| # Owner(s): ["module: mta"] |
| |
| import itertools |
| import os |
| import random |
| import re |
| import unittest |
| import weakref |
| from contextlib import nullcontext |
| from numbers import Number |
| |
| import torch |
| from torch.testing import make_tensor |
| from torch.testing._comparison import default_tolerances |
| from torch.testing._internal.common_cuda import TEST_MULTIGPU |
| from torch.testing._internal.common_device_type import ( |
| dtypes, |
| instantiate_device_type_tests, |
| onlyCUDA, |
| OpDTypes, |
| ops, |
| ) |
| from torch.testing._internal.common_dtype import ( |
| all_types_and_complex_and, |
| floating_types, |
| floating_types_and, |
| integral_types_and, |
| ) |
| from torch.testing._internal.common_methods_invocations import ( |
| foreach_binary_op_db, |
| foreach_other_op_db, |
| foreach_pointwise_op_db, |
| foreach_reduce_op_db, |
| foreach_unary_op_db, |
| ) |
| from torch.testing._internal.common_utils import ( |
| gradcheck, |
| parametrize, |
| run_tests, |
| skipIfRocmVersionLessThan, |
| skipIfTorchDynamo, |
| TEST_WITH_ROCM, |
| TestCase, |
| ) |
| |
| |
| _BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator" |
| |
| |
| class RegularFuncWrapper: |
| def __init__(self, func): |
| self.func = func |
| |
| def __call__(self, inputs, scalars=None, **kwargs): |
| if scalars is not None: |
| assert len(inputs) == 3 |
| # We need to distribute each scalar to the regular func and it needs |
| # special consideration as it is a keyword only argument to the |
| # regular func. (Strangely, it is not a keyword only argument to the |
| # foreach func) |
| return [ |
| self.func(*i, value=scalars[idx], **kwargs) |
| for idx, i in enumerate(zip(*inputs)) |
| ] |
| if len(inputs) == 2 and isinstance(inputs[1], (Number, torch.Tensor)): |
| # binary op with tensorlist and scalar. |
| inputs[1] = [inputs[1] for _ in range(len(inputs[0]))] |
| return [self.func(*i, **kwargs) for i in zip(*inputs)] |
| |
| |
| class ForeachFuncWrapper: |
| def __init__(self, func): |
| self.func = func |
| # Some foreach functions don't have in-place implementations. |
| self.is_inplace = False if func is None else func.__name__.endswith("_") |
| |
| def __call__(self, inputs, is_cuda, expect_fastpath, **kwargs): |
| actual = None |
| zero_size = kwargs.pop("zero_size", False) |
| if ( |
| is_cuda |
| and torch.autograd.kineto_available() |
| and torch.profiler.ProfilerActivity.CUDA |
| in torch.profiler.supported_activities() |
| ): |
| with torch.profiler.profile() as p: |
| actual = self.func(*inputs, **kwargs) |
| keys = tuple([e.key for e in p.key_averages()]) |
| mta_called = any("multi_tensor_apply_kernel" in k for k in keys) |
| assert ( |
| mta_called == (expect_fastpath and (not zero_size)) |
| ), f"{mta_called=}, {expect_fastpath=}, {zero_size=}, {self.func.__name__=}, {keys=}" |
| else: |
| actual = self.func(*inputs, **kwargs) |
| if self.is_inplace: |
| assert id(inputs[0]) == id(actual) |
| return actual |
| |
| |
| class InplaceForeachVersionBumpCheck: |
| def __init__( |
| self, |
| testcase: TestCase, |
| tensorlist: "List[torch.Tensor]", # noqa: F821 |
| ) -> None: |
| self._testcase = testcase |
| self._tensorlist = tensorlist |
| self._orig_version_counts = [t._version for t in tensorlist] |
| |
| def __enter__(self): |
| pass |
| |
| def __exit__(self, exc_type, exc_value, traceback): |
| # note(crcrpar): some methods e.g. `_binary_test` could call the given inplace function multiple times |
| self._testcase.assertGreaterEqual( |
| [t._version for t in self._tensorlist], self._orig_version_counts |
| ) |
| |
| |
| def get_transform_func(num_tensors, dtype, device, is_fastpath): |
| def transform(t): |
| if not torch.is_tensor(t): |
| return t |
| if torch.is_tensor(t) and t.ndim == 0: |
| return t |
| return make_tensor( |
| (num_tensors, num_tensors), |
| dtype=dtype, |
| device=device, |
| requires_grad=True, |
| noncontiguous=not is_fastpath, |
| ) |
| |
| return transform |
| |
| |
| # note(crcrpar): `zero_size` is `False` unless (dtype, device) == (torch.float32, "cuda") |
| # as the pair would go through `multi_tensor_apply_kernel` if inputs are not zero size. |
| @unittest.mock.patch.dict(os.environ, {"KINETO_LOG_LEVEL": "5"}) |
| class TestForeach(TestCase): |
| @property |
| def is_cuda(self): |
| return self.device_type == "cuda" |
| |
| def _get_funcs(self, op): |
| return ( |
