| # Owner(s): ["module: optimizer", "module: LrScheduler" ] |
| import copy |
| import math |
| import pickle |
| import tempfile |
| import types |
| import warnings |
| from functools import partial |
| |
| import torch |
| import torch.nn.functional as F |
| from torch.nn import Parameter |
| from torch.optim import Adam, Rprop, SGD |
| from torch.optim.lr_scheduler import ( |
| ChainedScheduler, |
| ConstantLR, |
| CosineAnnealingLR, |
| CosineAnnealingWarmRestarts, |
| CyclicLR, |
| EPOCH_DEPRECATION_WARNING, |
| ExponentialLR, |
| LambdaLR, |
| LinearLR, |
| LRScheduler, |
| MultiplicativeLR, |
| MultiStepLR, |
| OneCycleLR, |
| PolynomialLR, |
| ReduceLROnPlateau, |
| SequentialLR, |
| StepLR, |
| ) |
| from torch.optim.swa_utils import SWALR |
| from torch.testing._internal.common_utils import ( |
| instantiate_parametrized_tests, |
| load_tests, |
| parametrize, |
| skipIfTorchDynamo, |
| TestCase, |
| ) |
| |
| |
| # load_tests from common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| |
| class TestLRScheduler(TestCase): |
| class SchedulerTestNet(torch.nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.conv1 = torch.nn.Conv2d(1, 1, 1) |
| self.conv2 = torch.nn.Conv2d(1, 1, 1) |
| |
| def forward(self, x): |
| return self.conv2(F.relu(self.conv1(x))) |
| |
| class LambdaLRTestObject: |
| def __init__(self, value): |
| self.value = value |
| |
| def __call__(self, epoch): |
| return self.value * epoch |
| |
| def __eq__(self, other): |
| if isinstance(other, self.__class__): |
| return self.__dict__ == other.__dict__ |
| else: |
| return False |
| |
| exact_dtype = True |
| |
| def setUp(self): |
| super().setUp() |
| self.net = self.SchedulerTestNet() |
| self.opt = SGD( |
| [ |
| {"params": self.net.conv1.parameters()}, |
| {"params": self.net.conv2.parameters(), "lr": 0.5}, |
| ], |
| lr=0.05, |
| ) |
| |
| def _check_warning_is_epoch_deprecation_warning(self, w, *, num_warnings: int = 1): |
| """This function swallows the epoch deprecation warning which is produced when we |
| call `scheduler.step(epoch)` with some not `None` value of `epoch`. |
| this is deprecated, and this function will need to be removed/updated when |
| the schedulers no longer accept the parameter at all. |
| """ |
| self.assertEqual(len(w), num_warnings) |
| for warning in w: |
| self.assertEqual(len(warning.message.args), 1) |
| self.assertEqual(warning.message.args[0], EPOCH_DEPRECATION_WARNING) |
| |
| def test_error_when_getlr_has_epoch(self): |
| class MultiStepLR(torch.optim.lr_scheduler.LRScheduler): |
| def __init__(self, optimizer, gamma, milestones, last_epoch=-1): |
| self.init_lr = [group["lr"] for group in optimizer.param_groups] |
| self.gamma = gamma |
| self.milestones = milestones |
| super().__init__(optimizer, last_epoch) |
| |
| def get_lr(self, step): |
| global_step = self.last_epoch |
| gamma_power = ( |
| [0] |
| + [i + 1 for i, m in enumerate(self.milestones) if global_step >= m] |
| )[-1] |
| return [ |
| init_lr * (self.gamma**gamma_power) for init_lr in self.init_lr |
| ] |
| |
| optimizer = SGD([torch.rand(1)], lr=1) |
| |
| with self.assertRaises(TypeError): |
| scheduler = MultiStepLR(optimizer, gamma=1, milestones=[10, 20]) |
| |
| @skipIfTorchDynamo( |
| "Torchdynamo keeps references to optim in the guards and the stack of the graph break frames" |
| ) |
| def test_no_cyclic_references(self): |
| import gc |
| |
| param = Parameter(torch.empty(10)) |
| optim = SGD([param], lr=0.5) |
| scheduler = LambdaLR(optim, lambda epoch: 1.0) |
| del scheduler |
| |
| self.assertTrue( |
| len(gc.get_referrers(optim)) == 0, |
| "Optimizer should contain no cyclic references", |
| ) |
| |
| gc.collect() |
| del optim |
| self.assertEqual( |
| gc.collect(), 0, msg="Optimizer should be garbage-collected on __del__" |
| ) |
| |
| @skipIfTorchDynamo( |
| "Torchdynamo keeps references to optim in the guards and the stack of the graph break frames" |
| ) |
| def test_no_cyclic_references_in_step(self): |
| import gc |
| import weakref |
| |
| def run(): |
| param = torch.empty(10, requires_grad=True) |
| optim = SGD(params=[param], lr=0.5) |
| scheduler = LambdaLR(optim, lambda epoch: 1.0) |
| param.sum().backward() |
| optim.step() |
| scheduler.step() |
| |
| return weakref.ref(scheduler) |
| |
| # To ensure that there are no reference cycles in scheduler, |
| # we need to turn off the garbage collector. Since gc will |
| # automatically collect unreachable objects. |
| gc.disable() |
| ref = run() |
| |
| assert ref() is None |
| gc.enable() # restore |
| |
| def test_old_pattern_warning(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r"how-to-adjust-learning-rate", old_pattern) |
| |
| def test_old_pattern_warning_with_arg(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r"how-to-adjust-learning-rate", old_pattern2) |
| |
| def test_old_pattern_warning_resuming(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group["initial_lr"] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r"how-to-adjust-learning-rate", old_pattern) |
| |
| def test_old_pattern_warning_resuming_with_arg(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group["initial_lr"] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r"how-to-adjust-learning-rate", old_pattern2) |
| |
| def test_old_pattern_warning_with_overridden_optim_step(self): |
| epochs = 35 |
| for i, group in enumerate(self.opt.param_groups): |
| group["initial_lr"] = 0.01 |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| # emulate use-case with optimizer.step overridden |
| import types |
| |
| old_step = self.opt.step |
| |
| def new_step(o, *args, **kwargs): |
| retval = old_step(*args, **kwargs) |
| return retval |
| |
| self.opt.step = types.MethodType(new_step, self.opt) |
| |
| def old_pattern2(): |
| for _ in range(epochs): |
| scheduler.step() |
| self.opt.step() |
| |
| self.assertWarnsRegex(UserWarning, r"how-to-adjust-learning-rate", old_pattern2) |
| |
| def test_new_pattern_no_warning(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| for _ in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def test_new_pattern_no_warning_with_arg(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| for _ in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| def test_new_pattern_no_warning_with_overridden_optim_step(self): |
| epochs = 35 |
| with warnings.catch_warnings(record=True) as ws: |
| warnings.simplefilter("always") # allow any warning to be raised |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self.assertTrue(len(ws) == 0, "No warning should be raised") |
| |
| # emulate use-case with optimizer.step overridden |
| import types |
| |
| old_step = self.opt.step |
| |
| def new_step(o, *args, **kwargs): |
| retval = old_step(*args, **kwargs) |
| return retval |
| |
| self.opt.step = types.MethodType(new_step, self.opt) |
| |
| def new_pattern(): |
| for e in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| |
| self.assertWarnsRegex( |
| UserWarning, r"`optimizer.step\(\)` has been overridden", new_pattern |
| ) |
| |
| def _test_lr_is_constant_for_constant_epoch(self, scheduler): |
| l = [] |
| |
| for _ in range(10): |
| scheduler.optimizer.step() |
| with warnings.catch_warnings(record=True) as w: |
| scheduler.step(2) |
| self._check_warning_is_epoch_deprecation_warning(w) |
| |
| l.append(self.opt.param_groups[0]["lr"]) |
| self.assertEqual(min(l), max(l)) |
| |
| def test_step_lr_is_constant_for_constant_epoch(self): |
| scheduler = StepLR(self.opt, 2) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_exponential_lr_is_constant_for_constant_epoch(self): |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_constantlr_is_constant_for_constant_epoch(self): |
| scheduler = ConstantLR(self.opt) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_linear_linearlr_is_constant_for_constant_epoch(self): |
| scheduler = LinearLR(self.opt) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_polynomial_lr_is_constant_for_constant_epoch(self): |
| scheduler = PolynomialLR(self.opt, power=0.9) |
| self._test_lr_is_constant_for_constant_epoch(scheduler) |
| |
| def test_step_lr(self): |
| # lr = 0.05 if epoch < 3 |
| # lr = 0.005 if 30 <= epoch < 6 |
