blob: 7948aee56eb097733a2ac8bd2e0aadb66e07d880 [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
"""
PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes
with test_adam in OptimizerTests)
"""
import functools
import torch
import torch._dynamo
import torch._dynamo.test_case
import torch._dynamo.testing
from torch.nn import Parameter
class MyOptimizer(torch.optim.Optimizer):
def __init__(self, params):
super().__init__(params, {})
def _init_group(self, params, group):
any_complex = False
for p in group["params"]:
params.append(p)
any_complex |= p.is_complex()
return any_complex
def step(self):
for group in self.param_groups:
params = []
any_complex = self._init_group(params, group)
if any_complex:
params[0] -= 1
else:
params[0] += 1
class End2EndTests(torch._dynamo.test_case.TestCase):
# https://github.com/pytorch/torchdynamo/issues/1604
def test_optimizing_over_tensor_with_requires_grad(self):
class Net(torch.nn.Module):
def forward(self, x, y):
z = torch.bmm(x, y)
z = torch.flatten(z, 1)
return z
def training_iter_fn(batch, model, optimizer):
optimizer.zero_grad()
out = model(**batch)
target = torch.tensor([0, 7])
loss = torch.nn.CrossEntropyLoss()(out, target)
loss.backward()
optimizer.step()
return loss
net = Net()
input1 = torch.randn(2, 1, 4)
input2 = torch.randn(2, 4, 8, requires_grad=True)
optimizer = torch.optim.Adam([input2], lr=0.1)
cnts = torch._dynamo.testing.CompileCounter()
opt_training_iter_fn = torch._dynamo.optimize(cnts)(training_iter_fn)
batch = {"x": input1, "y": input2}
for _ in range(2):
opt_training_iter_fn(batch, net, optimizer)
self.assertEqual(cnts.frame_count, 2)
def test_state_dict(self):
@torch.compile(backend="eager")
def _test_state_dict(weight, bias, input):
def fn_base(optimizer, weight, bias):
optimizer.zero_grad()
i = input
loss = (weight.mv(i) + bias).pow(2).sum()
loss.backward()
return loss
optimizer = torch.optim.Adagrad([weight, bias])
fn = functools.partial(fn_base, optimizer, weight, bias)
return optimizer, fn
optimizer, fn = _test_state_dict(
Parameter(torch.randn(10, 5)),
Parameter(torch.randn(10)),
torch.randn(5, requires_grad=True),
)
optimizer.step(fn)
def test_init_group(self):
for dtype in [torch.float32, torch.cfloat]:
tensor = torch.randn(5, 5, dtype=dtype)
params = Parameter(tensor.detach().clone(), requires_grad=False)
opt_params = Parameter(tensor.detach().clone(), requires_grad=False)
optim = MyOptimizer([params])
optim.step()
opt_optim = MyOptimizer([opt_params])
opt_step = torch.compile(backend="eager", fullgraph=True)(opt_optim.step)
opt_step()
self.assertEqual(params, opt_params)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()