| ForeachFuncWrapper(op.method_variant), |
| RegularFuncWrapper(op.ref), |
| ForeachFuncWrapper(op.inplace_variant), |
| RegularFuncWrapper(op.ref_inplace), |
| ) |
| |
| # note(crcrpar): Make sure 0-size tensors are appropriately ignored by `multi_tensor_apply` |
| # which is originally reported in https://github.com/pytorch/pytorch/issues/94865. |
| # rel: |
| # - https://github.com/pytorch/pytorch/pull/94655 |
| # - https://github.com/pytorch/pytorch/issues/100701 |
| # - https://github.com/pytorch/pytorch/pull/100811 |
| @onlyCUDA |
| @ops( |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_reduce_op_db |
| + foreach_other_op_db, |
| dtypes=(torch.float32,), |
| ) |
| def test_all_zero_size_tensors_do_not_launch_kernel(self, device, dtype, op): |
| wrapped_op, _, inplace_op, _ = self._get_funcs(op) |
| |
| for sample in op.sample_zero_size_inputs(device, dtype): |
| if op.method_variant is not None: |
| wrapped_op( |
| (sample.input, *sample.args), |
| is_cuda=self.is_cuda, |
| expect_fastpath=True, |
| zero_size=True, |
| ) |
| |
| if op.inplace_variant is not None: |
| with InplaceForeachVersionBumpCheck(self, sample.input): |
| inplace_op( |
| (sample.input, *sample.args), |
| is_cuda=self.is_cuda, |
| expect_fastpath=True, |
| zero_size=True, |
| ) |
| |
| @skipIfRocmVersionLessThan((6, 0)) |
| @ops( |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_reduce_op_db |
| + foreach_other_op_db, |
| ) |
| @parametrize( |
| "noncontiguous,inplace", |
| [(False, False), (False, True), (True, False), (True, True)], |
| name_fn=lambda x, y: "{}_{}".format( |
| "fastpath" if not x else "slowpath", "inplace" if y else "outplace" |
| ), |
| ) |
| def test_parity(self, device, dtype, op, noncontiguous, inplace): |
| if inplace: |
| _, _, func, ref = self._get_funcs(op) |
| else: |
| func, ref, _, _ = self._get_funcs(op) |
| for sample in op.sample_inputs( |
| device, dtype, noncontiguous=noncontiguous, allow_higher_dtype_scalars=True |
| ): |
| ref_kwargs = sample.kwargs |
| # div promotes ints to floats, so we cannot go on the fastpath there |
| div_slowpath = ( |
| dtype in integral_types_and(torch.bool) and op.name == "_foreach_div" |
| ) |
| expect_fastpath = not ( |
| noncontiguous or sample.disable_fastpath or div_slowpath |
| ) |
| ref_input, ctxmgr = sample.input, nullcontext() |
| if inplace: |
| with torch.no_grad(): |
| ref_input = [t.clone().detach() for t in sample.input] |
| ctxmgr = InplaceForeachVersionBumpCheck(self, sample.input) |
| try: |
| with ctxmgr: |
| actual = func( |
| [sample.input, *sample.args], |
| self.is_cuda, |
| expect_fastpath, |
| **sample.kwargs, |
| ) |
| except Exception as e: |
| with self.assertRaises(type(e)): |
| ref([ref_input, *sample.ref_args], **ref_kwargs) |
| else: |
| expected = ref([ref_input, *sample.ref_args], **ref_kwargs) |
| self.assertEqual(expected, actual) |
| |
| def _binary_test( |
| self, |
| dtype, |
| op, |
| ref, |
| inputs, |
| is_fastpath, |
| is_inplace, |
| *, |
| alpha, |
| scalar_self_arg: bool, |
| ): |
| ref_inputs = ( |
| [[t.clone().detach() for t in inputs[0]], inputs[1]] |
| if is_inplace |
| else inputs |
| ) |
| try: |
| with InplaceForeachVersionBumpCheck( |
| self, inputs[0] |
| ) if op.is_inplace else nullcontext(): |
| actual = op(inputs, self.is_cuda, is_fastpath) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])): |
| if not scalar_self_arg: |
| ref(ref_inputs) |
| else: |
| [ref.func(ref_inputs[0], t) for t in ref_inputs[1]] |
| else: |
| expected = ( |
| ref(ref_inputs) |
| if not scalar_self_arg |
| else [ref.func(ref_inputs[0], t) for t in ref_inputs[1]] |
| ) |
| self.assertEqual(actual, expected) |
| if alpha is not None and not scalar_self_arg: |
| kwargs = {"alpha": alpha} |
| ref_inputs = inputs |
| try: |
| op_kwargs = {} |
| op_kwargs.update(kwargs) |
| with InplaceForeachVersionBumpCheck( |
| self, inputs[0] |
| ) if op.is_inplace else nullcontext(): |
| actual = op(inputs, self.is_cuda, is_fastpath, **op_kwargs) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])): |
| ref(ref_inputs, **kwargs) |
| else: |
| expected = ref(ref_inputs, **kwargs) |
| if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM: |
| self.assertEqual( |
| expected, actual, atol=1.0e-3, rtol=default_tolerances(dtype)[0] |
| ) |
| else: |
| self.assertEqual(expected, actual) |
| |
| @ops(filter(lambda op: op.supports_scalar_self_arg, foreach_binary_op_db)) |
