blob: 5379405bfbe58e50fed5b69064daf93697faeba1 [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
import functools
import itertools
import unittest
from functools import partial
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._functorch.config
import torch.utils._pytree as pytree
import torch.utils.checkpoint
from torch._dynamo.testing import normalize_gm
from torch._higher_order_ops.wrap import wrap
from torch.fx.experimental.symbolic_shapes import (
DimDynamic,
ShapeEnv,
StatelessSymbolicContext,
)
from torch.nested._internal.nested_tensor import (
jagged_from_list,
jagged_from_tensor_and_lengths,
nested_view_from_values_offsets,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
NestedTensorTestCase,
parametrize,
subtest,
)
from torch.testing._internal.inductor_utils import HAS_CUDA
from torch.testing._internal.two_tensor import TwoTensor
from torch.utils._python_dispatch import return_and_correct_aliasing
def traceable_subclass(c):
return torch._dynamo.config.patch("traceable_tensor_subclasses", {c})
def _check_recompiles(self, fn, inputs1, inputs2, expected_recompiles):
actual_recompiles = _recompiles_for_inputs(fn, inputs1, inputs2)
self.assertEqual(actual_recompiles, expected_recompiles)
def get_jagged_tensor(nested_size, offsets, requires_grad=True):
# Makes a jagged tensor with N constituent tensors with size
# as specified ((S0, S1, S2), D)
D = nested_size[1]
out = []
for s in nested_size[0]:
out.append(torch.randn(s, D, requires_grad=requires_grad, dtype=torch.float64))
return jagged_from_list(out, offsets)
def get_view_test_cases():
# Test all cases with both an NT base and a dense base
# Subclass -> Subclass
# Dense -> Subclass
# NB: Don't close over loop variables, they will not get copied into the
# closure
#
# NB: These return functions so we don't generate tensors during test
# collection time
def mk_basic(base_is_nt):
# There are three cases to consider here based on the logic in
# meta_utils.py
#
# (1) basic case:
# view is not a leaf and has the same requires grad as its basic case
x, _ = get_jagged_tensor(((2, 3, 4), 3), None, requires_grad=True)
x = x.clone() if base_is_nt else x
assert not x.is_leaf
return x.unsqueeze(-1)
def mk_leaf(base_is_nt, requires_grad_1, requires_grad_2):
x, _ = get_jagged_tensor(((2, 3, 4), 3), None, requires_grad=requires_grad_1)
x = x.clone() if base_is_nt else x
with torch.no_grad():
x_view = x.unsqueeze(-1)
# The issue is this doesn't quite work
x_view.requires_grad_(requires_grad_2)
return x_view
def mk_obscure(base_is_nt):
x, _ = get_jagged_tensor(((2, 3, 4), 3), None, requires_grad=False)
x = x.clone() if base_is_nt else x
# intermediate leaf view
with torch.no_grad():
x_view = x.unsqueeze(-1)
x_view.requires_grad_(True)
x_view_view = x_view.unsqueeze(-1)
return x_view_view
for base_is_nt in [False, True]:
prefix = f"base_is_nt_{base_is_nt}"
yield partial(mk_basic, base_is_nt), f"{prefix}_basic"
# (2) leaf view case:
# the view has to be a leaf (w/ requires_grad True or requires_grad False)
# base w/ requires_grad True or requires_grad False
for requires_grad_1, requires_grad_2 in itertools.product(
[True, False], repeat=2
):
yield partial(
mk_leaf, base_is_nt, requires_grad_1, requires_grad_2
), f"{prefix}_leaf_{requires_grad_1}_{requires_grad_2}"
# (3) obscure case:
# view is not a leaf (implies requires_grad True)
# base w/ requires_grad False)
yield partial(mk_obscure, base_is_nt), f"{prefix}_obscure"
# Subclass -> Dense
yield lambda: get_jagged_tensor(((2, 3, 4), 3), None, requires_grad=True)[
0
].clone(), "subclass_dense"
# Dense -> Subclass -> Dense -> Subclass
def mk_dense_subclass_dense_subclass():
values = torch.randn(10, 5)
offsets = torch.tensor([0, 3, 6, 10])
offsets2 = offsets.clone().detach()
return nested_view_from_values_offsets(
nested_view_from_values_offsets(values, offsets).values(), offsets
)
yield mk_dense_subclass_dense_subclass, "dense_subclass_dense_subclass"
def mk_subclass_dense_subclass_dense():
x = get_jagged_tensor(((2, 3, 4), 3), None, requires_grad=True)[0].clone()
offsets2 = x.offsets().clone().detach()
nt_view = nested_view_from_values_offsets(x.values(), offsets2).values()
yield mk_subclass_dense_subclass_dense, "subclass_dense_subclass_dense"
VIEW_TEST_CASES = {k: v for v, k in get_view_test_cases()}
requires_cuda = unittest.skipUnless(HAS_CUDA, "requires cuda")
compile_full_eager = torch.compile(backend="eager", fullgraph=True)
class BaseTorchFunction(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
class MockSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
class AttrSubclass(torch.Tensor):
x: int = 10
size: int = 10
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
class DummyNDim(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func == torch.Tensor.ndim.__get__:
return 10
return super().__torch_function__(func, types, args, kwargs)
class WrapperSubclass:
def __init__(self, tensor):
self.tensor = tensor
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
args = pytree.tree_map_only(WrapperSubclass, lambda x: x.tensor, args)
kwargs = pytree.tree_map_only(WrapperSubclass, lambda x: x.tensor, kwargs)
return func(*args, **kwargs)
class SigmoidToExpSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func == torch.Tensor.sigmoid:
return super().__torch_function__(torch.Tensor.exp, types, args, kwargs)
return super().__torch_function__(func, types, args, kwargs)
# Wrapper subclass with two inner tensors: data and scale
# data has same shape as outer, and scale has single dim size
class ScaledTensor(torch.Tensor):
def __new__(
cls,
data: torch.Tensor,
scale: torch.Tensor,
*,
constant: int = 0,
):
return torch.Tensor._make_wrapper_subclass(
cls,
data.size(),
strides=data.stride(),
storage_offset=data.storage_offset(),
dtype=data.dtype,
layout=data.layout,
requires_grad=data.requires_grad,
device=data.device,
)
def __init__(self, data: torch.Tensor, scale: torch.Tensor, constant: int = 0):
self._data = data
self._scale = scale
self._constant = constant
def __tensor_flatten__(self):
ctx = {"_constant": self._constant}
return ["_data", "_scale"], ctx
@staticmethod
def __tensor_unflatten__(inner_tensors, metadata, outer_size, outer_stride):
assert len(inner_tensors) == 2
return ScaledTensor(
inner_tensors["_data"],
inner_tensors["_scale"],
constant=metadata["_constant"],
)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
scaled_tensor = args[0]
out = func(scaled_tensor._data, *args[1:], **kwargs)
return ScaledTensor(out, scaled_tensor._scale, constant=scaled_tensor._constant)
def __repr__(self):
return f"{self._data.__repr__()}\n{self._scale.__repr__()}"
class OptionalScaledTensor(torch.Tensor):
def __new__(
cls,
data,
scale,
*,
constant: int = 0,
):
return torch.Tensor._make_wrapper_subclass(
cls,
data.size(),
strides=data.stride(),
storage_offset=data.storage_offset(),
dtype=data.dtype,
layout=data.layout,
requires_grad=data.requires_grad,
device=data.device,
)
def __init__(self, data: torch.Tensor, scale, constant: int = 0):
self._data = data
self._scale = scale
self._constant = constant
def __tensor_flatten__(self):
ctx = {"_constant": self._constant}
if self._scale is not None:
return ["_data", "_scale"], ctx
else:
return ["_data"], ctx
@staticmethod
def __tensor_unflatten__(inner_tensors, metadata, outer_size, outer_stride):
return OptionalScaledTensor(
inner_tensors["_data"],
inner_tensors["_scale"] if "_scale" in inner_tensors else None,
constant=metadata["_constant"],
)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs=None):
scaled_tensor = args[0]
out = func(scaled_tensor._data, *args[1:], **kwargs)
if scaled_tensor._scale is not None:
out = out * scaled_tensor._scale
return OptionalScaledTensor(
out, scaled_tensor._scale, constant=scaled_tensor._constant
)
def __repr__(self):
return (
f"OptionalScaledTensor({self._data.__repr__()}\n{self._scale.__repr__()})"
)
class CtxSubclassTensor(torch.Tensor):
"""
Class used to verify guarding on the subclass metadata
"""
@staticmethod
def __new__(cls, a, constant):
shape = a.shape
kwargs = {}
kwargs["strides"] = a.stride()
kwargs["storage_offset"] = a.storage_offset()
kwargs["device"] = a.device
kwargs["layout"] = a.layout
kwargs["requires_grad"] = a.requires_grad
kwargs["dtype"] = a.dtype
out = torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs)
return out
def __init__(self, a, constant):
self.a = a
self.constant = constant
def __repr__(self):
a_repr = repr(self.a)
return f"CtxSubclassTensor({a_repr})"
def __tensor_flatten__(self):
return ["a"], (self.constant,)
@staticmethod
def __tensor_unflatten__(inner_tensors, meta, sizes, strides):
constant = meta[0]
a = inner_tensors["a"]
return CtxSubclassTensor(a, constant)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
from torch.utils._python_dispatch import return_and_correct_aliasing
if kwargs is None:
kwargs = {}
biggest_constant = max(
[
x.constant
for x in pytree.tree_flatten(args)[0]
if isinstance(x, CtxSubclassTensor)
]
)
args_a = pytree.tree_map(
lambda x: x.a if isinstance(x, CtxSubclassTensor) else x, args
)
kwargs_a = pytree.tree_map(
lambda x: x.a if isinstance(x, CtxSubclassTensor) else x, kwargs
)
out_a = func(*args_a, **kwargs_a)
out = pytree.tree_map(
lambda x: CtxSubclassTensor(x, biggest_constant)
if isinstance(x, torch.Tensor)
else x,
out_a,
)
if func == torch.ops.aten.mul.Tensor:
out = out + out.constant
return return_and_correct_aliasing(func, args, kwargs, out)
def func(a):
return a.sin()
class EagerRecordGraphAndInputs:
def __init__(self) -> None:
self.graphs = []
self.example_inputs = []
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
self.graphs.append(gm)
self.example_inputs.append(example_inputs)