| # lr = 0.0005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test(scheduler, targets, epochs) |
| |
| def test_get_last_lr_step_lr(self): |
| from torch.nn import Parameter |
| |
| epochs = 10 |
| optimizer = SGD([Parameter(torch.randn(2, 2, requires_grad=True))], 0.1) |
| targets = [[0.1] * 3 + [0.01] * 3 + [0.001] * 3 + [0.0001]] |
| scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 3, gamma=0.1) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_get_last_lr_multi_step_lr(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if 5 <= epoch < 9 |
| # lr = 0.00005 if 9 <= epoch |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 1 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_multi_step_lr(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if epoch < 9 |
| # lr = 0.00005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test(scheduler, targets, epochs) |
| |
| def test_multi_step_lr_with_epoch(self): |
| # lr = 0.05 if epoch < 2 |
| # lr = 0.005 if 2 <= epoch < 5 |
| # lr = 0.0005 if epoch < 9 |
| # lr = 0.00005 if epoch >= 9 |
| epochs = 10 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_get_last_lr_constantlr(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_get_last_lr_linearlr(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 4 |
| end_factor = 3.0 / 5 |
| iters = 4 |
| interpolation = [ |
| start_factor + i * (end_factor - start_factor) / iters for i in range(iters) |
| ] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05 * end_factor] * ( |
| epochs - iters |
| ) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR( |
| self.opt, |
| start_factor=start_factor, |
| end_factor=end_factor, |
| total_iters=iters, |
| ) |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_constantlr(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test(scheduler, targets, epochs) |
| |
| def test_linearlr(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 2 |
| iters = 4 |
| interpolation = [ |
| start_factor + i * (1 - start_factor) / iters for i in range(iters) |
| ] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test(scheduler, targets, epochs) |
| |
| def test_linearlr_start_factor_limits1(self): |
| start_factor = 0.0 |
| iters = 4 |
| with self.assertRaises(ValueError): |
| LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| |
| def test_linearlr_start_factor_limits2(self): |
| start_factor = 1.1 |
| iters = 4 |
| with self.assertRaises(ValueError): |
| LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| |
| def test_constantlr_with_epoch(self): |
| # lr = 0.025 if epoch < 5 |
| # lr = 0.005 if 5 <= epoch |
| epochs = 10 |
| single_targets = [0.025] * 5 + [0.05] * 5 |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_linearlr_with_epoch(self): |
| # lr = 0.025 if epoch == 0 |
| # lr = 0.03125 if epoch == 1 |
| # lr = 0.0375 if epoch == 2 |
| # lr = 0.04375 if epoch == 3 |
| # lr = 0.005 if 4 <= epoch |
| epochs = 10 |
| start_factor = 1.0 / 2 |
| end_factor = 1.0 |
| iters = 4 |
| interpolation = [ |
| start_factor + i * (end_factor - start_factor) / iters for i in range(iters) |
| ] |
| single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test_with_epoch(scheduler, targets, epochs) |
| |
| def test_exp_lr(self): |
| epochs = 10 |
| single_targets = [0.05 * (0.9**x) for x in range(epochs)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test(scheduler, targets, epochs) |
| |
| def test_poly_lr(self): |
| epochs = 10 |
| power = 0.9 |
| total_iters = 5 |
| single_targets = [ |
| (1.0 - x / total_iters) ** power * 0.05 for x in range(total_iters) |
| ] + [0.0] * (epochs - total_iters) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = PolynomialLR(self.opt, power=power, total_iters=total_iters) |
| self._test(scheduler, targets, epochs) |
| |
| def test_cos_anneal_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| self._test(scheduler, targets, epochs) |
| |
| def test_closed_form_step_lr(self): |
| scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| closed_form_scheduler = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_linearlr(self): |
| scheduler = LinearLR( |
| self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4 |
| ) |
| closed_form_scheduler = LinearLR( |
| self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4 |
| ) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_constantlr(self): |
| scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4) |
| closed_form_scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_multi_step_lr(self): |
| scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| closed_form_scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_exp_lr(self): |
| scheduler = ExponentialLR(self.opt, gamma=0.9) |
| closed_form_scheduler = ExponentialLR(self.opt, gamma=0.9) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_poly_lr(self): |
| scheduler = PolynomialLR(self.opt, power=0.9) |
| closed_form_scheduler = PolynomialLR(self.opt, power=0.9) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, 20) |
| |
| def test_closed_form_cos_anneal_lr(self): |
| eta_min = 1e-10 |
| epochs = 20 |
| T_max = 5 |
| scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) |
| closed_form_scheduler = CosineAnnealingLR( |
| self.opt, T_max=T_max, eta_min=eta_min |
| ) |
| self._test_against_closed_form(scheduler, closed_form_scheduler, epochs) |
| |
| def test_cos_anneal_lr_continue(self): |
| eta_min = 0.1 |
| T_max = 5 |
| scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min) |
| self.opt.step() |
| scheduler.step() |
| original_lrs = scheduler._last_lr |
| new_scheduler = CosineAnnealingLR( |
| self.opt, T_max=T_max, eta_min=eta_min, last_epoch=0 |
| ) |
| new_lrs = new_scheduler._last_lr |
| torch.testing.assert_close(original_lrs, new_lrs, rtol=1e-4, atol=1e-5) |
| |
| def test_reduce_lr_on_plateau1(self): |
| epochs = 10 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [10 - i * 0.0167 for i in range(20)] |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| threshold_mode="abs", |
| mode="min", |
| threshold=0.01, |
| patience=5, |
| cooldown=5, |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau2(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2] |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| patience=5, |
| cooldown=0, |
| threshold_mode="abs", |
| mode="min", |
| threshold=0.1, |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau3(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [-0.8] * 2 + [-0.234] * 20 |
| scheduler = ReduceLROnPlateau( |
| self.opt, mode="max", patience=5, cooldown=5, threshold_mode="abs" |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau4(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [1.5 * (1.025**i) for i in range(20)] # 1.025 > 1.1**0.25 |
| scheduler = ReduceLROnPlateau( |
| self.opt, mode="max", patience=3, threshold_mode="rel", threshold=0.1 |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau5(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [1.5 * (1.005**i) for i in range(20)] |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| mode="max", |
| threshold_mode="rel", |
| threshold=0.1, |
| patience=5, |
| cooldown=5, |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau6(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 20] |
| metrics = [1.5 * (0.85**i) for i in range(20)] |
| scheduler = ReduceLROnPlateau( |
| self.opt, mode="min", threshold_mode="rel", threshold=0.1 |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau7(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4] |
| metrics = [1] * 7 + [0.6] + [0.5] * 12 |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| mode="min", |
| threshold_mode="rel", |
| threshold=0.1, |
| patience=5, |
| cooldown=5, |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau8(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14] |
| metrics = [1.5 * (1.005**i) for i in range(20)] |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| mode="max", |
| threshold_mode="rel", |
| min_lr=[0.4, 0.3], |
| threshold=0.1, |
| patience=5, |
| cooldown=5, |
| ) |
| self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs) |
| |
| def test_reduce_lr_on_plateau_get_last_lr_before_step(self): |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| scheduler = ReduceLROnPlateau( |
