optim) {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same parameters.
auto model_tempfile = c10::make_tempfile();
torch::save(model1, model_tempfile.name);
torch::load(model2, model_tempfile.name);
torch::load(model3, model_tempfile.name);
auto param1 = model1->named_parameters();
auto param2 = model2->named_parameters();
auto param3 = model3->named_parameters();
for (const auto& p : param1) {
ASSERT_TRUE(p->allclose(param2[p.key()]));
ASSERT_TRUE(param2[p.key()].allclose(param3[p.key()]));
}
// Make some optimizers with momentum (and thus state)
auto optim1 = torch::optim::SGD(
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2_2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3_2 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 2 steps of model 3 while saving the optimizer
step(optim3, model3);
auto optim_tempfile = c10::make_tempfile();
torch::save(optim3, optim_tempfile.name);
torch::load(optim3_2, optim_tempfile.name);
step(optim3_2, model3);
param1 = model1->named_parameters();
param2 = model2->named_parameters();
param3 = model3->named_parameters();
for (const auto& p : param1) {
const auto& name = p.key();
// Model 1 and 3 should be the same
ASSERT_TRUE(
param1[name].norm().item<float>() == param3[name].norm().item<float>());
ASSERT_TRUE(
param1[name].norm().item<float>() != param2[name].norm().item<float>());
}
}
TEST(SerializeTest, Optim_Adagrad) {
test_serialize_optimizer<Adagrad, AdagradOptions, AdagradParamState>(
AdagradOptions(1e-1));
// bc compatibility check
auto model1 = Linear(5, 2);
auto optim1 = torch::optim::Adagrad(
model1->parameters(), torch::optim::AdagradOptions(1e-1));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
auto optim1_2 =
Adagrad(model1->parameters(), torch::optim::AdagradOptions(1e-1));
// fill up with optim1 sum_buffers
std::vector<torch::Tensor> sum_buffers;
// fill up with optim1 state_buffers
std::vector<int64_t> step_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto& param : params_) {
auto key_ = param.unsafeGetTensorImpl();
const AdagradParamState& curr_state_ =
static_cast<const AdagradParamState&>(*(optim1_state.at(key_).get()));
sum_buffers.emplace_back(curr_state_.sum());
step_buffers.emplace_back(curr_state_.step());
}
// write sum_buffers and step_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(output_archive, "sum_buffers", sum_buffers);
write_step_buffers(output_archive, "step_buffers", step_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdagradParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_SGD) {
test_serialize_optimizer<SGD, SGDOptions, SGDParamState>(
SGDOptions(1e-1).momentum(0.9));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum
// buffer entry
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::SGD(
model1_params, torch::optim::SGDOptions(0.01).momentum(0.9));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> momentum_buffers;
int64_t iteration_{0};
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = params_[i].unsafeGetTensorImpl();
const SGDParamState& curr_state_ =
static_cast<const SGDParamState&>(*(optim1_state.at(key_).get()));
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
}
ASSERT_TRUE(momentum_buffers.size() == (params_.size() - 1));
// write momentum_buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(
output_archive, "momentum_buffers", momentum_buffers);
write_int_value(output_archive, "iteration_", iteration_);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 =
SGD(model1_params, torch::optim::SGDOptions(1e-1).momentum(0.9));
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<SGDParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_Adam) {
test_serialize_optimizer<Adam, AdamOptions, AdamParamState>(
AdamOptions().lr(0.99999).amsgrad(true).weight_decay(0.5));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::Adam(
model1_params, torch::optim::AdamOptions().weight_decay(0.5));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<int64_t> step_buffers;
std::vector<at::Tensor> exp_average_buffers;
std::vector<at::Tensor> exp_average_sq_buffers;
std::vector<at::Tensor> max_exp_average_sq_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = params_[i].unsafeGetTensorImpl();
