blob: ee8a9b579ff1242e33123c7ad3db997b1a9fc497 [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
from unittest.mock import patch
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
from torch._C import (
_len_torch_function_stack,
_pop_torch_function_stack,
_push_on_torch_function_stack,
)
from torch.overrides import _get_current_function_mode_stack, BaseTorchFunctionMode
from torch.utils._device import DeviceContext
from torch.utils._python_dispatch import TorchDispatchMode
class TorchDispatchModeTests(torch._dynamo.test_case.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
@classmethod
def tearDownClass(cls):
super().tearDownClass()
def test_skip_torch_dispatch_modes(self):
class RewriteAddToMul(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if func is torch.ops.aten.add.Tensor:
func = torch.ops.aten.mul.Tensor
return func(*args, **kwargs)
def fn(x):
return x + x
cnt = torch._dynamo.testing.CompileCounter()
x = torch.tensor([3.0])
with RewriteAddToMul():
eager_res = fn(x)
compiled_res = torch._dynamo.optimize(cnt)(fn)(x)
self.assertEqual(eager_res, compiled_res)
self.assertEqual(cnt.frame_count, 0)
class TorchFunctionModeTests(torch._dynamo.test_case.TestCase):
@classmethod
def setUpClass(cls):
cls.default_device_old = torch.get_default_device()
super().setUpClass()
@classmethod
def tearDownClass(cls):
torch.set_default_device(cls.default_device_old)
super().tearDownClass()
def setUp(self):
torch.set_default_device(None)
def tearDown(self):
torch.set_default_device(None)
def _run_torch_function_mode_guard_test(self):
class TestMode1(BaseTorchFunctionMode):
pass
class TestMode2(BaseTorchFunctionMode):
pass
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt.__call__)
def fn(x):
return x + 1
inp = torch.ones(2, 2)
fn(inp)
self.assertEqual(cnt.frame_count, 1)
with TestMode1():
fn(inp)
self.assertEqual(cnt.frame_count, 2)
with TestMode1(), TestMode2():
fn(inp)
self.assertEqual(cnt.frame_count, 3)
with TestMode2(), TestMode1():
fn(inp)
self.assertEqual(cnt.frame_count, 4)
with TestMode1():
fn(inp)
self.assertEqual(cnt.frame_count, 4)
def _run_ignored_mode_types_test(self):
class IgnoredMode(BaseTorchFunctionMode):
pass
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt.__call__, fullgraph=True)
def fn(x):
return x + 1
inp = torch.ones(2, 2)
with patch(
"torch._dynamo.variables.torch_function.IGNORED_MODES", {IgnoredMode}
):
# initial compile
fn(inp)
# no recompile, mode ignored
# note: the ref stack is length 0, and the stack we are checking against has length 2
# we want to check both ref stack len > runtime stack, and ref stack len < runtime stack
with IgnoredMode(), IgnoredMode():
fn(inp)
self.assertEqual(cnt.frame_count, 1)
# recompile due to new mode on the stack
with BaseTorchFunctionMode(), BaseTorchFunctionMode(), BaseTorchFunctionMode():
fn(inp)
self.assertEqual(cnt.frame_count, 2)
# recompile
# tests both ref stack len > runtime stack len for the above guard check
# and ref stack len < runtime stack len for the initial zero mode case
with BaseTorchFunctionMode(), IgnoredMode(), BaseTorchFunctionMode():
fn(inp)
self.assertEqual(cnt.frame_count, 3)
# no recompile
with IgnoredMode(), IgnoredMode(), BaseTorchFunctionMode(), BaseTorchFunctionMode():
fn(inp)
self.assertEqual(cnt.frame_count, 3)