| self.opt, |
| ) |
| self.assertEqual( |
| scheduler.get_last_lr(), [0.5 for param_group in self.opt.param_groups] |
| ) |
| |
| def test_sequentiallr1(self): |
| epochs = 19 |
| schedulers = [None] * 2 |
| targets = [ |
| [0.05, 0.04, 0.032] |
| + [0.05 for x in range(4)] |
| + [0.05 * 0.1 for x in range(4)] |
| + [0.05 * 0.01 for x in range(4)] |
| + [0.05 * 0.001 for x in range(4)] |
| ] |
| milestones = [3] |
| schedulers[0] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=4) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr2(self): |
| epochs = 13 |
| schedulers = [None] * 2 |
| targets = [[0.005, 0.005, 0.005] + [0.05 * 0.9**x for x in range(10)]] |
| milestones = [3] |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr3(self): |
| epochs = 12 |
| schedulers = [None] * 3 |
| targets = [ |
| [0.005, 0.005, 0.005] |
| + [0.05, 0.04, 0.032] |
| + [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005] |
| ] |
| milestones = [3, 6] |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| self._test(scheduler, targets, epochs) |
| |
| def test_sequentiallr4(self): |
| optimizer = SGD([torch.tensor(0.5)], lr=0.1) |
| prev_lr = optimizer.param_groups[0]["lr"] |
| |
| schedulers = [ |
| torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1), |
| torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.1), |
| ] |
| scheduler = torch.optim.lr_scheduler.SequentialLR( |
| optimizer, schedulers, milestones=[10] |
| ) |
| |
| new_lr = optimizer.param_groups[0]["lr"] |
| |
| # Ensure that multiple schedulers does not affect the initial learning rate |
| self.assertEqual(prev_lr, new_lr) |
| |
| def test_get_last_lr_sequentiallr(self): |
| epochs = 12 |
| milestones = [3, 6] |
| schedulers = [None] * 3 |
| schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.8) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2) |
| scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones) |
| constant_lr_target = [0.005] * 3 |
| exponential_lr_target = [0.05, 0.04, 0.032] |
| step_lr_target = [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005] |
| single_targets = constant_lr_target + exponential_lr_target + step_lr_target |
| targets = [single_targets, [x * 10 for x in single_targets]] |
| self._test_get_last_lr(scheduler, targets, epochs) |
| |
| def test_chained_lr2_get_last_lr_before_step(self): |
| schedulers = [ |
| LinearLR(self.opt, start_factor=0.4, total_iters=3), |
| MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1), |
| ] |
| scheduler = ChainedScheduler(schedulers) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr1(self): |
| epochs = 10 |
| schedulers = [None] * 1 |
| targets = [[0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr2(self): |
| epochs = 10 |
| schedulers = [None] * 1 |
| targets = [[0.02, 0.03, 0.04] + [0.05] * 9] |
| schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr3(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| targets = [ |
| [0.02, 0.03, 0.04, 0.05] + [0.005] * 4 + [0.0005] * 3 + [0.00005] * 3 |
| ] |
| schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3) |
| schedulers[1] = MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr4(self): |
| epochs = 9 |
| schedulers = [None] * 3 |
| targets = [ |
| [0.05 * 0.2 * 0.9**x for x in range(3)] |
| + [0.05 * 0.2 * 0.9**3 * 0.1] |
| + [0.05 * 0.9**x * 0.1 for x in range(4, 6)] |
| + [0.05 * 0.9**x * 0.01 for x in range(6, 9)] |
| ] |
| schedulers[0] = ExponentialLR(self.opt, gamma=0.9) |
| schedulers[1] = ConstantLR(self.opt, factor=0.2, total_iters=4) |
| schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=3) |
| scheduler = ChainedScheduler(schedulers) |
| self._test([scheduler], targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_chained_lr5(self): |
| def poly_lr(lr: float): |
| return [ |
| (lr * ((1.0 - x / total_iters) ** power)) for x in range(total_iters) |
| ] + [0.0] * (epochs - total_iters) |
| |
| schedulers = [None] * 2 |
| epochs = 10 |
| power = 0.9 |
| total_iters = 5 |
| const_factor = 0.1 |
| single_targets = [x * const_factor for x in poly_lr(lr=0.05)] |
| targets = [single_targets, [x * const_factor for x in poly_lr(0.5)]] |
| schedulers[0] = PolynomialLR(self.opt, power=power, total_iters=total_iters) |
| schedulers[1] = ConstantLR(self.opt, factor=const_factor) |
| scheduler = ChainedScheduler(schedulers) |
| self._test(scheduler, targets, epochs) |
| self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr()) |
| |
| def test_compound_step_and_multistep_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| targets = [[0.05] * 2 + [0.005] * 1 + [5e-4] * 2 + [5e-5] + [5e-6] * 3 + [5e-8]] |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_step_and_exp_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9**x) for x in range(3)] |
| single_targets += [0.005 * (0.9**x) for x in range(3, 6)] |
| single_targets += [0.0005 * (0.9**x) for x in range(6, 9)] |
| single_targets += [0.00005 * (0.9**x) for x in range(9, 12)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_exp_and_multistep_lr(self): |
| epochs = 10 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9**x) for x in range(2)] |
| single_targets += [0.005 * (0.9**x) for x in range(2, 5)] |
| single_targets += [0.0005 * (0.9**x) for x in range(5, 9)] |
| single_targets += [0.00005 * (0.9**x) for x in range(9, 11)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_exp_and_linearlr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| end_factor = 0.9 |
| schedulers = [None] * 2 |
| single_targets = [0.05 * (0.9**x) for x in range(11)] |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (end_factor - start_factor) |
| for i in range(iters, 11): |
| single_targets[i] *= end_factor |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = LinearLR( |
| self.opt, |
| start_factor=start_factor, |
| end_factor=end_factor, |
| total_iters=iters, |
| ) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.9) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_step_and_constantlr(self): |
| epochs = 10 |
| iters = 4 |
| factor = 0.4 |
| schedulers = [None] * 2 |
| single_targets = ( |
| [0.05 * 0.4] * 3 |
| + [0.005 * 0.4] |
| + [0.005] * 2 |
| + [0.0005] * 3 |
| + [0.00005] * 3 |
| ) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3) |
| schedulers[1] = ConstantLR(self.opt, factor=0.4, total_iters=4) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_linearlr_and_multistep_lr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| schedulers = [None] * 2 |
| single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 2 |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (1 - start_factor) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_step_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| single_targets = [x * 0.1 ** (i // 3) for i, x in enumerate(single_targets)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_multistep_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| multipliers = [1] * 2 + [0.1] * 3 + [0.01] * 4 + [0.001] |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_linearlr(self): |
| epochs = 10 |
| iters = 4 |
| start_factor = 0.4 |
| eta_min = 1e-10 |
| schedulers = [None] * 2 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| for i in range(iters): |
| single_targets[i] *= start_factor + i / iters * (1 - start_factor) |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers[0] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| schedulers[1] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_cosanneal_and_exp_lr(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| multipliers = [0.1**i for i in range(epochs)] |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets, [x * epochs for x in single_targets]] |
| schedulers = [None] * 2 |
| schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.1) |
| self._test(schedulers, targets, epochs) |
| |
| def test_compound_reduce_lr_on_plateau1(self): |
| epochs = 10 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| single_targets = [0.5] * 20 |
| multipliers = [0.1 ** (i // 3) for i in range(20)] |
| single_targets = [x * y for x, y in zip(multipliers, single_targets)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0167 for i in range(20)] |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau( |
