blob: bf386bbf164926fa472083d8eec7f6df03f01eaa [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
import sys
import unittest
from unittest.mock import MagicMock, patch
import torch
import torch._dynamo
import torch._dynamo.backends
import torch._dynamo.test_case
from torch._dynamo.backends.debugging import ExplainWithBackend
from torch._dynamo.backends.onnxrt import has_onnxruntime
from torch._dynamo.backends.tvm import has_tvm
from torch._dynamo.testing import same
from torch.fx._lazy_graph_module import _force_skip_lazy_graph_module
from torch.testing._internal.inductor_utils import HAS_CUDA
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
class Seq(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 10),
torch.nn.Sigmoid(),
)
def forward(self, x):
return self.layers(x)
class Conv_Bn_Relu(torch.nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = torch.nn.BatchNorm2d(out_channels, eps=0.001)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
class TestOptimizations(torch._dynamo.test_case.TestCase):
def test_example_inputs(self):
def fn(a, bc, d):
b, c = bc
return a / d - b / c
def compiler_fn(graph, example_inputs):
nonlocal r1
r1 = graph(*example_inputs)[0]
return graph.forward
a = torch.empty(2).fill_(1)
b = torch.empty(2).fill_(2)
c = torch.empty(2).fill_(3)
d = 4
r1 = None
r2 = fn(a, (b, c), d)
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
r3 = opt_fn(a, (b, c), d)
self.assertIsNotNone(r1)
self.assertEqual(r1.size(), r2.size())
self.assertEqual(r1.stride(), r2.stride())
self.assertEqual(r1.dtype, r2.dtype)
self.assertEqual(r1.size(), r3.size())
self.assertEqual(r1.stride(), r3.stride())
self.assertEqual(r1.dtype, r3.dtype)
def test_example_inputs_runtime_use(self):
def fn(a, bc, d):
b, c = bc
return a / d - b / c
def compiler_fn(graph, example_inputs):
def fwd(*args):
nonlocal r1
r = graph.forward(*args)
r1 = r[0]
return r
return fwd
a = torch.empty(2).fill_(1)
b = torch.empty(2).fill_(2)
c = torch.empty(2).fill_(3)
d = 4
r1 = None
r2 = fn(a, (b, c), d)
opt_fn = torch._dynamo.optimize_assert(compiler_fn)(fn)
r3 = opt_fn(a, (b, c), d)
self.assertIsNotNone(r1)
self.assertTrue(same(r1, r2))
self.assertTrue(same(r1, r3))
def _check_backend_works(self, backend, options=None):
model = Seq().eval()
input = torch.randn(2, 10)
r1 = model(input)
r2 = torch.compile(model, backend=backend, options=options)(input)
self.assertTrue(same(r1, r2.float(), tol=0.01))
def test_eager(self):
self._check_backend_works("eager")
def test_eager_noexcept(self):
self._check_backend_works("eager_noexcept")
@_force_skip_lazy_graph_module()
def test_torchscript(self):
self._check_backend_works("ts")
def test_aot_eager(self):
self._check_backend_works("aot_eager")
def test_aot_eager_decomp_partition(self):
self._check_backend_works("aot_eager_decomp_partition")
@_force_skip_lazy_graph_module()
def test_aot_ts(self):
self._check_backend_works("aot_ts")
@requires_cuda
def test_aot_cudagraphs(self):
self._check_backend_works("cudagraphs")
@unittest.skipIf(not has_onnxruntime(), "requires onnxruntime")
def test_onnxrt(self):
self._check_backend_works("onnxrt")
@unittest.skipIf(not has_tvm(), "requires tvm")
def test_tvm(self):
self._check_backend_works("tvm")
self._check_backend_works("tvm", options={"scheduler": None})
self._check_backend_works("tvm", options={"opt_level": 0})
def test_list_backends(self):
self.assertIn("inductor", torch._dynamo.list_backends())
self.assertIn("inductor", torch._dynamo.list_backends(exclude_tags=None))
self.assertNotIn("eager", torch._dynamo.list_backends())
self.assertNotIn("eager", torch._dynamo.list_backends(exclude_tags=["debug"]))
self.assertIn("eager", torch._dynamo.list_backends(exclude_tags=[]))
class NormalizeIRTests(torch._dynamo.test_case.TestCase):
def test_inplace_normalize(self):
def fn(a, b):
x = torch.cos(a)
x += b
return torch.sin(x)
a = torch.randn(10)
b = torch.randn(10).to(torch.float64)
ref = fn(a, b)
optimized_fn = torch._dynamo.optimize("aot_eager")(fn)
res = optimized_fn(a, b)
self.assertTrue(same(ref, res))
class MPSNotSupportedTest(torch._dynamo.test_case.TestCase):
@unittest.skipIf(not torch.backends.mps.is_available(), "requires mps")
def test_mps_not_supported(self):
model = Seq().to("mps")
example_input = torch.randn(1, 10).to("mps")
self.assertRaises(
RuntimeError,