| @parametrize("is_fastpath", (True, False)) |
| def test_binary_op_with_scalar_self_support(self, device, dtype, op, is_fastpath): |
| def clone(arg): |
| if isinstance(arg, (list, tuple)): |
| return [clone(a) for a in arg] |
| if torch.is_tensor(arg): |
| return arg.clone().detach().requires_grad_() |
| else: |
| return arg |
| |
| scalar_self_arg_test_complete = False |
| for i, sample in enumerate( |
| op.sample_inputs( |
| device, |
| dtype, |
| noncontiguous=not is_fastpath, |
| allow_higher_dtype_scalars=True, |
| ) |
| ): |
| (rhs_arg,) = sample.args |
| kwargs = {} or sample.kwargs |
| alpha = kwargs.pop("alpha", None) |
| wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op) |
| if isinstance(rhs_arg, Number) and not scalar_self_arg_test_complete: |
| scalar_self_arg_test_complete = True |
| self._binary_test( |
| dtype, |
| wrapped_op, |
| ref, |
| [rhs_arg, sample.input], |
| is_fastpath, |
| False, |
| alpha=alpha, |
| scalar_self_arg=True, |
| ) |
| if op.supports_autograd and dtype == torch.float32: |
| transformed_sample = sample.transform( |
| get_transform_func( |
| len(sample.input), dtype, device, is_fastpath |
| ) |
| ) |
| tensors = transformed_sample.input |
| (rhs_arg,) = transformed_sample.args |
| ref_tensors, ref_rhs_arg = clone(tensors), clone(rhs_arg) |
| sum( |
| wrapped_op( |
| [rhs_arg, tensors], is_cuda=False, expect_fastpath=False |
| ) |
| ).mean().backward() |
| sum(ref.func(ref_rhs_arg, t) for t in ref_tensors).mean().backward() |
| self.assertEqual( |
| [t.grad for t in tensors], [t.grad for t in ref_tensors] |
| ) |
| |
| @ops(foreach_pointwise_op_db) |
| @parametrize("is_fastpath", (True, False)) |
| def test_pointwise_op_with_tensor_of_scalarlist_overload( |
| self, device, dtype, op, is_fastpath |
| ): |
| for sample in op.sample_inputs( |
| device, |
| dtype, |
| noncontiguous=not is_fastpath, |
| allow_higher_dtype_scalars=True, |
| ): |
| assert isinstance(sample.args, tuple) |
| assert len(sample.args) == 2 |
| inputs = [sample.input, *sample.args] |
| kwargs = sample.kwargs.copy() |
| disable_fastpath = sample.disable_fastpath and is_fastpath |
| wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op) |
| scalars = kwargs.pop("scalars", None) |
| |
| if is_fastpath and scalars: |
| sample = sample.transform( |
| lambda t: t.clone().detach() if torch.is_tensor(t) else t |
| ) |
| inputs = [sample.input, *sample.args] |
| tensor_values = torch.tensor(scalars) |
| # 1D Tensor of scalars |
| for is_inplace, op_, ref_ in ( |
| (False, wrapped_op, ref), |
| (True, inplace_op, inplace_ref), |
| ): |
| self._pointwise_test( |
| op_, |
| ref_, |
| inputs, |
| is_fastpath and not disable_fastpath, |
| is_inplace, |
| scalars=tensor_values, |
| **kwargs, |
| ) |
| self._pointwise_test( |
| op_, |
| ref_, |
| inputs, |
| is_fastpath and not disable_fastpath, |
| is_inplace, |
| scalars=tensor_values[0], |
| custom_values_err="Expected packed scalar Tensor to be of dimension 1. Got 0 instead.", |
| **kwargs, |
| ) |
| if self.is_cuda: |
| self._pointwise_test( |
| op_, |
| ref_, |
| inputs, |
| is_fastpath and not disable_fastpath, |
| is_inplace, |
| scalars=tensor_values.cuda(), |
| custom_values_err="Expected scalars to be on CPU, got cuda:0 instead.", |
| **kwargs, |
| ) |
| self._pointwise_test( |
| op_, |
| ref_, |
| inputs, |
| is_fastpath and not disable_fastpath, |
| is_inplace, |
| scalars=tensor_values[:2], |
| custom_values_err=f"Expected length of scalars to match input of length {len(scalars)} but got 2 instead.", |
| **kwargs, |
| ) |
| self._pointwise_test( |
| op_, |
| ref_, |
| inputs, |
| is_fastpath and not disable_fastpath, |
| is_inplace, |
| scalars=torch.tensor([[0, 1], [2, 3]])[:, 1], |
| custom_values_err="Expected scalars to be contiguous.", |
| **kwargs, |
| ) |
| |
| # Tests of implicit broadcasting |
| N = len(sample.input) |
| inputs = [ |
| [ |
| make_tensor( |
| (N, N), |
| device=device, |
| dtype=dtype, |
| noncontiguous=not is_fastpath, |
| ) |
| for _ in range(N) |
| ], |
| [ |
| make_tensor( |
| (N - i, 1), |
| device=device, |
| dtype=dtype, |
| noncontiguous=not is_fastpath, |
| ) |
| for i in range(N) |
| ], |
| [ |
| make_tensor( |
| (1, N - i), |
| device=device, |
| dtype=dtype, |
| noncontiguous=not is_fastpath, |
| ) |
| for i in range(N) |
| ], |
| ] |
| self._pointwise_test( |
| wrapped_op, |
| ref, |
| inputs, |
| is_fastpath and disable_fastpath, |