| self.opt, |
| threshold_mode="abs", |
| mode="min", |
| threshold=0.01, |
| patience=5, |
| cooldown=5, |
| ) |
| schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau2(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2 |
| multipliers = [1] * 3 + [0.1] * 5 + [0.01] * 4 + [0.001] * 10 |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| schedulers = [None] * 2 |
| schedulers[0] = ReduceLROnPlateau( |
| self.opt, |
| patience=5, |
| cooldown=0, |
| threshold_mode="abs", |
| mode="min", |
| threshold=0.1, |
| ) |
| schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[3, 8, 12]) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau3(self): |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| single_targets = [0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4 |
| multipliers = [0.1**i for i in range(epochs)] |
| single_targets = [x * y for x, y in zip(multipliers, single_targets)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [-0.8] * 2 + [-0.234] * 20 |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau( |
| self.opt, mode="max", patience=5, cooldown=5, threshold_mode="abs" |
| ) |
| schedulers[1] = ExponentialLR(self.opt, gamma=0.1) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau4(self): |
| epochs = 20 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.05 |
| epochs = 10 |
| eta_min = 1e-10 |
| single_targets = [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * x / epochs)) / 2 |
| for x in range(epochs) |
| ] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [1.5 * (1.025**i) for i in range(20)] # 1.025 > 1.1**0.25 |
| schedulers = [None, None] |
| schedulers[0] = ReduceLROnPlateau( |
| self.opt, mode="max", patience=3, threshold_mode="rel", threshold=0.1 |
| ) |
| schedulers[1] = CosineAnnealingLR(self.opt, epochs, eta_min) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_compound_reduce_lr_on_plateau5(self): |
| iters = 4 |
| start_factor = 0.4 |
| epochs = 22 |
| for param_group in self.opt.param_groups: |
| param_group["lr"] = 0.5 |
| single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2 |
| multipliers = [1] * 22 |
| for i in range(iters): |
| multipliers[i] *= start_factor + i / iters * (1 - start_factor) |
| single_targets = [x * y for x, y in zip(single_targets, multipliers)] |
| targets = [single_targets] |
| targets = targets[1:] # test runs step before checking lr |
| metrics = [10 - i * 0.0165 for i in range(22)] |
| schedulers = [None] * 2 |
| schedulers[0] = ReduceLROnPlateau( |
| self.opt, |
| patience=5, |
| cooldown=0, |
| threshold_mode="abs", |
| mode="min", |
| threshold=0.1, |
| ) |
| schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters) |
| self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs) |
| |
| def test_cycle_lr_invalid_mode(self): |
| with self.assertRaises(ValueError): |
| scheduler = CyclicLR(self.opt, base_lr=0, max_lr=0, mode="CATS") |
| |
| def test_cycle_lr_triangular_mode_one_lr(self): |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| momentum_target = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=1, |
| max_lr=5, |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=1, |
| max_momentum=5, |
| mode="triangular", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular_mode_one_lr_no_momentum(self): |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [self.opt.defaults["momentum"]] * len(lr_target) |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=1, |
| max_lr=5, |
| step_size_up=4, |
| cycle_momentum=False, |
| mode="triangular", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular2_mode_one_lr(self): |
| lr_target = [ |
| 1, |
| 2, |
| 3, |
| 4, |
| 5, |
| 4, |
| 3, |
| 2, |
| 1, |
| 1.5, |
| 2.0, |
| 2.5, |
| 3.0, |
| 2.5, |
| 2.0, |
| 1.5, |
| 1, |
| 1.25, |
| 1.50, |
| 1.75, |
| 2.00, |
| 1.75, |
| ] |
| momentum_target = [ |
| 5.0, |
| 4.0, |
| 3.0, |
| 2.0, |
| 1.0, |
| 2.0, |
| 3.0, |
| 4.0, |
| 5.0, |
| 4.5, |
| 4.0, |
| 3.5, |
| 3.0, |
| 3.5, |
| 4.0, |
| 4.5, |
| 5.0, |
| 4.75, |
| 4.5, |
| 4.25, |
| 4.0, |
| 4.25, |
| ] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=1, |
| max_lr=5, |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=1, |
| max_momentum=5, |
| mode="triangular2", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_exp_range_mode_one_lr(self): |
| base_lr, max_lr = 1, 5 |
| diff_lr = max_lr - base_lr |
| gamma = 0.9 |
| xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] |
| lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=base_lr, |
| max_lr=max_lr, |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=base_lr, |
| max_momentum=max_lr, |
| mode="exp_range", |
| gamma=gamma, |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular_mode(self): |
| lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_target_2 = [x + 1 for x in lr_target_1] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3] |
| momentum_target_2 = [x + 1 for x in momentum_target_1] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=[1, 2], |
| max_lr=[5, 6], |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=[1, 2], |
| max_momentum=[5, 6], |
| mode="triangular", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_triangular2_mode(self): |
| lr_target_1 = [ |
| 1, |
| 2, |
| 3, |
| 4, |
| 5, |
| 4, |
| 3, |
| 2, |
| 1, |
| 1.5, |
| 2.0, |
| 2.5, |
| 3.0, |
| 2.5, |
| 2.0, |
| 1.5, |
| 1, |
| 1.25, |
| 1.50, |
| 1.75, |
| 2.00, |
| 1.75, |
| ] |
| lr_target_2 = [x + 2 for x in lr_target_1] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [ |
| 5.0, |
| 4.0, |
| 3.0, |
| 2.0, |
| 1.0, |
| 2.0, |
| 3.0, |
| 4.0, |
| 5.0, |
| 4.5, |
| 4.0, |
| 3.5, |
| 3.0, |
| 3.5, |
| 4.0, |
| 4.5, |
| 5.0, |
| 4.75, |
| 4.5, |
| 4.25, |
| 4.0, |
| 4.25, |
| ] |
| momentum_target_2 = [x + 2 for x in momentum_target_1] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=[1, 3], |
| max_lr=[5, 7], |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=[1, 3], |
| max_momentum=[5, 7], |
| mode="triangular2", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_exp_range_mode(self): |
| base_lr_1, max_lr_1 = 1, 5 |
| base_lr_2, max_lr_2 = 5, 12 |
| |
| diff_lr_1 = max_lr_1 - base_lr_1 |
| diff_lr_2 = max_lr_2 - base_lr_2 |
| |
| gamma = 0.9 |
| xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1] |
| lr_target_1 = [base_lr_1 + x * diff_lr_1 * gamma**i for i, x in enumerate(xs)] |
| lr_target_2 = [base_lr_2 + x * diff_lr_2 * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target_1, lr_target_2] |
| momentum_target_1 = [ |
| max_lr_1 - x * diff_lr_1 * gamma**i for i, x in enumerate(xs) |
| ] |
| momentum_target_2 = [ |
| max_lr_2 - x * diff_lr_2 * gamma**i for i, x in enumerate(xs) |
| ] |
| momentum_targets = [momentum_target_1, momentum_target_2] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=[base_lr_1, base_lr_2], |
| max_lr=[max_lr_1, max_lr_2], |
| step_size_up=4, |
| cycle_momentum=True, |
| base_momentum=[base_lr_1, base_lr_2], |
| max_momentum=[max_lr_1, max_lr_2], |
| mode="exp_range", |
| gamma=gamma, |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1)) |
| |
| def test_cycle_lr_triangular_mode_step_size_up_down(self): |
| lr_target = [ |
| 1.0, |
| 2.0, |
| 3.0, |
| 4.0, |
| 5.0, |
| 13.0 / 3, |
| 11.0 / 3, |
| 9.0 / 3, |
| 7.0 / 3, |
| 5.0 / 3, |
| 1.0, |
| ] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [ |
| 5.0, |
| 4.0, |
| 3.0, |
| 2.0, |
| 1.0, |
| 5.0 / 3, |
| 7.0 / 3, |
| 3.0, |
| 11.0 / 3, |
| 13.0 / 3, |
| 5.0, |
| ] |
| momentum_targets = [momentum_target, momentum_target] |
| |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=1, |
| max_lr=5, |
| step_size_up=4, |
| step_size_down=6, |
| cycle_momentum=True, |
| base_momentum=1, |
| max_momentum=5, |
| mode="triangular", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_triangular2_mode_step_size_up_down(self): |
| lr_base_target = [ |
| 1.0, |
| 3.0, |
| 5.0, |
| 13.0 / 3, |
| 11.0 / 3, |
| 9.0 / 3, |
| 7.0 / 3, |
| 5.0 / 3, |
| 1.0, |
| 2.0, |
| 3.0, |
| 8.0 / 3, |
| 7.0 / 3, |
| 6.0 / 3, |
| 5.0 / 3, |
| 4.0 / 3, |
| 1.0, |
| 3.0 / 2, |
| 2.0, |
| 11.0 / 6, |
| 10.0 / 6, |
| 9.0 / 6, |
| 8.0 / 6, |
| 7.0 / 6, |
| ] |
| momentum_base_target = [ |
| 5.0, |
| 3.0, |
| 1.0, |
| 5.0 / 3, |