return gm
GLOBAL_TEST_SUBCLASSES = {
MockSubclass,
DummyNDim,
SigmoidToExpSubclass,
BaseTorchFunction,
}
# Returns True if the function recompiles between inputs1 and inputs2 with the
# specified dynamic setting.
def _recompiles_for_inputs(fn, inputs1, inputs2, dynamic=True):
compile_count = [0]
def counter(gm, example_inputs):
compile_count[0] += 1
return gm
compiled_f = torch.compile(fn, fullgraph=True, backend=counter, dynamic=dynamic)
compiled_f(*inputs1)
compiled_f(*inputs2)
return compile_count[0] > 1
class SubclassTests(torch._dynamo.test_case.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._exit_stack.enter_context(
torch._dynamo.config.patch(
"traceable_tensor_subclasses", GLOBAL_TEST_SUBCLASSES
)
)
@classmethod
def tearDownClass(cls):
cls._exit_stack.close()
def _check_recompiles(self, fn, inputs1, inputs2, expected_recompiles):
_check_recompiles(self, fn, inputs1, inputs2, expected_recompiles)
def test_no_call_to_new(self):
class BadNewTorchFunction(torch.Tensor):
def __new__(cls, *args, **kwargs):
raise RuntimeError("Oops!")
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
with torch._dynamo.config.patch(
"traceable_tensor_subclasses", {BadNewTorchFunction}
):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return torch.add(x, 1)
input = torch.ones(2, 2).as_subclass(BadNewTorchFunction)
res = fn(input)
self.assertIsInstance(res, BadNewTorchFunction)
def test_no_torch_function_recompiles(self):
class NJT:
def __repr__(self):
return f"NJT(shape={self.shape})"
def __init__(self, values, offsets):
self._values = values
self._offsets = offsets
def sin(self):
return torch.sin(self)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func == torch.sin:
self = args[0]
return NJT(func(self._values), self._offsets)
raise AssertionError("should not get here")
values1 = torch.randn(10, 3, 4, requires_grad=True)
values2 = torch.randn(10, 3, 4, requires_grad=True)
offsets = torch.tensor([0, 3, 10])
njt1 = NJT(values1, offsets)
njt2 = NJT(values2, offsets)
@torch.compile(backend="eager", fullgraph=True)
def f(x):
return torch.sin(x)
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
f(njt1)
f(njt2)
def test_base_torch_function_tracing(self):
def fn(x):
return torch.add(x, 1)
input = torch.ones(2, 2).as_subclass(BaseTorchFunction)
out = fn(input)
out_opt = compile_full_eager(fn)(input)
self.assertIsInstance(out, BaseTorchFunction)
self.assertEqual(out, out_opt)
def test_torch_function_state_graph_break(self):
@torch.compile(backend="eager")
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch._dynamo.graph_break()
return torch._C._is_torch_function_enabled(), torch.add(x, 1.0)
input = torch.ones(2, 2)
res, _ = fn(input)
self.assertFalse(res)
def test_torch_function_state_nested(self):
@torch.compile(backend="eager")
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
with torch._C.DisableTorchFunctionSubclass():
x = x + 1
# Should reset to the outer state (disabled) after exiting ctx manager
return torch._C._is_torch_function_enabled(), torch.add(x, 1.0)
input = torch.ones(2, 2)
res, _ = fn(input)
self.assertFalse(res)
def test_torch_function_state_tracing(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch.add(x, 1.0)
input = torch.ones(2, 2)
res = fn(input)
def test_torch_function_state_guards(self):
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
torch.add(x, 1.0)
input = torch.ones(2, 2)
with torch._C.DisableTorchFunctionSubclass():
res = fn(input)
res = fn(input)
self.assertEqual(cnt.frame_count, 2)
def test_return_subclass(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return MockSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, MockSubclass)
def test_return_as_subclass(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return torch.add(x, 1.0).as_subclass(MockSubclass)
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, MockSubclass)
def test_return_local_subclass(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
with torch._dynamo.config.patch("traceable_tensor_subclasses", {LocalSubclass}):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return LocalSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, LocalSubclass)
def test_torch_function_list_args(self):
HANDLED_FUNCTIONS = {}
class MyClass:
def __init__(self, foo):
self.foo = foo
@classmethod
def __torch_function__(
cls,
func,
types,
args=(),
kwargs=None,
):
if kwargs is None:
kwargs = {}
if func not in HANDLED_FUNCTIONS or not all( # noqa: C419
[ # noqa: C419
issubclass(t, (torch.Tensor, MyClass)) for t in types
]
):
return NotImplemented
return HANDLED_FUNCTIONS[func](*args, **kwargs)
def _stack(input, dim=0, *, out=None):
return MyClass(sum([x.foo for x in input]))
HANDLED_FUNCTIONS[torch.stack] = _stack
@torch.compile(backend="eager", fullgraph=True)
def fn(v0, v1):
return torch.stack([v0, v1])
ret = fn(MyClass(1), MyClass(1))
self.assertEqual(ret.foo, 2)
@parametrize(
"comparison",
[
subtest(isinstance, "isinstance"),
subtest(lambda instance, type_: type(instance) == type_, "equality"),
subtest(lambda instance, type_: type(instance) is type_, "identity"),
],
)
@parametrize(
"input_type",
[
subtest(torch.Tensor, "tensor"),
subtest(DummyNDim, "subclass"),
],
)
def test_type_check(self, comparison, input_type):
with torch._dynamo.config.patch("traceable_tensor_subclasses", {DummyNDim}):
def fn(x):
if comparison(x, DummyNDim):
return torch.ones(1, 1)
else:
return torch.zeros(2, 2)
input = torch.ones(2, 2).as_subclass(input_type)
exp_res = fn(input)
act_res = torch.compile(backend="eager", fullgraph=True)(fn)(input)
self.assertEqual(exp_res, act_res)
def test_torch_function_call_on_method(self):
x = torch.ones(2, 2)
y = torch.ones(2, 2)
z = torch.ones(2, 2)
wrapped = x.as_subclass(SigmoidToExpSubclass)
wrapped2 = y.as_subclass(SigmoidToExpSubclass)
def fn(w):
return w.sigmoid()
fn_opt = compile_full_eager(fn)
res_exp = fn(wrapped)
res_act = fn_opt(wrapped2)
res_exp2 = z.exp()
self.assertEqual(res_exp, res_act)
self.assertEqual(res_exp, res_exp2)
def test_user_overidden_method_unsupported(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
def sigmoid(self):
return None
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
x.sigmoid()
msg = (
"Accessing overridden method/attribute sigmoid on a tensor"
" subclass with a __torch_function__ override is not supported"
)
with torch._dynamo.config.patch(
"traceable_tensor_subclasses", {LocalSubclass}
), self.assertRaisesRegex(torch._dynamo.exc.Unsupported, msg):
x = torch.ones(2, 2).as_subclass(LocalSubclass)
fn(x)
def test_user_overidden_attr_unsupported(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
ndim = 10
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return x.ndim
msg = (
"Accessing overridden method/attribute ndim on a tensor"
" subclass with a __torch_function__ override is not supported"
)
with torch._dynamo.config.patch(
"traceable_tensor_subclasses", {LocalSubclass}
), self.assertRaisesRegex(torch._dynamo.exc.Unsupported, msg):
x = torch.ones(2, 2).as_subclass(LocalSubclass)
fn(x)
def test_user_overidden_property_unsupported(self):
class LocalSubclass(torch.Tensor):
def __init__(self) -> None:
self._ndim = 10
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
@property
def ndim(self):
return self._ndim
@ndim.setter
def ndim(self, value):
self._ndim = value
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return x.ndim
msg = (
"Accessing overridden method/attribute ndim on a tensor"
" subclass with a __torch_function__ override is not supported"
)
with torch._dynamo.config.patch(
"traceable_tensor_subclasses", {LocalSubclass}
), self.assertRaisesRegex(torch._dynamo.exc.Unsupported, msg):
x = torch.ones(2, 2).as_subclass(LocalSubclass)
fn(x)
def test_overridden_method_guarding(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
@torch.compile(backend="eager")
def fn(x):
return x.sigmoid()
with torch._dynamo.config.patch(
error_on_recompile=True, traceable_tensor_subclasses={LocalSubclass}
):
x = torch.ones(2, 2).as_subclass(LocalSubclass)
fn(x)
fn(x)
x = torch.ones(2, 2).as_subclass(LocalSubclass)
fn(x)
with torch._dynamo.config.patch(
traceable_tensor_subclasses={LocalSubclass}
), self.assertRaisesRegex(
TypeError,
"'bool' object is not callable",
):
LocalSubclass.sigmoid = False
fn(x)
def test_torch_function_call_on_attr(self):
x = torch.ones(2, 2)
wrapped = x.as_subclass(DummyNDim)
def fn(w):
return w.ndim + torch.ones(2)
fn_opt = compile_full_eager(fn)
res_exp = fn(wrapped)