| is_inplace=False, |
| scalars=scalars, |
| **kwargs, |
| ) |
| self._pointwise_test( |
| inplace_op, |
| inplace_ref, |
| inputs, |
| is_fastpath and disable_fastpath, |
| is_inplace=True, |
| scalars=scalars, |
| **kwargs, |
| ) |
| |
| def _pointwise_test( |
| self, |
| op, |
| ref, |
| inputs, |
| is_fastpath, |
| is_inplace, |
| *, |
| scalars=None, |
| custom_values_err=None, |
| **kwargs, |
| ): |
| ref_inputs = ( |
| [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] |
| if is_inplace |
| else inputs |
| ) |
| try: |
| with ( |
| InplaceForeachVersionBumpCheck(self, inputs[0]) |
| if is_inplace |
| else nullcontext() |
| ): |
| actual = op(inputs, self.is_cuda, is_fastpath, **kwargs) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])): |
| ref(ref_inputs, **kwargs) |
| else: |
| expected = ref(ref_inputs, **kwargs) |
| self.assertEqual(expected, actual) |
| if scalars is not None: |
| kwargs = kwargs.copy() |
| kwargs["scalars"] = scalars |
| try: |
| actual = op(inputs, self.is_cuda, is_fastpath, **kwargs) |
| except RuntimeError as e: |
| # Match with error messages from regular non-foreach reference if no |
| # custom error message was provided. |
| if custom_values_err is None: |
| with self.assertRaisesRegex( |
| type(e), re.escape(str(e).splitlines()[0]) |
| ): |
| ref(ref_inputs, **kwargs) |
| else: |
| self.assertEqual(re.escape(str(e)), re.escape(custom_values_err)) |
| else: |
| expected = ref(ref_inputs, **kwargs) |
| self.assertEqual(expected, actual) |
| |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16)) |
| def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype): |
| # TODO: enable empty list case |
| for tensors in [ |
| [torch.randn([0], device=device, dtype=dtype)], |
| [torch.empty_strided((0, 1), (0, 0), dtype=dtype, device=device)], |
| ]: |
| res = torch._foreach_add(tensors, 1) |
| self.assertEqual(res, tensors) |
| |
| torch._foreach_add_(tensors, 1) |
| self.assertEqual(res, tensors) |
| |
| # Regression test for https://github.com/pytorch/pytorch/issues/113156 |
| torch._foreach_mul_(tensors, 1) |
| |
| @onlyCUDA |
| @dtypes(torch.float32) |
| def test_foreach_check_stride_ignore_dims_of_one(self, device, dtype): |
| # default tensor stride is (9, 9, 3, 1). |
| tensor = torch.ones((2, 1, 3, 3), device=device, dtype=dtype) |
| strided_tensor = torch.ones( |
| (2, 1, 3, 3), device=device, dtype=dtype |
| ).as_strided((2, 1, 3, 3), (9, 1, 3, 1)) |
| left_inputs = [tensor, strided_tensor] |
| right_inputs = [strided_tensor, tensor] |
| compare_result = tensor + strided_tensor |
| foreach_add_check_ = ForeachFuncWrapper(torch._foreach_add) |
| out = foreach_add_check_( |
| (left_inputs, right_inputs), is_cuda=True, expect_fastpath=True |
| ) |
| for res in out: |
| self.assertEqual(res, compare_result) |
| |
| @ops( |
| filter(lambda op: op.supports_out, foreach_binary_op_db), |
| dtypes=OpDTypes.supported, |
| ) |
| def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op): |
| foreach_op, ref = op.method_variant, op.ref |
| tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)] |
| |
| if ref == torch.sub and dtype == torch.bool: |
| with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)): |
| [ref(t, 1) for t in tensors] |
| with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)): |
| foreach_op(tensors, 1) |
| return |
| |
| expected = [ref(t, 1) for t in tensors] |
| res = foreach_op(tensors, 1) |
| self.assertEqual(res, expected) |
| |
| @ops( |
| filter(lambda op: op.supports_out, foreach_binary_op_db), |
| allowed_dtypes=[torch.float], |
| ) |
| def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op): |
| foreach_op = op.method_variant |
| tensors = [ |
| torch.tensor([1.1], dtype=torch.float, device=device), |
| torch.tensor([1], dtype=torch.long, device=device), |
| ] |
| runtime_error = None |
| try: |
| foreach_op(tensors, 1) |
| except RuntimeError as e: |
| runtime_error = e |
| self.assertIsNone(runtime_error) |
| |
| @skipIfTorchDynamo("Different error msgs, TODO") |
| @ops( |
| filter(lambda op: op.supports_out, foreach_binary_op_db), |
| dtypes=OpDTypes.supported, |
| ) |
| def test_binary_op_list_error_cases(self, device, dtype, op): |
| foreach_op, foreach_op_, ref, ref_ = ( |
| op.method_variant, |
| op.inplace_variant, |
| op.ref, |
| op.ref_inplace, |
| ) |
| tensors1 = [] |
| tensors2 = [] |
| ops_to_test = [foreach_op, foreach_op_] |
| |
| # Empty lists |