| 7.0 / 3, |
| 3.0, |
| 11.0 / 3, |
| 13.0 / 3, |
| 5.0, |
| 4.0, |
| 3.0, |
| 10.0 / 3, |
| 11.0 / 3, |
| 4.0, |
| 13.0 / 3, |
| 14.0 / 3, |
| 5.0, |
| 4.5, |
| 4.0, |
| 25.0 / 6, |
| 13.0 / 3, |
| 4.5, |
| 14.0 / 3, |
| 29.0 / 6, |
| ] |
| deltas = [2 * i for i in range(0, 2)] |
| base_lrs = [1 + delta for delta in deltas] |
| max_lrs = [5 + delta for delta in deltas] |
| lr_targets = [[x + delta for x in lr_base_target] for delta in deltas] |
| momentum_targets = [ |
| [x + delta for x in momentum_base_target] for delta in deltas |
| ] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=base_lrs, |
| max_lr=max_lrs, |
| step_size_up=2, |
| step_size_down=6, |
| cycle_momentum=True, |
| base_momentum=base_lrs, |
| max_momentum=max_lrs, |
| mode="triangular2", |
| ) |
| self._test_cycle_lr( |
| scheduler, lr_targets, momentum_targets, len(lr_base_target) |
| ) |
| |
| def test_cycle_lr_exp_range_mode_step_size_up_down(self): |
| base_lr, max_lr = 1, 5 |
| diff_lr = max_lr - base_lr |
| gamma = 0.9 |
| xs = [ |
| 0.0, |
| 0.5, |
| 1.0, |
| 5.0 / 6, |
| 4.0 / 6, |
| 3.0 / 6, |
| 2.0 / 6, |
| 1.0 / 6, |
| 0.0, |
| 0.5, |
| 1.0, |
| 5.0 / 6, |
| 4.0 / 6, |
| ] |
| lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=base_lr, |
| max_lr=max_lr, |
| step_size_up=2, |
| step_size_down=6, |
| cycle_momentum=True, |
| base_momentum=base_lr, |
| max_momentum=max_lr, |
| mode="exp_range", |
| gamma=gamma, |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| def test_cycle_lr_with_momentumless_optimizer(self): |
| # Note [Temporarily set optimizer to Adam] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # The TestLRScheduler object carries around an SGD optimizer to avoid having to |
| # instantiate one for every test. This gets in the way for our very specific case |
| # in which we need to use Adam (or really any optimizer that doesn't use momentum) |
| # in order to test that the momentum bug in CyclicLR is fixed (the bug is described |
| # in more detail in https://github.com/pytorch/pytorch/issues/19003 ). |
| old_opt = self.opt |
| self.opt = Adam( |
| [ |
| {"params": self.net.conv1.parameters()}, |
| {"params": self.net.conv2.parameters(), "lr": 0.5}, |
| ], |
| lr=0.05, |
| ) |
| |
| lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3] |
| lr_targets = [lr_target, lr_target] |
| momentum_target = [None] * len(lr_target) |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = CyclicLR( |
| self.opt, |
| base_lr=1, |
| max_lr=5, |
| step_size_up=4, |
| cycle_momentum=False, |
| mode="triangular", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target)) |
| |
| self.opt = old_opt # set optimizer back to SGD |
| |
| def test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer(self): |
| with self.assertRaises(ValueError): |
| rprop_opt = Rprop(self.net.parameters()) |
| scheduler = CyclicLR(rprop_opt, base_lr=1, max_lr=5, cycle_momentum=True) |
| |
| def test_cycle_lr_cycle_momentum_with_beta1_optimizer(self): |
| adam_opt = Adam(self.net.parameters()) |
| scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=True) |
| |
| def test_cycle_lr_removed_after_out_of_scope(self): |
| import gc |
| import weakref |
| |
| gc.disable() |
| |
| def test(): |
| adam_opt = Adam(self.net.parameters()) |
| scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) |
| return weakref.ref(scheduler) |
| |
| ref = test() |
| assert ref() is None |
| gc.enable() |
| |
| def test_cycle_lr_state_dict_picklable(self): |
| adam_opt = Adam(self.net.parameters()) |
| |
| # Case 1: Built-in mode |
| scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False) |
| self.assertIsInstance(scheduler._scale_fn_ref, types.FunctionType) |
| state = scheduler.state_dict() |
| self.assertNotIn("_scale_fn_ref", state) |
| self.assertIs(state["_scale_fn_custom"], None) |
| pickle.dumps(state) |
| |
| # Case 2: Custom `scale_fn`, a function object |
| def scale_fn(_): |
| return 0.5 |
| |
| scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn |
| ) |
| state = scheduler.state_dict() |
| self.assertNotIn("_scale_fn_ref", state) |
| self.assertIs(state["_scale_fn_custom"], None) |
| pickle.dumps(state) |
| |
| # Case 3: Custom `scale_fn`, a callable class |
| class ScaleFn: |
| def __init__(self) -> None: |
| self.x = 0.5 |
| |
| def __call__(self, _): |
| return self.x |
| |
| scale_fn = ScaleFn() |
| |
| scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn |
| ) |
| state = scheduler.state_dict() |
| self.assertNotIn("_scale_fn_ref", state) |
| self.assertEqual(state["_scale_fn_custom"], scale_fn.__dict__) |
| pickle.dumps(state) |
| |
| def test_cycle_lr_scale_fn_restored_from_state_dict(self): |
| adam_opt = Adam(self.net.parameters()) |
| |
| # Case 1: Built-in mode |
| scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, mode="triangular2" |
| ) |
| restored_scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False |
| ) |
| restored_scheduler.load_state_dict(scheduler.state_dict()) |
| self.assertTrue(restored_scheduler.mode == scheduler.mode == "triangular2") |
| self.assertIsNotNone(restored_scheduler._scale_fn_ref) and self.assertIsNotNone( |
| scheduler._scale_fn_ref |
| ) |
| self.assertIs(restored_scheduler._scale_fn_custom, None) |
| self.assertIs(scheduler._scale_fn_custom, None) |
| |
| # Case 2: Custom `scale_fn` |
| def scale_fn(_): |
| return 0.5 |
| |
| scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn |
| ) |
| restored_scheduler = CyclicLR( |
| adam_opt, base_lr=1, max_lr=5, cycle_momentum=False, scale_fn=scale_fn |
| ) |
| restored_scheduler.load_state_dict(scheduler.state_dict()) |
| self.assertIs(scheduler._scale_fn_custom, scale_fn) |
| self.assertIs(restored_scheduler._scale_fn_custom, scale_fn) |
| |
| def test_onecycle_lr_invalid_anneal_strategy(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR( |
| self.opt, max_lr=1e-3, total_steps=10, anneal_strategy="CATS" |
| ) |
| |
| def test_onecycle_lr_invalid_pct_start(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, pct_start=1.1) |
| |
| def test_onecycle_lr_cannot_calculate_total_steps(self): |
| with self.assertRaises(ValueError): |
| scheduler = OneCycleLR(self.opt, max_lr=1e-3) |
| |
| def test_onecycle_lr_linear_annealing(self): |
| lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] |
| momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR( |
| self.opt, |
| max_lr=25, |
| final_div_factor=2, |
| base_momentum=1, |
| max_momentum=22, |
| total_steps=10, |
| anneal_strategy="linear", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_onecycle_lr_linear_annealing_three_phases(self): |
| lr_target = [1, 9, 17, 25, 17, 9, 1, 0.75, 0.5, 0.25] |
| momentum_target = [22, 15, 8, 1, 8, 15, 22, 22, 22, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR( |
| self.opt, |
| max_lr=25, |
| div_factor=25, |
| base_momentum=1, |
| max_momentum=22, |
| total_steps=10, |
| anneal_strategy="linear", |
| pct_start=0.4, |
| final_div_factor=4, |
| three_phase=True, |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_onecycle_lr_cosine_annealing(self): |
| def annealing_cos(start, end, pct): |
| cos_out = math.cos(math.pi * pct) + 1 |
| return end + (start - end) / 2.0 * cos_out |
| |
| lr_target = [ |
| 1, |
| 13, |
| 25, |
| annealing_cos(25, 0.5, 1 / 7.0), |
| annealing_cos(25, 0.5, 2 / 7.0), |
| annealing_cos(25, 0.5, 3 / 7.0), |
| annealing_cos(25, 0.5, 4 / 7.0), |
| annealing_cos(25, 0.5, 5 / 7.0), |
| annealing_cos(25, 0.5, 6 / 7.0), |
| 0.5, |
| ] |
| momentum_target = [ |
| 22, |
| 11.5, |
| 1, |
| annealing_cos(1, 22, 1 / 7.0), |
| annealing_cos(1, 22, 2 / 7.0), |
| annealing_cos(1, 22, 3 / 7.0), |
| annealing_cos(1, 22, 4 / 7.0), |
| annealing_cos(1, 22, 5 / 7.0), |
| annealing_cos(1, 22, 6 / 7.0), |
| 22, |
| ] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR( |
| self.opt, |
| max_lr=25, |
| final_div_factor=2, |
| base_momentum=1, |
| max_momentum=22, |
| total_steps=10, |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_onecycle_lr_legacy_state_dict(self): |
| scheduler = OneCycleLR( |
| self.opt, |
| max_lr=25, |
| final_div_factor=2, |
| base_momentum=1, |
| max_momentum=22, |
| total_steps=10, |
| anneal_strategy="cos", |
| ) |
| delattr(scheduler, "_anneal_func_type") |
