blob: 0c375ebf874e878f768b8ec0d8c7960a66ee137d [file] [log] [blame] [edit]
# Owner(s): ["module: dynamo"]
import math
import random
import unittest
import numpy as np
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch.nn.functional as F
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import CompileCounter, same
from torch.testing._internal.common_utils import skipIfWindows
from torch.testing._internal.logging_utils import logs_to_string
# The intention of this test file is you should put test cases specifically
# for assume_static_by_default=False, aka you want to YOLO make everything as
# dynamic as possible. If you want to test the more normal situation where
# you assume static by default, put it in a regular test file and
# test_dynamic_shapes will cover both the YOLO and non-YOLO cases.
@torch._dynamo.config.patch(assume_static_by_default=False)
class UnspecTests(torch._dynamo.test_case.TestCase):
def test_numpy_correctness(self):
def fn(x, y, z):
xy = [x + y, y, False]
np_x = x.numpy()
np_y = y.numpy()
return {
"x": x,
"z": z,
"a": np_y.sum(),
"b": xy,
"c": np_y[0][0] / 68,
"d": np_x.sum(),
"e": np_x + np_y,
}, x + np_y.sum() + z
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
y = torch.ones([2, 2], dtype=torch.int64)
z = np.int64(12)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res2 = opt_fn(x, y, z)
self.assertEqual(res1, res2)
def test_no_recompilations(self):
# no recompilations if passing on different numpy int values
def fn(x, y):
return {"a": x + 1, "b": y / 2}
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
for i in range(10):
opt_fn(x, np.int64(i))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, 2)
@unittest.expectedFailure # array scalars decay to 0D arrays
def test_builtin_max_min(self):
# test unspecialized primitive max/min
def fn(x, y, z):
return z + 1, max(x, y), min(x - 4, y)
x = np.int64(12)
y = 10
z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res2 = opt_fn(x, y, z)
self.assertTrue(same(res1, res2, relax_numpy_equality=True))
def test_feed_random_values_into_graph_only(self):
def fn(shape):
torch.manual_seed(123)
x = torch.randn(shape, device="cpu") * random.randint(30, 100)
return x
shape = [2, 3]
random.seed(1)
res1 = fn(shape)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
random.seed(1)
res2 = opt_fn(shape)
self.assertTrue(same(res1, res2))
def test_random_values_with_graph_break(self):
def fn(x):
r1 = random.random()
y = x + random.uniform(10, 20)
y.sum().item()
r2 = random.randint(2, 18) # no graph output in this frame
y.sum().item()
return y + r1, r2
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
# Really annoying intersection of specialization and RandomValueSource
# If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other
# unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be referring
# to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do
# wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then
# some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as
# it is, this test fails.
# The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up.
def test_multiple_consecutive_random_calls_before_graph(self):
def fn(x):
dim1 = random.randrange(start=0, stop=5)
dim2 = random.randrange(start=0, stop=5)
dim3 = random.randrange(start=0, stop=5)
y = torch.rand(dim1, dim2, dim3)
return x + 2, y
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_compiled_random_calls_are_random(self):
# For compiled functions with random calls,
# it should return different values for every iteration.
# https://github.com/pytorch/pytorch/issues/95425
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return (x + 1) * random.uniform(0, 1)
res = []
for _ in range(5):
res.append(fn(torch.ones(2)))
for i in range(1, 5):
self.assertFalse(same(res[i - 1], res[i]))
def test_random_call_with_while_loop(self):
def fn(x):
dim1 = random.randrange(start=0, stop=3)
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(start=0, stop=3)
return x * 2
x = torch.randn(4)
random.seed(1)
res1 = fn(x)
opt_fn = torch._dynamo.optimize("eager")(fn)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
random.seed(10)
res1 = fn(x)
random.seed(10)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_random_object(self):
# test argument passing, mutation, reconstruction, state correctness
def fn(x, rand2):