| for fop in ops_to_test: |
| with self.assertRaisesRegex( |
| RuntimeError, "Tensor list must have at least one tensor." |
| ): |
| fop(tensors1, tensors2) |
| |
| # One empty list |
| tensors1.append(torch.tensor([1], device=device, dtype=dtype)) |
| for fop in ops_to_test: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Tensor list must have same number of elements as scalar list.", |
| ): |
| fop(tensors1, tensors2) |
| |
| # Lists have different amount of tensors |
| tensors2.append(torch.tensor([1], device=device)) |
| tensors2.append(torch.tensor([1], device=device)) |
| for fop in ops_to_test: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Tensor lists must have the same number of tensors, got 1 and 2", |
| ): |
| fop(tensors1, tensors2) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Tensor lists must have the same number of tensors, got 2 and 1", |
| ): |
| fop(tensors2, tensors1) |
| |
| # Corresponding tensors with different sizes that aren't compatible with broadcast |
| # If sizes are different then foreach chooses slow path, thus error messages are expected |
| # to be the same as torch regular function. |
| tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)] |
| tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)] |
| |
| if dtype == torch.bool and foreach_op == torch._foreach_sub: |
| for fop in ops_to_test: |
| with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)): |
| fop(tensors1, tensors2) |
| return |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1", |
| ): |
| foreach_op(tensors1, tensors2) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"The size of tensor a \(10\) must match the size of tensor b \(11\) at non-singleton dimension 1", |
| ): |
| foreach_op_(tensors1, tensors2) |
| |
| # different devices |
| if self.device_type == "cuda" and torch.cuda.device_count() > 1: |
| tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype) |
| tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype) |
| with self.assertRaisesRegex( |
| RuntimeError, "Expected all tensors to be on the same device" |
| ): |
| foreach_op([tensor1], [tensor2]) |
| if ( |
| dtype in integral_types_and(torch.bool) |
| and foreach_op == torch._foreach_div |
| ): |
| with self.assertRaisesRegex(RuntimeError, "result type"): |
| foreach_op_([tensor1], [tensor2]) |
| else: |
| with self.assertRaisesRegex( |
| RuntimeError, "Expected all tensors to be on the same device" |
| ): |
| foreach_op_([tensor1], [tensor2]) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), "CUDA not found") |
| @ops( |
| filter(lambda op: op.supports_out, foreach_binary_op_db), |
| dtypes=OpDTypes.supported, |
| ) |
| def test_binary_op_list_slow_path(self, device, dtype, op): |
| foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op) |
| # 0-strides |
| tensor1 = make_tensor((10, 10), dtype=dtype, device=device) |
| tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1) |
| inputs = ([tensor1], [tensor2]) |
| self._binary_test( |
| dtype, |
| foreach_op, |
| native_op, |
| inputs, |
| is_fastpath=False, |
| is_inplace=False, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| self._binary_test( |
| dtype, |
| foreach_op_, |
| native_op_, |
| inputs, |
| is_fastpath=False, |
| is_inplace=True, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| |
| # different strides |
| tensor1 = torch.zeros(10, 10, device=device, dtype=dtype) |
| tensor2 = torch.ones(10, 10, device=device, dtype=dtype) |
| inputs = ([tensor1], [tensor2.t()]) |
| self._binary_test( |
| dtype, |
| foreach_op, |
| native_op, |
| inputs, |
| is_fastpath=False, |
| is_inplace=False, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| self._binary_test( |
| dtype, |
| foreach_op_, |
| native_op_, |
| inputs, |
| is_fastpath=False, |
| is_inplace=True, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| |
| # non contiguous |
| tensor1 = make_tensor( |
| (5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True |
| ) |
| tensor2 = make_tensor( |
| (5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True |
| ) |
| self.assertFalse(tensor1.is_contiguous()) |
| self.assertFalse(tensor2.is_contiguous()) |
| inputs = ([tensor1], [tensor2]) |
| self._binary_test( |
| dtype, |
| foreach_op, |
| native_op, |
| inputs, |
| is_fastpath=False, |
| is_inplace=False, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| self._binary_test( |
| dtype, |
| foreach_op_, |
