blob: 05afe8fec38a38e52b744a3a30d091e73da18c71 [file] [log] [blame] [edit]
# Owner(s): ["module: custom-operators"]
import collections
import itertools
import os
import re
import subprocess
import sys
import typing
import unittest
from typing import * # noqa: F403
import numpy as np
import torch._custom_ops as custom_ops
import torch.testing._internal.optests as optests
import torch.utils._pytree as pytree
import torch.utils.cpp_extension
from functorch import make_fx
from torch import Tensor
from torch._custom_op.impl import CustomOp, infer_schema
from torch._library.infer_schema import tuple_to_list
from torch._utils_internal import get_file_path_2
from torch.testing._internal import custom_op_db
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
OpDTypes,
ops,
)
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
IS_WINDOWS,
parametrize,
run_tests,
skipIfTorchDynamo,
subtest,
TestCase,
)
from torch.testing._internal.custom_op_db import numpy_nonzero
# Shadowed by `torch.testing._internal.common_utils.custom_op`
from torch._custom_op.impl import custom_op # usort: skip
def requires_compile(fun):
fun = unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")(fun)
return fun
class CustomOpTestCaseBase(TestCase):
test_ns = "_test_custom_op"
def setUp(self):
super().setUp()
self.libraries = []
def tearDown(self):
super().tearDown()
import torch._custom_op
keys = list(torch._custom_op.impl.global_registry.keys())
for key in keys:
if not key.startswith(f"{self.test_ns}::"):
continue
torch._custom_op.impl.global_registry[key]._destroy()
if hasattr(torch.ops, self.test_ns):
delattr(torch.ops, self.test_ns)
for lib in self.libraries:
lib._destroy()
del self.libraries
def ns(self):
return getattr(torch.ops, self.test_ns)
def lib(self):
result = torch.library.Library(self.test_ns, "FRAGMENT") # noqa: TOR901
self.libraries.append(result)
return result
def get_op(self, qualname):
return torch._custom_op.impl.get_op(qualname)
@requires_compile
class TestCustomOpTesting(CustomOpTestCaseBase):
@parametrize("check_gradients", (False, "auto"))
@parametrize("dynamic", (True, False))
def test_aot_autograd_check_degenerate_cases(
self, device, dynamic, check_gradients
):
def simple(x):
return x.clone()
# Should not raise
x = torch.randn(3, device=device)
optests.aot_autograd_check(
simple, (x,), {}, dynamic=dynamic, check_gradients=check_gradients
)
def outputs_dont_require_grad(x):
return x.detach()
# Should not raise
y = torch.randn(3, device=device, requires_grad=True)
optests.aot_autograd_check(
simple, (y,), {}, dynamic=dynamic, check_gradients=check_gradients
)
def no_outputs(x):
return x.detach()
# Should not raise
x = torch.randn(3, device=device, requires_grad=True)
y = torch.randn(3, device=device, requires_grad=False)
optests.aot_autograd_check(
no_outputs, (x,), {}, dynamic=dynamic, check_gradients=check_gradients
)
optests.aot_autograd_check(
no_outputs, (y,), {}, dynamic=dynamic, check_gradients=check_gradients
)
def test_incorrect_schema_mutation(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
guard = torch._C._AutoDispatchBelowAutograd()
try:
return op(x)
finally:
del guard
@staticmethod
def backward(ctx, gx):
return gx
def foo_impl(x):
x.sin_()
return x.clone()
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_impl, "CUDA")
x = torch.tensor(3.14159 / 3, requires_grad=True, device=device)
with self.assertRaisesRegex(
optests.OpCheckError, "Argument x is not defined as mutable but was mutated"
):
torch.library.opcheck(op, (x,), {})
def test_incorrect_schema_view(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# Emulate AutoDispatchBelowADInplaceOrView, which is not bound into python
with torch._C._AutoDispatchBelowAutograd():
with torch._C._ExcludeDispatchKeyGuard(
torch._C.DispatchKeySet(torch._C.DispatchKey.ADInplaceOrView)
):
return op(x)
@staticmethod
def backward(ctx, gx):
return gx
def foo_impl(x):
return x.view_as(x)
def foo_meta(x):
return x.view_as(x)
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_meta, "Meta")
x = torch.tensor(3.14159 / 3, requires_grad=True)
with self.assertRaisesRegex(
optests.OpCheckError,
"Argument x is not defined to alias output but was aliasing",
):
torch.library.opcheck(op, (x,), {})
def test_missing_abstract_impl(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
with torch._C._AutoDispatchBelowAutograd():
return op(x)
@staticmethod
def backward(ctx, gx):
return 2 * gx
def foo_impl(x):
return torch.tensor(x.cpu().numpy() ** 2, device=x.device)
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_impl, "CUDA")
x = torch.tensor([0, 1.0], requires_grad=True)
with self.assertRaisesRegex(
optests.OpCheckError,
"_test_custom_op.foo.default",
):
torch.library.opcheck(op, (x,), {})
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_incorrect_abstract_impl(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# Emulate AutoDispatchBelowADInplaceOrView, which is not bound into python
guard = torch._C._AutoDispatchBelowAutograd()
guard2 = torch._C.ExcludeDispatchKeyGuard(
torch._C.DispatchKeySet(torch._C.DispatchKey.ADInplaceOrView)
)
try:
return op(x)
finally:
del guard
del guard2
@staticmethod
def backward(ctx, gx):
return gx
def foo_impl(x):
return x**2
def foo_meta(x):
return x.unsqueeze(1) ** 2
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_impl, "CUDA")
lib.impl("foo", foo_meta, "Meta")
x = torch.tensor([0, 1.0], requires_grad=True)
with self.assertRaisesRegex(optests.OpCheckError, "Shapes .* are not equal"):
torch.library.opcheck(op, (x,), {})
def test_missing_functionalization(self, device):
lib = self.lib()
lib.define("foo(Tensor(a!) x) -> Tensor(a!)")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.mark_dirty(x)
with torch._C._AutoDispatchBelowAutograd():
return op(x)
@staticmethod
def backward(ctx, gx):
return gx
def foo_impl(x):
return x.sin_()
def foo_meta(x):
return x
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_impl, "CUDA")
lib.impl("foo", foo_meta, "Meta")
x = torch.tensor([0, 1.0])
y = x.clone()
with self.assertRaisesRegex(
optests.OpCheckError,
"We only support functionalizing operators whose outputs do not have alias annotations",
):
torch.library.opcheck(op, (y,), {})
def test_autograd_registered_at_backend(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, gx):
return gx * 0.5
lib.impl("foo", Foo.apply, "CPU")
lib.impl("foo", Foo.apply, "CUDA")
lib.impl("foo", lambda x: x.clone(), "Meta")
x = torch.randn([], requires_grad=True)
with self.assertRaisesRegex(
torch.testing._internal.optests.OpCheckError,
"does not have an autograd kernel",
):
torch.library.opcheck(op, (x,), {})
# I'm not sure why this is necessary
del lib
def test_global_state_mutation(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
invoked = 0
@staticmethod
def forward(ctx, x):
Foo.invoked += 1
return x.clone() * Foo.invoked
@staticmethod
def backward(ctx, gx):
return gx
lib.impl("foo", Foo.apply, "CompositeImplicitAutograd")
x = torch.tensor(3.14159 / 3, requires_grad=True)
with self.assertRaisesRegex(
optests.OpCheckError, "eager-mode PyTorch vs AOTAutograd"
):
torch.library.opcheck(op, (x,), {})
@ops(custom_op_db.custom_op_db, dtypes=OpDTypes.any_one)
def test_opcheck_opinfo(self, device, dtype, op):
for sample_input in op.sample_inputs(
device, dtype, requires_grad=op.supports_autograd
):
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
torch.library.opcheck(op.op, args, kwargs)
def test_opcheck_fails_basic(self, device):
@custom_op(f"{self.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor: ...
@foo.impl(["cpu", "cuda"])
def foo_impl(x):
return x.sum()
x = torch.randn(3, device=device, requires_grad=True)
# Triggers the CustomOp autograd NYI error
with self.assertRaisesRegex(
optests.OpCheckError, "Autograd has not been implemented for operator"
):
torch.library.opcheck(self.get_op(f"{self.test_ns}::foo"), (x,), {})
def test_autograd_registration_check_autograd_kernel(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
with torch._C._AutoDispatchBelowAutograd():
return op(x)
@staticmethod
def backward(ctx, gx):
return gx
def foo_impl(x):
return x.sin()
lib.impl("foo", Foo.apply, "Autograd")
lib.impl("foo", foo_impl, "CPU")
lib.impl("foo", foo_impl, "CUDA")
x = torch.randn(3, requires_grad=True, device=device)
# Should not raise
optests.autograd_registration_check(op, (x,), {})
def test_autograd_registration_check_compositeimplicitautograd(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
def foo_impl(x):
return x.sin().cos()
lib.impl("foo", foo_impl, "CompositeImplicitAutograd")
x = torch.randn(3, requires_grad=True, device=device)
# Should not raise
optests.autograd_registration_check(op, (x,), {})
def test_autograd_registration_check_incorrect_composite(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
def foo_impl(x):
return x.sin().cos()
lib.impl("foo", foo_impl, "CompositeExplicitAutograd")
x = torch.randn(3, requires_grad=True, device=device)
with self.assertRaisesRegex(AssertionError, "incorrectly registered"):
optests.autograd_registration_check(op, (x,), {})
def test_autograd_registration_check_incorrect(self, device):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
op = self.ns().foo.default
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return torch.sin(x)
@staticmethod
def backward(ctx, gx):
return gx
lib.impl("foo", Foo.apply, "CPU")
lib.impl("foo", Foo.apply, "CUDA")
x = torch.randn(3, requires_grad=True, device=device)
with self.assertRaisesRegex(AssertionError, "incorrectly registered"):
optests.autograd_registration_check(op, (x,), {})
def test_assert_raises_regex(self, device):
from torch.testing._internal.optests.aot_autograd import assert_raises_regex
with assert_raises_regex(RuntimeError, "c"):
raise RuntimeError("abcd")
with assert_raises_regex(RuntimeError, "c.*"):
raise RuntimeError("abcd")
with self.assertRaisesRegex(AssertionError, "instead got"):
with assert_raises_regex(RuntimeError, "c.*"):
raise ValueError("abcd")
with self.assertRaisesRegex(AssertionError, "Expected exception"):
with assert_raises_regex(RuntimeError, "c.*"):
pass
with self.assertRaisesRegex(AssertionError, "to match regex"):
with assert_raises_regex(RuntimeError, "f"):
raise RuntimeError("abcd")
class TestCustomOp(CustomOpTestCaseBase):
test_ns = "_test_custom_op"
@requires_compile
def test_functionalize_error(self):
with torch.library._scoped_library(self.test_ns, "FRAGMENT") as lib:
lib.define("foo(Tensor(a!) x) -> Tensor(a!)")
def foo(x):
return x.sin_()
lib.impl("foo", foo, "CompositeExplicitAutograd")
foo_op = self.get_op(f"{self.test_ns}::foo")
lib.define("bar(Tensor(a) x) -> Tensor(a)")
def bar(x):
return x.view(-1)
lib.impl("bar", bar, "CompositeExplicitAutograd")
bar_op = self.get_op(f"{self.test_ns}::bar")
msg = r".*We only support functionalizing operators whose outputs do not have alias annotations"
x = torch.randn(3)
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x):
return foo_op(x)
@torch.compile(backend="aot_eager", fullgraph=True)
def g(x):
return bar_op(x)
with self.assertRaisesRegex(RuntimeError, msg):
f(x)
with self.assertRaisesRegex(RuntimeError, msg):
g(x)
def test_invalid_schemas(self):
