blob: f0cba5132cf3a50cb3baa5312de52be45c71569c [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
from unittest.mock import patch
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
class RecompileTests(torch._dynamo.test_case.TestCase):
def test_automatic_dynamic_reduce_recompiles(self):
# Test the counterfactual, lots of recompiles without this config
def foo(x, y):
return x * y
def run_foo_6_times_and_count_recompiles(dynamic=None):
cnt = torch._dynamo.testing.CompileCounter()
x = torch.randn([2])
y = torch.randn([2])
opt = torch._dynamo.optimize(cnt, dynamic=dynamic)(foo)
opt(x, y)
x = torch.randn([3])
y = torch.randn([3])
opt(x, y)
x = torch.randn([4])
y = torch.randn([4])
opt(x, y)
opt(x, y)
x = torch.randn([5])
y = torch.randn([5])
opt(x, y)
opt(x, y)
x = torch.randn([6])
y = torch.randn([6])
opt(x, y)
return cnt
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_without_automatic():
return run_foo_6_times_and_count_recompiles()
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_with_automatic():
return run_foo_6_times_and_count_recompiles()
without = run_without_automatic()
self.assertEqual(without.frame_count, 5)
self.assertEqual(without.op_count, 5)
torch._dynamo.reset()
without = run_foo_6_times_and_count_recompiles(dynamic=False)
self.assertEqual(without.frame_count, 5)
self.assertEqual(without.op_count, 5)
torch._dynamo.reset()
with_automatic = run_with_automatic()
self.assertEqual(with_automatic.frame_count, 2)
self.assertEqual(with_automatic.op_count, 2)
torch._dynamo.reset()
with_automatic = run_foo_6_times_and_count_recompiles(dynamic=None)
self.assertEqual(with_automatic.frame_count, 2)
self.assertEqual(with_automatic.op_count, 2)
torch._dynamo.reset()
with_dynamic = run_foo_6_times_and_count_recompiles(dynamic=True)
self.assertEqual(with_dynamic.frame_count, 1)
self.assertEqual(with_dynamic.op_count, 1)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def test_recompiles_true_false_flop(self):
# Test the counterfactual, lots of recompiles without this config
def foo(x, y):
if x:
return y * 2
else:
return y * y
def run_foo_6_times_and_count_recompiles():
cnt = torch._dynamo.testing.CompileCounter()
opt = torch._dynamo.optimize(cnt, nopython=True)(foo)
x = True
y = torch.randn([2])
opt(x, y)
x = False
y = torch.randn([2])
opt(x, y)
x = True
y = torch.randn([3])
opt(x, y)
x = True
y = torch.randn([4])
opt(x, y)
x = True
y = torch.randn([5])
opt(x, y)
return cnt
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_without_automatic():
return run_foo_6_times_and_count_recompiles()
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_with_automatic():
return run_foo_6_times_and_count_recompiles()
without = run_without_automatic()
self.assertEqual(without.frame_count, 5)
self.assertEqual(without.op_count, 5)
torch._dynamo.reset()
with_automatic = run_with_automatic()
self.assertEqual(with_automatic.frame_count, 3)
self.assertEqual(with_automatic.op_count, 3)
def test_automatic_dynamic_tensor_scalar_change(self):
# Test the counterfactual, lots of recompiles without this config
def foo(x, y):
return x * y
def run_foo_6_times_and_count_recompiles_swap_types():
cnt = torch._dynamo.testing.CompileCounter()
x = torch.randn([2])
y = torch.randn([2])
opt = torch._dynamo.optimize(cnt)(foo)
opt(x, y)
x = torch.randn([3])
y = 3
opt(x, y)
x = torch.randn([4])
y = torch.randn([4])
opt(x, y)
opt(x, y)
x = torch.randn([5])
y = 4
opt(x, y)
opt(x, y)
x = torch.randn([6])
y = torch.randn([6])
opt(x, y)
return cnt
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_without_automatic():
return run_foo_6_times_and_count_recompiles_swap_types()
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_with_automatic():
return run_foo_6_times_and_count_recompiles_swap_types()
without = run_without_automatic()
self.assertEqual(without.frame_count, 5)
self.assertEqual(without.op_count, 5)
torch._dynamo.reset()
with_automatic = run_with_automatic()
self.assertEqual(with_automatic.frame_count, 3)
self.assertEqual(with_automatic.op_count, 3)
def test_aliasing_guard_failures(self):
def foo(a, b, c):
a.add_(b)
return c + 1
cnt = torch._dynamo.testing.CompileCounter()
compiled_foo = torch._dynamo.optimize(cnt, nopython=True)(foo)
x = torch.randn([3])
y = torch.randn([3])
z = torch.randn([3])
cmp_result = compiled_foo(
x.clone().detach(), y.clone().detach(), z.clone().detach()
)
eager_result = foo(x.clone().detach(), y.clone().detach(), z.clone().detach())
self.assertEqual(cmp_result, eager_result)
self.assertEqual(cnt.frame_count, 1)
cmp_result = compiled_foo(