| native_op_, |
| inputs, |
| is_fastpath=False, |
| is_inplace=True, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| |
| # sliced tensor |
| tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype) |
| tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[ |
| :, :, :, ::7 |
| ] |
| inputs = ([tensor1], [tensor2]) |
| self._binary_test( |
| dtype, |
| foreach_op, |
| native_op, |
| inputs, |
| is_fastpath=False, |
| is_inplace=False, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| self._binary_test( |
| dtype, |
| foreach_op_, |
| native_op_, |
| inputs, |
| is_fastpath=False, |
| is_inplace=True, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| |
| @ops( |
| filter(lambda op: op.supports_out, foreach_binary_op_db), |
| dtypes=floating_types_and(torch.half, torch.bfloat16), |
| ) |
| def test_binary_op_float_inf_nan(self, device, dtype, op): |
| inputs = ( |
| [ |
| torch.tensor([float("inf")], device=device, dtype=dtype), |
| torch.tensor([-float("inf")], device=device, dtype=dtype), |
| torch.tensor([float("nan")], device=device, dtype=dtype), |
| torch.tensor([float("nan")], device=device, dtype=dtype), |
| ], |
| [ |
| torch.tensor([-float("inf")], device=device, dtype=dtype), |
| torch.tensor([float("inf")], device=device, dtype=dtype), |
| torch.tensor([float("inf")], device=device, dtype=dtype), |
| torch.tensor([float("nan")], device=device, dtype=dtype), |
| ], |
| ) |
| op, ref, inplace_op, inplace_ref = self._get_funcs(op) |
| self._binary_test( |
| dtype, op, ref, inputs, True, False, alpha=None, scalar_self_arg=False |
| ) |
| self._binary_test( |
| dtype, |
| inplace_op, |
| inplace_ref, |
| inputs, |
| True, |
| True, |
| alpha=None, |
| scalar_self_arg=False, |
| ) |
| |
| # note: Below three tests (postfixed with `_tensors_on_different_devices`) |
| # checks whether foreach works with lists of tensors on different devices |
| # but tensors of the same index are on the same device, e.g., ['cuda', 'cpu]. |
| @onlyCUDA |
| @ops(foreach_unary_op_db) |
| def test_unary_op_tensors_on_different_devices(self, device, dtype, op): |
| method, ref, inplace_method, ref_inplace = self._get_funcs(op) |
| # tensors: ['cuda', 'cpu] |
| tensors = next( |
| iter( |
| op.sample_inputs( |
| device, |
| dtype, |
| num_input_tensors=[2], |
| allow_higher_dtype_scalars=True, |
| ) |
| ) |
| ).input |
| tensors[1] = tensors[1].to("cpu") |
| if not op.supports_out: |
| try: |
| actual = method((tensors,), False, False, zero_size=False) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), str(e).splitlines()[0]): |
| ref((tensors,)) |
| else: |
| expected = ref((tensors,)) |
| self.assertEqual(expected, actual) |
| |
| try: |
| inplace_method((tensors,), False, False, zero_size=False) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), str(e).splitlines()[0]): |
| ref_inplace((tensors,)) |
| else: |
| if not op.supports_out: |
| self.assertEqual(expected, tensors) |
| else: |
| self.assertEqual([torch.zeros_like(t) for t in tensors], tensors) |
| |
| @onlyCUDA |
| @ops(filter(lambda op: op.supports_out, foreach_binary_op_db)) |
| def test_binary_op_tensors_on_different_devices(self, device, dtype, op): |
| _cuda_tensors = next( |
| iter( |
| op.sample_inputs( |
| device, |
| dtype, |
| num_input_tensors=[2], |
| same_size=True, |
| allow_higher_dtype_scalars=True, |
| ) |
| ) |
| ).input |
| _cpu_tensors = next( |
| iter( |
| op.sample_inputs( |
| "cpu", |
| dtype, |
| num_input_tensors=[2], |
| same_size=True, |
| allow_higher_dtype_scalars=True, |
| ) |
| ) |
| ).input |
| tensors1, tensors2 = list(zip(_cuda_tensors, _cpu_tensors)) |
| |
| foreach_op, foreach_op_ = op.method_variant, op.inplace_variant |
| native_op, native_op_ = op.ref, op.ref_inplace |
| try: |
| actual = foreach_op(tensors1, tensors2) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])): |
| [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)] |
| else: |
| expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)] |
| self.assertEqual(expected, actual) |
| try: |
| foreach_op_(tensors1, tensors2) |
| except RuntimeError as e: |
| with self.assertRaisesRegex(type(e), re.escape(str(e).splitlines()[0])): |
| [native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)] |
| else: |
| self.assertEqual(actual, tensors1) |
| |
| @onlyCUDA |
| @ops(foreach_pointwise_op_db, allowed_dtypes=floating_types()) |
| def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op): |