res_act = fn_opt(wrapped)
self.assertEqual(res_exp, res_act)
self.assertEqual(res_exp, torch.ones(2) + 10)
def test_torch_function_wrapper_class(self):
x = torch.ones(2, 2)
wrapped = WrapperSubclass(x)
def fn(w):
return torch.add(w, 1.0)
fn_opt = compile_full_eager(fn)
res_exp = fn(wrapped)
res_act = fn_opt(wrapped)
self.assertEqual(res_exp, res_act)
def test_torch_function_wrapper_class_with_kwargs(self):
x = torch.ones(2, 2)
wrapped = WrapperSubclass(x)
def fn(w):
return torch.add(w, 1.0, alpha=2.0)
fn_opt = compile_full_eager(fn)
res_exp = fn(wrapped)
res_act = fn_opt(wrapped)
self.assertEqual(res_exp, res_act)
def test_tensor_subclass_custom_attr(self):
class AttrSubclass(torch.Tensor):
x: int = 10
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return super().__torch_function__(func, types, args, kwargs)
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return x.x + torch.ones(2, 2)
with traceable_subclass(AttrSubclass):
input = torch.ones(2, 2).as_subclass(AttrSubclass)
fn_opt = compile_full_eager(fn)
res_exp = fn(input)
res_act = fn_opt(input)
self.assertEqual(res_exp, res_act)
def test_compile_with_fake_tensor_dynamic_dim(self):
x = torch.randn([3, 4])
def f(x):
return torch.sin(x)
def test_dynamic_dim(f, x, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
x1 = torch.rand_like(x)
f(x)
f(torch.randn([4, 3]))
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
x_fake = fake_mode.from_tensor(
x,
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[dim_dynamic for i in range(x.dim())]
),
)
x1_fake = fake_mode.from_tensor(
x1,
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[dim_dynamic for i in range(x.dim())]
),
)
opt_f(x_fake)
opt_f(x1_fake)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
test_dynamic_dim(f, x, DimDynamic.DYNAMIC, 1, 1)
test_dynamic_dim(f, x, DimDynamic.DUCK, 1, 1)
test_dynamic_dim(f, x, DimDynamic.STATIC, 1, 1)
def test_compile_with_fake_tensor_automatic_dynamic(self):
def f(x):
return torch.sin(x)
def test_automatic_dynamic(f, inps, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
for inp in inps:
fake_inp = fake_mode.from_tensor(
inp,
symbolic_context=StatelessSymbolicContext(
[dim_dynamic for i in range(x.dim())]
),
)
opt_f(fake_inp)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
x = torch.randn([3, 4])
y = torch.randn([4, 5])
z = torch.randn([5, 6])
a = torch.randn([3, 5])
b = torch.randn([4, 4])
# When inputs' DimDynamic is DYNAMIC or DUCK, the inputs
# to opt_f will be tensors with SymInt sizes. Dynamo will treat input
# as dynamic automatically and will only compile once
for dim_dynamic in [DimDynamic.DYNAMIC, DimDynamic.DUCK]:
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 1, 1)
for dim_dynamic in [DimDynamic.STATIC]:
# Recompile once, first with dim 0 and 1 become Dynamic
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 2, 2)
# Recompile 2 times, first with dim 1 become Dynamic, second with dim 0 becomes Dynamic.
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 3, 3)
# Recompile 2 times, first with dim 0 become Dynamic, second with dim 1 becomes Dynamic.
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 3, 3)
def test_compile_with_functionalization(self):
x = torch.randn([3, 4])
x_clone = x.clone()
x_clone2 = x.clone()
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return x.add_(1.0) + torch.nn.functional.relu_(x)
f_out = f(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 3)
self.assertEqual(len(backend.graphs), 1)
self.assertEqual(len(backend.example_inputs), 1)
actual = normalize_gm(backend.graphs[0].print_readable(print_output=False))
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
add_: "f32[3, 4]" = l_x_.add_(1.0)
relu_: "f32[3, 4]" = torch.relu_(l_x_); l_x_ = None
add: "f32[3, 4]" = add_ + relu_; add_ = relu_ = None
return (add,)
""",
)
ff = torch.func.functionalize(f)
ff_out = ff(x_clone)
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 6)
self.assertEqual(len(backend.graphs), 2)
self.assertEqual(len(backend.example_inputs), 2)
actual = normalize_gm(backend.graphs[1].print_readable(print_output=False))
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
add_: "f32[3, 4]" = l_x_.add_(1.0)
relu_: "f32[3, 4]" = torch.relu_(l_x_); l_x_ = None
add: "f32[3, 4]" = add_ + relu_; add_ = relu_ = None
return (add,)
""",
)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
# Cannot re-use the version from AOTAutograd, since that uses python functional tensors.
def to_fun(x):
x_functional = torch._to_functional_tensor(x)
torch._mirror_autograd_meta_to(x, x_functional)
return x_functional
def aot_f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(to_fun, args)
func_kwargs = pytree.tree_map(to_fun, kwargs)
return func(*func_args, **func_kwargs)
finally:
torch._disable_functionalization()
return wrapper
aot_ff = aot_f_wrapper(f)
aot_ff_out = aot_ff(x_clone2)
self.assertEqual(cnt.frame_count, 3)
self.assertEqual(cnt.op_count, 9)
self.assertEqual(len(backend.graphs), 3)
self.assertEqual(len(backend.example_inputs), 3)
actual = normalize_gm(backend.graphs[2].print_readable(print_output=False))
self.assertExpectedInline(
actual,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
add_: "f32[3, 4]" = l_x_.add_(1.0)
relu_: "f32[3, 4]" = torch.relu_(l_x_); l_x_ = None
add: "f32[3, 4]" = add_ + relu_; add_ = relu_ = None
return (add,)
""",
)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
self.assertEqual(f_out, ff_out)
self.assertEqual(f_out, aot_ff_out)
try:
torch._enable_functionalization(reapply_views=False)
xf = pytree.tree_map(to_fun, x)
x_view = xf.t()
with self.assertRaisesRegex(RuntimeError, "Cannot safely fakify a view"):
f(x_view)
finally:
torch._disable_functionalization()
def test_compile_higher_order_with_functionalization(self):
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return wrap(lambda x: x.add_(1.0), x)
def check_count_and_graph(
exp_frame_count, exp_op_count, exp_n_graph, exp_graph
):
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
self.assertEqual(len(backend.graphs), exp_n_graph)
actual = normalize_gm(
backend.graphs[exp_n_graph - 1].print_readable(print_output=False)
)
self.assertExpectedInline(actual, exp_graph, skip=1)
t = torch.randn([3, 4])
t_clone = t.clone()
t_clone2 = t.clone()
f(t)
check_count_and_graph(
1,
2,
1,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
wrap = torch.ops.higher_order.wrap(wrap_body_0, l_x_); wrap_body_0 = l_x_ = None
getitem: "f32[3, 4]" = wrap[0]; wrap = None
return (getitem,)
class wrap_body_0(torch.nn.Module):
def forward(self, l_x_: "f32[3, 4]"):
add_: "f32[3, 4]" = l_x_.add_(1.0); l_x_ = None
return (add_,)
""",
)
ff = torch.func.functionalize(f)
ff_out = ff(t_clone)
# frame count and op count are incremented due to re-compilation
check_count_and_graph(
2,
4,
2,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
wrap = torch.ops.higher_order.wrap(wrap_body_0, l_x_); wrap_body_0 = l_x_ = None
getitem: "f32[3, 4]" = wrap[0]; wrap = None
return (getitem,)
class wrap_body_0(torch.nn.Module):
def forward(self, l_x_: "f32[3, 4]"):
add_: "f32[3, 4]" = l_x_.add_(1.0); l_x_ = None
return (add_,)
""",
)
try:
x = torch._to_functional_tensor(t_clone2)
torch._mirror_autograd_meta_to(t_clone2, x)
torch._enable_functionalization(reapply_views=False)
aot_f_out = f(x)
finally:
torch._disable_functionalization()
# frame count and op count are incremented due to re-compilation
check_count_and_graph(
3,
6,
3,
"""\
class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 4]"):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
wrap = torch.ops.higher_order.wrap(wrap_body_0, l_x_); wrap_body_0 = l_x_ = None
getitem: "f32[3, 4]" = wrap[0]; wrap = None
return (getitem,)
class wrap_body_0(torch.nn.Module):
def forward(self, l_x_: "f32[3, 4]"):
add_: "f32[3, 4]" = l_x_.add_(1.0); l_x_ = None
return (add_,)
""",
)
def test_has_torch_function(self):
class MyTensor:
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.max:
return torch.tensor(123)
return func(*args, **kwargs)
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
def fn(x):
return torch.overrides.has_torch_function_unary(
x
), torch.overrides.has_torch_function_variadic(x)
for test_class in [MyTensor, LocalSubclass]:
x = test_class()
ref0 = fn(x)
ref1 = fn(4)
opt_fn = torch._dynamo.optimize("eager")(fn)
res0 = opt_fn(x)
res1 = opt_fn(4)
self.assertEqual(ref0, res0)
self.assertEqual(ref1, res1)
def test_wrapper_subclass_guards_on_inner_tensor(self):