# function schmea validation goes through torchgen, so this is just a
# basic test.
with self.assertRaisesRegex(AssertionError, "Invalid function schema: foo"):
custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo", "(")
def test_invalid_qualname(self):
with self.assertRaisesRegex(ValueError, "overload"):
custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo.Tensor", "() -> ()")
def test_name_must_match(self):
with self.assertRaisesRegex(ValueError, "to have name"):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def baz(x: Tensor) -> Tensor:
raise NotImplementedError
def test_unsupported_schemas(self):
with self.assertRaisesRegex(ValueError, "only supports functional"):
custom_ops.custom_op(
f"{TestCustomOp.test_ns}::foo", "(Tensor(a!) x) -> Tensor(a)"
)(foo)
with self.assertRaisesRegex(ValueError, "only supports functional"):
custom_ops.custom_op(
f"{TestCustomOp.test_ns}::foo", "(Tensor(a) x) -> Tensor(a)"
)(foo)
with self.assertRaisesRegex(ValueError, "only supports functional"):
custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo", "(Tensor x) -> ()")(
foo
)
with self.assertRaisesRegex(ValueError, "self"):
custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo", "(Tensor self) -> ()")(
foo
)
# Tests for the older custom_op API
def test_schema_matches_signature(self):
with self.assertRaisesRegex(ValueError, "signature to match"):
@custom_op(f"{TestCustomOp.test_ns}::blah", "(Tensor y) -> Tensor")
def blah(x):
pass
with self.assertRaisesRegex(ValueError, "signature to match"):
@custom_op(
f"{TestCustomOp.test_ns}::blah2", "(Tensor x, *, Tensor y) -> Tensor"
)
def blah2(x, y):
pass
with self.assertRaisesRegex(ValueError, "signature to match"):
@custom_op(
f"{TestCustomOp.test_ns}::blah3",
"(Tensor x, *, Tensor w, Tensor z) -> Tensor",
)
def blah3(x, *, y, z):
pass
with self.assertRaisesRegex(ValueError, "signature to match"):
@custom_op(
f"{TestCustomOp.test_ns}::blah4",
"(Tensor x, *, Tensor z, Tensor y) -> Tensor",
)
def blah4(x, *, y, z):
pass
with self.assertRaisesRegex(ValueError, "not supported"):
@custom_op(f"{TestCustomOp.test_ns}::blah5", "(Tensor x) -> Tensor")
def blah5(*args):
pass
with self.assertRaisesRegex(ValueError, "not supported"):
@custom_op(
f"{TestCustomOp.test_ns}::blah6", "(*, Tensor z, Tensor y) -> Tensor"
)
def blah6(**kwargs):
pass
with self.assertRaisesRegex(ValueError, "default arguments"):
@custom_op(
f"{TestCustomOp.test_ns}::blah7", "(Tensor x, *, Tensor y) -> Tensor"
)
def blah7(x=1, *, y):
pass
with self.assertRaisesRegex(ValueError, "default arguments"):
@custom_op(
f"{TestCustomOp.test_ns}::blah8", "(Tensor x, *, Tensor y) -> Tensor"
)
def blah8(x, *, y=1):
pass
# kwonly-arg works
@custom_op(
f"{TestCustomOp.test_ns}::blah9", "(Tensor x, *, Tensor y) -> Tensor"
)
def blah9(x, *, y):
pass
def test_infer_schema_no_return(self):
with self.assertRaisesRegex(
ValueError, "No return type annotation was provided. Please add one."
):
@torch.library.custom_op("mylib::foo", mutates_args={})
def foo(x: torch.Tensor, y: int):
return x * y
def test_infer_schema_supported(self):
def a(x: Tensor) -> Tensor:
return torch.empty([])
self.assertExpectedInline(
infer_schema(a, mutates_args=()), """(Tensor x) -> Tensor"""
)
def kwonly1(x: Tensor, *, y: int, z: float) -> Tensor:
return torch.empty([])
self.assertExpectedInline(
infer_schema(kwonly1, mutates_args=()),
"""(Tensor x, *, SymInt y, float z) -> Tensor""",
)
def kwonly2(*, y: Tensor) -> Tensor:
return torch.empty([])
self.assertExpectedInline(
infer_schema(kwonly2, mutates_args=()), """(*, Tensor y) -> Tensor"""
)
def b(
x: Tensor,
y: int,
z: bool,
a: float,
b: torch.dtype,
c: torch.device,
d: torch.types.Number,
) -> Tuple[Tensor, int, float, bool]:
return torch.empty([]), 1, 0.1, True
self.assertExpectedInline(
infer_schema(b, mutates_args=()),
"""(Tensor x, SymInt y, bool z, float a, ScalarType b, Device c, Scalar d) -> (Tensor, SymInt, float, bool)""",
)
def c(
x: Tensor,
y: Sequence[Tensor],
z: Optional[Tensor],
w: Sequence[Optional[Tensor]],
) -> List[Tensor]:
return [torch.empty([])]
self.assertExpectedInline(
infer_schema(c, mutates_args=()),
"""(Tensor x, Tensor[] y, Tensor? z, Tensor?[] w) -> Tensor[]""",
)
def d(x: Tensor) -> Tuple[List[Tensor], Tensor]:
return [torch.empty([])], torch.empty([])
self.assertExpectedInline(
infer_schema(d, mutates_args=()), """(Tensor x) -> (Tensor[], Tensor)"""
)
def e() -> Tensor:
return torch.empty([])
self.assertExpectedInline(infer_schema(e, mutates_args=()), """() -> Tensor""")
def f(x: Tensor) -> None:
pass
self.assertExpectedInline(
infer_schema(f, mutates_args=()), """(Tensor x) -> ()"""
)
def g(
x: Tensor, y: List[Tensor], z: List[Tensor], w: List[Optional[Tensor]]
) -> None:
pass
self.assertExpectedInline(
infer_schema(g, mutates_args=()),
"""(Tensor x, Tensor[] y, Tensor[] z, Tensor?[] w) -> ()""",
)
self.assertExpectedInline(
infer_schema(g, mutates_args={"x", "w", "z"}),
"""(Tensor(a0!) x, Tensor[] y, Tensor(a2!)[] z, Tensor(a3!)?[] w) -> ()""",
)
self.assertExpectedInline(
infer_schema(g, mutates_args="unknown"),
"""(Tensor(a0!) x, Tensor(a1!)[] y, Tensor(a2!)[] z, Tensor(a3!)?[] w) -> ()""",
)
def h(
x: Tensor,
a: Optional[int] = None,
b: float = 3.14,
c: bool = True,
d: int = 3,
e: str = "foo",
f: torch.dtype = torch.float,
g: torch.dtype = torch.float32,
h: torch.dtype = torch.int,
i: torch.device = torch.device("cpu:0"),
j: torch.device = "cpu",
) -> None:
pass
self.assertExpectedInline(
infer_schema(h, mutates_args=()),
(
"""(Tensor x, SymInt? a=None, float b=3.14, bool c=True, SymInt d=3, str e="foo", """
"""ScalarType f=float32, ScalarType g=float32, ScalarType h=int32, Device i="cpu:0", Device j="cpu") -> ()"""
),
)
def foo_impl(x: torch.Tensor) -> torch.Tensor:
return x.sin()
schema = torch.library.infer_schema(foo_impl, op_name="myop", mutates_args={})
self.assertExpectedInline(schema, "myop(Tensor x) -> Tensor")
def test_infer_schema_unsupported(self):
with self.assertRaisesRegex(ValueError, "varargs"):
def foo(*args):
raise NotImplementedError
infer_schema(foo, mutates_args=())
with self.assertRaisesRegex(ValueError, "varkwargs"):
def foo(**kwargs):
raise NotImplementedError
infer_schema(foo, mutates_args=())
with self.assertRaisesRegex(ValueError, "must have a type annotation"):
def foo(x):
raise NotImplementedError
infer_schema(foo, mutates_args=())
with self.assertRaisesRegex(ValueError, "unsupported"):
def foo(x: Tensor) -> Tuple[Tensor, ...]:
raise NotImplementedError
infer_schema(foo, mutates_args=())
with self.assertRaisesRegex(ValueError, "can be mutated"):
def foo(x: Tensor, y: int) -> Tensor:
raise NotImplementedError
infer_schema(foo, mutates_args={"y"})
def _generate_examples(self, typ):
if typ is int:
return [17]
if typ is float:
return [3.14]
if typ is bool:
return [True]
if typ is str:
return ["foo"]
if typ is torch.dtype:
return [torch.float32]
if typ is torch.device:
return [torch.device("cpu")]
if typ == torch.types.Number:
return [2.718]
if typ is torch.Tensor:
return [torch.tensor(3)]
if typ == Optional[torch.types.Number]:
return [None, 2.718]
origin = typing.get_origin(typ)
if origin is Union:
args = typing.get_args(typ)
assert len(args) == 2 and (args[0] is type(None) or args[1] is type(None))
elt = args[0] if args[1] is type(None) else args[1]
return self._generate_examples(elt) + [None]
if origin is list:
args = typing.get_args(typ)
assert len(args) == 1
elt = args[0]
return [
self._generate_examples(elt),
self._generate_examples(elt),
self._generate_examples(elt),
]
if origin is collections.abc.Sequence:
args = typing.get_args(typ)
assert len(args) == 1
examples = self._generate_examples(args[0])
return list(itertools.product(examples, examples)) + []
raise NotImplementedError(
f"testrunner cannot generate instanstance of type {typ}"
)
def test_supported_return_types_single_return(self):
for typ in torch._library.infer_schema.SUPPORTED_RETURN_TYPES:
for example in self._generate_examples(typ):
try:
@custom_ops.custom_op(f"{self.test_ns}::foo")
def foo(x: Tensor) -> typ:
raise NotImplementedError
@custom_ops.impl(f"{self.test_ns}::foo")
def foo_impl(x: Tensor) -> typ:
return example
op = self.get_op(f"{self.test_ns}::foo")
result = op(torch.randn([]))
self.assertEqual(result, example, msg=f"{typ} {example}")
finally:
custom_ops._destroy(f"{self.test_ns}::foo")
def test_supported_return_types_multi_return(self):
for typ in torch._library.infer_schema.SUPPORTED_RETURN_TYPES:
for example in self._generate_examples(typ):
try:
@custom_ops.custom_op(f"{self.test_ns}::foo")
def foo(x: Tensor) -> Tuple[typ, typ]:
raise NotImplementedError
@custom_ops.impl(f"{self.test_ns}::foo")
def foo_impl(x: Tensor) -> Tuple[typ, typ]:
return (example, example)
op = self.get_op(f"{self.test_ns}::foo")
result = op(torch.randn([]))
expected = (example, example)
self.assertEqual(result, expected, msg=f"{typ} {example}")
finally:
custom_ops._destroy(f"{self.test_ns}::foo")
def test_supported_param_types(self):
for typ in torch._library.infer_schema.SUPPORTED_PARAM_TYPES:
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: Tensor, y: typ) -> Tensor:
raise NotImplementedError
yeet = None
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo", device_types=["cpu"])
def foo_cpu(x, y):
nonlocal yeet
yeet = y
return x.clone()
try:
for example in self._generate_examples(typ):
op = self.get_op(f"{self.test_ns}::foo")
op(torch.randn([]), example)
self.assertEqual(yeet, example, msg=f"{typ} {example}")
yeet = None
finally:
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
def test_sequences(self):
# Sequence[int] gets automagically turned into int[] in the schema.
# This test checks that we actually do support arbitrary sequence types.
class MySequence(collections.abc.Sequence):
def __init__(self) -> None:
self._container = [1, 2, 3]
def __getitem__(self, idx):
return self._container[idx]
def __len__(self):
return len(self._container)
@custom_ops.custom_op(f"{self.test_ns}::foo")
def foo(x: torch.Tensor, sizes: Sequence[int]) -> torch.Tensor:
raise NotImplementedError
called = 0
@custom_ops.impl(f"{self.test_ns}::foo", device_types="cpu")
def foo_cpu(x, sizes):
nonlocal called
called += 1
# Dispatcher will normalize the sequence type into a List
self.assertEqual(sizes, [1, 2, 3])
return x.clone()
x = torch.randn([])
seq = MySequence()
op = self.get_op(f"{self.test_ns}::foo")
op(x, seq)
self.assertEqual(called, 1)
def test_unsupported_param_types(self):
# Not comprehensive (it doesn't need to be), just a check that our mechanism works
with self.assertRaisesRegex(ValueError, "unsupported type"):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: Tensor, y: List[Optional[int]]) -> Tensor:
raise NotImplementedError
del foo
with self.assertRaisesRegex(ValueError, "unsupported type"):
# int[N] in Dispatcher is a bit wild, so we don't try to support it.
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: Tensor, y: Tuple[int, int]) -> Tensor:
raise NotImplementedError
del foo
with self.assertRaisesRegex(ValueError, r"For example, typing.List\[int\]"):
# test that we propose a correct and supported type.
@torch.library.custom_op(f"{TestCustomOp.test_ns}::foo", mutates_args={})
def foo(x: Tensor, y: Tuple[int, int]) -> Tensor:
raise NotImplementedError
del foo
with self.assertRaises(ValueError) as cm:
@torch.library.custom_op(f"{TestCustomOp.test_ns}::foo", mutates_args={})
def foo(x: Tensor, y: Tuple[int, float]) -> Tensor:
raise NotImplementedError
del foo
self.assertNotIn("example", str(cm.exception), "")
with self.assertRaisesRegex(ValueError, "unsupported type"):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: Tensor, y: Callable) -> Tensor:
raise NotImplementedError
del foo
def test_supported_schemas(self):
# All of these should already be tested by PyTorch codegen
# (we share the same mechanism), but here's a sanity check.
schemas = [
"(Tensor x) -> Tensor",
"(Tensor x) -> Tensor y",
"(Tensor[] x) -> Tensor y",
"(Tensor x) -> (Tensor, Tensor)",
"(Tensor x) -> (Tensor y, Tensor z)",
"(Tensor x) -> (Tensor y, Tensor z)",
]
other_schemas = [
"(Tensor x, Tensor w) -> (Tensor y, Tensor z)",
"(Tensor x, Tensor w) -> (Tensor, Tensor)",
"(Tensor x, Tensor w) -> Tensor",
"(Tensor? x, Tensor w) -> Tensor",
"(Tensor? x, Tensor[] w) -> Tensor",
"(Tensor x, int[] w) -> Tensor",
"(Tensor x, SymInt[] w) -> Tensor",
"(Tensor x, Scalar w) -> Tensor",
"(Tensor x, float w) -> Tensor",
"(Tensor x, float? w) -> Tensor",
"(Tensor x, bool[] w) -> Tensor",
]
for schema in schemas:
custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo", schema)
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
for schema in other_schemas:
custom_ops.custom_op(f"{TestCustomOp.test_ns}::bar", schema)
custom_ops._destroy(f"{TestCustomOp.test_ns}::bar")
def test_reserved_ns(self):
from torch._custom_op.impl import RESERVED_NS
for ns in RESERVED_NS:
with self.assertRaisesRegex(ValueError, "is a reserved namespace"):
custom_ops.custom_op(f"{ns}::foo", "(Tensor x) -> Tensor")
with self.assertRaisesRegex(ValueError, "is a reserved namespace"):
@custom_ops.custom_op(f"{ns}::foo2")
def foo2(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
def test_private_ctor(self):
with self.assertRaisesRegex(RuntimeError, "CustomOp constructor is private"):
CustomOp(None, None, None, None, None)
def test_lifetime(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
custom_op = torch._custom_op.impl.get_op(f"{TestCustomOp.test_ns}::foo")
# We can't define an op multiple times,
with self.assertRaisesRegex(RuntimeError, "multiple times"):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor: # noqa: F811