| # tensors1: ['cuda', 'cpu] |
| # tensors2: ['cuda', 'cpu] |
| # tensors3: ['cuda', 'cpu] |
| # first tensorlist is zero-size when float32 |
| _cuda_tensors = list( |
| op.sample_inputs( |
| device, |
| dtype, |
| num_input_tensors=[3], |
| same_size=True, |
| allow_higher_dtype_scalars=True, |
| ) |
| )[int(dtype == torch.float32)].input |
| _cpu_tensors = next( |
| iter( |
| op.sample_inputs( |
| "cpu", |
| dtype, |
| num_input_tensors=[3], |
| same_size=True, |
| allow_higher_dtype_scalars=True, |
| ) |
| ) |
| ).input |
| tensors1, tensors2, tensors3 = list(zip(_cuda_tensors, _cpu_tensors)) |
| |
| foreach_op, foreach_op_, native_op = ( |
| op.method_variant, |
| op.inplace_variant, |
| op.ref, |
| ) |
| actual = foreach_op(tensors1, tensors2, tensors3) |
| expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)] |
| self.assertEqual(expected, actual) |
| |
| # note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops. |
| foreach_op_(tensors1, tensors2, tensors3) |
| self.assertEqual(expected, tensors1) |
| |
| # note: BFloat16 has the same number of exponent bits as FP32 |
| # so if squared L2 norm overflows in BF16, then it also overflows in FP32. |
| @onlyCUDA |
| @ops( |
| [o for o in foreach_reduce_op_db if "norm" in o.name], |
| allowed_dtypes=(torch.half, torch.bfloat16), |
| ) |
| def test_foreach_l2_large_value_input(self, device, dtype, op): |
| ord, N = 2, 10 |
| max_value = torch.finfo(dtype).max |
| scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype) |
| inputs = ( |
| [ |
| t * scaler |
| for t in next( |
| iter( |
| op.sample_inputs( |
| device, |
| dtype, |
| requries_grad=True, |
| num_input_tensors=[N], |
| low=1, |
| ) |
| ) |
| ).input |
| ][:-1], |
| ) |
| # make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`. |
| self.assertTrue(scaler * scaler * N > max_value) |
| fn, ref_fn, *_ = self._get_funcs(op) |
| actual = fn( |
| inputs, is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False |
| ) |
| expect = ref_fn(inputs, ord=ord) |
| |
| if dtype == torch.float16: |
| # making sure the reference L2 norm values are in the range of FP16. |
| self.assertFalse(any(torch.isinf(e) for e in expect)) |
| else: |
| self.assertTrue( |
| all( |
| inputs[0][i].numel() == 0 or torch.isinf(e) |
| for i, e in enumerate(expect) |
| ) |
| ) |
| self.assertEqual(expect, actual, equal_nan=False) |
| |
| @onlyCUDA |
| @ops(foreach_reduce_op_db, allowed_dtypes=floating_types()) |
| @parametrize("use_cuda_graph", (False, True)) |
| def test_big_num_tensors(self, device, dtype, op, use_cuda_graph): |
| N = 600 |
| tensorlist = [ |
| make_tensor((2, 3), dtype=dtype, device=device, noncontiguous=False) |
| for _ in range(N) |
| ] |
| fn, ref_fn, *_ = self._get_funcs(op) |
| |
| import math |
| |
| if op.name == "_foreach_norm": |
| ords = (1, 2, math.inf) |
| else: |
| ords = (None,) |
| |
| for ord in ords: |
| kwargs = {"ord": ord} if ord else {} |
| if not use_cuda_graph: |
| actual = fn( |
| inputs=[tensorlist], |
| is_cuda=True, |
| expect_fastpath=True, |
| zero_size=False, |
| **kwargs, |
| ) |
| else: |
| # When using CUDA graphs and the tensor metadata doesn't fit in |
| # the static kernel argument space, multi_tensor_apply creates |
| # the launch arguments once, uses cudaUserObject_t to tie its |
| # lifetime to the graph, and reuses it throughout replays. This |
| # test verifies multi_tensor_apply's behavior in the scenario. |
| g = torch.cuda.CUDAGraph() |
| with torch.cuda.graph(g): |
| actual = fn.func(tensorlist, **kwargs) |
| g.replay() |
| expect = ref_fn(inputs=[tensorlist], **kwargs) |
| |
| self.assertEqual(expect, actual, equal_nan=True) |
| |
| @onlyCUDA |
| @ops(foreach_reduce_op_db) |
| def test_foreach_reduce_large_input(self, device, dtype, op): |
| # test inputs larger than kChunkSize = 65536 |
| N = 65536 * 2 |
| disable_fastpath = False |
| kwargs = {} |
| if op.name == "_foreach_norm": |
| ord = 2 |
| disable_fastpath = not ( |
| ord in (1, 2) |
| and dtype in floating_types_and(torch.half, torch.bfloat16) |
| ) |
| kwargs["ord"] = ord |
| |
| inputs = ([make_tensor((N,), dtype=dtype, device=device, noncontiguous=False)],) |
| wrapped_op, ref, _, _ = self._get_funcs(op) |
| self.assertEqual( |
| ref(inputs, **kwargs), |
| wrapped_op( |
| inputs, self.is_cuda, not disable_fastpath, zero_size=False, **kwargs |
| ), |
| ) |
| |
| @onlyCUDA |