| state_dict = scheduler.state_dict() |
| self.assertNotIn("anneal_func_type", state_dict) |
| state_dict["anneal_func"] = OneCycleLR._annealing_cos |
| scheduler.load_state_dict(state_dict) |
| |
| def annealing_cos(start, end, pct): |
| cos_out = math.cos(math.pi * pct) + 1 |
| return end + (start - end) / 2.0 * cos_out |
| |
| lr_target = [ |
| 1, |
| 13, |
| 25, |
| annealing_cos(25, 0.5, 1 / 7.0), |
| annealing_cos(25, 0.5, 2 / 7.0), |
| annealing_cos(25, 0.5, 3 / 7.0), |
| annealing_cos(25, 0.5, 4 / 7.0), |
| annealing_cos(25, 0.5, 5 / 7.0), |
| annealing_cos(25, 0.5, 6 / 7.0), |
| 0.5, |
| ] |
| momentum_target = [ |
| 22, |
| 11.5, |
| 1, |
| annealing_cos(1, 22, 1 / 7.0), |
| annealing_cos(1, 22, 2 / 7.0), |
| annealing_cos(1, 22, 3 / 7.0), |
| annealing_cos(1, 22, 4 / 7.0), |
| annealing_cos(1, 22, 5 / 7.0), |
| annealing_cos(1, 22, 6 / 7.0), |
| 22, |
| ] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10) |
| |
| def test_cycle_lr_with_adam(self): |
| old_opt = self.opt |
| self.opt = Adam( |
| [ |
| {"params": self.net.conv1.parameters()}, |
| {"params": self.net.conv2.parameters(), "lr": 0.5}, |
| ], |
| lr=0.05, |
| ) |
| |
| lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5] |
| momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22] |
| lr_targets = [lr_target, lr_target] |
| momentum_targets = [momentum_target, momentum_target] |
| scheduler = OneCycleLR( |
| self.opt, |
| max_lr=25, |
| final_div_factor=2, |
| base_momentum=1, |
| max_momentum=22, |
| total_steps=10, |
| anneal_strategy="linear", |
| ) |
| self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10, use_beta1=True) |
| self.opt = old_opt # set optimizer back to SGD |
| |
| def test_lambda_lr(self): |
| epochs = 10 |
| self.opt.param_groups[0]["lr"] = 0.05 |
| self.opt.param_groups[1]["lr"] = 0.4 |
| targets = [ |
| [0.05 * (0.9**x) for x in range(epochs)], |
| [0.4 * (0.8**x) for x in range(epochs)], |
| ] |
| scheduler = LambdaLR( |
| self.opt, lr_lambda=[lambda x1: 0.9**x1, lambda x2: 0.8**x2] |
| ) |
| self._test(scheduler, targets, epochs) |
| |
| def test_multiplicative_lr(self): |
| epochs = 10 |
| self.opt.param_groups[0]["lr"] = 0.05 |
| self.opt.param_groups[1]["lr"] = 0.4 |
| targets = [ |
| [0.05 * (0.9**x) for x in range(epochs)], |
| [0.4 * (0.8**x) for x in range(epochs)], |
| ] |
| scheduler = MultiplicativeLR( |
| self.opt, lr_lambda=[lambda x1: 0.9, lambda x2: 0.8] |
| ) |
| self._test(scheduler, targets, epochs) |
| |
| @parametrize("T_mult", [1, 2, 4]) |
| def test_CosineAnnealingWarmRestarts_lr1(self, T_mult): |
| iters = 100 |
| eta_min = 1e-10 |
| T_i = 10 |
| T_cur = 0 |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts( |
| self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min |
| ) |
| for _ in range(1, iters, 1): |
| T_cur += 1 |
| if T_cur >= T_i: |
| T_cur = T_cur - T_i |
| T_i = int(T_mult) * T_i |
| targets[0] += [ |
| eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| targets[1] += [ |
| eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| self._test(scheduler, targets, iters) |
| |
| def test_CosineAnnealingWarmRestarts_lr2(self): |
| iters = 30 |
| eta_min = 1e-10 |
| T_mults = [1, 2, 4] |
| for T_mult in T_mults: |
| T_i = 10 |
| T_cur = 0 |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts( |
| self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min |
| ) |
| for _ in torch.arange(0.1, iters, 0.1): |
| T_cur = round(T_cur + 0.1, 1) |
| if T_cur >= T_i: |
| T_cur = T_cur - T_i |
| T_i = int(T_mult) * T_i |
| targets[0] += [ |
| eta_min |
| + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| targets[1] += [ |
| eta_min |
| + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| self._test_CosineAnnealingWarmRestarts(scheduler, targets, iters) |
| |
| def test_CosineAnnealingWarmRestarts_lr3(self): |
| epochs_for_T_mults = [ |
| [0, 1, 2, 3, 4, 5, 12, 27, 3, 4, 5, 6, 13], |
| [0, 1, 2, 3, 4, 5, 25, 32, 33, 34, 80, 81, 3], |
| [0, 0.1, 0.2, 0.3, 1.3, 2.3, 17.5, 18.5, 19.5, 29.5, 30.5, 31.5, 50], |
| ] |
| T_curs_for_T_mults = [ |
| [1, 2, 3, 4, 5, 2, 7, 3, 4, 5, 6, 3], |
| [1, 2, 3, 4, 5, 15, 2, 3, 4, 10, 11, 3], |
| [0.1, 0.2, 0.3, 1.3, 2.3, 7.5, 8.5, 9.5, 19.5, 20.5, 21.5, 10], |
| ] |
| T_is_for_T_mults = [ |
| [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10], |
| [10, 10, 10, 10, 10, 20, 40, 40, 40, 80, 80, 10], |
| [10, 10, 10, 10, 10, 30, 30, 30, 30, 30, 30, 90], |
| ] |
| eta_min = 1e-10 |
| T_mults = [1, 2, 3] |
| for epochs, T_mult, T_curs, T_is in zip( |
| epochs_for_T_mults, T_mults, T_curs_for_T_mults, T_is_for_T_mults |
| ): |
| targets = [[0.05], [0.5]] |
| scheduler = CosineAnnealingWarmRestarts( |
| self.opt, T_0=10, T_mult=T_mult, eta_min=eta_min |
| ) |
| for T_cur, T_i in zip(T_curs, T_is): |
| targets[0] += [ |
| eta_min |
| + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| targets[1] += [ |
| eta_min |
| + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2 |
| ] |
| self._test_interleaved_CosineAnnealingWarmRestarts( |
| scheduler, targets, epochs |
| ) |
| |
| def test_swalr_no_anneal(self): |
| epochs, swa_start, swa_lr = 10, 5, 0.01 |
| initial_lrs = [group["lr"] for group in self.opt.param_groups] |
| targets = [ |
| [lr] * (swa_start + 1) + [swa_lr] * (epochs - swa_start - 1) |
| for lr in initial_lrs |
| ] |
| swa_scheduler = SWALR(self.opt, anneal_epochs=1, swa_lr=swa_lr) |
| self._test_swalr(swa_scheduler, None, targets, swa_start, epochs) |
| |
| def test_swalr_cosine_anneal_after_multiplicative(self): |
| # same swa_lr for different param_groups |
| epochs, swa_start, swa_lr, anneal_epochs = 15, 5, 0.01, 5 |
| mult_factor = 0.9 |
| scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) |
| swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, swa_lr=swa_lr) |
| |
| def anneal_coef(t): |
| if t + 1 >= anneal_epochs: |
| return 0.0 |
| return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2 |
| |
| initial_lrs = [group["lr"] for group in self.opt.param_groups] |
| targets_before_swa = [ |
| [lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs |
| ] |
| swa_epochs = epochs - swa_start - 1 |
| targets = [ |
| lrs |
| + [ |
| lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) |
| for t in range(swa_epochs) |
| ] |
| for lrs in targets_before_swa |
| ] |
| |
| self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) |
| |
| def test_swalr_linear_anneal_after_multiplicative(self): |
| # separate swa_lr for different param_groups |
| epochs, swa_start, swa_lrs, anneal_epochs = 15, 5, [0.01, 0.02], 4 |
| mult_factor = 0.9 |
| scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor) |
| swa_scheduler = SWALR( |
| self.opt, |
| anneal_epochs=anneal_epochs, |
| anneal_strategy="linear", |
| swa_lr=swa_lrs, |
| ) |
| |
| def anneal_coef(t): |
| if t + 1 >= anneal_epochs: |
| return 0.0 |
| return 1 - (t + 1) / anneal_epochs |
| |
| initial_lrs = [group["lr"] for group in self.opt.param_groups] |
| targets_before_swa = [ |
| [lr * mult_factor**i for i in range(swa_start + 1)] for lr in initial_lrs |
| ] |
| swa_epochs = epochs - swa_start - 1 |
| targets = [ |
| lrs |
| + [ |
| lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) |
| for t in range(swa_epochs) |
| ] |
| for lrs, swa_lr in zip(targets_before_swa, swa_lrs) |
| ] |
| |
| self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs) |
| |
| def _test_swalr(self, swa_scheduler, scheduler, targets, swa_start, epochs): |
| for epoch in range(epochs): |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[epoch], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[epoch], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| if epoch >= swa_start: |
| self.opt.step() |
| swa_scheduler.step() |
| elif scheduler is not None: |
| self.opt.step() |
| scheduler.step() |
| |
| def test_swalr_hypers(self): |
| # Test that SWALR raises errors for incorrect hyper-parameters |
| with self.assertRaisesRegex(ValueError, "anneal_strategy must"): |
| swa_scheduler = SWALR(self.opt, anneal_strategy="exponential", swa_lr=1.0) |
| |
| with self.assertRaisesRegex(ValueError, "anneal_epochs must"): |
| swa_scheduler = SWALR(self.opt, anneal_epochs=-1, swa_lr=1.0) |
| with self.assertRaisesRegex(ValueError, "anneal_epochs must"): |