raise NotImplementedError
# Unless we delete the original op.
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
# Smoke test
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor: # noqa: F811
raise NotImplementedError
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
def test_autograd_notimplemented(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor: # noqa: F811
raise NotImplementedError
x = torch.randn(3, requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
with self.assertRaisesRegex(RuntimeError, "Autograd has not been implemented"):
op(x)
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
del foo
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: Sequence[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
x = torch.randn(3, requires_grad=True)
y = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
with self.assertRaisesRegex(RuntimeError, "Autograd has not been implemented"):
op([y, x])
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
del foo
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
x = torch.randn(3, requires_grad=True)
y = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
with self.assertRaisesRegex(RuntimeError, "Autograd has not been implemented"):
op(y, x)
custom_ops._destroy(f"{TestCustomOp.test_ns}::foo")
def test_autograd_notimplemented_gradmode(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x, y):
return x * y
x = torch.randn(3, requires_grad=True)
y = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
with torch.no_grad():
# Shouldn't raise, because we are in no_grad
op(y, x)
def test_impl_cpu(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo", device_types="cpu")
def foo_cpu(x):
return x.sin()
x = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
result = op(x)
self.assertEqual(result, foo_cpu(x))
def test_impl_invalid_devices(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
def foo_impl(x):
return x.sin()
from torch._custom_op.impl import SUPPORTED_DEVICE_TYPE_TO_KEY
for device_type in SUPPORTED_DEVICE_TYPE_TO_KEY.keys():
# Smoke test: should not raise error
custom_ops.impl(f"{TestCustomOp.test_ns}::foo", device_types=device_type)(
foo_impl
)
# Not supported by this API: we can either support them in the future
# or provide some other CustomOp.def_* function. This depends on how
# common the use cases are.
for invalid_type in ["hip", "xla", "mkldnn", ["cpu", "hip"]]:
with self.assertRaisesRegex(ValueError, "we only support device_type"):
custom_ops.impl(
f"{TestCustomOp.test_ns}::foo", device_types=invalid_type
)(foo_impl)
def test_backward_partially_registered(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.sin()
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return grad * saved.cos()
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
with self.assertRaisesRegex(
RuntimeError, "unable to find a 'save_for_backward'"
):
y = op(x)
y.backward()
def test_save_for_backward_inputs_are_namedtuple(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.sin()
hit = 0
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
nonlocal hit
hit += 1
self.assertTrue(isinstance(inputs, tuple))
self.assertEqual(list(inputs._asdict().keys()), ["x"])
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": grad * saved.cos()}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x)
self.assertEqual(hit, 1)
y.backward()
self.assertEqual(hit, 1)
def test_backward_returns_dict(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return grad * saved.cos()
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x)
with self.assertRaisesRegex(RuntimeError, "to be a dict"):
y.backward()
def test_backward_dict_invalid_keys(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": grad * saved.cos(), "y": None}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x)
with self.assertRaisesRegex(RuntimeError, "to have keys {'x'}"):
y.backward()
def test_backward_dict_grad_for_nontensor(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, dim: int) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x, dim):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": grad * saved.cos(), "dim": None}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x, 32)
with self.assertRaisesRegex(RuntimeError, "non-Tensor-like types"):
y.backward()
def test_backward_dict_requires_keys_for_input_tensors(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x, y):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": grad * saved.cos()}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x, x)
with self.assertRaisesRegex(RuntimeError, r"to have keys {.*'y'.*}"):
y.backward()
def test_backward_dict_requires_keys_for_input_optional_tensors(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, y: Optional[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x, y):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": grad * saved.cos()}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x, None)
with self.assertRaisesRegex(RuntimeError, r"to have keys {.*'y'.*}"):
y.backward()
def test_backward_grads_are_tensor_or_none(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"x": (grad * saved.cos(),)}
x = torch.randn([], requires_grad=True)
op = self.get_op(f"{self.test_ns}::foo")
y = op(x)
with self.assertRaisesRegex(RuntimeError, "either None or a Tensor"):
y.backward()
def test_backward_tensorlist_input_requires_list_grads_with_same_numel(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(xs: Sequence[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(xs):
return xs[0].sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.xs[0]
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"xs": [grad * saved.cos(), None]}
xs = [torch.randn([], requires_grad=True) for _ in range(3)]
op = self.get_op(f"{self.test_ns}::foo")
y = op(xs)
with self.assertRaisesRegex(RuntimeError, "3 gradients but got 2"):
y.backward()
def test_backward_tensorlist_input_requires_list_grads_none_or_Tensor(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(xs: Sequence[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(xs):
return xs[0].sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.xs[0]
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"xs": [grad * saved.cos(), None, (None,)]}
xs = [torch.randn([], requires_grad=True) for _ in range(3)]
op = self.get_op(f"{self.test_ns}::foo")
y = op(xs)
with self.assertRaisesRegex(RuntimeError, "None or Tensor"):
y.backward()
def test_backward_tensorlist_input_requires_list_grads(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(xs: Sequence[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(xs):
return xs[0].sin()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return inputs.xs[0]
@custom_ops.impl_backward(f"{TestCustomOp.test_ns}::foo")
def foo_backward(ctx, saved, grad):
return {"xs": None}
xs = [torch.randn([], requires_grad=True) for _ in range(3)]
op = self.get_op(f"{self.test_ns}::foo")
y = op(xs)
with self.assertRaisesRegex(RuntimeError, "list of gradients"):
y.backward()
def test_backward_output_differentiability_type(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(xs: Sequence[torch.Tensor]) -> torch.Tensor:
raise NotImplementedError
with self.assertRaisesRegex(RuntimeError, "output_differentiability"):
@custom_ops.impl_backward(
f"{TestCustomOp.test_ns}::foo", output_differentiability=True
)
def foo_backward(ctx, saved, grad):
return {"xs": None}
def test_backward_output_differentiability_numel(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(xs: Sequence[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
raise NotImplementedError
with self.assertRaisesRegex(RuntimeError, "output_differentiability"):
@custom_ops.impl_backward(
f"{TestCustomOp.test_ns}::foo", output_differentiability=[True]
)
def foo_backward(ctx, saved, grad):
return {"xs": None}
def test_backward_output_differentiability_tensorlist(self):
@custom_ops.custom_op(f"{self.test_ns}::foo")
def foo(x: Tensor) -> Tuple[List[Tensor], Tensor]:
raise NotImplementedError
@custom_ops.impl(f"{self.test_ns}::foo")
def foo_impl(x):
return [x.clone(), x.clone()], x.clone()
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return []
@custom_ops.impl_backward(
f"{TestCustomOp.test_ns}::foo", output_differentiability=[False, True]
)
def foo_backward(ctx, saved, grad_lst, grad):
return {"x": grad}
op = self.get_op(f"{self.test_ns}::foo")
x = torch.randn(3, requires_grad=True)
[a, b], c = op(x)
self.assertFalse(a.requires_grad)
self.assertFalse(b.requires_grad)
self.assertTrue(c.requires_grad)
def test_backward_output_differentiability_non_tensor(self):
@custom_ops.custom_op(f"{self.test_ns}::foo")
def foo(x: Tensor) -> Tuple[Tensor, int]:
raise NotImplementedError
@custom_ops.impl(f"{self.test_ns}::foo")
def foo_impl(x):
return x.clone(), 3
@custom_ops.impl_save_for_backward(f"{TestCustomOp.test_ns}::foo")
def foo_save_for_backward(inputs, output):
return []
@custom_ops.impl_backward(
f"{TestCustomOp.test_ns}::foo", output_differentiability=[True, True]
)
def foo_backward(ctx, saved, grad0, grad1):
return {"x": grad0}
op = self.get_op(f"{self.test_ns}::foo")
x = torch.randn(3, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "is not a Tensor"):
op(x)
@unittest.skipIf(not TEST_CUDA, "requires CUDA")
def test_impl_separate(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo", device_types="cpu")
def foo_cpu(x):
return x.sin()
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo", device_types="cuda")
def foo_cuda(x):
return x.cos()
x = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
result = op(x)
self.assertEqual(result, foo_cpu(x))
x_cuda = x.cuda()
op = self.get_op(f"{self.test_ns}::foo")
result = op(x_cuda)
self.assertEqual(result, foo_cuda(x_cuda))
@unittest.skipIf(not TEST_CUDA, "requires CUDA")
def test_impl_multiple(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@custom_ops.impl(f"{TestCustomOp.test_ns}::foo")
def foo_impl(x):
return x.cos()
op = self.get_op(f"{self.test_ns}::foo")
x = torch.randn(3)
result = op(x)
self.assertEqual(result, foo_impl(x))
x_cuda = x.cuda()
result = op(x_cuda)
self.assertEqual(result, foo_impl(x_cuda))
def test_impl_abstract_overload(self):
lib = self.lib()
lib.define("sin.blah(Tensor x) -> Tensor")
torch.library.impl_abstract(
f"{self.test_ns}::sin.blah", torch.empty_like, lib=lib
)
op = self.ns().sin.blah
x = torch.randn(3, device="meta")
op(x)
def test_impl_meta(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, dim: int) -> torch.Tensor:
raise NotImplementedError
@torch.library.impl_abstract(f"{TestCustomOp.test_ns}::foo", lib=self.lib())
def foo_meta(x, dim):
output_shape = list(x.shape)
del output_shape[dim]
return x.new_empty(output_shape)
x = torch.randn(2, 3, device="meta")
op = self.get_op(f"{self.test_ns}::foo")
result = op(x, 1)
self.assertEqual(result.shape, foo_meta(x, 1).shape)
def test_duplicate_impl(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor, dim: int) -> torch.Tensor:
raise NotImplementedError
@torch.library.impl_abstract(f"{TestCustomOp.test_ns}::foo", lib=self.lib())
def foo_meta(x, dim):
output_shape = list(x.shape)
del output_shape[dim]
return x.new_empty(output_shape)
with self.assertRaisesRegex(RuntimeError, r"test_custom_ops.py:\d+"):
@torch.library.impl_abstract(f"{TestCustomOp.test_ns}::foo", lib=self.lib())
def foo_meta2(x, dim):
output_shape = list(x.shape)
del output_shape[dim]
return x.new_empty(output_shape)
def test_new_data_dependent_symint(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@torch.library.impl_abstract(f"{TestCustomOp.test_ns}::foo", lib=self.lib())
def foo_meta(x):
ctx = torch.library.get_ctx()
r = ctx.new_dynamic_size(min=1)
with self.assertRaisesRegex(ValueError, "greater than or equal to 0"):
ctx.new_dynamic_size(min=-1)
with self.assertRaisesRegex(ValueError, "SymInt"):
ctx.new_dynamic_size(max=x.numel())
# NB: You must return dynamic sizes!
return x.new_empty(r)
x = torch.randn(2, 3, device="cpu")
op = self.get_op(f"{self.test_ns}::foo")
make_fx(op, tracing_mode="symbolic")(x)
def test_meta_for_data_dependent_shape_operation(self):
x = torch.randn(10, device="meta")
with self.assertRaisesRegex(RuntimeError, "data-dependent output shape"):
numpy_nonzero(x)
def test_basic_make_fx(self):