const AdamParamState& curr_state_ =
static_cast<const AdamParamState&>(*(optim1_state.at(key_).get()));
step_buffers.emplace_back(curr_state_.step());
exp_average_buffers.emplace_back(curr_state_.exp_avg());
exp_average_sq_buffers.emplace_back(curr_state_.exp_avg_sq());
if (curr_state_.max_exp_avg_sq().defined()) {
max_exp_average_sq_buffers.emplace_back(curr_state_.max_exp_avg_sq());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_step_buffers(output_archive, "step_buffers", step_buffers);
write_tensors_to_archive(
output_archive, "exp_average_buffers", exp_average_buffers);
write_tensors_to_archive(
output_archive, "exp_average_sq_buffers", exp_average_sq_buffers);
write_tensors_to_archive(
output_archive, "max_exp_average_sq_buffers", max_exp_average_sq_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = Adam(model1_params, torch::optim::AdamOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdamParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_AdamW) {
test_serialize_optimizer<AdamW, AdamWOptions, AdamWParamState>(
AdamWOptions().lr(0.99999).amsgrad(true).betas(
std::make_tuple(0.999, 0.1)));
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::AdamW(
model1_params, torch::optim::AdamWOptions().weight_decay(0.5));
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<int64_t> step_buffers;
std::vector<at::Tensor> exp_average_buffers;
std::vector<at::Tensor> exp_average_sq_buffers;
std::vector<at::Tensor> max_exp_average_sq_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = params_[i].unsafeGetTensorImpl();
const AdamWParamState& curr_state_ =
static_cast<const AdamWParamState&>(*(optim1_state.at(key_).get()));
step_buffers.emplace_back(curr_state_.step());
exp_average_buffers.emplace_back(curr_state_.exp_avg());
exp_average_sq_buffers.emplace_back(curr_state_.exp_avg_sq());
if (curr_state_.max_exp_avg_sq().defined()) {
max_exp_average_sq_buffers.emplace_back(curr_state_.max_exp_avg_sq());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_step_buffers(output_archive, "step_buffers", step_buffers);
write_tensors_to_archive(
output_archive, "exp_average_buffers", exp_average_buffers);
write_tensors_to_archive(
output_archive, "exp_average_sq_buffers", exp_average_sq_buffers);
write_tensors_to_archive(
output_archive, "max_exp_average_sq_buffers", max_exp_average_sq_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = AdamW(model1_params, torch::optim::AdamWOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
is_optimizer_state_equal<AdamWParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_RMSprop) {
auto options = RMSpropOptions(0.1).momentum(0.9).centered(true);
test_serialize_optimizer<RMSprop, RMSpropOptions, RMSpropParamState>(options);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have a momentum
// buffer entry
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 = torch::optim::RMSprop(model1_params, options);
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
step(optim1, model1);
std::vector<at::Tensor> square_average_buffers;
std::vector<at::Tensor> momentum_buffers;
std::vector<at::Tensor> grad_average_buffers;
const auto& params_ = optim1.param_groups()[0].params();
const auto& optim1_state = optim1.state();
for (const auto i : c10::irange(params_.size())) {
if (i != (params_.size() - 1)) {
auto key_ = params_[i].unsafeGetTensorImpl();
const RMSpropParamState& curr_state_ =
static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
square_average_buffers.emplace_back(curr_state_.square_avg());
if (curr_state_.momentum_buffer().defined()) {
momentum_buffers.emplace_back(curr_state_.momentum_buffer());
}
if (curr_state_.grad_avg().defined()) {
grad_average_buffers.emplace_back(curr_state_.grad_avg());
}
}
}
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
write_tensors_to_archive(
output_archive, "square_average_buffers", square_average_buffers);
write_tensors_to_archive(
output_archive, "momentum_buffers", momentum_buffers);
write_tensors_to_archive(
output_archive, "grad_average_buffers", grad_average_buffers);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = RMSprop(model1_params, options);