# Holds an inner tensor, that has a distinct shape from the outer wrapper tensor.
# Also adds additional guards on the inner tensor's sizes.
# When the first input to an op has x.shape[0] > 5, we insert an extra add node.
class DoubleSizeMaybeAddGeThreeTensor(torch.Tensor):
@staticmethod
def __new__(cls, inner):
# Double the outer-most dimension
outer_shape = (inner.shape[0] * 2,) + inner.shape[1:]
return torch.Tensor._make_wrapper_subclass(
# TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
# Calling the overload that has kwargs causes us to go down the first overload path,
# which will **always** specialize sizes.
# We should probably eventually fix this so that the first overload can just handle dynamic shapes.
cls,
outer_shape,
inner.stride(),
None,
None,
inner.dtype,
inner.layout,
inner.device,
False,
inner.requires_grad,
)
def __init__(self, inner):
self.inner_elem = inner
def __tensor_flatten__(self):
return ["inner_elem"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, _, outer_size, outer_stride):
return DoubleSizeMaybeAddGeThreeTensor(inner_tensors["inner_elem"])
def __repr__(self):
return f"DoubleSizeMayberAddGeThreeTensor({repr(self.inner_elem)})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
args_inner = torch.utils._pytree.tree_map_only(
DoubleSizeMaybeAddGeThreeTensor, lambda x: x.inner_elem, args
)
out_inner = func(*args_inner, **kwargs)
# Add guards on the inner tensor's sizes
if args_inner[0].shape[0] > 3:
out_inner += 2
return DoubleSizeMaybeAddGeThreeTensor(out_inner)
curr_var_to_val = None
curr_var_to_sources = None
guards = None
def backend(gm, args):
context = torch._guards.TracingContext.get()
# Grab info on sources and guards from the shapeenv
nonlocal curr_var_to_val
nonlocal curr_var_to_sources
nonlocal guards
guards = [str(g.expr) for g in context.fake_mode.shape_env.guards]
curr_var_to_val = {
str(k): v for k, v in context.fake_mode.shape_env.var_to_val.items()
}
curr_var_to_sources = {
str(k): v[0].name()
for k, v in context.fake_mode.shape_env.var_to_sources.items()
}
return gm
@torch.compile(backend=backend)
def fn(x):
if x.shape[0] < 13:
return torch.mul(x, x)
else:
return torch.div(x, x)
inp = torch.ones(4, 4)
x = DoubleSizeMaybeAddGeThreeTensor(inp)
torch._dynamo.mark_dynamic(x, 0)
res = fn(x)
# During fakeifying, we end up allocating a separate symint
# for the outer and inner tensor (in this test, s0 is unused).
expected_var_to_val = {
"s0": 8,
"s1": 4,
}
expected_var_to_sources = {
"s0": "L['x'].size()[0]",
"s1": "L['x'].inner_elem.size()[0]",
}
self.assertEqual(curr_var_to_val, expected_var_to_val)
self.assertEqual(curr_var_to_sources, expected_var_to_sources)
self.assertExpectedInline(
"\n".join(guards),
"""\
Eq(2*s1, s0)
2*s1 < 13
s1 > 3""",
)
def test_wrapper_subclass_with_same_sized_inner_tensor(self):
# shouldn't recompile for different sizes when dynamic=True
sub1 = ScaledTensor(torch.randn(2, 4), torch.randn(6))
sub2 = ScaledTensor(torch.randn(3, 5), torch.randn(7))
self.assertFalse(_recompiles_for_inputs(func, (sub1,), (sub2,), dynamic=True))
# should recompile for different data size when dynamic=False
sub1 = ScaledTensor(torch.randn(2, 4), torch.randn(6))
sub2 = ScaledTensor(torch.randn(3, 5), torch.randn(6))
self.assertTrue(_recompiles_for_inputs(func, (sub1,), (sub2,), dynamic=False))
# avoid recompile using manual mark_dynamic() for different data size
sub1 = ScaledTensor(torch.randn(2, 4), torch.randn(6))
# NB: mark_dynamic() on outer tensor should translate to inner tensors of the same size
torch._dynamo.mark_dynamic(sub1, 0)
torch._dynamo.mark_dynamic(sub1, 1)
sub2 = ScaledTensor(torch.randn(3, 5), torch.randn(6))
self.assertFalse(_recompiles_for_inputs(func, (sub1,), (sub2,), dynamic=False))
def test_wrapper_subclass_with_differently_sized_inner_tensor(self):
# should recompile for different scale size when dynamic=False
sub1 = ScaledTensor(torch.randn(2, 4), torch.randn(3))
sub2 = ScaledTensor(torch.randn(2, 4), torch.randn(5))
self.assertTrue(_recompiles_for_inputs(func, (sub1,), (sub2,), dynamic=False))
# still recompiles using manual mark_dynamic() on outer for different scale size
sub1 = ScaledTensor(torch.randn(2, 4), torch.randn(3))
# NB: mark_dynamic() on outer tensor doesn't translate to inner tensors of different size
torch._dynamo.mark_dynamic(sub1, 0)
torch._dynamo.mark_dynamic(sub1, 1)
sub2 = ScaledTensor(torch.randn(2, 4), torch.randn(5))
self.assertTrue(_recompiles_for_inputs(func, (sub1,), (sub2,), dynamic=False))
def test_recompiles_with_optional_inner_tensor(self):
def f(x):
return x + 1
# sub1 does not have the optional tensor specified while sub2 does
sub1 = OptionalScaledTensor(torch.randn(2, 4), None)
sub2 = OptionalScaledTensor(torch.randn(2, 4), torch.randn(2, 4))
# sanity check; don't recompile for same input
self.assertFalse(_recompiles_for_inputs(f, (sub1,), (sub1,), dynamic=True))
self.assertFalse(_recompiles_for_inputs(f, (sub2,), (sub2,), dynamic=True))
# these should recompile; optional tensor changes between specified and unspecified
self.assertTrue(_recompiles_for_inputs(f, (sub1,), (sub2,), dynamic=True))
self.assertTrue(_recompiles_for_inputs(f, (sub2,), (sub1,), dynamic=True))
f_compiled = torch.compile(f, backend="aot_eager")
self.assertEqual(f(sub1)._data, f_compiled(sub1)._data)
self.assertEqual(f(sub2)._data, f_compiled(sub2)._data)
def test_torch_dispatch_subclass_guard_recompile(self):
x = torch.ones(2, 2)
x_two = TwoTensor(x.clone(), x.clone())
def fn(w):
return torch.add(w, 1.0)
fn_opt = torch.compile(backend="eager")(fn)
ref = fn(x_two)
res = fn_opt(x_two)
self.assertEqual(ref, res)
# ensure no recompilation on same input type
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
fn_opt(TwoTensor(x + 1, x + 2))