# More serious tests are in our CustomOp opinfo db,
# this one is just a sanity check.
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@torch.library.impl_abstract(f"{TestCustomOp.test_ns}::foo", lib=self.lib())
def foo_meta(x):
return x.sum()
x = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
gm = make_fx(op, tracing_mode="symbolic")(x)
self.assertTrue(f"{TestCustomOp.test_ns}.foo" in gm.code)
def test_not_implemented_error(self):
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::foo")
def foo(x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
x = torch.randn(3)
op = self.get_op(f"{self.test_ns}::foo")
with self.assertRaisesRegex(NotImplementedError, "cpu impl registered"):
op(x)
x = torch.randn(3, device="meta")
with self.assertRaisesRegex(NotImplementedError, "no fake impl or Meta kernel"):
op(x)
@custom_ops.custom_op(f"{TestCustomOp.test_ns}::bar")
def bar(sizes: Sequence[int]) -> torch.Tensor:
raise NotImplementedError
op = self.get_op(f"{self.test_ns}::bar")
with self.assertRaisesRegex(NotImplementedError, "no Tensor inputs"):
op((1, 2, 3))
def test_data_dependent_basic(self):
x = torch.randn(5, 5)
gm = make_fx(numpy_nonzero, tracing_mode="symbolic")(x)
self.assertTrue("nonzero" in gm.code)
def test_data_dependent_fake_tracing(self):
x = torch.randn(5, 5)
# We've updated to attempt to use unbacked symints even for fake
# tracing
make_fx(numpy_nonzero, tracing_mode="fake")(x)
def test_symints(self):
def f(x):
return torch.ops._torch_testing.numpy_view_copy(x, x.shape)
x = torch.randn(2, 3, 4)
gm = make_fx(f, tracing_mode="symbolic")(x)
result = gm(x)
self.assertEqual(result, f(x))
self.assertExpectedInline(
gm.code.strip(),
"""\
def forward(self, x_1):
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 1)
sym_size_int_2 = torch.ops.aten.sym_size.int(x_1, 2)
numpy_view_copy = torch.ops._torch_testing.numpy_view_copy.default(x_1, [sym_size_int, sym_size_int_1, sym_size_int_2]); x_1 = sym_size_int = sym_size_int_1 = sym_size_int_2 = None
return numpy_view_copy""", # noqa: B950
)
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work on windows")
def test_data_dependent_compile(self):
import torch._dynamo.testing
from torch._dynamo.utils import counters
counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt)
def f(x):
return numpy_nonzero(x.clone()).clone()
f(torch.randn(10))
self.assertEqual(len(counters["graph_break"]), 1)
self.assertEqual(next(iter(counters["graph_break"].values())), 1)
self.assertExpectedInline(
next(iter(counters["graph_break"].keys())).replace(";", "\n"),
"""\
dynamic shape operator: _torch_testing.numpy_nonzero.default
to enable, set torch._dynamo.config.capture_dynamic_output_shape_ops = True""",
)
# pre-existing problem: torch.compile(dynamic=True) will, by default,
# graph break on data-dependent operations. Eventually we'll make it so
# that it never graph breaks on data-dependent operations.
@unittest.expectedFailure
def test_data_dependent_nms_dynamic_compile(self):
import torch._dynamo.testing
from torch._dynamo.utils import counters
counters.clear()
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt, dynamic=True)
def f(x, s, i):
return torch.ops._torch_testing.numpy_nms(x.clone(), s, i).clone()
f(torch.randn(20, 4), torch.randn(20), 0.1)
self.assertEqual(len(counters["graph_break"]), 0)
def test_impl_on_existing_op(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
@torch._custom_ops.impl(qualname)
def foo_impl(x):
return x.sin()
op = self.get_op(qualname)
x = torch.randn(3)
result = op(x)
self.assertEqual(result, x.sin())
@parametrize(
"key", ["CPU", "CUDA", "CompositeImplicitAutograd", "CompositeExplicitAutograd"]
)
def test_impl_on_existing_op_with_cpu_registration(self, key):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
def foo_impl(x):
return x.sin()
lib.impl("foo", foo_impl, key)
op = self.get_op(qualname)
with self.assertRaisesRegex(RuntimeError, "already has an implementation"):
custom_ops.impl(qualname, func=foo_impl)
def test_abstract_impl_on_existing_op(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
@torch.library.impl_abstract(qualname, lib=self.lib())
def foo_impl(x):
return x.sin()
op = self.get_op(qualname)
with torch._subclasses.FakeTensorMode():
x = torch.randn(3)
result = op(x)
self.assertEqual(result.shape, x.shape)
self.assertEqual(result.stride(), x.stride())
def test_abstract_impl_on_existing_op_with_meta(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
def foo_impl(x):
return x.sin()
lib.impl("foo", foo_impl, "Meta")
op = self.get_op(qualname)
with self.assertRaisesRegex(RuntimeError, r"already has .*Meta implementation"):
torch.library.impl_abstract(qualname, func=foo_impl, lib=self.lib())
def test_abstract_impl_on_existing_op_with_CompositeImplicitAutograd(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
def foo_impl(x):
return x.sin()
lib.impl("foo", foo_impl, "CompositeImplicitAutograd")
op = self.get_op(qualname)
with self.assertRaisesRegex(RuntimeError, "CompositeImplicitAutograd"):
torch.library.impl_abstract(qualname, func=foo_impl, lib=self.lib())
def test_abstract_impl_on_existing_op_with_CompositeExplicitAutograd(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
def foo_impl(x):
return x.sin()
lib.impl("foo", foo_impl, "CompositeExplicitAutograd")
op = self.get_op(qualname)
torch.library.impl_abstract(qualname, func=lambda x: x.sum(), lib=self.lib())
with torch._subclasses.FakeTensorMode():
x = torch.randn(10)
result = op(x)
self.assertEqual(result.shape, ())
def _test_backward_impl_raises(self, qualname, err_regex):
with self.assertRaisesRegex(RuntimeError, err_regex):
@custom_ops.impl_save_for_backward(qualname)
def foo2(x):
return
with self.assertRaisesRegex(RuntimeError, err_regex):
@custom_ops.impl_backward(qualname)
def foo3(x):
return
def test_backward_impl_on_existing_op_incorrect_schema_views(self):
lib = self.lib()
lib.define("foo(Tensor(a) x) -> Tensor(a)")
qualname = f"{self.test_ns}::foo"
self._test_backward_impl_raises(qualname, "operator that returns views")
def test_backward_impl_on_existing_op_incorrect_schema_mutable(self):
lib = self.lib()
lib.define("foo(Tensor(a!) x) -> Tensor")
qualname = f"{self.test_ns}::foo"
self._test_backward_impl_raises(qualname, "non-functional")
def test_backward_impl_on_existing_op_incorrect_schema_no_output(self):
lib = self.lib()
lib.define("foo(Tensor x) -> ()")
qualname = f"{self.test_ns}::foo"
self._test_backward_impl_raises(qualname, "no returns")
def test_backward_impl_on_existing_op_CompositeImplicitAutograd(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
lib.impl("foo", lambda x: x.sin().cos(), "CompositeImplicitAutograd")
self._test_backward_impl_raises(qualname, "CompositeImplicitAutograd")
@parametrize("key", ["Autograd", "AutogradCPU", "AutogradCUDA"])
def test_backward_impl_on_existing_op_with_key(self, key):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
lib.impl("foo", lambda x: x.sin().cos(), key)
self._test_backward_impl_raises(qualname, key)
def test_is_functional_schema(self):
tests = {
"foo(Tensor x) -> Tensor": True,
"foo(Tensor(a) x) -> Tensor": True,
"foo(Tensor(a!) x) -> Tensor": False,
"foo(Tensor(a) x) -> Tensor(a)": False,
"foo(Tensor x) -> ()": False,
}
for schema_str, expected in tests.items():
res = torch._library.utils.is_functional_schema(schema_str)
self.assertEqual(res, expected)
from torchgen.model import FunctionSchema
schema = FunctionSchema.parse(schema_str)
res = torch._library.utils.is_functional_schema(schema)
self.assertEqual(res, expected)
schema = torch._C.parse_schema(schema_str)
res = torch._library.utils.is_functional_schema(schema)
self.assertEqual(res, expected)
def test_incorrect_schema_types(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
with self.assertRaisesRegex(RuntimeError, "unknown type specifier"):
lib.define("foo12(Tensor a) -> asdfasdf")
with self.assertRaisesRegex(RuntimeError, "unknown type specifier"):
lib.define("foo12(asdf a) -> Tensor")
with self.assertRaisesRegex(RuntimeError, "Use `SymInt` or `int`"):
lib.define("foo12(int64_t a) -> Tensor")
with self.assertRaisesRegex(RuntimeError, "Use `float`"):
lib.define("foo12(double a) -> Tensor")
def test_is_tensorlist_like_type(self):
tensorlists = [
# Tensor[]
torch.ops.aten.where.default._schema.returns[0].type,
# Tensor?[]
torch.ops.aten.index.Tensor._schema.arguments[1].type,
# Tensor[]?
torch._C.parse_schema("foo(Tensor[]? x) -> ()").arguments[0].type,
# Tensor?[]?
torch._C.parse_schema("foo(Tensor?[]? x) -> ()").arguments[0].type,
]
non_tensorlists = [
# Tensor
torch.ops.aten.sin.default._schema.arguments[0].type,
# IntList
torch.ops.aten.sum.dim_IntList._schema.arguments[1].type,
]
for a in tensorlists:
self.assertTrue(torch._library.utils.is_tensorlist_like_type(a))
for a in non_tensorlists:
self.assertFalse(torch._library.utils.is_tensorlist_like_type(a))
def test_backward_impl_on_existing_op(self):
lib = self.lib()
lib.define("foo(Tensor x) -> Tensor")
qualname = f"{self.test_ns}::foo"
@custom_ops.impl(qualname)
def foo_impl(x):
with torch.no_grad():
return x.sin()
@custom_ops.impl_save_for_backward(qualname)
def foo_save_for_backward(inputs, output):
return inputs.x
@custom_ops.impl_backward(qualname)
def foo_backward(ctx, saved, grad_out):
return {"x": grad_out * saved.cos()}
op = self.get_op(qualname)
x = torch.randn([], requires_grad=True)
y = op(x)
(gx,) = torch.autograd.grad(y, x)
self.assertEqual(gx, x.cos())
@parametrize(
"tags",
[
subtest(torch.Tag.pointwise, "single"),
subtest((torch.Tag.pointwise,), "tuple"),
subtest([torch.Tag.pointwise], "list"),
],
)
def test_define_with_tags(self, tags):
lib = self.lib()
tags = (torch.Tag.pointwise,)
torch.library.define(
f"{self.test_ns}::foo", "(Tensor x) -> Tensor", lib=lib, tags=tags
)
actual = self.ns().foo.default.tags
self.assertTrue(isinstance(actual, list))
self.assertEqual(actual, list(tags))
def test_builtin_aten_ops_are_pt2_compliant(self):
for op in [torch.ops.aten.sin.default, torch.ops.aten.sum.dim_IntList]:
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
def test_builtin_torchscript_ops(self):
for op in [torch.ops.aten.sub.complex, torch.ops.aten.mul.complex]:
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
def test_autogen_aten_ops_are_pt2_compliant(self):
for op in [torch.ops.aten.fill.Tensor_out]:
self.assertIn(torch.Tag.generated, op.tags)
self.assertIn(torch.Tag.pt2_compliant_tag, op.tags)
def test_resolve_packet(self):
x = torch.randn(3)
result = torch._C._jit_resolve_packet("aten::sum", x)
self.assertEqual(result, "default")
result = torch._C._jit_resolve_packet("aten::sum", x, dim=1)
self.assertEqual(result, "dim_IntList")
with self.assertRaisesRegex(RuntimeError, "failed to match any schema"):
result = torch._C._jit_resolve_packet("aten::sum", x, x, x)
def test_define_bad_schema(self):
lib = self.lib()
with self.assertRaisesRegex(ValueError, "expected schema to look like"):
torch.library.define(f"{self.test_ns}::foo", "foo(Tensor x) -> Tensor")
def test_define_and_impl(self):
lib = self.lib()
torch.library.define(f"{self.test_ns}::foo", "(Tensor x) -> Tensor", lib=lib)
@torch.library.impl(f"{self.test_ns}::foo", "CPU", lib=lib)
def f(x):
return torch.from_numpy(np.sin(x.numpy()))
x = torch.randn(3)
y = self.ns().foo(x)
assert torch.allclose(y, x.sin())
def test_define_validation(self):
with self.assertRaisesRegex(ValueError, "namespace"):
torch.library.define("foo", "(Tensor x) -> Tensor")
def test_legacy_define(self):
lib = self.lib()
@torch.library.define(lib, "foo(Tensor x) -> Tensor")
def f(x):
return torch.from_numpy(np.sin(x.numpy()))
x = torch.randn(3)
y = self.ns().foo(x)
assert torch.allclose(y, x.sin())
def test_impl_function(self):
lib = self.lib()
torch.library.define(f"{self.test_ns}::foo", "(Tensor x) -> Tensor", lib=lib)
def f(x):
return torch.from_numpy(np.sin(x.numpy()))
torch.library.impl(f"{self.test_ns}::foo", "CPU", f, lib=lib)
x = torch.randn(3)
y = self.ns().foo(x)
assert torch.allclose(y, x.sin())
def test_legacy_impl(self):
lib = self.lib()
torch.library.define(f"{self.test_ns}::foo", "(Tensor x) -> Tensor", lib=lib)
@torch.library.impl(lib, "foo", "CPU")
def f(x):
return torch.from_numpy(np.sin(x.numpy()))
x = torch.randn(3)
y = self.ns().foo(x)
assert torch.allclose(y, x.sin())
def test_defined_in_python(self):
self.assertFalse(torch.ops.aten.sin.default._defined_in_python)
self.assertFalse(torch.ops.aten.sum.dim_IntList._defined_in_python)
lib = self.lib()
torch.library.define("{self._test_ns}::foo", "(Tensor x) -> Tensor", lib=lib)
ns = self.ns()
self.assertTrue(ns.foo.default._defined_in_python)
torch.library.define(
"{self._test_ns}::bar.overload", "(Tensor x) -> Tensor", lib=lib
)
self.assertTrue(ns.bar.overload._defined_in_python)
def _test_impl_device(self, name, types, device):
lib = self.lib()
torch.library.define(f"{self.test_ns}::{name}", "(Tensor x) -> Tensor", lib=lib)