r1 = random.randint(1, 9)
r2 = rand2.randint(1, 9)
rand3 = random.Random(42)
r3 = rand3.randint(1, 9)
y = x + r1 + r2 + r3
return y, rand2, rand3
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
random.seed(0)
y_1, rand2_1, rand3_1 = fn(inp, random.Random(12))
state_1 = random.getstate()
random.seed(0)
y_2, rand2_2, rand3_2 = opt_fn(inp, random.Random(12))
state_2 = random.getstate()
self.assertEqual(y_1, y_2)
self.assertEqual(state_1, state_2)
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_methods(self):
def fn(x, rand1, rand2, rand3):
rand1.seed(42)
rand4 = random.Random(9002)
rand2.setstate(rand4.getstate())
r1 = rand1.random()
r2 = rand2.randint(1, 10)
r3 = rand3.randrange(10)
r4 = rand4.uniform(0, 1)
return x + r1 + r2 + r3 + r4
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
rand1_1 = random.Random(1)
rand2_1 = random.Random(2)
rand3_1 = random.Random(3)
rand1_2 = random.Random(1)
rand2_2 = random.Random(2)
rand3_2 = random.Random(3)
y1 = fn(inp, rand1_1, rand2_1, rand3_1)
y2 = opt_fn(inp, rand1_2, rand2_2, rand3_2)
self.assertEqual(y1, y2)
self.assertEqual(rand1_1.getstate(), rand1_2.getstate())
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_overriden_methods(self):
# these will result in graph breaks, but we shouldn't crash
def get_rng():
rand1 = random.Random(1)
rand2 = random.Random(2)
orig_random = rand1.random
def custom_random():
return orig_random()
orig_getstate = rand2.getstate
def custom_getstate():
return orig_getstate()
rand1.random = custom_random
rand2.getstate = custom_getstate
return rand1, rand2
def fn(x, rand1, rand2):
r1 = rand1.random()
rand3 = random.Random()
rand3.setstate(rand2.getstate())
r2 = rand3.random()
return x + r1 + r2
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager")
y1 = fn(inp, *get_rng())
y2 = opt_fn(inp, *get_rng())
self.assertEqual(y1, y2)
def test_builtin_getitem(self):
# builtin getitem args[0] is python list and args[1] is unspec
def fn(x, idx):
return (torch.zeros(idx), x[idx], x[idx:])
x = list(range(50))
ref = fn(x, 48) # 48 is unspecialized
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x, 48)
self.assertTrue(same(ref, res))
def test_use_and_specialize(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
x = x + y
if y == 2:
return x - 1
else:
return x + 1
self.assertTrue(same(fn(torch.tensor([5]), 2), 6))
self.assertTrue(same(fn(torch.tensor([6]), 2), 7))
self.assertTrue(same(fn(torch.tensor([5]), 3), 9))
self.assertTrue(same(fn(torch.tensor([4]), 3), 8))
self.assertEqual(cnt.frame_count, 2)
def test_no_recompiles(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
return x + y
self.assertTrue(same(fn(torch.tensor([5]), 100), 105))
self.assertTrue(same(fn(torch.tensor([4]), 200), 204))
self.assertTrue(same(fn(torch.tensor([3]), 300), 303))
self.assertTrue(same(fn(torch.tensor([2]), 400), 402))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_no_recompiles_prod_backward(self):
# https://github.com/pytorch/pytorch/issues/120608
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(t):
return torch.prod(t, 3, keepdim=True)
input_shapes = [(8, 10, 3, 2), (8, 3, 5, 2), (8, 4, 8, 2)]
for s in input_shapes:
t1 = torch.randn(s, requires_grad=True)
h_result = fn(t1)
grad = torch.ones_like(h_result)
h_result.backward(grad)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
@unittest.skipIf(not torch.cuda.is_available(), "requires cuda")
def test_builtin_functions_on_cuda(self):
def fn(x, scaler):
m = torch.nn.ReLU()
y = m(x) * scaler
return y
x = torch.randn([3, 6], device="cuda")
scaler = 0.23 # 0.23 is unspecialized
ref = fn(x, scaler)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x, scaler)
self.assertTrue(same(ref, res))
self.assertEqual(ref.device, res.device)
def test_unspec_float_precision(self):
def fn(image, scale_factor):
image = torch.nn.functional.interpolate(
image[None],
size=None,
scale_factor=scale_factor,
mode="bilinear",
recompute_scale_factor=True,
align_corners=False,
)[0]
return image.shape
x = torch.rand([3, 427, 640])
scale_factor = 1.873536229133606
ref = fn(x, scale_factor)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x, scale_factor)
self.assertTrue(same(ref, res))
@unittest.expectedFailure # fails as long as numpy scalars are 0D arrays
def test_specializing_numpy_float_in_control_flow(self):