# This is tricky, basically the ignored modes are baked into the guard
# IgnoredMode will be ignored forever by that guard.
# This is okay since we don't expect to be modifying IGNORED_MODES
# in the middle of execution except for the purposes of testing.
torch._dynamo.reset()
with IgnoredMode():
fn(inp)
self.assertEqual(cnt.frame_count, 4)
@torch._dynamo.config.patch("enable_cpp_guard_manager", False)
def test_torch_function_mode_guards_ignored_types_py(self):
self._run_ignored_mode_types_test()
def test_torch_function_mode_guards_ignored_types_cpp(self):
self._run_ignored_mode_types_test()
@torch._dynamo.config.patch("enable_cpp_guard_manager", False)
def test_torch_function_mode_guards_py(self):
self._run_torch_function_mode_guard_test()
def test_torch_function_mode_guards_cpp(self):
self._run_torch_function_mode_guard_test()
def test_stack_state_mutation_default_device(self):
m = BaseTorchFunctionMode()
m1 = BaseTorchFunctionMode()
with m, m1:
@torch.compile(fullgraph=True)
def fn(x):
torch.set_default_device("cpu")
_pop_torch_function_stack()
fn(torch.ones(2, 2))
_push_on_torch_function_stack(m1)
stack = _get_current_function_mode_stack()
self.assertIsInstance(stack[0], DeviceContext)
self.assertEqual(stack[0].device, torch.device("cpu"))
self.assertIs(stack[1], m)
self.assertIs(stack[2], m1)
def test_stack_state_clear_default_device(self):
@torch.compile(fullgraph=True)
def fn(x):
torch.set_default_device(None)
return x + 1
fn(torch.ones(2, 2))
stack = _get_current_function_mode_stack()
self.assertEqual(len(stack), 0)
m = BaseTorchFunctionMode()
m1 = BaseTorchFunctionMode()
# Stack populated, add device
with m, m1:
@torch.compile(fullgraph=True)
def fn(x):
torch.set_default_device("cpu")
torch.set_default_device(None)
torch.set_default_device("cpu")
return x + 1
fn(torch.ones(2, 2))
stack = _get_current_function_mode_stack()
self.assertEqual(stack[0].device, torch.device("cpu"))
self.assertIs(stack[1], m)
self.assertIs(stack[2], m1)
# Stack populated, remove device
torch.set_default_device("cpu")
with m, m1:
@torch.compile(fullgraph=True)
def fn(x):
torch.set_default_device(None)
return x + 1
fn(torch.ones(2, 2))
stack = _get_current_function_mode_stack()
self.assertIs(stack[0], m)
self.assertIs(stack[1], m1)
@torch.compile(fullgraph=True)
def fn(x):
torch.set_default_device("cpu")
torch.set_default_device("cpu")
return x + 1
fn(torch.ones(2, 2))
stack = _get_current_function_mode_stack()
self.assertEqual(stack[0].device, torch.device("cpu"))
torch.set_default_device(None)
def test_pop_torch_function_mode(self):
m = BaseTorchFunctionMode()
with m:
@torch.compile(fullgraph=True)
def fn(x):
_pop_torch_function_stack()
return x + 1
fn(torch.ones(2, 2))
self.assertEqual(_len_torch_function_stack(), 0)
# reset stack so __exit__ doesn't crash
_push_on_torch_function_stack(m)
self.assertEqual(_len_torch_function_stack(), 0)
def test_error_empty_stack_pop_torch_function_mode(self):
@torch.compile(fullgraph=True)
def fn(x):
_pop_torch_function_stack()
return x + 1
self.assertRaisesRegex(
torch._dynamo.exc.Unsupported,
"Popping from an empty torch function mode stack",
lambda: fn(torch.ones(2, 2)),
)
def test_push_torch_function_mode(self):
m = BaseTorchFunctionMode()
with m:
@torch.compile(fullgraph=True)
def fn(x, m):
_push_on_torch_function_stack(m)
return x + 1
fn(torch.ones(2, 2), m)
self.assertEqual(_len_torch_function_stack(), 2)
# reset stack state
_pop_torch_function_stack()
self.assertEqual(_len_torch_function_stack(), 0)
def test_len_torch_function_mode(self):
m = BaseTorchFunctionMode()
with m:
@torch.compile(fullgraph=True)
def fn(x):
z = _len_torch_function_stack()
return x + z
res = fn(torch.ones(2, 2))
self.assertEqual(res, torch.ones(2, 2) + 1)
self.assertEqual(_len_torch_function_stack(), 1)
def test_intermedate_torch_function_mode_construction_mutation(self):
class TestMode(BaseTorchFunctionMode):
def __init__(self, x):
self.x = x
@torch.compile(fullgraph=True)
def fn(x):
z = TestMode(2)
z.y = 2
return x + 1, z
fn(torch.ones(2, 2))
def test_torch_function_mode_enabled_guard(self):
cnt = torch._dynamo.testing.CompileCounter()
inp = torch.ones(2, 2)
@torch.compile(backend=cnt.__call__)
def fn(x):
return x + 1
with BaseTorchFunctionMode(), torch._C.DisableTorchFunctionSubclass():
with torch._C.DisableTorchFunction():
fn(inp)
fn(inp)
self.assertEqual(cnt.frame_count, 2)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()