@torch.library.impl(f"{self.test_ns}::{name}", types)
def f(x):
x_np = x.cpu().numpy()
y = torch.from_numpy(np.sin(x_np))
return y.to(device=x.device)
x = torch.randn(3, device=device)
y = getattr(self.ns(), name)(x)
assert torch.allclose(y, x.sin())
def test_impl_device_cpu(self):
self._test_impl_device("foo1", "default", "cpu")
self._test_impl_device("foo2", ["cpu"], "cpu")
self._test_impl_device("foo3", ["cpu", "cuda"], "cpu")
@unittest.skipIf(not TEST_CUDA, "requires cuda")
def test_impl_device_cuda(self):
self._test_impl_device("foo4", "default", "cuda")
self._test_impl_device("foo5", ["cuda"], "cuda")
self._test_impl_device("foo6", ["cpu", "cuda"], "cuda")
def test_impl_device_function(self):
lib = self.lib()
torch.library.define(f"{self.test_ns}::foo", "(Tensor x) -> Tensor", lib=lib)
def f(x):
x_np = x.cpu().numpy()
y = torch.from_numpy(np.sin(x_np))
return y.to(device=x.device)
torch.library.impl(f"{self.test_ns}::foo", "default", f, lib=lib)
x = torch.randn(3)
y = self.ns().foo(x)
assert torch.allclose(y, x.sin())
def test_impl_device_invalid(self):
with self.assertRaisesRegex(RuntimeError, "Expected one of cpu, cuda"):
torch.library.impl("blah::blah", "somethingsomething")
def test_autograd_function_backed_op(self):
cpp_source = """
struct CustomOpAutogradFunction : public torch::autograd::Function<CustomOpAutogradFunction> {
static constexpr bool is_traceable = true;
static torch::Tensor forward(
torch::autograd::AutogradContext* ctx,
const torch::Tensor& x) {
return x;
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext *ctx,
torch::autograd::variable_list grad_output) {
return grad_output;
}
};
torch::Tensor custom_op_backed_by_autograd_fn(const torch::Tensor& x) {
return CustomOpAutogradFunction::apply(x);
}
TORCH_LIBRARY(mylib, m) {
m.def("custom_op_backed_by_autograd_fn", custom_op_backed_by_autograd_fn);
}
"""
module = torch.utils.cpp_extension.load_inline(
name="mylib",
cpp_sources=cpp_source,
functions="custom_op_backed_by_autograd_fn",
verbose=True,
)
x = torch.ones(2, 2, requires_grad=True)
temp = x.clone().detach()
out = torch.ops.mylib.custom_op_backed_by_autograd_fn(x)
loss = out.sum()
loss.backward()
self.assertEqual(x.grad, temp)
def op_with_incorrect_schema(testcase, name):
lib = testcase.lib()
lib.define(f"{name}(Tensor x) -> Tensor")
qualname = f"{testcase.test_ns}::{name}"
lib.impl(name, lambda x: x[:], "CompositeExplicitAutograd")
return testcase.get_op(qualname)
class MiniOpTest(CustomOpTestCaseBase):
test_ns = "mini_op_test"
def _init_op_delayed_backward_error(self):
name = "delayed_error"
qualname = f"{self.test_ns}::{name}"
lib = self.lib()
lib.define(f"{name}(Tensor x) -> Tensor")
lib.impl(name, lambda x: x.clone(), "CompositeExplicitAutograd")
op = self.get_op(qualname)
class Op(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
with torch._C._AutoDispatchBelowAutograd():
return op(x)
@staticmethod
def backward(ctx, grad):
raise NotImplementedError
def autograd_impl(x):
return Op.apply(x)
lib.impl(name, autograd_impl, "Autograd")
return op
def _init_op_with_no_abstract_impl(self):
name = "no_abstract"
qualname = f"{self.test_ns}::{name}"
lib = self.lib()
lib.define(f"{name}(Tensor x) -> Tensor", tags=(torch.Tag.pt2_compliant_tag,))
lib.impl(name, lambda x: x.clone(), "CPU")
return torch._library.utils.lookup_op(qualname)
def setUp(self):
super().setUp()
self._op_with_no_abstract_impl = self._init_op_with_no_abstract_impl()
self._op_delayed_backward_error = self._init_op_delayed_backward_error()
@optests.dontGenerateOpCheckTests("Testing this API")
def test_dont_generate(self):
op = op_with_incorrect_schema(self, "incorrect_schema")
x = torch.randn(3)
op(x)
def test_mm(self):
x = torch.randn(2, 3, requires_grad=True)
y = torch.randn(3, 5)
result = torch.ops.aten.mm.default(x, y)
self.assertEqual(result, x @ y)
def test_mm_meta(self):
x = torch.randn(2, 3, requires_grad=True, device="meta")
y = torch.randn(3, 5, device="meta")
result = torch.ops.aten.mm.default(x, y)
self.assertEqual(result.shape, (x @ y).shape)
def test_mm_fake(self):
with torch._subclasses.fake_tensor.FakeTensorMode():
x = torch.randn(2, 3, requires_grad=True, device="cpu")
y = torch.randn(3, 5, device="cpu")
result = torch.ops.aten.mm.default(x, y)
self.assertEqual(result.shape, (x @ y).shape)
def test_mm_errors(self):
x = torch.randn(2, 3, requires_grad=True)
y = torch.randn(4, 5)
with self.assertRaisesRegex(RuntimeError, "cannot be multiplied"):
result = torch.ops.aten.mm.default(x, y)
def test_nonzero(self):
x = torch.tensor([0, 1, 2, 0, 0])
y = torch.ops.aten.nonzero.default(x)
self.assertEqual(y, torch.tensor([[1], [2]]))
def test_inplace(self):
x = torch.randn(3)
x_clone = x.clone()
y = torch.ops.aten.sin_(x)
self.assertEqual(x, x_clone.sin())
def test_incorrect_schema(self):
op = op_with_incorrect_schema(self, "incorrect_schema")
x = torch.randn(3)
op(x)
def test_no_abstract(self):
op = self._op_with_no_abstract_impl
x = torch.randn(3)
op(x)
def test_delayed_error(self):
op = self._op_delayed_backward_error
x = torch.randn([], requires_grad=True)
y = op(x)
with self.assertRaises(NotImplementedError):
y.sum().backward()
def test_delayed_error_no_requires_grad(self):
op = self._op_delayed_backward_error
x = torch.randn([])
y = op(x)
class TestCustomOpAPI(TestCase):
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_basic(self):
@torch.library.custom_op("_torch_testing::add", mutates_args=())
def add(x: Tensor, y: float) -> Tensor:
x_np = x.numpy(force=True)
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z, x + y)
cpu_called = False
@add.register_kernel("cpu")
def _(x, y):
nonlocal cpu_called
cpu_called = True
x_np = x.numpy()
out_np = x_np + y
return torch.from_numpy(out_np)
z = add(x, y)
self.assertEqual(z, x + y)
self.assertTrue(cpu_called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_no_grad_skips_autograd(self):
@torch.library.custom_op("_torch_testing::add", mutates_args=())
def add(x: Tensor, y: float) -> Tensor:
x_np = x.numpy(force=True)
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
called = 0
def setup_context(ctx, inputs, output):
nonlocal called
called += 1
def backward(ctx, grad):
raise AssertionError("should not be reached")
add.register_autograd(backward, setup_context=setup_context)
x = torch.randn(3, requires_grad=True)
with torch.no_grad():
y = add(x, 2.0)
self.assertEqual(called, 0)
self.assertEqual(y, x + 2.0)
x.requires_grad_(False)
y = add(x, 2.0)
self.assertEqual(called, 0)
self.assertEqual(y, x + 2.0)
x = torch.randn(3, requires_grad=True)
y = add(x, 2.0)
self.assertEqual(called, 1)
self.assertEqual(y, x + 2.0)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_manual_schema(self):
@torch.library.custom_op(
"_torch_testing::add",
mutates_args=(),
schema="(Tensor x, float y) -> Tensor",
)
def add(x, y):
x_np = x.numpy(force=True)
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z, x + y)
@torch.library.custom_op(
"_torch_testing::sin_",
mutates_args=["x"],
schema="(Tensor(a!) x) -> ()",
)
def sin_(x):
x_np = x.numpy()
np.sin(x_np, out=x_np)
x = torch.randn(3)
expected = x.sin()
sin_(x)
self.assertEqual(x, expected)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_kwarg_only_tensors(self):
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
@torch.library.custom_op("_torch_testing::foo", mutates_args=())
def foo(x: Tensor, *, y: int, z: Tensor) -> Tensor:
pass
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
@torch.library.custom_op("_torch_testing::foo", mutates_args=())
def foo2(x: Tensor, *, y: int, z: Optional[Tensor]) -> Tensor:
pass
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
@torch.library.custom_op("_torch_testing::foo", mutates_args=())
def foo3(x: Tensor, *, y: int, z: List[Tensor]) -> Tensor:
pass
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("foo(Tensor x, *, Tensor y) -> Tensor")
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
torch.library.register_autograd(
"_torch_testing::foo",
lambda grad: grad,
setup_context=lambda ctx, inputs, keyword_only_inputs, output: None,
)
with self.assertRaisesRegex(NotImplementedError, "kwarg-only Tensor args"):
torch.library.register_vmap(
"_torch_testing::foo",
lambda info, in_dims, x, *, y: (x, 0),
)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_register_autograd_kwargonly_low_level(self):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("foo(Tensor x, *, float y) -> Tensor")
called = False
def foo_impl(x, *, y):
return x * y
lib.impl("foo", foo_impl, "CPU")
def backward(ctx, grad):
nonlocal called
called = True
return grad * ctx.y
def setup_context(ctx, inputs, keyword_only_inputs, output):
assert tuple(keyword_only_inputs.keys()) == ("y",)
ctx.y = keyword_only_inputs["y"]
torch.library.register_autograd(
"_torch_testing::foo", backward, setup_context=setup_context, lib=lib
)
x = torch.randn(3, requires_grad=True)
torch.ops._torch_testing.foo(x, y=3.14).sum().backward()
self.assertTrue(called)
self.assertEqual(x.grad, torch.tensor([3.14, 3.14, 3.14]))
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_register_autograd_defaults(self):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("foo(Tensor w, int x = 2, *, int y = 3, int z) -> Tensor")
def foo_impl(w, x=2, *, y=3, z):
return w * x * y * z
lib.impl("foo", foo_impl, "CPU")
called = False
def backward(ctx, grad):
nonlocal called
called = True
return grad * ctx.c
def setup_context(ctx, inputs, keyword_only_inputs, output):
assert len(inputs) == 2
assert inputs[1] == 2
assert keyword_only_inputs == {"y": 3, "z": 42}
ctx.c = keyword_only_inputs["y"] * keyword_only_inputs["z"] * inputs[1]
torch.library.register_autograd(
"_torch_testing::foo", backward, setup_context=setup_context, lib=lib
)
w = torch.randn(3, requires_grad=True)
torch.ops._torch_testing.foo(w, z=42).sum().backward()
self.assertTrue(called)
self.assertEqual(w.grad, torch.full_like(w, 2 * 3 * 42))
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_manual_schema_error(self):
with self.assertRaisesRegex(ValueError, "the op mutates {'x'}"):
@torch.library.custom_op(
"_torch_testing::sin_",
mutates_args=(),
schema="(Tensor(a!) x) -> ()",
)
def sin_(x):
x_np = x.numpy()
np.sin(x_np, out=x_np)
def test_supports_tensorlist(self):
@torch._library.autograd.supports_tensorlist
class Stack(torch.autograd.Function):
@staticmethod
def forward(ctx, xs):
ctx.num_xs = len(xs)
return torch.stack(xs)
@staticmethod
def backward(ctx, grad):
expected = ([True] * ctx.num_xs,)
self.assertEqual(ctx.needs_input_grad, expected)
return list(grad.unbind(0))
# call two applys, do a backward on the first
def t():
return torch.randn([], requires_grad=True)
xs0 = [t(), t(), t()]
xs1 = [t(), t(), t(), t()]
y0 = Stack.apply(xs0)
y1 = Stack.apply(xs1)
grads = torch.autograd.grad(y0.sum(), xs0)
self.assertEqual(grads, [torch.tensor(1.0) for _ in range(3)])
# call one apply, do multiple backwards
xs = [t(), t(), t()]
y = Stack.apply(xs)
_ = torch.autograd.grad(y.sum(), xs, retain_graph=True)
_ = torch.autograd.grad(y.sum(), xs, retain_graph=True)
grads = torch.autograd.grad(y.sum(), xs, retain_graph=True)
self.assertEqual(grads, [torch.tensor(1.0) for _ in range(3)])
# error: on access forward, backward directly
with self.assertRaisesRegex(NotImplementedError, "Function.forward directly"):
Stack.forward(None, xs)
with self.assertRaisesRegex(NotImplementedError, "Function.backward directly"):
Stack.backward(None, xs)
# the recursive case
@torch._library.autograd.supports_tensorlist
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, xs):
if len(xs) > 1:
return Foo.apply(xs[1:])
ctx.len_xs = len(xs)
return xs[0].sin()
@staticmethod
def backward(ctx, grad):
result = [None] * ctx.len_xs
result[-1] = grad.cos()
return result
# should work
result = Foo.apply(xs)
expected = xs[-1].sin()
self.assertEqual(result, expected)
# recursive on backward
@torch._library.autograd.supports_tensorlist
class Bar(torch.autograd.Function):
@staticmethod
def forward(ctx, xs):
return [xs[i] + i for i in range(len(xs))]
@staticmethod
def backward(ctx, grads):
f1 = Bar.apply(grads[:2])
f2 = Bar.apply(grads[2:])
return f1 + f2
xs = [torch.tensor(0.0, requires_grad=True) for _ in range(5)]
ys = Bar.apply(xs)
sum(ys).backward()
result = [xi.grad for xi in xs]
self.assertEqual(result, torch.tensor([1.0, 2, 1, 2, 3]).unbind(0))
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_default_values(self):
defaults = []
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(
x: Tensor,
a: Optional[int] = None,
b: float = 3.14,
c: bool = True,
d: int = 3,
e: str = "foo",
f: torch.dtype = torch.float,
g: torch.dtype = torch.float32,
h: torch.dtype = torch.int,
i: torch.device = torch.device("cpu:0"),
j: torch.device = "cpu",
) -> Tensor:
defaults.extend([a, b, c, d, e, f, g, h, i, j])
return x.clone()
x = torch.randn(3)
f(x)