z.clone().detach(), y.clone().detach(), x.clone().detach()
)
eager_result = foo(z.clone().detach(), y.clone().detach(), x.clone().detach())
self.assertEqual(cmp_result, eager_result)
# No recompile, alias preserved
self.assertEqual(cnt.frame_count, 1)
x_clone = x.clone().detach()
cmp_result = compiled_foo(x_clone, y.clone().detach(), x_clone)
x_clone = x.clone().detach()
eager_result = compiled_foo(x_clone, y.clone().detach(), x_clone)
self.assertEqual(cmp_result, eager_result)
# Recompile, alias changed
self.assertEqual(cnt.frame_count, 2)
def test_aliasing_guard_failures_with_globals(self):
g1 = torch.randn([3])
g2 = torch.randn([3])
def foo(a):
a.add_(g1)
return g2 + 1
cnt = torch._dynamo.testing.CompileCounter()
compiled_foo = torch._dynamo.optimize(cnt, nopython=True)(foo)
z = torch.randn([3])
cmp_result = compiled_foo(z.clone().detach())
eager_result = foo(z.clone().detach())
self.assertEqual(cmp_result, eager_result)
self.assertEqual(cnt.frame_count, 1)
g1 = g1.clone().detach()
cmp_result = compiled_foo(g1)
g1 = g1.clone().detach()
eager_result = compiled_foo(g1)
self.assertEqual(cmp_result, eager_result)
# Recompile, alias changed
self.assertEqual(cnt.frame_count, 2)
def test_dynamic_shape_parameter_recompile(self):
# Test the matrix multiplication with Parameters.
# Without the config assume_parameters_shapes_static_by_default,
# the torch.nn.Parameter shapes are assumed to be static which leads to recompilation
w = torch.nn.Parameter(torch.randn(3, 2))
def foo(x):
return x @ w
def run_foo_6_times_and_count_recompiles():
cnt = torch._dynamo.testing.CompileCounter()
opt = torch._dynamo.optimize(cnt, nopython=True)(foo)
x = torch.nn.Parameter(torch.randn(1, 3))
opt(x)
x = torch.nn.Parameter(torch.randn(10, 3))
opt(x)
x = torch.nn.Parameter(torch.randn(11, 3))
opt(x)
x = torch.nn.Parameter(torch.randn(15, 3))
opt(x)
x = torch.nn.Parameter(torch.randn(15, 3))
opt(x)
return cnt
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", True)
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_static_comp_default_param():
return run_foo_6_times_and_count_recompiles()
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", True)
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_dynamic_comp_default_param():
return run_foo_6_times_and_count_recompiles()
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", False)
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", False)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_static_comp_dynamic_param():
return run_foo_6_times_and_count_recompiles()
@patch.object(torch._dynamo.config, "force_parameter_static_shapes", False)
@patch.object(torch._dynamo.config, "automatic_dynamic_shapes", True)
@patch.object(torch._dynamo.config, "assume_static_by_default", True)
def run_dynamic_comp_dynamic_param():
return run_foo_6_times_and_count_recompiles()
torch._dynamo.reset()
static_comp_default_param = run_static_comp_default_param()
self.assertEqual(static_comp_default_param.frame_count, 4)
self.assertEqual(static_comp_default_param.op_count, 4)
torch._dynamo.reset()
dynamic_comp_default_param = run_dynamic_comp_default_param()
self.assertEqual(dynamic_comp_default_param.frame_count, 4)
self.assertEqual(dynamic_comp_default_param.op_count, 4)
torch._dynamo.reset()
static_comp_dynamic_param = run_static_comp_dynamic_param()
self.assertEqual(static_comp_dynamic_param.frame_count, 4)
self.assertEqual(static_comp_dynamic_param.op_count, 4)
torch._dynamo.reset()
dynamic_comp_dynamic_param = run_dynamic_comp_dynamic_param()
self.assertEqual(dynamic_comp_dynamic_param.frame_count, 2)
self.assertEqual(dynamic_comp_dynamic_param.op_count, 2)
def test_simple_module_recompile(self):
class SimpleDropout(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.dropout = torch.nn.Dropout(0.5)
self.linear = torch.nn.Linear(10, 1)
def forward(self, x):
return self.dropout(self.linear(x))
model = SimpleDropout()
x = torch.randn(10)
counter = torch._dynamo.testing.CompileCounter()
model = torch.compile(model, backend=counter, fullgraph=True)
for _ in range(20):
model.eval()
model(x)
model.train()
model(x)
self.assertEqual(counter.frame_count, 2)
@patch.object(torch._dynamo.config, "cache_size_limit", 2)
def test_no_recursive_compile_after_cache_limit_hit(self):
def f(x, n):
x = x + n
return g(x, n)
def g(x, n):
x = x + n
return h(x, n)
def h(x, n):
return x + n
counter = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=counter, dynamic=False)
for i in range(10):
opt_f(torch.ones(3), i)
self.assertEqual(counter.frame_count, 2)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()