# recompile!
ref = fn(x)
res = fn_opt(x)
self.assertEqual(ref, res)
def test_tensor_subclass_ctx_guards(self):
x = CtxSubclassTensor(torch.ones(2), 3)
x2 = CtxSubclassTensor(torch.ones(2), 3)
x3 = CtxSubclassTensor(torch.ones(2), 4)
_check_recompiles(self, lambda x: x * x, (x,), (x2,), False)
_check_recompiles(self, lambda x: x * x, (x,), (x3,), True)
def test_tensor_subclass_ctx_recursive_guards(self):
x0 = torch.ones(2, 2)
x1 = CtxSubclassTensor(x0.clone(), 2)
x2 = CtxSubclassTensor(x0.clone(), 3)
tt0 = TwoTensor(x0.clone(), x1)
tt1 = TwoTensor(x0.clone(), x2)
_check_recompiles(self, lambda x: x * x, (tt0,), (tt1,), True)
def test_tensor_subclass_ctx_custom_guards_override(self):
class CtxSubclassTensorCustomGuardFn(CtxSubclassTensor):
@classmethod
def __metadata_guard__(cls, orig_data, other):
return orig_data[0] <= other[0]
x = CtxSubclassTensorCustomGuardFn(torch.ones(2), 2)
x2 = CtxSubclassTensorCustomGuardFn(torch.ones(2), 3)
x3 = CtxSubclassTensorCustomGuardFn(torch.ones(2), 1)
_check_recompiles(self, lambda x: x * x, (x,), (x2,), False)
_check_recompiles(self, lambda x: x * x, (x,), (x3,), True)
def test_tensor_subclass_ctx_custom_guards_error_arg_num(self):
import torch._dynamo.exc
class CtxSubclassTensorCustomGuardFn(CtxSubclassTensor):
@classmethod
def __metadata_guard__(cls, y):
# Shouldn't reach here
return False
x = CtxSubclassTensorCustomGuardFn(torch.ones(2), 3)
self.assertRaisesRegex(
torch._dynamo.exc.InternalTorchDynamoError,
"Tensor subclass method __metadata_guard__ must take exactly two subclass metadata arguments",
lambda: torch.compile(lambda x: x * x)(x),
)
def test_tensor_subclass_ctx_custom_guards_error_not_classmethod(self):
import torch._dynamo.exc
class CtxSubclassTensorCustomGuardFn(CtxSubclassTensor):
def __metadata_guard__(self, x, y):
return False
x = CtxSubclassTensorCustomGuardFn(torch.ones(2), 3)
self.assertRaisesRegex(
torch._dynamo.exc.InternalTorchDynamoError,
"Tensor subclass method __metadata_guard__ must be a classmethod",
lambda: torch.compile(lambda x: x * x)(x),
)
def test_subclass_constructor_proxying(self):
import dataclasses
from collections import namedtuple
from typing import Any
@dataclasses.dataclass(frozen=True)
class SubclassTensorArgs:
original_shape: torch.Size
device: torch.device
inner_meta: Any
SubclassTensorArgs2 = namedtuple(
"SubclassTensorArgs2",
[
"original_shape",
"device",
"inner_meta",
],
)
class SubclassTensor(torch.Tensor):
@staticmethod
def __new__(cls, a, meta):
shape = a.shape
kwargs = {}
kwargs["strides"] = a.stride()
kwargs["storage_offset"] = a.storage_offset()
kwargs["device"] = a.device
kwargs["layout"] = a.layout
kwargs["requires_grad"] = a.requires_grad
kwargs["dtype"] = a.dtype
out = torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs)
return out
def __init__(self, a, meta):
self.a = a
self.meta = meta
def __repr__(self):
a_repr = repr(self.a)
return f"SubclassTensor({a_repr})"
def __tensor_flatten__(self):
return ["a"], self.meta
@staticmethod
def __tensor_unflatten__(inner_tensors, meta, _, __):
a = inner_tensors["a"]
return SubclassTensor(a, meta)
@classmethod
def __torch_dispatch__(cls, func, types, args, kwargs):
if kwargs is None:
kwargs = {}
args_a = pytree.tree_map(
lambda x: x.a if isinstance(x, SubclassTensor) else x, args
)
kwargs_a = pytree.tree_map(
lambda x: x.a if isinstance(x, SubclassTensor) else x, kwargs
)
out_a = func(*args_a, **kwargs_a)
out = pytree.tree_map(
lambda x: SubclassTensor(
x, SubclassTensorArgs2(x.shape, x.device, None)
)
if isinstance(x, torch.Tensor)
else x,
out_a,
)
return return_and_correct_aliasing(func, args, kwargs, out)
@torch.compile(fullgraph=True)
def f1(x):
meta = SubclassTensorArgs(
x.shape, x.device, SubclassTensorArgs(x.shape, x.device, None)
)
out = SubclassTensor(x, meta)
return out * out
x = torch.randn(3, 3)
f1(x)
@torch.compile(fullgraph=True)
def f1(x):
meta = SubclassTensorArgs2(
x.shape, x.device, SubclassTensorArgs2(x.shape, x.device, None)
)
out = SubclassTensor(x, meta)
return out * out
x = torch.randn(3, 3)
f1(x)
def test_torch_function_subclass_survives_into_aot_autograd(self):
# If you have a tensor subclass that relies on dispatch into the same op
# without unwrapping and calling torch._C.DisableTorchFunctionSubclass(),
# the torch function-ness will survive into AOTAutograd. Today, NestedTensor
# actually relies on this behavior! Because that torch function logic
# runs during AOTAutograd, this test tests that there is no logic below
# that relies torch function that gets unexpectedly disabled after we
# redispatch from the subclass's torch function.
class SubTensor(torch.Tensor):
@staticmethod
def __new__(cls, t):
return torch.Tensor._make_wrapper_subclass(
cls,
t.shape,
t.stride(),
t.storage_offset(),
torch.contiguous_format,
t.dtype,
torch.strided,
t.device,
False,
t.requires_grad,
"sizes",
False,
False,
None,
)
def __init__(self, t):
super().__init__()
self._t = t
def __tensor_flatten__(self):
return ["_t"], {}
@staticmethod
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
t = inner_tensors["_t"]
return SubTensor(t)
def __repr__(self):
return f"SubTensor({self._t})"
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
with torch._C.DisableTorchFunctionSubclass():
return func(*args, **kwargs)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
kwargs = {} if kwargs is None else kwargs
new_args = pytree.tree_map_only(SubTensor, lambda s: s._t, args)
output = func(*new_args, **kwargs)
output = pytree.tree_map_only(
torch.Tensor, lambda t: SubTensor(t), output
)
return output
@torch.compile(dynamic=True)
def f(x):
return x.unflatten(-1, [2, 5])
s = SubTensor(torch.randn(3, 10))
f(s)
# Guard validation upsets the guard
# https://github.com/pytorch/pytorch/issues/129936
@unittest.expectedFailure
def test_recompile_with_symbool_inputs(self):
def f(pred: bool):
if pred:
return torch.ones([3, 4])
else:
return torch.ones([4, 3])
def test_recompilation(
f, x, sizes, exp_graphs, exp_frame_count, exp_shape_env_guards
):
torch._dynamo.reset()
shape_env = ShapeEnv()
backend = torch._dynamo.testing.EagerAndRecordGraphs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
f_cond = torch.compile(f, backend=cnt, fullgraph=True)
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
fake_inp = fake_mode.from_tensor(
x,
symbolic_context=StatelessSymbolicContext(
dynamic_sizes=[DimDynamic.DYNAMIC for i in range(x.dim())]
),
)
for i, size in enumerate(sizes):
pred = fake_inp.size(0) == size
f_cond(pred)
actual = normalize_gm(
backend.graphs[exp_frame_count[i] - 1].print_readable(
print_output=False
)
)
actual_guard_str = [str(guard.expr) for guard in shape_env.guards]
self.assertExpectedInline(actual, exp_graphs[i])
self.assertEqual(cnt.frame_count, exp_frame_count[i])
self.assertEqual(actual_guard_str, exp_shape_env_guards[i])
true_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones: "f32[3, 4]" = torch.ones([3, 4])
return (ones,)
"""
false_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones: "f32[4, 3]" = torch.ones([4, 3])
return (ones,)
"""
test_recompilation(
f,
torch.randn([3, 4]),
[3, 3, 4, 5],
exp_graphs=[true_graph, true_graph, false_graph, false_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)"],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
],
],
)
test_recompilation(
f,
torch.randn([3, 4]),
[4, 5, 3, 3],
exp_graphs=[false_graph, false_graph, true_graph, true_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)"],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
],
)
def test_wrapper_subclass_dynamo_attribute_access_on_intermediate(self):
def f(x_subclass):
tmp_subclass = torch.add(x, 1)
return torch.mul(tmp_subclass._scale, tmp_subclass._constant)
x = ScaledTensor(torch.randn(2, 4), torch.randn(3), constant=2)
out_ref = f(x)
out_test = torch.compile(f, backend="aot_eager", fullgraph=True)(x)
self.assertEqual(out_ref, out_test)
def test_support_bases(self):
import abc
import torch.fx._symbolic_trace
class Meta(abc.ABCMeta, torch.fx._symbolic_trace.ProxyableClassMeta):
def __new__(cls, name, bases, dct):
x = super().__new__(cls, name, bases, dct)
x.attr = 100
return x
class Multistreamable(abc.ABC): # noqa: B024
pass
class Foo(Multistreamable, metaclass=Meta):
pass
@torch.compile(backend="eager", fullgraph=True)
def f(x):
typ = type(Foo())
typ.__bases__
return typ.__bases__
self.assertEqual(f(torch.randn(1)), (Multistreamable,))
@torch.compile(backend="eager", fullgraph=True)
def g(x):
typ = type(Foo())
typ.__base__
return typ.__base__
self.assertEqual(g(torch.randn(1)), Multistreamable)
@parametrize("dynamic", [False, True])
def test_subclass_views(self, dynamic):
def _get_views(t): # returns (view: Tensor, expects_raises_false)