| swa_scheduler = SWALR(self.opt, anneal_epochs=1.7, swa_lr=1.0) |
| with self.assertRaisesRegex(ValueError, "swa_lr must"): |
| swa_scheduler = SWALR(self.opt, swa_lr=[1.0, 0.1, 0.01]) |
| |
| def test_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: StepLR(self.opt, gamma=0.1, step_size=3), |
| lambda: StepLR(self.opt, gamma=0.01 / 2, step_size=1), |
| ) |
| |
| def test_multi_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]), |
| lambda: MultiStepLR(self.opt, gamma=0.01, milestones=[1, 4, 6]), |
| ) |
| |
| def test_exp_step_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: ExponentialLR(self.opt, gamma=0.1), |
| lambda: ExponentialLR(self.opt, gamma=0.01), |
| ) |
| |
| def test_cosine_lr_state_dict(self): |
| epochs = 10 |
| eta_min = 1e-10 |
| self._check_scheduler_state_dict( |
| lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min), |
| lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2), |
| epochs=epochs, |
| ) |
| |
| def test_reduce_lr_on_plateau_state_dict(self): |
| scheduler = ReduceLROnPlateau(self.opt, mode="min", factor=0.1, patience=2) |
| for score in [1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 2.0, 1.0]: |
| scheduler.step(score) |
| scheduler_copy = ReduceLROnPlateau( |
| self.opt, mode="max", factor=0.5, patience=10 |
| ) |
| scheduler_copy.load_state_dict(scheduler.state_dict()) |
| for key in scheduler.__dict__.keys(): |
| if key not in {"optimizer", "is_better"}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_lambda_lr_state_dict_fn(self): |
| scheduler = LambdaLR(self.opt, lr_lambda=lambda x: x) |
| state = scheduler.state_dict() |
| self.assertIsNone(state["lr_lambdas"][0]) |
| |
| scheduler_copy = LambdaLR(self.opt, lr_lambda=lambda x: x) |
| scheduler_copy.load_state_dict(state) |
| for key in scheduler.__dict__.keys(): |
| if key not in {"optimizer", "lr_lambdas"}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_lambda_lr_state_dict_obj(self): |
| scheduler = LambdaLR(self.opt, lr_lambda=self.LambdaLRTestObject(10)) |
| state = scheduler.state_dict() |
| self.assertIsNotNone(state["lr_lambdas"][0]) |
| |
| scheduler_copy = LambdaLR(self.opt, lr_lambda=self.LambdaLRTestObject(-1)) |
| scheduler_copy.load_state_dict(state) |
| for key in scheduler.__dict__.keys(): |
| if key not in {"optimizer"}: |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| |
| def test_CosineAnnealingWarmRestarts_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=2), |
| lambda: CosineAnnealingWarmRestarts(self.opt, T_0=100), |
| ) |
| |
| def test_swa_lr_state_dict(self): |
| self._check_scheduler_state_dict( |
| lambda: SWALR(self.opt, anneal_epochs=3, swa_lr=0.5), |
| lambda: SWALR( |
| self.opt, anneal_epochs=10, anneal_strategy="linear", swa_lr=5.0 |
| ), |
| ) |
| |
| def _check_scheduler_state_dict(self, constr, constr2, epochs=10): |
| scheduler = constr() |
| for _ in range(epochs): |
| scheduler.optimizer.step() |
| scheduler.step() |
| scheduler_copy = constr2() |
| scheduler_copy.load_state_dict(scheduler.state_dict()) |
| for key in scheduler.__dict__.keys(): |
| if key != "optimizer": |
| self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key]) |
| self.assertEqual(scheduler.get_last_lr(), scheduler_copy.get_last_lr()) |
| |
| def _test_get_last_lr(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, LRScheduler): |
| schedulers = [schedulers] |
| optimizers = {scheduler.optimizer for scheduler in schedulers} |
| for epoch in range(epochs): |
| result = [scheduler.get_last_lr() for scheduler in schedulers] |
| [optimizer.step() for optimizer in optimizers] |
| [scheduler.step() for scheduler in schedulers] |
| target = [[t[epoch] for t in targets]] * len(schedulers) |
| for t, r in zip(target, result): |
| self.assertEqual( |
| t, |
| r, |
| msg=f"LR is wrong in epoch {epoch}: expected {t}, got {r}", |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test_with_epoch(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, LRScheduler): |
| schedulers = [schedulers] |
| optimizers = {scheduler.optimizer for scheduler in schedulers} |
| for epoch in range(epochs): |
| [optimizer.step() for optimizer in optimizers] |
| with warnings.catch_warnings(record=True) as w: |
| [ |
| scheduler.step(epoch) for scheduler in schedulers |
| ] # step before assert: skip initial lr |
| self._check_warning_is_epoch_deprecation_warning( |
| w, num_warnings=len(schedulers) |
| ) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[epoch], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[epoch], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test(self, schedulers, targets, epochs=10): |
| if isinstance(schedulers, LRScheduler): |
| schedulers = [schedulers] |
| for epoch in range(epochs): |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[epoch], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[epoch], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| [scheduler.step() for scheduler in schedulers] |
| |
| def _test_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs=10): |
| for index, epoch in enumerate(torch.arange(0, epochs, 0.1)): |
| epoch = round(epoch.item(), 1) |
| scheduler.step(epoch) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[index], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[index], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test_interleaved_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs): |
| for index, epoch in enumerate(epochs): |
| scheduler.step(epoch) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[index], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[index], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test_against_closed_form(self, scheduler, closed_form_scheduler, epochs=10): |
| self.setUp() |
| targets = [] |
| for epoch in range(epochs): |
| closed_form_scheduler.optimizer.step() |
| with warnings.catch_warnings(record=True) as w: |
| closed_form_scheduler.step(epoch) |
| self._check_warning_is_epoch_deprecation_warning(w) |
| targets.append([group["lr"] for group in self.opt.param_groups]) |
| self.setUp() |
| for epoch in range(epochs): |
| self.opt.step() |
| scheduler.step() |
| for i, param_group in enumerate(self.opt.param_groups): |
| self.assertEqual( |
| targets[epoch][i], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, targets[epoch][i], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test_reduce_lr_on_plateau( |
| self, schedulers, targets, metrics, epochs=10, verbose=False |
| ): |
| if isinstance(schedulers, (LRScheduler, ReduceLROnPlateau)): |
| schedulers = [schedulers] |
| for epoch in range(epochs): |
| self.opt.step() |
| for scheduler in schedulers: |
| if isinstance(scheduler, ReduceLROnPlateau): |
| scheduler.step(metrics[epoch]) |
| else: |
| scheduler.step() |
| if verbose: |
| print("epoch{}:\tlr={}".format(epoch, self.opt.param_groups[0]["lr"])) |
| for param_group, target in zip(self.opt.param_groups, targets): |
| self.assertEqual( |
| target[epoch], |
| param_group["lr"], |
| msg="LR is wrong in epoch {}: expected {}, got {}".format( |
| epoch, target[epoch], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| def _test_cycle_lr( |
| self, |
| scheduler, |
| lr_targets, |
| momentum_targets, |
| batch_iterations, |
| verbose=False, |
| use_beta1=False, |
| ): |
| for batch_num in range(batch_iterations): |
| if verbose: |
| if "momentum" in self.opt.param_groups[0].keys(): |
| print( |
| "batch{}:\tlr={},momentum={}".format( |
| batch_num, |
| self.opt.param_groups[0]["lr"], |
| self.opt.param_groups[0]["momentum"], |
| ) |
| ) |
| elif use_beta1 and "betas" in self.opt.param_groups[0].keys(): |
| print( |
| "batch{}:\tlr={},beta1={}".format( |
| batch_num, |
| self.opt.param_groups[0]["lr"], |
| self.opt.param_groups[0]["betas"][0], |
| ) |
| ) |
| else: |
| print( |
| "batch{}:\tlr={}".format( |
| batch_num, self.opt.param_groups[0]["lr"] |
| ) |
| ) |
| |
| for param_group, lr_target, momentum_target in zip( |
| self.opt.param_groups, lr_targets, momentum_targets |
| ): |
| self.assertEqual( |
| lr_target[batch_num], |
| param_group["lr"], |
| msg="LR is wrong in batch_num {}: expected {}, got {}".format( |
| batch_num, lr_target[batch_num], param_group["lr"] |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| |