# np.float64 is unspecialized by default,
# but it should be specialized when used in control flow.
def fn(x, y):
if y > 1.0:
return x + 1
else:
return x - 1
x = torch.rand(4)
opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
for t in [np.float16, np.float32, np.float64]:
y = t(1.23)
ref = fn(x, y)
res = opt_fn(x, y)
self.assertTrue(same(ref, res))
def test_mark_static_inside(self):
def fn(x):
torch._dynamo.mark_static(x, 0)
comptime.assert_static(x.size(0))
return x + 1
opt_fn = torch.compile(fn, dynamic=True, fullgraph=True)
opt_fn(torch.randn(12, 23))
def test_shape_graph_break(self):
from torch._dynamo.comptime import comptime
def fn(x):
x_shape = x.size()
comptime.graph_break()
return x + torch.randn(x_shape)
x = torch.randn(20)
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_fn(x)
def test_isinstance_symint(self):
def fn(x):
assert isinstance(x.size(0), int)
return x * 2
x = torch.randn(20)
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_fn(x)
y = torch.randn(30)
torch._dynamo.mark_dynamic(y, 0)
opt_fn(y)
def test_mark_01_dynamic(self):
def fn(x):
return x * 2
x = torch.randn(1)
torch._dynamo.mark_dynamic(x, 0)
opt_fn = torch._dynamo.optimize("eager")(fn)
# This will fail to compile a generic kernel, but we should not
# complain about it (mark dynamic will try its best but 0/1
# specialization is allowed)
opt_fn(x)
def test_conv1d_symint_padding(self):
kernel = torch.randn(1, 1, 4)
def func(x):
padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1
out = F.conv1d(x, kernel, padding=padding, stride=2)
return out
opt_func = torch.compile(func)
x = torch.randn(1, 1, 175)
opt_func(x) # passes
x = torch.randn(1, 1, 249)
opt_func(x) # crashes
@torch._dynamo.config.patch("assume_static_by_default", True)
def test_propagate_dynamic_dim(self):
x = torch.randn(20)
torch._dynamo.mark_dynamic(x, 0)
@torch.compile()
def fn(x):
y = x * 2
comptime.graph_break()
z = y * 2
return z
z = fn(x)
self.assertEqual(z._dynamo_weak_dynamic_indices, {0})
def test_rshift_dynamic(self):
def shift_right(tensor: torch.Tensor) -> torch.Tensor:
return (tensor >> 2).to(torch.long)
opt_fn = torch.compile(shift_right, fullgraph=True, dynamic=True)
sample_input = torch.tensor([4, 4, 16, 32], dtype=torch.uint8)
opt_fn(sample_input)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_symfloat_to_tensor(self):
def f1(v):
return torch.tensor([v.item()])
def f2(v):
return torch.tensor([[v.item()], [2.0]])
def f3(v):
return torch.tensor(v.item())
def f4(v):
return torch.tensor((v.item(),))
optimize = torch.compile(backend="aot_eager", fullgraph=True)
r = torch.randn(1)
self.assertEqual(f1(r), optimize(f1)(r))
self.assertEqual(f2(r), optimize(f2)(r))
self.assertEqual(f3(r), optimize(f3)(r))
self.assertEqual(f4(r), optimize(f4)(r))
@skipIfWindows(
msg="AssertionError: The values for attribute 'dtype' do not match: torch.int32 != torch.int64."
)
def test_to_tensor(self):
def f1():
a = np.random.uniform(low=-1, high=1, size=(20, 1))
return torch.tensor([a, a, a, a], dtype=torch.float64, device="cpu")
def f2():
a = torch.tensor([[[123]]])
return torch.tensor([a, a])
def f3():
a = torch.tensor(123)
return torch.tensor([a, a])
def f4():
a = torch.tensor(123)
b = torch.tensor([[[456]]])
return torch.tensor([a, b])
def f5():
a = np.array([1, 2])
return torch.tensor([a, a])
optimize = torch.compile(backend="aot_eager", fullgraph=True)
self.assertEqual(f1().shape, optimize(f1)().shape)
self.assertEqual(f2(), optimize(f2)())
self.assertEqual(f3(), optimize(f3)())
self.assertEqual(f4(), optimize(f4)())
self.assertEqual(f5(), optimize(f5)())
def test_sym_int_conversion(self):
def f(x):
y = x.size(0)
return x * int(y == 0)
opt_fn = torch.compile(f, backend="eager", fullgraph=True)
x = torch.randn(2, 3)
opt_fn(x)
def test_sum_dimlist_spec(self):
def fn(inputs, dim):
return torch.sum(inputs, dim)
inputs = torch.randn(128, 5, 24, 24)
dim = (-1, 1, 0, 2)
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, dim), fn(inputs, dim))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_item_max(self):
def fn(x):
return torch.ones(max(x.item(), 1024))
x = torch.tensor([1000])
y = torch.tensor([2000])
compl_fn = torch.compile(fn, backend="eager", fullgraph=True)
self.assertEqual(fn(x), compl_fn(x))
self.assertEqual(fn(y), compl_fn(y))
# https://github.com/pytorch/pytorch/issues/104812
def test_argmin_coerces_symint_to_intlist_spec(self):
def fn(x, dim):