lambda: torch.compile(model, backend="inductor")(example_input),
)
class TestExplainWithBackend(torch._dynamo.test_case.TestCase):
def test_explain_with_backend(self):
def fn3(x):
x = torch.sin(x)
torch._dynamo.graph_break()
x = torch.sin(x)
return x
def fn2(x):
x = torch.cos(x)
x = fn3(x)
x = torch.cos(x)
return x
def fn1(x):
x = torch.tan(x)
x = fn2(x)
x = torch.tan(x)
return x
def fn(x):
x = torch.sigmoid(x)
x = fn1(x)
x = torch.sigmoid(x)
return x
# Wrap TorchInductor with explain backend
eb = ExplainWithBackend("inductor")
optimized_fn = torch.compile(fn, backend=eb)
input_tensor = torch.randn(5)
result = optimized_fn(input_tensor)
# Check that fn still produces the same output when wrapped by ExplainWithBackend
self.assertTrue(torch.allclose(result, fn(input_tensor)))
# Verify ExplainOutput object contents, output might change but make sure these fields are present
explain_output = eb.output()
explain_str = str(explain_output)
self.assertIn("Graph Count", explain_str)
self.assertIn("Graph Break Count", explain_str)
self.assertIn("Op Count", explain_str)
self.assertIn("Break Reasons", explain_str)
# Verify that for the given functions above, we report the correct number of graphs, graph breaks, and ops
self.assertEqual(8, explain_output.graph_count)
self.assertEqual(7, explain_output.graph_break_count)
self.assertEqual(8, explain_output.op_count)
class TestCustomBackendAPI(torch._dynamo.test_case.TestCase):
"""Test APIs documented by https://pytorch.org/docs/main/torch.compiler_custom_backends.html"""
def test_register_backend_api(self):
from torch._dynamo import register_backend
backend_run = False
@register_backend
def my_custom_backend(gm, example_inputs):
nonlocal backend_run
backend_run = True
return gm.forward
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend="my_custom_backend")
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_aot_autograd_api(self):
from functorch.compile import make_boxed_func
from torch._dynamo.backends.common import aot_autograd
backend_run = False
def my_compiler(gm, example_inputs):
nonlocal backend_run
backend_run = True
return make_boxed_func(gm.forward)
my_backend = aot_autograd(fw_compiler=my_compiler)
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend=my_backend)
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_lookup_backend(self):
from torch._dynamo import list_backends, lookup_backend
backends = list_backends()
backend_run = False
def my_compiler(gm, example_inputs):
nonlocal backend_run
backend_run = True
try:
trt_compiled = lookup_backend("tensorrt")(gm, example_inputs)
if trt_compiled is not None:
return trt_compiled
except Exception:
pass
# first backend failed, try something else...
try:
inductor_compiled = lookup_backend("inductor")(gm, example_inputs)
if inductor_compiled is not None:
return inductor_compiled
except Exception:
pass
return gm.forward
def f(x):
return torch.relu(x)
opt_f = torch.compile(f, backend=my_compiler)
opt_f(torch.randn(3, 3))
self.assertTrue(backend_run)
def test_lookup_custom_backend(self):
from torch._dynamo import list_backends
backends_group = "torch_dynamo_backends"
name = "mycustombackend"
mock_3_9 = MagicMock()
mock_3_9.load.return_value = lambda: "mocked 3.9"
mock_3_9.name = name
mock_3_10 = MagicMock()
mock_3_10.load.return_value = lambda: "mocked 3.10"
def mock_eps(group=None):
if sys.version_info < (3, 10):
return {backends_group: [mock_3_9]}
else:
assert group == backends_group, group
mock_group = MagicMock()
mock_group.names = [name]
mock_group[name] = mock_3_10
# mock_group[name].load.return_value = lambda: "mocked 3.10"
return mock_group
with patch("importlib.metadata.entry_points", mock_eps):
from torch._dynamo.backends import registry
registry._lazy_import.cache_clear()
registry._discover_entrypoint_backends.cache_clear()
backends = list_backends()
assert name in backends, (name, backends)
def test_backend_recompilation(self):
def fn(x):
return x + x
input = torch.tensor(2.0)
opt_fn = torch.compile(
fn, backend="inductor", options={"_raise_error_for_testing": False}
)
opt_fn(input)
with self.assertRaises(torch._dynamo.exc.BackendCompilerFailed):
opt_fn = torch.compile(
fn, backend="inductor", options={"_raise_error_for_testing": True}
)
opt_fn(input)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()