self.assertEqual(
defaults,
[
None,
3.14,
True,
3,
"foo",
torch.float,
torch.float32,
torch.int,
torch.device("cpu:0"),
"cpu",
],
)
default_values = [
arg.default_value
for arg in torch.ops._torch_testing.f.default._schema.arguments
]
# enum values taken from c10/core/ScalarType.h
type_enum = {
"float": 6,
"int": 3,
}
self.assertEqual(
default_values,
[
None,
None,
3.14,
True,
3,
"foo",
type_enum["float"],
type_enum["float"],
type_enum["int"],
torch.device("cpu:0"),
torch.device("cpu"),
],
)
def test_mutated_error(self):
with self.assertRaisesRegex(
ValueError, r".*{'y'} in mutates_args were not found"
):
@torch.library.custom_op(
"_torch_testing::numpy_sin_inplace",
mutates_args={"y"},
device_types="cpu",
)
def numpy_sin_inplace(x: Tensor) -> None:
x_np = x.numpy()
np.sin(x_np, out=x_np)
def test_mutated(self):
@torch.library.custom_op(
"_torch_testing::numpy_sin_inplace", mutates_args={"x"}, device_types="cpu"
)
def numpy_sin_inplace(x: Tensor) -> None:
x_np = x.numpy()
np.sin(x_np, out=x_np)
x = torch.randn(3)
version = x._version
expected = x.sin()
numpy_sin_inplace(x)
self.assertEqual(x, expected)
self.assertGreater(x._version, version)
@torch.library.custom_op("_torch_testing::f", mutates_args={"y", "z", "w"})
def f(
x: Tensor, y: Optional[Tensor], z: List[Tensor], w: List[Optional[Tensor]]
) -> None:
return
x = torch.randn(3)
y = torch.randn(3)
z = [torch.randn(3), torch.randn(3)]
w = [torch.randn(3), None, torch.randn(3)]
initial_versions = pytree.tree_map_only(
torch.Tensor, lambda x: x._version, (x, y, z, w)
)
f(x, y, z, w)
new_versions = pytree.tree_map_only(
torch.Tensor, lambda x: x._version, (x, y, z, w)
)
self.assertEqual(initial_versions[0], new_versions[0])
initial_versions, _ = pytree.tree_flatten(initial_versions[1:])
new_versions, _ = pytree.tree_flatten(new_versions[1:])
for prev, after in zip(initial_versions, new_versions):
if prev is None and after is None:
continue
self.assertGreater(after, prev)
def test_mutated_unknown(self):
@torch.library.custom_op(
"_torch_testing::f", mutates_args="unknown", device_types="cpu"
)
def f(x: Tensor) -> None:
x_np = x.numpy()
np.sin(x_np, out=x_np)
x = torch.randn(3)
version = x._version
expected = x.sin()
f(x)
self.assertEqual(x, expected)
self.assertGreater(x._version, version)
@torch.library.custom_op("_torch_testing::f2", mutates_args="unknown")
def f2(
x: Tensor, y: Optional[Tensor], z: List[Tensor], w: List[Optional[Tensor]]
) -> None:
return
x = torch.randn(3)
y = torch.randn(3)
z = [torch.randn(3), torch.randn(3)]
w = [torch.randn(3), None, torch.randn(3)]
initial_versions = pytree.tree_map_only(
torch.Tensor, lambda x: x._version, (x, y, z, w)
)
f2(x, y, z, w)
new_versions = pytree.tree_map_only(
torch.Tensor, lambda x: x._version, (x, y, z, w)
)
initial_versions, _ = pytree.tree_flatten(initial_versions)
new_versions, _ = pytree.tree_flatten(new_versions)
for prev, after in zip(initial_versions, new_versions):
if prev is None and after is None:
continue
self.assertGreater(after, prev)
with self.assertRaisesRegex(ValueError, "string"):
@torch.library.custom_op("_torch_testing::f3", mutates_args="x")
def f3(x: Tensor) -> None:
return
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_torch_dispatch_rule_subclass(self):
from torch.testing._internal.two_tensor import TwoTensor
@torch.library.custom_op("mylib::foo", mutates_args={})
def f(x: torch.Tensor) -> torch.Tensor:
return x.sin()
x = torch.randn(3)
y = torch.randn(3)
z = TwoTensor(x, y)
with torch.library._scoped_library("mylib", "FRAGMENT") as m:
called = 0
def TwoTensor_foo(cls, func, types, args, kwargs):
nonlocal called
assert cls is TwoTensor
called += 1
return x.sin()
m._register_torch_dispatch_rule("foo", TwoTensor, TwoTensor_foo)
out = f(z)
out2 = z.cos()
self.assertEqual(called, 1)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_torch_dispatch_rule_mode(self):
from torch.testing._internal.two_tensor import TwoTensorMode
@torch.library.custom_op("mylib::foo", mutates_args={})
def f(x: torch.Tensor) -> torch.Tensor:
return x.sin()
x = torch.randn(3)
with torch.library._scoped_library("mylib", "FRAGMENT") as m:
called = 0
def TwoTensor_foo(mode, func, types, args, kwargs):
nonlocal called
called += 1
return x.sin()
m._register_torch_dispatch_rule("foo", TwoTensorMode, TwoTensor_foo)
with TwoTensorMode():
out = f(x)
out2 = x.cos()
self.assertEqual(called, 1)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
@parametrize("idx", [0, 1, 2, 3, 4, 5])
def test_library_register_fake_source(self, idx):
opname = f"source{idx}"
op = getattr(torch.ops._torch_testing, opname).default
entry = torch._library.simple_registry.singleton.find(op._name)
source = entry.fake_impl.kernel.source
assert source is not None
self.assertTrue("custom_op_db.py" in source)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_fake(self):
for mode in ["function", "qualname", "opoverload"]:
@torch.library.custom_op("_torch_testing::add", mutates_args=())
def add(x: Tensor, y: float) -> Tensor:
x_np = x.cpu().numpy()
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
called = False
if mode == "function":
dec = torch.library.register_fake(add)
self.assertIsNotNone(dec)
elif mode == "qualname":
dec = torch.library.register_fake("_torch_testing::add")
self.assertIsNotNone(dec)
elif mode == "opoverload":
dec = torch.library.register_fake(torch.ops._torch_testing.add.default)
self.assertIsNotNone(dec)
else:
raise AssertionError("should not get here")
@dec
def _(x, y):
nonlocal called
called = True
return torch.empty_like(x)
with torch._subclasses.fake_tensor.FakeTensorMode():
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z.shape, x.shape)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_torch_dispatch(self):
for mode in ["function", "qualname", "opoverload"]:
class MyMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return func(*args, **kwargs)
@torch.library.custom_op("_torch_testing::add", mutates_args=())
def add(x: Tensor, y: float) -> Tensor:
x_np = x.cpu().numpy()
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
called = False
if mode == "function":
dec = torch.library.register_torch_dispatch(add, MyMode)
self.assertIsNotNone(dec)
elif mode == "qualname":
dec = torch.library.register_torch_dispatch(
"_torch_testing::add", MyMode
)
self.assertIsNotNone(dec)
elif mode == "opoverload":
dec = torch.library.register_torch_dispatch(
torch.ops._torch_testing.add.default, MyMode
)
self.assertIsNotNone(dec)
else:
raise AssertionError("should not get here")
@dec
def _(mode, func, types, args, kwargs):
nonlocal called
called = True
return func(*args, **kwargs)
with MyMode():
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z.shape, x.shape)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_torch_dispatch_low_level(self):
modes = ["qualname", "opoverload"]
calls = ["decorator", "function"]
device_types_options = [("cpu", "cuda"), "cpu", None]
for mode, call, device_types in itertools.product(
modes, calls, device_types_options
):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("add10(Tensor x, float y) -> Tensor")
if mode == "qualname":
op = "_torch_testing::add10"
else:
assert mode == "opoverload"
op = torch.ops._torch_testing.add10.default
called = False
class MyMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return func(*args, **kwargs)
if call == "decorator":
@torch.library.register_torch_dispatch(op, MyMode, lib=lib)
def _(mode, func, types, args, kwargs):
x, y = args
nonlocal called
called = True
return x + y
else:
assert call == "function"
def add_stuff(mode, func, types, args, kwargs):
x, y = args
nonlocal called
called = True
return x + y
torch.library.register_torch_dispatch(
op, MyMode, add_stuff, lib=lib
)
x = torch.randn(3)
y = 3.14
with MyMode():
z = torch.ops._torch_testing.add10.default(x, y)
self.assertEqual(z, x + y)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_kernel(self):
modes = ["function", "qualname", "opoverload"]
calls = ["decorator", "function"]
device_types_options = ["cpu", None]
for mode, call, device_types in itertools.product(
modes, calls, device_types_options
):
@torch.library.custom_op(
"_torch_testing::add", mutates_args=(), device_types="cuda"
)
def add(x: Tensor, y: float) -> Tensor:
x_np = x.cpu().numpy()
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
if mode == "function":
op = add
elif mode == "qualname":
op = "_torch_testing::add"
else:
assert mode == "opoverload"
op = torch.ops._torch_testing.add.default
called = False
if call == "decorator":
@torch.library.register_kernel(op, device_types)
def _(x, y):
nonlocal called
called = True
x_np = x.numpy()
out_np = x_np + y
return torch.from_numpy(out_np)
else:
assert call == "function"
def add_cpu(x, y):
nonlocal called
called = True
x_np = x.numpy()
out_np = x_np + y
return torch.from_numpy(out_np)
torch.library.register_kernel(op, device_types, add_cpu)
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z, x + y)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_kernel_low_level(self):
modes = ["qualname", "opoverload"]
calls = ["decorator", "function"]
device_types_options = [("cpu", "cuda"), "cpu", None]
for mode, call, device_types in itertools.product(
modes, calls, device_types_options
):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("add9(Tensor x, float y) -> Tensor")
if mode == "qualname":
op = "_torch_testing::add9"
else:
assert mode == "opoverload"
op = torch.ops._torch_testing.add9.default
called = False
if call == "decorator":
@torch.library.register_kernel(op, device_types, lib=lib)
def _(x, y):
nonlocal called
called = True
x_np = x.numpy()
out_np = x_np + y
return torch.from_numpy(out_np)
else:
assert call == "function"
def add_cpu(x, y):
nonlocal called
called = True
x_np = x.numpy()
out_np = x_np + y
return torch.from_numpy(out_np)
torch.library.register_kernel(op, device_types, add_cpu, lib=lib)
x = torch.randn(3)
y = 3.14
z = torch.ops._torch_testing.add9.default(x, y)
self.assertEqual(z, x + y)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_autograd(self):
for mode in ["function", "qualname", "opoverload"]:
@torch.library.custom_op("mylib::numpy_sin", mutates_args=())
def numpy_sin(x: Tensor) -> Tensor:
x_np = x.cpu().numpy()
y_np = np.sin(x_np)
return torch.from_numpy(y_np).to(device=x.device)
def setup_context(ctx, inputs, output) -> Tensor:
(x,) = inputs
ctx.save_for_backward(x)
called = False
def backward(ctx, grad):
nonlocal called
called = True
(x,) = ctx.saved_tensors
return grad * x.cos()
if mode == "function":
torch.library.register_autograd(
numpy_sin, backward, setup_context=setup_context
)
elif mode == "qualname":
torch.library.register_autograd(
"mylib::numpy_sin", backward, setup_context=setup_context
)
elif mode == "opoverload":
torch.library.register_autograd(
torch.ops.mylib.numpy_sin.default,
backward,
setup_context=setup_context,
)
x = torch.randn(3, requires_grad=True)
y = numpy_sin(x)
(grad_x,) = torch.autograd.grad(y, x, torch.ones_like(y))
self.assertTrue(called)
self.assertEqual(grad_x, x.cos())
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_autograd_low_level(self):
for mode in ["qualname", "opoverload"]:
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("sin5(Tensor x) -> Tensor")
def numpy_sin(x: Tensor) -> Tensor:
x_np = x.cpu().detach().numpy()
y_np = np.sin(x_np)
return torch.from_numpy(y_np).to(device=x.device)
def setup_context(ctx, inputs, output) -> Tensor:
(x,) = inputs
ctx.save_for_backward(x)
called = False
def backward(ctx, grad):
nonlocal called
called = True
(x,) = ctx.saved_tensors
return grad * x.cos()
lib.impl("sin5", numpy_sin, "CPU")
called = False
if mode == "qualname":
torch.library.register_autograd(
"_torch_testing::sin5",
backward,
setup_context=setup_context,
lib=lib,
)
elif mode == "opoverload":
torch.library.register_autograd(
torch.ops._torch_testing.sin5.default,
backward,
setup_context=setup_context,
lib=lib,
)
x = torch.randn(3, requires_grad=True)
y = torch.ops._torch_testing.sin5(x)
(grad_x,) = torch.autograd.grad(y, x, torch.ones_like(y))
self.assertTrue(called)
self.assertEqual(grad_x, x.cos())
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_fake(self):
@torch.library.custom_op("_torch_testing::add", mutates_args=())
def add(x: Tensor, y: float) -> Tensor:
x_np = x.cpu().numpy()
out_np = x_np + y
return torch.from_numpy(out_np).to(x.device)
x = torch.randn(3)
y = 3.14
z = add(x, y)
self.assertEqual(z, x + y)
try:
with torch._subclasses.fake_tensor.FakeTensorMode():
x = torch.randn(3)
add(x, y)
raise AssertionError("should not be hit")
except RuntimeError as e:
abstract_impl_error_msg = str(e)
abstract_impl_error_msg = re.sub(
r"0x.*>\)>", "0xDEADBEEF>)>", abstract_impl_error_msg
).replace(". ", ".\n")
self.assertExpectedInline(
abstract_impl_error_msg,
"""\
There was no fake impl registered for <CustomOpDef(_torch_testing::add)>.