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto& optim1_2_state = optim1_2.state();
// old RMSprop didn't track step value
for (const auto i : c10::irange(params1_2_.size())) {
if (i != (params1_2_.size() - 1)) {
auto key_ = params_[i].unsafeGetTensorImpl();
const RMSpropParamState& curr_state_ =
static_cast<const RMSpropParamState&>(*(optim1_state.at(key_).get()));
RMSpropParamState& curr_state1_2_ =
static_cast<RMSpropParamState&>(*(optim1_2_state.at(key_).get()));
curr_state1_2_.step(curr_state_.step());
}
}
is_optimizer_state_equal<RMSpropParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, Optim_LBFGS) {
test_serialize_optimizer<LBFGS, LBFGSOptions, LBFGSParamState>(
LBFGSOptions(), true);
// bc compatibility check
auto model1 = Linear(5, 2);
auto model1_params = model1->parameters();
// added a tensor for lazy init check - when all params do not have entry in
// buffers
model1_params.emplace_back(torch::randn({2, 3}));
auto optim1 =
torch::optim::LBFGS(model1_params, torch::optim::LBFGSOptions());
auto x = torch::ones({10, 5});
auto step = [&x](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
auto closure = []() { return torch::tensor({10}); };
optimizer.step(closure);
};
step(optim1, model1);
at::Tensor d, t, H_diag, prev_flat_grad, prev_loss;
std::deque<at::Tensor> old_dirs, old_stps;
const auto& params_ = optim1.param_groups()[0].params();
auto key_ = params_[0].unsafeGetTensorImpl();
const auto& optim1_state =
static_cast<const LBFGSParamState&>(*(optim1.state().at(key_).get()));
d = optim1_state.d();
t = at::tensor(optim1_state.t());
H_diag = optim1_state.H_diag();
prev_flat_grad = optim1_state.prev_flat_grad();
prev_loss = at::tensor(optim1_state.prev_loss());
old_dirs = optim1_state.old_dirs();
// write buffers to the file
auto optim_tempfile_old_format = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("d", d, /*is_buffer=*/true);
output_archive.write("t", t, /*is_buffer=*/true);
output_archive.write("H_diag", H_diag, /*is_buffer=*/true);
output_archive.write("prev_flat_grad", prev_flat_grad, /*is_buffer=*/true);
output_archive.write("prev_loss", prev_loss, /*is_buffer=*/true);
write_tensors_to_archive(output_archive, "old_dirs", old_dirs);
write_tensors_to_archive(output_archive, "old_stps", old_stps);
output_archive.save_to(optim_tempfile_old_format.name);
auto optim1_2 = LBFGS(model1_params, torch::optim::LBFGSOptions());
OLD_SERIALIZATION_LOGIC_WARNING_CHECK(
torch::load, optim1_2, optim_tempfile_old_format.name);
const auto& params1_2_ = optim1_2.param_groups()[0].params();
auto param_key = params1_2_[0].unsafeGetTensorImpl();
auto& optim1_2_state =
static_cast<LBFGSParamState&>(*(optim1_2.state().at(param_key).get()));
// old LBFGS didn't track func_evals, n_iter, ro, al values
optim1_2_state.func_evals(optim1_state.func_evals());
optim1_2_state.n_iter(optim1_state.n_iter());
optim1_2_state.ro(optim1_state.ro());
optim1_2_state.al(optim1_state.al());
is_optimizer_state_equal<LBFGSParamState>(optim1.state(), optim1_2.state());
}
TEST(SerializeTest, XOR_CUDA) {
torch::manual_seed(0);
// We better be able to save and load a XOR model!
auto getLoss = [](Sequential model,
uint32_t batch_size,
bool is_cuda = false) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
if (is_cuda) {
inputs = inputs.cuda();
labels = labels.cuda();
}
for (const auto i : c10::irange(batch_size)) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
running_loss = running_loss * 0.99 + loss.sum().item<float>() * 0.01;
ASSERT_LT(epoch, 3000);
epoch++;
}
auto tempfile = c10::make_tempfile();
torch::save(model, tempfile.name);
torch::load(model2, tempfile.name);
auto loss = getLoss(model2, 100);
ASSERT_LT(loss.item<float>(), 0.1);
model2->to(torch::kCUDA);
loss = getLoss(model2, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
auto tempfile2 = c10::make_tempfile();
torch::save(model2, tempfile2.name);
torch::load(model3, tempfile2.name);
loss = getLoss(model3, 100, true);
ASSERT_LT(loss.item<float>(), 0.1);
}
TEST(
SerializeTest,
CanSerializeModulesWithIntermediateModulesWithoutParametersOrBuffers) {
struct C : torch::nn::Module {
C() {
register_buffer("foo", torch::ones(5, torch::kInt32));
}
};
