blob: d954c9318d8bf1775981eabce150c9b96e122fc5 [file] [log] [blame] [edit]
import argparse
import os.path
import sys
import torch
def get_custom_backend_library_path():
"""
Get the path to the library containing the custom backend.
Return:
The path to the custom backend object, customized by platform.
"""
if sys.platform.startswith("win32"):
library_filename = "custom_backend.dll"
elif sys.platform.startswith("darwin"):
library_filename = "libcustom_backend.dylib"
else:
library_filename = "libcustom_backend.so"
path = os.path.abspath(f"build/{library_filename}")
assert os.path.exists(path), path
return path
def to_custom_backend(module):
"""
This is a helper that wraps torch._C._jit_to_test_backend and compiles
only the forward method with an empty compile spec.
Args:
module: input ScriptModule.
Returns:
The module, lowered so that it can run on TestBackend.
"""
lowered_module = torch._C._jit_to_backend(
"custom_backend", module, {"forward": {"": ""}}
)
return lowered_module
class Model(torch.nn.Module):
"""
Simple model used for testing that to_backend API supports saving, loading,
and executing in C++.
"""
def forward(self, a, b):
return (a + b, a - b)
def main():
parser = argparse.ArgumentParser(description="Lower a Module to a custom backend")
parser.add_argument("--export-module-to", required=True)
options = parser.parse_args()
# Load the library containing the custom backend.
library_path = get_custom_backend_library_path()
torch.ops.load_library(library_path)
assert library_path in torch.ops.loaded_libraries
# Lower an instance of Model to the custom backend and export it
# to the specified location.
lowered_module = to_custom_backend(torch.jit.script(Model()))
torch.jit.save(lowered_module, options.export_module_to)
if __name__ == "__main__":
main()