This is necessary for torch.compile/export/fx tracing to work.
Please use `add.register_fake` to add an fake impl.""",
)
if not IS_WINDOWS:
@torch.compile(backend="eager")
def f(x, y):
return add(x, y)
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "no fake impl"):
f(x, y)
abstract_called = False
@add.register_fake
def _(x, y):
nonlocal abstract_called
abstract_called = True
return torch.empty_like(x)
with torch._subclasses.fake_tensor.FakeTensorMode():
x = torch.randn(3)
z = add(x, y)
self.assertEqual(z.shape, x.shape)
self.assertTrue(abstract_called)
@skipIfTorchDynamo("recursive dynamo")
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work on windows")
def test_compile(self):
called_impl = False
called_abstract = False
@torch.library.custom_op("_torch_testing::linear", mutates_args=())
def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
nonlocal called_impl
called_impl = True
x_np = x.numpy()
w_np = weight.numpy()
b_np = bias.numpy()
out_np = np.add(x_np @ w_np.T, bias)
return out_np
@custom_linear.register_fake
def _(x, weight, bias):
nonlocal called_abstract
called_abstract = True
assert x.dim() == 2
assert weight.dim() == 2
assert bias.dim() == 1
assert x.shape[1] == weight.shape[1]
assert weight.shape[0] == bias.shape[0]
assert x.device == weight.device
return x.new_empty(x.size(0), weight.size(0))
x = torch.randn(2, 2)
weight = torch.randn(2, 2)
bias = torch.randn(2)
out = torch.compile(custom_linear, backend="eager", fullgraph=True)(
x, weight, bias
)
self.assertEqual(out, torch.nn.functional.linear(x, weight, bias))
self.assertTrue(called_impl)
self.assertTrue(called_abstract)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_register_autograd_error_cases(self):
@torch.library.custom_op("_torch_testing::g", mutates_args=())
def g(x: Tensor) -> Tensor:
return x.sin()
x = torch.randn(3, requires_grad=True)
y = g(x)
with self.assertRaisesRegex(RuntimeError, "no autograd formula"):
y.sum().backward()
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_replacement(self):
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(x: Tensor) -> Tensor:
return x.sin()
x = torch.randn(3)
y = f(x)
self.assertEqual(y, x.sin())
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(x: Tensor) -> Tensor:
return x.cos()
y = f(x)
self.assertEqual(y, x.cos())
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
@unittest.skipIf(not TEST_CUDA, "requires CUDA")
def test_split_device(self):
cpu_call_count = 0
cuda_call_count = 0
@torch.library.custom_op(
"_torch_testing::f", mutates_args=(), device_types="cpu"
)
def f(x: Tensor) -> Tensor:
nonlocal cpu_call_count
cpu_call_count += 1
x_np = x.numpy()
out_np = np.sin(x_np)
return torch.from_numpy(out_np)
@f.register_kernel("cuda")
def _(x: Tensor) -> Tensor:
nonlocal cuda_call_count
cuda_call_count += 1
x_np = x.cpu().numpy()
out_np = np.sin(x_np)
return torch.from_numpy(out_np).to(x.device)
x = torch.randn(3)
y = f(x)
self.assertEqual(y, x.sin())
self.assertEqual(cpu_call_count, 1)
self.assertEqual(cuda_call_count, 0)
x = x.cuda()
y = f(x)
self.assertEqual(y, x.sin())
self.assertEqual(cpu_call_count, 1)
self.assertEqual(cuda_call_count, 1)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
@unittest.skipIf(not TEST_CUDA, "requires CUDA")
def test_multi_types(self):
@torch.library.custom_op(
"_torch_testing::f", mutates_args=(), device_types=("cpu", "cuda")
)
def f(x: Tensor) -> Tensor:
x_np = x.cpu().numpy()
out_np = np.sin(x_np)
return torch.from_numpy(out_np).to(x.device)
x = torch.randn(3)
y = f(x)
self.assertEqual(y, x.sin())
x = x.cuda()
y = f(x)
self.assertEqual(y, x.sin())
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_overloading(self):
called_f = 0
called_f1 = 0
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(x: Tensor) -> Tensor:
nonlocal called_f
called_f += 1
return x.clone()
x = torch.randn(2, 3)
torch.ops._torch_testing.f(x)
self.assertEqual(called_f, 1)
@torch.library.custom_op("_torch_testing::f.overload", mutates_args=())
def f1(x: Tensor, y: Tensor) -> Tensor:
nonlocal called_f1
called_f1 += 1
return x.clone()
torch.ops._torch_testing.f(x, x)
self.assertEqual(called_f1, 1)
def test_disallows_output_aliasing(self):
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(x: Tensor) -> Tensor:
return x.view(-1)
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "may not alias"):
f(x)
@torch.library.custom_op("_torch_testing::f", mutates_args=())
def f(x: Tensor) -> Tensor:
return x
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "may not alias"):
f(x)
@torch.library.custom_op(
"_torch_testing::f", mutates_args={"x"}, device_types="cpu"
)
def numpy_sin_inplace(x: Tensor) -> Tensor:
x_np = x.numpy()
np.sin(x_np, out=x_np)
return x
x = torch.randn(3)
with self.assertRaisesRegex(RuntimeError, "may not alias"):
numpy_sin_inplace(x)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_factory_function(self):
@torch.library.custom_op(
"_torch_testing::f", mutates_args={}, device_types="cpu"
)
def f(device: torch.device) -> Tensor:
return torch.ones(3)
result = f(device="cpu")
self.assertEqual(result.device, torch.device("cpu"))
self.assertEqual(result, torch.ones(3))
with self.assertRaisesRegex(
RuntimeError, "f does not have a kernel registered for cuda"
):
f("cuda")
with self.assertRaisesRegex(
ValueError,
"Functions without tensor inputs are required to have a `device: torch.device` argument",
):
@torch.library.custom_op(
"_torch_testing::f2", mutates_args={}, device_types="cpu"
)
def f2() -> Tensor:
return torch.ones(3)
@torch.library.custom_op("_torch_testing::f3", mutates_args={})
def f3() -> Tensor:
raise NotImplementedError("NYI")
with self.assertRaisesRegex(
ValueError,
"Functions without tensor inputs are required to have a `device: torch.device` argument",
):
@f3.register_kernel("cpu")
def _():
return torch.zeros(3)
result = f(x)
@torch.library.custom_op("_torch_testing::f4", mutates_args={})
def f4(device: torch.device) -> Tensor:
raise NotImplementedError("NYI")
@f4.register_kernel("cpu")
def _(device: torch.device):
return torch.zeros(3)
result = f(device="cpu")
self.assertEqual(result.device, torch.device("cpu"))
self.assertEqual(result, torch.ones(3))
def test_library_schema_infer(self):
def foo_impl(x: torch.Tensor) -> torch.Tensor:
return x.sin()
schema = torch.library.infer_schema(foo_impl, op_name="myop", mutates_args={})
self.assertExpectedInline(schema, "myop(Tensor x) -> Tensor")
schema = torch.library.infer_schema(foo_impl, mutates_args={})
self.assertExpectedInline(schema, "(Tensor x) -> Tensor")
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_set_kernel_enabled(self):
x = torch.ones(1)
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor) -> Tensor:
return x + 1
self.assertEqual(f(x), x + 1)
with self.assertLogs("torch._library.custom_ops") as captured:
with f.set_kernel_enabled("gpu", enabled=False):
self.assertEqual(f(x), x + 1)
self.assertIn(
"no kernel was registered for this device type", captured.output[0]
)
@f.register_kernel("cpu")
def _(x):
return x + 2
self.assertEqual(f(x), x + 2)
with self.assertLogs("torch._library.custom_ops") as captured:
with f.set_kernel_enabled("cpu", enabled=True):
self.assertEqual(f(x), x + 2)
self.assertIn("already enabled", captured.output[0])
with f.set_kernel_enabled("cpu", enabled=False):
self.assertEqual(f(x), x + 1)
with self.assertLogs("torch._library.custom_ops") as captured:
with f.set_kernel_enabled("cpu", enabled=False):
self.assertEqual(f(x), x + 1)
self.assertIn("already disabled", captured.output[0])
self.assertEqual(f(x), x + 1)
with f.set_kernel_enabled("cpu", enabled=True):
self.assertEqual(f(x), x + 2)
with f.set_kernel_enabled("cpu", enabled=False):
self.assertEqual(f(x), x + 1)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_register_vmap_kwargonly_low_level(self):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("foo(Tensor x, *, float y) -> Tensor")
called = False
def foo_impl(x, *, y):
return x * y
lib.impl("foo", foo_impl, "CPU")
def vmap(info, in_dims, x, *, y):
nonlocal called
called = True
return x * y, 0
torch.library.register_vmap("_torch_testing::foo", vmap, lib=lib)
x = torch.ones(3)
result = torch.vmap(torch.ops._torch_testing.foo)(x, y=3.14)
self.assertTrue(called)
self.assertEqual(result, torch.tensor([3.14, 3.14, 3.14]))
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_register_vmap_defaults(self):
with torch.library._scoped_library("_torch_testing", "FRAGMENT") as lib:
lib.define("foo(Tensor w, int x = 2, *, int y = 3, int z) -> Tensor")
def foo_impl(w, x=2, *, y=3, z):
return w * x * y * z
lib.impl("foo", foo_impl, "CPU")
called = False
def vmap(info, in_dims, w, x=2, *, y=3, z):
nonlocal called
called = True
return w * x * y * z, 0
torch.library.register_vmap("_torch_testing::foo", vmap, lib=lib)
w = torch.ones(3)
result = torch.vmap(torch.ops._torch_testing.foo)(w, z=42)
self.assertTrue(called)
self.assertEqual(result, w * 2 * 3 * 42)
def test_layout_constraint_tags(self):