| if use_beta1 and "betas" in param_group.keys(): |
| self.assertEqual( |
| momentum_target[batch_num], |
| param_group["betas"][0], |
| msg="Beta1 is wrong in batch_num {}: expected {}, got {}".format( |
| batch_num, |
| momentum_target[batch_num], |
| param_group["betas"][0], |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| elif "momentum" in param_group.keys(): |
| self.assertEqual( |
| momentum_target[batch_num], |
| param_group["momentum"], |
| msg="Momentum is wrong in batch_num {}: expected {}, got {}".format( |
| batch_num, |
| momentum_target[batch_num], |
| param_group["momentum"], |
| ), |
| atol=1e-5, |
| rtol=0, |
| ) |
| self.opt.step() |
| scheduler.step() |
| |
| def test_cosine_then_cyclic(self): |
| # https://github.com/pytorch/pytorch/issues/21965 |
| |
| max_lr = 0.3 |
| base_lr = 0.1 |
| optim_lr = 0.5 |
| |
| model = torch.nn.Linear(2, 1) |
| optimizer = SGD(model.parameters(), lr=optim_lr) |
| lr_scheduler_1 = torch.optim.lr_scheduler.CosineAnnealingLR( |
| optimizer, T_max=20, eta_min=0.1 |
| ) |
| lr_scheduler_2 = torch.optim.lr_scheduler.CyclicLR( |
| optimizer, base_lr=base_lr, max_lr=max_lr, step_size_up=1, step_size_down=3 |
| ) |
| |
| for i in range(40): |
| optimizer.step() |
| if i <= lr_scheduler_1.T_max: |
| lr_scheduler_1.step() |
| else: |
| lr_scheduler_2.step() |
| last_lr = optimizer.param_groups[0]["lr"] |
| |
| self.assertLessEqual(last_lr, max_lr) |
| |
| @parametrize( |
| "LRClass", |
| [ |
| partial(LambdaLR, lr_lambda=lambda e: e // 10), |
| partial(MultiplicativeLR, lr_lambda=lambda: 0.95), |
| partial(StepLR, step_size=30), |
| partial(MultiStepLR, milestones=[30, 80]), |
| ConstantLR, |
| LinearLR, |
| partial(ExponentialLR, gamma=0.9), |
| lambda opt, **kwargs: SequentialLR( |
| opt, |
| schedulers=[ConstantLR(opt), ConstantLR(opt)], |
| milestones=[2], |
| **kwargs, |
| ), |
| PolynomialLR, |
| partial(CosineAnnealingLR, T_max=10), |
| ReduceLROnPlateau, |
| partial(CyclicLR, base_lr=0.01, max_lr=0.1), |
| partial(CosineAnnealingWarmRestarts, T_0=20), |
| partial(OneCycleLR, max_lr=0.01, total_steps=10), |
| ], |
| ) |
| def test_lr_scheduler_verbose_deprecation_warning(self, LRClass): |
| """Check that a deprecating warning with verbose parameter.""" |
| with self.assertWarnsOnceRegex( |
| UserWarning, "The verbose parameter is deprecated" |
| ): |
| LRClass(self.opt, verbose=True) |
| |
| with self.assertWarnsOnceRegex( |
| UserWarning, "The verbose parameter is deprecated" |
| ): |
| LRClass(self.opt, verbose=False) |
| |
| # No warning is raised when verbose is the default value. |
| with warnings.catch_warnings(): |
| warnings.simplefilter("error", UserWarning) |
| LRClass(self.opt) |
| |
| @parametrize( |
| "LRClass", |
| [ |
| partial(LambdaLR, lr_lambda=lambda e: e // 10), |
| partial(MultiplicativeLR, lr_lambda=lambda: 0.95), |
| partial(StepLR, step_size=30), |
| partial(MultiStepLR, milestones=[30, 80]), |
| ConstantLR, |
| LinearLR, |
| partial(ExponentialLR, gamma=0.9), |
| PolynomialLR, |
| partial(CosineAnnealingLR, T_max=10), |
| lambda opt, **kwargs: ChainedScheduler( |
| schedulers=[ConstantLR(opt), ConstantLR(opt)], **kwargs |
| ), |
| lambda opt, **kwargs: SequentialLR( |
| opt, |
| schedulers=[ConstantLR(opt), ConstantLR(opt)], |
| milestones=[2], |
| **kwargs, |
| ), |
| ReduceLROnPlateau, |
| partial(CyclicLR, base_lr=0.01, max_lr=0.1), |
| partial(OneCycleLR, max_lr=0.01, total_steps=10, anneal_strategy="linear"), |
| partial(CosineAnnealingWarmRestarts, T_0=20), |
| ], |
| ) |
| @parametrize("weights_only", [True, False]) |
| def test_lr_scheduler_state_dict_load(self, LRClass, weights_only): |
| scheduler = LRClass(self.opt) |
| state_dict = scheduler.state_dict() |
| |
| with tempfile.TemporaryFile() as f: |
| torch.save(state_dict, f) |
| f.seek(0) |
| state_dict_loaded = torch.load(f, weights_only=weights_only) |
| self.assertEqual(state_dict, state_dict_loaded) |
| # Make sure state_dict can be loaded |
| scheduler2 = LRClass(self.opt) |
| scheduler2.load_state_dict(state_dict_loaded) |
| self.assertEqual(scheduler2.state_dict(), state_dict) |
| |
| @parametrize( |
| "LRClass", |
| [ |
| partial(LambdaLR, lr_lambda=lambda e: e // 10), |
| partial(MultiplicativeLR, lr_lambda=lambda e: 0.95), |
| partial(StepLR, step_size=30), |
| partial(MultiStepLR, milestones=[30, 80]), |
| ConstantLR, |
| LinearLR, |
| partial(ExponentialLR, gamma=0.9), |
| PolynomialLR, |
| partial(CosineAnnealingLR, T_max=10), |
| partial(CosineAnnealingWarmRestarts, T_0=20), |
| ], |
| ) |
| def test_constant_initial_lr(self, LRClass): |
| # Test that the initial learning rate is constant |
| lr = torch.as_tensor(0.1) |
| opt = SGD([torch.nn.Parameter(torch.randn(1))], lr=lr) |
| sch = LRClass(opt) |
| |
| ori_param_groups = copy.deepcopy(opt.param_groups) |
| |
| for i in range(2): |
| opt.step() |
| sch.step(i) |
| lr.multiply_(0.1) |
| for group, ori_group in zip(opt.param_groups, ori_param_groups): |
| self.assertEqual(group["initial_lr"], ori_group["initial_lr"]) |
| self.assertEqual(sch.base_lrs, [0.1]) |
| |
| def test_constant_initial_params_cyclelr(self): |
| # Test that the initial learning rate is constant |
| lr = torch.as_tensor(0.1) |
| max_lr = torch.as_tensor(0.2) |
| base_momentum = torch.as_tensor(0.8) |
| max_momentum = torch.as_tensor(0.9) |
| opt = SGD([torch.nn.Parameter(torch.randn(1))], lr=lr) |
| sch = CyclicLR( |
| opt, |
| base_lr=lr, |
| max_lr=max_lr, |
| base_momentum=base_momentum, |
| max_momentum=max_momentum, |
| ) |
| ori_param_groups = copy.deepcopy(opt.param_groups) |
| |
| for i in range(2): |
| lr.multiply_(0.5) |
| max_lr.multiply_(0.5) |
| base_momentum.multiply_(0.5) |
| max_momentum.multiply_(0.5) |
| opt.step() |
| sch.step(i) |
| for group, ori_group in zip(opt.param_groups, ori_param_groups): |
| self.assertEqual(group["initial_lr"], ori_group["initial_lr"]) |
| self.assertEqual(group["max_momentum"], ori_group["max_momentum"]) |
| self.assertEqual(group["base_momentum"], ori_group["base_momentum"]) |
| self.assertEqual(sch.base_lrs, [0.1]) |
| self.assertEqual(sch.max_lrs, [0.2]) |
| self.assertEqual(group["max_momentum"], 0.9) |
| self.assertEqual(group["base_momentum"], 0.8) |
| |
| def test_constant_initial_params_onecyclelr(self): |
| # Test that the initial learning rate is constant |
| lr = torch.as_tensor(0.1) |
| base_momentum = torch.as_tensor(0.85) |
| max_momentum = torch.as_tensor(0.95) |
| opt = SGD([torch.nn.Parameter(torch.randn(1))], lr=lr) |
| sch = OneCycleLR( |
| opt, |
| max_lr=lr, |
| total_steps=10, |
| base_momentum=base_momentum, |
| max_momentum=max_momentum, |
| ) |
| ori_param_groups = copy.deepcopy(opt.param_groups) |
| |
| for i in range(2): |
| lr.multiply_(0.5) |
| base_momentum.multiply_(0.5) |
| max_momentum.multiply_(0.5) |
| opt.step() |
| sch.step(i) |
| |
| for group, ori_group in zip(opt.param_groups, ori_param_groups): |
| self.assertEqual(group["initial_lr"], ori_group["initial_lr"]) |
| self.assertEqual(group["max_lr"], ori_group["max_lr"]) |
| self.assertEqual(group["min_lr"], ori_group["min_lr"]) |
| self.assertEqual(group["max_momentum"], ori_group["max_momentum"]) |
| self.assertEqual(group["base_momentum"], ori_group["base_momentum"]) |
| self.assertEqual(group["max_momentum"], 0.95) |
| self.assertEqual(group["base_momentum"], 0.85) |
| |
| def test_constant_initial_params_swalr(self): |
| # Test that the initial learning rate is constant |
| lr = torch.as_tensor(0.1) |
| swa_lr = torch.as_tensor(0.05) |
| opt = SGD([torch.nn.Parameter(torch.randn(1))], lr=lr) |
| sch = SWALR(opt, swa_lr=swa_lr) |
| ori_param_groups = copy.deepcopy(opt.param_groups) |
| |
| for i in range(2): |
| lr.multiply_(0.5) |
| swa_lr.multiply_(0.5) |
| opt.step() |
| sch.step() |
| for group, ori_group in zip(opt.param_groups, ori_param_groups): |
| self.assertEqual(group["initial_lr"], ori_group["initial_lr"]) |
| self.assertEqual(group["swa_lr"], ori_group["swa_lr"]) |
| self.assertEqual(group["swa_lr"], 0.05) |
| self.assertEqual(sch.base_lrs, [0.1]) |
| |
| |
| instantiate_parametrized_tests(TestLRScheduler) |
| |
| |
| if __name__ == "__main__": |
| print("These tests should be run through test/test_optim.py instead") |