# Note that any closed-over SymInts will be symbolicized during fake-ification.
yield t.narrow(dim=-1, start=3, length=8), False
yield t.split(5, -1)[2], False
yield t.split_with_sizes([9, 6], -1)[1], False
yield t.unsqueeze(-1).expand(4, 15, 10), False
yield t.select(-1, 6), False
# https://github.com/pytorch/pytorch/issues/128649
yield t[2:3, 5:9], dynamic
yield t.view(-1, 15), False
def f(x):
return x * 2
compiled_f = torch.compile(
f, backend="aot_eager", fullgraph=True, dynamic=dynamic
)
# Take a view of a subclass to pass as input.
t = TwoTensor(torch.randn(4, 15), torch.randn(4, 15))
for view, expects_raises in _get_views(t):
torch._dynamo.reset()
out_ref = f(view)
if expects_raises:
with self.assertRaises(AssertionError):
out_test = compiled_f(view)
else:
out_test = compiled_f(view)
self.assertEqual(out_ref, out_test)
@torch._dynamo.config.patch("inline_inbuilt_nn_modules", True)
def test_mark_static_with_subclass_desugaring(self):
from typing import Any, Callable, Dict, List, Optional
from torch._dynamo.decorators import mark_static_address
from torch._inductor.compile_fx import compile_fx
from torch._inductor.cudagraph_utils import BoxedDeviceIndex
from torch._inductor.utils import BoxedBool
x_inner = torch.ones(4)
x = TwoTensor(x_inner, x_inner)
mark_static_address(x, guard=False)
def inner_compile(
gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
cudagraphs: Optional[BoxedBool] = None,
static_input_idxs: Optional[List[int]] = None,
is_backward: bool = False,
graph_id: Optional[int] = None,
cpp_wrapper: bool = False,
aot_mode: bool = False,
is_inference: bool = False,
boxed_forward_device_index: Optional[BoxedDeviceIndex] = None,
user_visible_outputs: Optional[Dict[str, None]] = None,
layout_opt: Optional[bool] = None,
extern_node_serializer: Optional[Callable[[List[Any]], Any]] = None,
):
self.assertEqual(static_input_idxs, [1, 2])
return gm
compiler = functools.partial(compile_fx, inner_compile=inner_compile)
@torch.compile(backend=compiler)
def fn(t0, t1, t2):
return t0 + t1 + t2 + 2
fn(torch.ones(4), x, torch.ones(4))
instantiate_parametrized_tests(SubclassTests)
class TestNestedTensor(torch._dynamo.test_case.TestCase, NestedTensorTestCase):
def _get_jagged_tensor(self, nested_size, offsets, requires_grad=True):
return get_jagged_tensor(nested_size, offsets, requires_grad)
def _get_nc_jagged_tensor(self, inner_dim, starts, lengths, requires_grad=True):
# Makes a jagged tensor with N constituent tensors with size
# as specified ((S0, S1, S2), D)
max_dim = (starts + lengths).max()
values_tensor = torch.randn(
starts.shape[0],
max_dim.item(),
inner_dim,
requires_grad=requires_grad,
dtype=torch.float64,
)
return jagged_from_tensor_and_lengths(values_tensor, starts, lengths)
def _check_recompiles(self, fn, inputs1, inputs2, expected_recompiles):
_check_recompiles(self, fn, inputs1, inputs2, expected_recompiles)
def test_unary_does_not_recompile(self):
nt1, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((3, 4, 5, 6), 4), None)
self._check_recompiles(lambda nt1: nt1.sin(), (nt1,), (nt2,), False)
def test_binary_does_not_recompile(self):
def binary(nt1, nt2):
if nt1.shape == nt2.shape:
return nt1 + nt2
else:
return nt1.sin()
# NB: If we have shape e.g. (3, j0, 3), duck sizing will give us (s0, s1, s0).
# This causes a recompile later on when it realizes the batch and last dim
# should not always be equal. To avoid that, we use (3, j0, 5) here.
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 5), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 5), offsets)
nt3, offsets = self._get_jagged_tensor(((3, 4, 5), 4), None)
nt4, _ = self._get_jagged_tensor(((3, 4, 5), 4), offsets)
self._check_recompiles(binary, (nt1, nt2), (nt3, nt4), False)
def test_binary_recompiles(self):
def binary(nt1, nt2):
if nt1.shape == nt2.shape:
return nt1 + nt2
else:
return nt1.sin()
# Binary recompiles because singleton ints no longer match
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 5), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 5), offsets)
nt3, _ = self._get_jagged_tensor(((2, 3, 4), 5), None)
self._check_recompiles(binary, (nt1, nt2), (nt1, nt3), True)
def _validate_compile(self, fn, arg_fn):
def _gen_grad_outputs(out_val):
if isinstance(out_val, (list, tuple)):
return tuple(torch.ones_like(c) for c in out_val)
else:
return (torch.ones_like(out_val),)
with self.branch_nested_state():
from torch.nested._internal.nested_tensor import _tensor_symint_registry
# Validate that compilation does not modify eager state
registry_before = list(_tensor_symint_registry.items())
count_before = torch.nested._internal.nested_tensor._tensor_id_counter
guards_exported = []
guards_failed = []
def append_guard_export(guards):
for g in guards:
if g.code_list is not None:
guards_exported.append(g.code_list[0])
def append_guard_fail(guards):
guards_failed.extend(guards)
compiled = torch._dynamo.optimize(
nopython=True,
backend="aot_eager",
guard_export_fn=append_guard_export,
guard_fail_fn=append_guard_fail,
)(fn)
registry_after = list(_tensor_symint_registry.items())
count_after = torch.nested._internal.nested_tensor._tensor_id_counter
self.assertEqual(registry_before, registry_after)
self.assertEqual(count_before, count_after)
args = arg_fn()
compile_out = compiled(*args)
compile_grads = []
g_args = [arg for arg in args if arg.requires_grad]
if len(g_args) > 0:
compile_grad_outputs = _gen_grad_outputs(compile_out)
compile_grads = torch.autograd.grad(
compile_out, inputs=g_args, grad_outputs=compile_grad_outputs
)
with self.branch_nested_state():
args = arg_fn()
ref_out = fn(*args)
ref_grads = []
g_args = [arg for arg in args if arg.requires_grad]
if len(g_args) > 0:
ref_grad_outputs = _gen_grad_outputs(ref_out)
ref_grads = torch.autograd.grad(
ref_out, inputs=g_args, grad_outputs=ref_grad_outputs
)
# Validate correctness forward
if isinstance(compile_out, (list, tuple)):
# TODO: Fix assertEqual() to support NJTs so this isn't necessary
self.assertEqual(len(compile_out), len(ref_out))
for c, r in zip(compile_out, ref_out):
self.assertEqualIgnoringNestedInts(c, r)
else:
self.assertEqualIgnoringNestedInts(compile_out, ref_out)
# Validate correctness backward
for compile_grad, ref_grad in zip(compile_grads, ref_grads):
self.assertEqualIgnoringNestedInts(compile_grad, ref_grad)