struct B : torch::nn::Module {};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("c", std::make_shared<C>());
}
};
struct M : torch::nn::Module {
M() {
register_module("a", std::make_shared<A>());
}
};
auto out = std::make_shared<M>();
std::stringstream ss;
torch::save(out, ss);
auto in = std::make_shared<M>();
torch::load(in, ss);
const int output = in->named_buffers()["a.c.foo"].sum().item<int>();
ASSERT_EQ(output, 5);
}
TEST(SerializeTest, VectorOfTensors) {
torch::manual_seed(0);
std::vector<torch::Tensor> x_vec = {
torch::randn({1, 2}), torch::randn({3, 4})};
std::stringstream stream;
torch::save(x_vec, stream);
std::vector<torch::Tensor> y_vec;
torch::load(y_vec, stream);
for (const auto i : c10::irange(x_vec.size())) {
auto& x = x_vec[i];
auto& y = y_vec[i];
ASSERT_TRUE(y.defined());
ASSERT_EQ(x.sizes().vec(), y.sizes().vec());
ASSERT_TRUE(x.allclose(y));
}
}
TEST(SerializeTest, IValue) {
c10::IValue ivalue(1);
auto tempfile = c10::make_tempfile();
torch::serialize::OutputArchive output_archive;
output_archive.write("value", ivalue);
output_archive.save_to(tempfile.name);
torch::serialize::InputArchive input_archive;
input_archive.load_from(tempfile.name);
c10::IValue ivalue_out;
input_archive.read("value", ivalue_out);
ASSERT_EQ(ivalue_out.toInt(), 1);
ASSERT_THROWS_WITH(
input_archive.read("bad_key", ivalue_out),
"does not have a field with name");
}
// NOTE: if a `Module` contains unserializable submodules (e.g.
// `nn::Functional`), we expect those submodules to be skipped when the `Module`
// is being serialized.
TEST(SerializeTest, UnserializableSubmoduleIsSkippedWhenSavingModule) {
struct A : torch::nn::Module {
A() {
register_module("relu", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
std::stringstream ss;
torch::save(out, ss);
torch::serialize::InputArchive archive;
archive.load_from(ss);
torch::serialize::InputArchive relu_archive;
// Submodule with name "relu" should not exist in the `InputArchive`,
// because the "relu" submodule is an `nn::Functional` and is not
// serializable.
ASSERT_FALSE(archive.try_read("relu", relu_archive));
}
// NOTE: If a `Module` contains unserializable submodules (e.g.
// `nn::Functional`), we don't check the existence of those submodules in the
// `InputArchive` when deserializing.
TEST(SerializeTest, UnserializableSubmoduleIsIgnoredWhenLoadingModule) {
struct B : torch::nn::Module {
B() {
register_module("relu1", torch::nn::Functional(torch::relu));
register_buffer("foo", torch::zeros(5, torch::kInt32));
}
};
struct A : torch::nn::Module {
A() {
register_module("b", std::make_shared<B>());
register_module("relu2", torch::nn::Functional(torch::relu));
}
};
auto out = std::make_shared<A>();
// Manually change the values of "b.foo", so that we can check whether the
// buffer contains these values after deserialization.
out->named_buffers()["b.foo"].fill_(1);
auto tempfile = c10::make_tempfile();
torch::save(out, tempfile.name);
torch::serialize::InputArchive archive;
archive.load_from(tempfile.name);
torch::serialize::InputArchive archive_b;
torch::serialize::InputArchive archive_relu;
torch::Tensor tensor_foo;
ASSERT_TRUE(archive.try_read("b", archive_b));
ASSERT_TRUE(archive_b.try_read("foo", tensor_foo, /*is_buffer=*/true));
// Submodule with name "relu1" should not exist in `archive_b`, because the
// "relu1" submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive_b.try_read("relu1", archive_relu));
// Submodule with name "relu2" should not exist in `archive`, because the
// "relu2" submodule is an `nn::Functional` and is not serializable.
ASSERT_FALSE(archive.try_read("relu2", archive_relu));
auto in = std::make_shared<A>();
// `torch::load(...)` works without error, even though `A` contains the
// `nn::Functional` submodules while the serialized file doesn't, because the
// `nn::Functional` submodules are not serializable and thus ignored when
// deserializing.
torch::load(in, tempfile.name);
// Check that the "b.foo" buffer is correctly deserialized from the file.
const int output = in->named_buffers()["b.foo"].sum().item<int>();
// `output` should equal to the sum of the values we manually assigned to
// "b.foo" before serialization.
ASSERT_EQ(output, 5);
}