needs_fixed_stride_order = torch._C.Tag.needs_fixed_stride_order
flexible_layout = torch._C.Tag.flexible_layout
# (tags, the result of the tag inference)
tests = [
({needs_fixed_stride_order}, needs_fixed_stride_order),
({flexible_layout}, flexible_layout),
# If no tags are provided, then the following is the default
(set(), flexible_layout),
# If multiple tags are provided, then we use the most constrained tag.
({flexible_layout, needs_fixed_stride_order}, needs_fixed_stride_order),
]
from torch._inductor.lowering import get_layout_constraint_tag
for tags, expected in tests:
with torch.library._scoped_library("mylib", "FRAGMENT") as m:
m.define("foobar(Tensor x) -> Tensor", tags=tags)
result = get_layout_constraint_tag(torch.ops.mylib.foobar.default)
self.assertEqual(result, expected)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_vmap(self):
for mode in ["function", "qualname", "opoverload", "c_opdef"]:
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor, y: Tensor) -> Tensor:
return x * y
called = False
def fvmap(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x * y
result = result.movedim(-1, 0)
return result, 0
if mode == "function":
torch.library.register_vmap(f, fvmap)
elif mode == "qualname":
torch.library.register_vmap("mylib::f", fvmap)
elif mode == "opoverload":
torch.library.register_vmap(torch.ops.mylib.f.default, fvmap)
elif mode == "c_opdef":
f.register_vmap(fvmap)
x = torch.randn(2, 2)
y = torch.randn(2, 2)
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x * y)
called = False
result = torch.vmap(f, out_dims=1)(x, y)
self.assertEqual(result, (x * y).T)
self.assertTrue(called)
called = False
result = torch.vmap(f, in_dims=1)(x, y)
self.assertEqual(result, (x * y).T)
self.assertTrue(called)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_vmap_library_decorator(self):
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor, y: Tensor) -> Tensor:
return x * y
called = False
@torch.library.register_vmap("mylib::f")
def fvmap(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x * y
result = result.movedim(-1, 0)
return result, 0
x = torch.randn(2, 2)
y = torch.randn(2, 2)
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x * y)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_vmap_op_decorator(self):
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor, y: Tensor) -> Tensor:
return x * y
called = False
@f.register_vmap
def fvmap(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x * y
result = result.movedim(-1, 0)
return result, 0
x = torch.randn(2, 2)
y = torch.randn(2, 2)
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x * y)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_vmap_register_multiple_times(self):
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor, y: Tensor) -> Tensor:
return x * y
called = False
@f.register_vmap
def fvmap(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x * y
result = result.movedim(-1, 0)
return result, 0
x = torch.randn(2, 2)
y = torch.randn(2, 2)
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x * y)
called = False
@f.register_vmap
def fvmap2(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x + y
result = result.movedim(-1, 0)
return result, 0
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x + y)
@skipIfTorchDynamo("Expected to fail due to no FakeTensor support; not a bug")
def test_library_register_vmap_register_multiple_times_2(self):
@torch.library.custom_op("mylib::f", mutates_args=())
def f(x: Tensor, y: Tensor) -> Tensor:
return x * y
called = False
@torch.library.register_vmap("mylib::f")
def fvmap(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x * y
result = result.movedim(-1, 0)
return result, 0
x = torch.randn(2, 2)
y = torch.randn(2, 2)
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x * y)
called = False
@torch.library.register_vmap("mylib::f")
def fvmap2(info, in_dims, x, y):
nonlocal called
called = True
x_bdim, y_bdim = in_dims
x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
result = x + y
result = result.movedim(-1, 0)
return result, 0
result = torch.vmap(f)(x, y)
self.assertTrue(called)
self.assertEqual(result, x + y)
class MiniOpTestOther(CustomOpTestCaseBase):
test_ns = "mini_op_test"
def test_nonzero_again(self):
x = torch.tensor([0, 1, 2, 0, 0])
y = torch.ops.aten.nonzero.default(x)
self.assertEqual(y, torch.tensor([[1], [2]]))
optests.generate_opcheck_tests(
MiniOpTest,
["aten", "mini_op_test"],
get_file_path_2(os.path.dirname(__file__), "minioptest_failures_dict.json"),
additional_decorators={
"test_pt2_compliant_tag_mini_op_test_no_abstract": [unittest.expectedFailure]
},
test_utils=optests.generate_tests.DEPRECATED_DEFAULT_TEST_UTILS,
)
optests.generate_opcheck_tests(
MiniOpTestOther,
["aten", "mini_op_test"],
get_file_path_2(os.path.dirname(__file__), "minioptest_failures_dict.json"),
test_utils=optests.generate_tests.DEPRECATED_DEFAULT_TEST_UTILS,
)
class TestGenerateOpcheckTests(CustomOpTestCaseBase):
def test_MiniOpTest(self):
for orig_test in ["test_mm", "test_nonzero"]:
for (
test
) in torch.testing._internal.optests.generate_tests.DEFAULT_TEST_UTILS:
expected_test = f"{test}__{orig_test}"
self.assertTrue(hasattr(MiniOpTest, expected_test), msg=expected_test)
def test_generate_repro_save_data(self):
from torch.testing._internal.optests.generate_tests import generate_repro
args = (torch.ones(2, 2),)
kwargs = {"mat2": torch.zeros(2, 2)}
actual = generate_repro(
"test_schema",
torch.ops.aten.sin.default,
args,
kwargs,
save_data=True,
dry_run=True,
)
actual = re.sub(r"torch.load\(\".*\.pt\"\)", 'torch.load("repro.pt")', actual)
self.assertExpectedInline(
actual,
"""\
# =========================================================
# BEGIN REPRO SCRIPT
# =========================================================
import torch
from torch.testing._internal.optests import opcheck
# Make sure you have loaded the library that contains the op
# via an import or torch.ops.load_library(...)
op = torch.ops.aten.sin.default
args, kwargs = torch.load("repro.pt")
opcheck(op, args, kwargs, test_utils="test_schema")
# =========================================================
# END REPRO SCRIPT
# =========================================================
""",
)
def test_generate_repro_no_save_data(self):
from torch.testing._internal.optests.generate_tests import generate_repro
args = (torch.ones(2, 2),)
kwargs = {"mat2": torch.zeros(2, 2)}
actual = generate_repro(
"test_schema",
torch.ops.aten.sin.default,
args,
kwargs,
save_data=False,
dry_run=True,
)
self.assertExpectedInline(
actual,
"""\
# =========================================================
# BEGIN REPRO SCRIPT
# =========================================================
import torch
from torch.testing._internal.optests import opcheck
# Make sure you have loaded the library that contains the op
# via an import or torch.ops.load_library(...)
op = torch.ops.aten.sin.default
# If you rerun your test with PYTORCH_OPCHECK_PRINT_BETTER_REPRO=1
# we will fill them in same (args, kwargs) as in your test
args = () # args to the operator
kwargs = {} # kwargs to the operator
opcheck(op, args, kwargs, test_utils="test_schema")
# =========================================================
# END REPRO SCRIPT
# =========================================================
""",
)
def test_failures_dict_validation(self):
from torch.testing._internal.optests.generate_tests import (
FailuresDict,
validate_failures_dict_structure,
)
failures = {
"mini_op_test::incorrect_schema": {
"MiniOpTest.test_aot_dispatch_dynamic__test_delayed_error": {
"comment": "",
"status": "success",
}
}
}
with self.assertRaisesRegex(RuntimeError, "got status=success"):
validate_failures_dict_structure(
FailuresDict("", failures),
torch.testing._internal.optests.generate_tests.DEFAULT_TEST_UTILS,
MiniOpTest,
)
failures = {
"mini_op_test::incorrect_schema": {
"MiniOpTest.test_aot_dispatch__test_delayed_error": {
"comment": "",
"status": "xfail",
},
}
}
with self.assertRaisesRegex(RuntimeError, "should begin with one of"):
validate_failures_dict_structure(
FailuresDict("", failures),
torch.testing._internal.optests.generate_tests.DEFAULT_TEST_UTILS,
MiniOpTest,
)
failures = {
"mini_op_test::incorrect_schema": {
"MiniOpTest.test_aot_dispatch_dynamic__test_delayed_error_nopenopenope": {
"comment": "",
"status": "xfail",
},
}
}
with self.assertRaisesRegex(RuntimeError, "does not exist on the TestCase"):
validate_failures_dict_structure(
FailuresDict("", failures),
torch.testing._internal.optests.generate_tests.DEFAULT_TEST_UTILS,
MiniOpTest,
)
def test_dont_generate_decorator(self):
self.assertTrue(hasattr(MiniOpTest, "test_dont_generate"))
self.assertFalse(hasattr(MiniOpTest, "test_schema__test_dont_generate"))
def test_opcheck(self):
x = torch.randn(3, requires_grad=True)
with self.assertRaisesRegex(ValueError, "OpOverload"):
torch.library.opcheck(torch.sin, (x,))
with self.assertRaisesRegex(ValueError, "test_utils to be subset of"):
torch.library.opcheck(torch.ops.aten.sin.default, (x,), test_utils="blah")
result = torch.library.opcheck(torch.ops.aten.sin.default, (x,))
self.assertEqual(
result,
{
"test_schema": "SUCCESS",
"test_autograd_registration": "SUCCESS",
"test_faketensor": "SUCCESS",
"test_aot_dispatch_dynamic": "SUCCESS",
},
)
result = torch.library.opcheck(
torch.ops.aten.sin.default, (x,), test_utils="test_schema"
)
self.assertEqual(result, {"test_schema": "SUCCESS"})
result = torch.library.opcheck(
torch.ops.aten.sin.default,
(x,),
test_utils=["test_schema", "test_faketensor"],
)
self.assertEqual(
result,
{
"test_schema": "SUCCESS",
"test_faketensor": "SUCCESS",
},
)
def test_opcheck_customopdef(self):
sample_inputs = [
(torch.randn(3),),
(torch.randn(3, requires_grad=True),),
]
if torch.cuda.is_available():
sample_inputs.extend(
[
(torch.randn(3, device="cuda"),),
(torch.randn(3, device="cuda", requires_grad=True),),
]
)
for args in sample_inputs:
torch.library.opcheck(custom_op_db.numpy_cube, args)
def test_is_inside_opcheck_mode(self):
self.assertFalse(optests.is_inside_opcheck_mode())
with optests.generate_tests.OpCheckMode(
["foo"], "bar", lambda x: x, None, "baz", "brr"
):
self.assertTrue(optests.is_inside_opcheck_mode())
def test_opcheck_bad_op(self):
op = op_with_incorrect_schema(self, "foo")
x = torch.randn(3)
with self.assertRaisesRegex(Exception, "is not defined to alias output"):
torch.library.opcheck(op, (x,))
result = torch.library.opcheck(op, (x,), raise_exception=False)
self.assertTrue(isinstance(result["test_schema"], RuntimeError))
del result["test_schema"]
self.assertEqual(
result,
{
"test_autograd_registration": "SUCCESS",
"test_faketensor": "SUCCESS",
"test_aot_dispatch_dynamic": "SUCCESS",
},
)
def test_opcheck_does_not_require_extra_deps(self):
# torch.testing._internal.common_utils comes with a lot of additional
# test-time dependencies. Since opcheck is public API, it should be
# usable only with pytorch install-time dependencies.
cmd = [
sys.executable,
"-c",
"import torch; import sys; \
x = torch.randn(3, requires_grad=True); \
torch.library.opcheck(torch.ops.aten.sin.default, (x,)); \
assert 'expecttest' not in sys.modules; \
assert 'torch.testing._internal.common_utils' not in sys.modules",
]
subprocess.check_output(cmd, shell=False)
class TestTypeConversion(TestCase):
"""In infer_schema(), we try to suggest a correct type when the type annotation is wrong."""
def setUp(self):
self.supported_base_types = [
int,
float,
bool,
str,
torch.device,
torch.Tensor,
torch.dtype,
torch.types.Number,
]
def test_simple_tuple(self):
self.assertEqual(List, tuple_to_list(Tuple))
def test_supported_types(self):
for t in self.supported_base_types:
result_type = tuple_to_list(Tuple[t, t, t])
self.assertEqual(result_type, List[t])
result_type = tuple_to_list(Tuple[t])
self.assertEqual(result_type, List[t])
def test_optional(self):
for t in self.supported_base_types:
result_type = tuple_to_list(Tuple[t, Optional[t]])
self.assertEqual(result_type, List[Optional[t]])
result_type = tuple_to_list(Tuple[t, t, Optional[t]])
self.assertEqual(result_type, List[Optional[t]])
result_type = tuple_to_list(Tuple[t, ...])
self.assertEqual(result_type, List[t])
def test_mixed_types(self):
result_type = tuple_to_list(Tuple[int, float])
self.assertEqual(result_type, List[typing.Union[int, float]])
result_type = tuple_to_list(Tuple[int, float, str])
self.assertEqual(result_type, List[typing.Union[int, float, str]])
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestCustomOpTesting, globals(), only_for=only_for)
instantiate_parametrized_tests(TestCustomOp)
instantiate_parametrized_tests(TestCustomOpAPI)
if __name__ == "__main__":
run_tests()