return guards_exported, guards_failed
# Note: [What kind of guards are involved in nested tensor compilation]
#
# Until we implement UnionFind, dynamic shapes guards are not involved.
# we rely only on dynamo's tensor aliasing guards.
#
# This is possible because dynamo able to generate tensor aliasing guards
# not only for the outer tensor, but also for the inner tensor.
#
# The case where dynamic shapes guards would eventually come into play is
# when my inputs are (1) two non-aliased tensors, but (2) declared as
# equal using a "trust me assert equal" API.
# Note: [Compiling nested tensor global state]
#
# Today there are two pieces of global eager state that NJTs deals with:
# - tensor_id_counter: a global counter that assigns unique ids to tensors
# - tensor_symint_registry: maps tensor to nested int
# - this is used in eager only (we should get rid of this because it is
# not necessary to cache nested int in eager)
# - during tracing, we DO need to cache nested int, but we do so on
# the FakeTensor.
#
# Ideally we would like to satisfy the following:
# - (1) The eager state is not mutated during tracing
# - (2) Running the compiled function should mutate the eager state in the
# same way that running the eager function would
# (a) The global counter should be incremented
# (b) The registry is updated in the same way
#
# Today we can satisfy (1) and (2a) but cannot satisfy (2b)
#
# Today, (1) is satisfied because we maintain a separate counter during
# tracing, and cache nested int on FakeTensor instead of relying on
# tensor_symint_registry.
#
# (2) is cannot be completely satisfied because we trace away the
# side-effectful operations (which we can fix this by wrapping the
# side-effectful operations in a custom op, and threading through effect
# tokens.) The current plan is to do that in the UnionFind impl.
#
# Interestingly, despite this, the state is mutated in a way that is somewhat
# close to what we want, e.g. if I construct a nested tensor using an
# offsets in the compiled region and return it, AOTAutograd runtime wrapper
# must rewrap the inner->inner graph outputs back into subclass. This
# triggers the eager logic to run, updating the counter and registry.
#
# Notably however, compile differs in two ways from eager:
# (1) The order in which the offsets are assigned ids is differnet
# the registry would be set in the order the offsets are returned
# which is not necessarily the same order as they were constructed.
# (2) If a NestedTensor is not returned, then the AOTAutograd wrapping
# logic will not be triggered.
#
# I claim that correctness is not affected by these differences today.
# e.g. there is never the case where two distinct offsets silently share
# the same id.
#
# (1) is clearly not a problem, and (2) should only be a problem if
# the nested int is returned on its own, without the corresponding NJT
# being returned. This is not a problem in the current implementation
# because returning only a shape is not supported!
# Note: [Creating symbolic nested int]
#
# We must create a symbolic nested int when we construct a nested tensor
# from a tensor. There are two main cases:
#
# 1. The offsets has NOT been used to construct a NJT
# - Create a new plain nested int with current val of fake nt id counter
# - Increment the fake nt id counter
# - Create a new symint with plain nested int as hint
# 2. The offsets HAS been used to construct a NJT
# - Create a new symint with plain nested int as hint
#
# More details on case 2:
# - During fakification of the offsets, we check the eager registry, and
# if the tensor HAS been used to construct a NJT,
# we create a symint, with the existing nested int as hint, and cache
# it on to the FakeTensor.
#
# [ Always use ephemeral source ]
#
# We create the new symint ALWAYS with ephemeral source whether that is
# in case (1) or (2) even though we could've had a proper source for case (2).
# Using a proper source would enable a few more (edge) cases, but since
# we plan to handle things more holistically in the future anyway, we don't
# bother doing so today.
#
# Using an ephemeral source has some consequences. But we are happy if
# - We do not silently miss recompiles, e.g. we guard when necessary.
# We know that this is true, because dynamo guards alone are already
# sufficient.
# - We are not producing errors for the cases we care about
#
# The main case we care about is when we guard that two shapes are equal.
# In this case, the replacements logic would simplify away the ephemeral
# symbol, and there is no error produced.
# The unsupported case is when we guard that two shapes are not equal, in
# which, we will try and fail to generate a guard.
#
# Case 1: in-graph construction where the offsets are passed as inputs
#
def test_in_graph_construction_from_input(self):
# The offsets is passed as an input
def fn(values, offsets):
return torch.nested.nested_tensor_from_jagged(values * 2, offsets) * 2
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
self._validate_compile(fn, arg_fn=lambda: (values, offsets))
# Do not specialize on the offsets
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
different_offsets = torch.tensor([0, 1, 5, 10], dtype=torch.int64)
self._validate_compile(fn, arg_fn=lambda: (values, different_offsets))
def test_in_graph_construction_from_input_2(self):
# Construct two NJTs, both are passed as inputs
def fn(values, offsets1, offsets2):
nt1 = torch.nested.nested_tensor_from_jagged(values * 2, offsets1)
nt2 = torch.nested.nested_tensor_from_jagged(values * 3, offsets2)
return nt2, nt1
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
offsets2 = torch.tensor([0, 1, 4, 10], dtype=torch.int64)
# 1. Offsets are different
guards_exported, guards_failed = self._validate_compile(
fn, arg_fn=lambda: (values, offsets, offsets2)
)
self.assertEqual(len(guards_failed), 0)
self.assertNotIn("L['offsets1'] is L['offsets2']", guards_exported)
# TODO
# 2. Offsets are the same
new_guards_exported, _ = self._validate_compile(
fn, arg_fn=lambda: (values, offsets, offsets)
)
self.assertTrue(any("Duplicate tensors found" in g for g in guards_failed))
self.assertIn("L['offsets1'] is L['offsets2']", new_guards_exported)
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
offsets3 = offsets.clone()
self._validate_compile(fn, arg_fn=lambda: (values, offsets3, offsets3))
# Do a binary op
def fn(values, offsets, offsets2):
nt1 = torch.nested.nested_tensor_from_jagged(values * 2, offsets)
nt2 = torch.nested.nested_tensor_from_jagged(values * 3, offsets2)
return nt1 * nt2
self._validate_compile(fn, arg_fn=lambda: (values, offsets, offsets))
def test_in_graph_construction_from_input_4(self):
# The offsets is taken from an NJT input
def fn(nt, other_values):
nt2 = torch.nested.nested_tensor_from_jagged(other_values, nt.offsets())
return nt + nt2
values = torch.randn(9, 5, requires_grad=True)
other_values = torch.randn(9, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 9], dtype=torch.int64)
def arg_fn(values=values, other_values=other_values, offsets=offsets):
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
return nt, other_values
self._validate_compile(fn, arg_fn=arg_fn)
# Do not specialize on the offsets
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
different_offsets = offsets.clone()
def arg_fn(
values=values, other_values=other_values, offsets=different_offsets
):
nt = torch.nested.nested_tensor_from_jagged(values, different_offsets)
return nt, other_values
self._validate_compile(fn, arg_fn=arg_fn)
def test_in_graph_construction_from_input_5(self):
# Construct from lengths instead of offsets
def fn(values, lengths):
nt = torch.nested.nested_tensor_from_jagged(values, lengths=lengths)
return nt.sin()
values = torch.randn(9, 5, requires_grad=True)
lengths = torch.tensor([2, 4, 3])
self._validate_compile(fn, arg_fn=lambda: (values, lengths))
#
# Case 2: in-graph construction where offsets are graph intermediates
#
def test_in_graph_construction_from_intermediate(self):
# offsets is an intermediate computed from lengths
def fn(values, lengths):
offsets = torch.cat([lengths.new_zeros(1), lengths.cumsum(0)])
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
nt2 = torch.nested.nested_tensor_from_jagged(values, offsets)
return (nt * nt2).sin()
values = torch.randn(9, 5, requires_grad=True)
lengths = torch.tensor([2, 4, 3])
self._validate_compile(fn, arg_fn=lambda: (values, lengths))
# Do not specialize on the lengths
with unittest.mock.patch("torch._dynamo.config.error_on_recompile", True):
different_lengths = lengths.clone()
self._validate_compile(fn, arg_fn=lambda: (values, different_lengths))
def test_in_graph_construction_from_intermediate_2(self):
def fn(values, offsets):
return torch.nested.nested_tensor_from_jagged(values * 2, offsets.clone())
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
self._validate_compile(fn, arg_fn=lambda: (values, offsets))
def test_in_graph_construction_from_intermediate_3(self):
# Note that due to CSE, clone is not necessarily called twice!
def fn(values, offsets):
nt1 = torch.nested.nested_tensor_from_jagged(values * 2, offsets.clone())
nt2 = torch.nested.nested_tensor_from_jagged(values * 3, offsets.clone())
return nt2, nt1
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
self._validate_compile(fn, arg_fn=lambda: (values, offsets))
def test_in_graph_construction_from_intermediate_4(self):
# Shared intermediate (should be same as case #1)
def fn(values):
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
values2 = torch.ones_like(values)
nt2 = torch.nested.nested_tensor_from_jagged(values2, offsets)
return nt * nt2
values = torch.randn(10, 5).requires_grad_(True)
self._validate_compile(fn, arg_fn=lambda: (values,))
# AssertionError: s2 (could be from ['<ephemeral: intermediate_offsets_or_lengths>',
@unittest.expectedFailure
def test_in_graph_construction_from_intermediate_5(self):
# non-shared intermediate
def fn(values):
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
values2 = torch.ones_like(values)
nt2 = torch.nested.nested_tensor_from_jagged(values2, offsets.clone())
if nt2.shape[1] != nt.shape[1]:
return nt * 2
else:
return nt * 3
values = torch.randn(10, 5).requires_grad_(True)
self._validate_compile(fn, arg_fn=lambda: (values,))