# the python arg parser coerces dim into a vector<int>
return torch.amin(x, dim=dim, keepdim=True)
x = torch.randn(4, 4, 4)
dim = 2
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(x, dim), fn(x, dim))
def test_exponential(self):
def fn(inputs, op_inputs_dict):
res = inputs.exponential_(**op_inputs_dict)
return res
inputs = torch.randn(2, 3, 4)
op_inputs_dict = {"lambd": 10, "generator": None}
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, op_inputs_dict), fn(inputs, op_inputs_dict))
def test_symbol_guard_limit_before_specialize(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch._dynamo.optimize(cnts, dynamic=True)
def fn(x):
torch._check(x.size(0) != 3)
torch._check(x.size(0) != 4)
torch._check(x.size(0) != 5)
torch._check(x.size(0) != 6)
return x + 2
# Control test
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """1""")
cnts.frame_count = 0
torch._dynamo.reset()
with torch.fx.experimental._config.patch(
symbol_guard_limit_before_specialize=3
):
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """3""")
def test_defaults(self):
def g(x, i=8):
comptime.assert_static(i)
return x * i
def fn(x):
return g(x)
inputs = torch.randn(2, 3, 4)
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
self.assertEqual(compl_fn(inputs), fn(inputs))
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_input(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
if y == 5.0:
return x + 2
else:
return x + y
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 3.0), cf(x, 3.0))
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertExpectedInline(cnts.frame_count, """1""") # no recompile
self.assertEqual(f(x, 5.0), cf(x, 5.0))
self.assertExpectedInline(cnts.frame_count, """2""") # guard worked
self.assertEqual(f(x, math.nan), cf(x, math.nan))
self.assertExpectedInline(cnts.frame_count, """3""") # nan always recompiles
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_output(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
return x + 1, y * 2
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 3.0), cf(x, 3.0))
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertEqual(f(x, 5.0), cf(x, 5.0))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_data_dependent_evaluate_expr_graph_break(self):
cnts = torch._dynamo.testing.CompileCounter()
# To ensure that the continuation frame is compiled,
# have to write the test function in this funny way.
# See https://github.com/pytorch/pytorch/issues/111918
def test(y):
if y > 2:
return True
else:
return False
@torch._dynamo.optimize(cnts)
def fn(x):
x = x + 1
y = x.item()
if test(y):
return x * 2
else:
return x * 3
x = torch.tensor([3.0])
fn(x)
self.assertExpectedInline(cnts.frame_count, """2""")
self.assertExpectedInline(cnts.op_count, """4""")
def test_prune_torch_check(self):
log_stream, ctx = logs_to_string("torch._dynamo.output_graph", "graph_code")
@torch.compile(fullgraph=True, dynamic=True, backend="eager")
def f(x, y):
torch._check(y + 5 == 85)
torch._check(x.size(0) == 80)
with ctx():
f(torch.randn(80, 100), 80)
out = "\n".join(log_stream.getvalue().strip().split("\n")[3:]).strip()
self.assertExpectedInline(
out,
"""\
def forward(self):
return ()""",
)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_split_aot_autograd(self):
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, i):
y, z = i.tolist()
return torch.split(x, [y, z])
print(f(torch.randn(10, requires_grad=True), torch.tensor([7, 3])))
def test_bool_tensor_ctor(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, dynamic=True, fullgraph=True)
def f(x):
y = torch.empty((x.size(0) // 13) * 13)
return torch.tensor(y.numel() == 0)
self.assertTrue(f(torch.empty(8)).item())
self.assertFalse(f(torch.empty(13)).item())
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8)
x2 = torch.rand(1, 5, 4, 8)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_hint_consistency(self):
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
x = torch.randn(1)
torch._dynamo.decorators.mark_unbacked(x, 0)
@torch.compile()
def f(x):
if guard_size_oblivious(x.size(0) != 1):
return x + 3
else:
return x + 4
self.assertEqual(f(x), x + 3)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_channels_last(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8).to(memory_format=torch.channels_last)
x2 = torch.rand(1, 5, 4, 8).to(memory_format=torch.channels_last)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()