#
# Case 3: in-graph construction where offsets are both direct graph inputs
# and passed in as part of an NJT's offsets.
#
def test_in_graph_construction_mixed(self):
def fn(nt, values, offsets):
nt2 = torch.nested.nested_tensor_from_jagged(values, offsets)
return nt * nt2
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
def arg_fn(values=values, offsets=offsets):
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
return nt, values, offsets
self._validate_compile(fn, arg_fn)
# See Note: [Creating symbolic nested int]
# AssertionError: s2 (could be from ['<ephemeral: intermediate_offsets_or_lengths>',
@unittest.expectedFailure
def test_in_graph_construction_mixed_2(self):
def fn(nt, values, offsets, nt2):
# Intermediate offsets has ephemeral source
intermediate_nt = torch.nested.nested_tensor_from_jagged(
values, offsets.clone()
)
# This creates a dynamic shapes neq guard
if nt2.shape[1] != intermediate_nt.shape[1]:
# We should always go here.
nt = nt * 2
return nt
values = torch.randn(10, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 10], dtype=torch.int64)
offsets2 = torch.tensor([0, 1, 4, 10], dtype=torch.int64)
def arg_fn(values=values, offsets=offsets, offsets2=offsets2):
# Values is shared, but it shouldn't matter
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
nt2 = torch.nested.nested_tensor_from_jagged(values, offsets2)
return nt, values, offsets, nt2
self._validate_compile(fn, arg_fn)
def test_in_graph_construction_mixed_3(self):
# More involved mixed case
def fn(nt, values, offsets):
nt1 = torch.nested.nested_tensor_from_jagged(values * 2, offsets)
nt2 = torch.nested.nested_tensor_from_jagged(values * 3, offsets)
return nt1 + nt2 + nt
values = torch.randn(9, 5, requires_grad=True)
offsets = torch.tensor([0, 2, 6, 9], dtype=torch.int64)
def arg_fn(values=values, offsets=offsets):
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
return nt, values, offsets
self._validate_compile(fn, arg_fn)
def test_return_shape(self):
nt, _ = self._get_jagged_tensor(((2, 3, 4), 5), None)
def fn(nt):
return (nt * 2).shape
compiled = torch.compile(fn, fullgraph=True, backend="aot_eager")
compiled(nt)
def test_inference_tensor(self):
with torch.inference_mode():
nt, _ = self._get_jagged_tensor(((2, 3, 4), 5), None)
def fn(n):
return n * 2
torch.compile(fn, backend="eager")(nt)
# TODO: cannot parametrize this test class with device for some reason
def _test_autograd(self, backend):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64)
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
# TODO: Switch to public API when it exists
nt2, _ = jagged_from_list([a, b, c], nt.offsets())
def fn1(nt1, nt2):
return (nt1 + nt2).sin().cos()
compiled_f = torch.compile(fn1, fullgraph=True, backend=backend, dynamic=True)
out = compiled_f(nt, nt2)
out_buffer = out.values()
ga, gb, gc = torch.autograd.grad(out_buffer.sum(), (a, b, c))
out_ref = fn1(nt, nt2)
out_buffer_ref = out_ref.values()
ga_ref, gb_ref, gc_ref = torch.autograd.grad(out_buffer_ref.sum(), (a, b, c))
self.assertTrue(torch.allclose(ga, ga_ref))
self.assertTrue(torch.allclose(gb, gb_ref))
self.assertTrue(torch.allclose(gc, gc_ref))
def test_basic_autograd(self):
self._test_autograd("aot_eager")
@requires_cuda
def test_basic_autograd_inductor(self):
self._test_autograd("inductor")
def test_subclass_with_mutation_in_graph(self):
# In this graph, we have an in-graph mutation, i.e. a mutation that is allowed
# to remain in the graph. Normally this is allowed, but it's not allowed if
# the graph handles subclasses at all.
# Whether the mutation is allowed or not allowed in the graph alters the number
# of outputs from the forward graph. Previously, a bug in this handling meant
# that sometimes the expected number and actual number of outputs from the
# joint graph did not match, causing assertion failures.
def fn(x, y):
z = x.sin()
y.sin_()
return z.cos(), y.cos()
fn_c = torch.compile(fn, backend="inductor")
values = [torch.rand((i, 8), requires_grad=True) for i in range(1, 6)]
values_copy = [x.detach().clone().requires_grad_(True) for x in values]
nt, offsets = jagged_from_list(values, None)
nt_copy, offsets = jagged_from_list(values_copy, offsets)
y = torch.rand((4, 8))
y_copy = y.clone()
ret = fn_c(nt, y)[0]
ref = fn(nt_copy, y_copy)[0]
self.assertEqual(ret.values(), ref.values())
ret.values().sum().backward()
ref.values().sum().backward()
for ref_v, res_v in zip(values_copy, values):
self.assertEqual(ref_v.grad, res_v.grad)
@torch._dynamo.config.patch({"capture_scalar_outputs": True})
def test_unbind(self):
# NB: If we have shape e.g. (3, j0, 3), duck sizing will give us (s0, s1, s0).
# This causes a recompile later on when it realizes the batch and last dim
# should not always be equal. To avoid that, we use (3, j0, 5) here.
nt, _ = self._get_jagged_tensor(((2, 3, 4), 5), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 5), 2), None)
nt3, _ = self._get_jagged_tensor(((2, 3, 4, 5), 3), None)
def fn(x):
return x.unbind()
compiled_f = torch.compile(fn, fullgraph=True, backend="eager", dynamic=True)
out = compiled_f(nt)
out_ref = fn(nt)
# correctness
self.assertEqual(len(out), len(out_ref))
for x, x_ref in zip(out, out_ref):
self.assertTrue(torch.allclose(x, x_ref))
# We specialize on the length of offsets, e.g. (1) we recompile if the
# length of the offsets is different. (2) we don't recompile if the
# length of the offsets is the same, even if the size of the constituent
# tensors are different.
self._check_recompiles(fn, (nt,), (nt2,), False)
self._check_recompiles(fn, (nt,), (nt3,), True)
def test_inline_nested_tensor_from_jagged(self):
nt, _ = self._get_jagged_tensor(((2, 3, 4), 5), None)
def fn(x):
return torch.nested.nested_tensor_from_jagged(x.values() * 2, x.offsets())
torch.compile(fn, fullgraph=True, backend="aot_eager")(nt)
# The test here: nn.Parameters that are secretly subclasses
# have a metaclass that overrides __isinstance__,
# that dynamo needs to respect when it inlines the if statement.
def test_param_subclass_isinstance_input(self):
x_inner = torch.randn(16, 16, requires_grad=True)
x = torch.nn.Parameter(TwoTensor(x_inner, x_inner))
m = torch.nn.Linear(16, 16)
m.weight = x
def fn():
if isinstance(m.weight, torch.nn.Parameter):
return m.weight + 1
else:
return m.weight + 2
out_ref = fn()
out_test = torch.compile(fn, backend="aot_eager")()
self.assertEqual(out_ref, out_test)
def _input_view_test(self, nt_view_name):
nt_view = VIEW_TEST_CASES[nt_view_name]()
def fn(x):
return x.sin()
out_ref = fn(nt_view)
torch._dynamo.reset()
compile_fn = torch.compile(
fn, fullgraph=True, backend="aot_eager", dynamic=True
)
out = compile_fn(nt_view)
# Check metadata and values are correct
self.assertTrue(out.size() == out_ref.size())
self.assertTrue(out.stride() == out_ref.stride())
if out.is_nested:
self.assertTrue(torch.allclose(out.values(), out_ref.values()))
else:
self.assertTrue(torch.allclose(out, out_ref))
# Check that no upper/lower bound guards are incurred
def backend(gm, args):
context = torch._guards.TracingContext.get()
guards = [str(g.expr) for g in context.fake_mode.shape_env.guards]
# varies based on the type of view
guard_str = "\n".join(guards)
if nt_view_name == "subclass_dense":
self.assertExpectedInline(guard_str, """Eq(s3 - 1, s0)""")
elif nt_view_name == "dense_subclass_dense_subclass":
self.assertExpectedInline(
guard_str,
"""\
Eq(s5 - 1, s2)
Eq(s12 - 1, s7)
Eq(s11, s9)""",
)
elif nt_view_name.startswith("base_is_nt_True"):
self.assertExpectedInline(
guard_str,
"""Eq(s3 - 1, s0)""",
)
else:
self.assertExpectedInline(
guard_str,
"""\
Eq(s4 - 1, s1)
Eq(s13 - 1, s8)
Eq(s12, s10)""",
)
return gm
torch._dynamo.reset()
compile_fn = torch.compile(fn, fullgraph=True, backend=backend, dynamic=True)
out = compile_fn(nt_view)
@parametrize(
"nt_view_name",
[k for k in VIEW_TEST_CASES.keys() if k != "subclass_dense_subclass_dense"],
)
def test_inputs_to_compiled_fn_are_views(self, nt_view_name):
self._input_view_test(nt_view_name)
def test_subclass_gives_static_shapes_when_dynamic_false(self):
def check_graph(gm, *args):
first_node_example_val = next(iter(gm.graph.nodes)).meta["example_value"]
# We compiled with dynamic=False, expect no SymInt sizes on our placeholders
self.assertTrue(
all(isinstance(x, int) for x in first_node_example_val.shape)
)
return gm
@torch.compile(backend=check_graph, dynamic=False)
def f(x):
return x + 1
x_inner = torch.ones(4)
x = TwoTensor(x_inner, x_inner)
x_view = x.view(2, 2)
out = f(x_view)
# NJT1 -> Dense -> NJT2 -> Dense view
# During view replay, the Dense -> NJT2 part will construct an intermediate,
# symbolically-sized NJT that is immediately deconstructed to return the final dense
# view. To construct this intermediate properly, we need the associated nested int
# to be symbolic. This view is expected to fail compilation until symbolic nested ints
# are cached onto fake offsets to solve this problem.
@unittest.expectedFailure
def test_subclass_dense_subclass_dense_view(self):
self._input_view_test("subclass_dense_subclass_dense")
instantiate_parametrized_tests(TestNestedTensor)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()