| @ops( |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_other_op_db, |
| dtypes=(torch.float,), |
| ) |
| def test_inplace_foreach_leaf_check_and_grad_fn(self, device, dtype, op): |
| inplace_op = op.inplace_variant |
| if inplace_op is None: |
| self.skipTest("no in-place op available") |
| |
| sample = next( |
| iter( |
| op.sample_inputs( |
| dtype=dtype, device=device, num_input_tensors=[2], same_size=True |
| ) |
| ) |
| ) |
| sample.input[0].requires_grad_(True) |
| with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"): |
| inplace_op(sample.input, *sample.args) |
| sample.input[1].requires_grad_(True) |
| with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"): |
| inplace_op(sample.input, *sample.args) |
| |
| _tensors = [ |
| t.clone().detach().requires_grad_(i == 0) |
| for i, t in enumerate(sample.input) |
| ] |
| tensors = [t.clone() for t in _tensors] |
| inplace_op(tensors, *sample.args) |
| self.assertIsNotNone(tensors[0].grad_fn) |
| self.assertIsNone(tensors[1].grad_fn) |
| |
| @onlyCUDA |
| @ops( |
| filter( |
| lambda op: op.supports_out, |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_other_op_db, |
| ), |
| dtypes=(torch.float,), |
| ) |
| def test_outplace_with_invalid_grads(self, device, dtype, op): |
| func, *_ = self._get_funcs(op) |
| sample = next( |
| iter( |
| op.sample_inputs( |
| dtype=dtype, |
| device=device, |
| requires_grad=True, |
| num_input_tensors=[2], |
| same_size=True, |
| ) |
| ) |
| ) |
| self.assertTrue(all(t.requires_grad for t in sample.input)) |
| (out1, out2) = func( |
| [sample.input, *sample.args], |
| is_cuda=False, |
| expect_fastpath=False, |
| **sample.kwargs, |
| ) |
| out1.backward(torch.ones_like(out1)) |
| self.assertIsNotNone(sample.input[0].grad) |
| self.assertIsNone(sample.input[1].grad) |
| |
| @ops( |
| filter( |
| lambda op: op.backward_requires_result, |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_other_op_db, |
| ), |
| dtypes=(torch.float32,), |
| ) |
| def test_lifetime_of_grad_fn_when_result_is_saved(self, device, dtype, op): |
| def get_ref(func, sample): |
| class Foo: |
| pass |
| |
| out = func( |
| (sample.input, *sample.args), |
| is_cuda=False, |
| expect_fastpath=False, |
| **sample.kwargs, |
| ) |
| foo = Foo() |
| meta_dict = out[0].grad_fn.metadata |
| meta_dict[0] = foo |
| ref = weakref.ref(foo) |
| return out, ref |
| |
| def _test(func, sample): |
| out, ref = get_ref(func, sample) |
| self.assertIsNotNone(ref()) |
| del out |
| self.assertIsNone(ref()) |
| |
| func = self._get_funcs(op)[0] |
| for sample in op.sample_inputs( |
| device, dtype, requires_grad=True, num_input_tensors=[1] |
| ): |
| for key in ("is_fastpath", "disable_fastpath"): |
| if key in sample.kwargs: |
| del sample.kwargs[key] |
| # note: `_foreach_pow.Scalar` and `_foreach_pow.ScalarList` don't depend on `result` |
| # see: https://github.com/pytorch/pytorch/blob/5403c777/tools/autograd/derivatives.yaml#L3048-L3049 |
| if op.name == "_foreach_pow": |
| if ( |
| isinstance(sample.args[0], list) |
| and isinstance(sample.args[0][0], Number) |
| ) or ( |
| isinstance(sample.args[0], Number) |
| and not isinstance(sample.args[0], float) |
| ): |
| continue |
| if isinstance(sample.args[0], float): |
| new_args = (sample.input,) |
| sample.input = sample.args[0] |
| sample.args = new_args |
| _test(func, sample) |
| |
| @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") |
| def test_tensors_grouping(self): |
| num_tensors_per_list = 10 |
| num_devices = torch.cuda.device_count() |
| dtypes = (torch.float16, torch.float32, torch.float64) |
| list1 = [ |
| torch.tensor( |
| i, |
| device=torch.device("cuda", random.randint(0, num_devices - 1)), |
| dtype=dtypes[random.randint(0, 2)], |
| ) |
| for i in range(num_tensors_per_list) |
| ] |
| list2 = [None for _ in list1] |
| list3 = [torch.rand_like(t) for t in list1] |
| nested_tensorlists = [list1, list2, list3] |
| grouped_tensors = torch.utils._foreach_utils._group_tensors_by_device_and_dtype( |
| nested_tensorlists, with_indices=True |
| ) |
| num_tensors_seen = 0 |
| for (device, dtype), ([l1, l2, l3], indices) in grouped_tensors.items(): |
| for t in itertools.chain(l1, l3): |
| self.assertEqual(t.device, device) |
| self.assertEqual(t.dtype, dtype) |
| num_tensors_seen += 1 |
| self.assertEqual(len(l1), len(l2)) |
| self.assertTrue(all(p is None for p in l2)) |
| for i, index in enumerate(indices): |
| self.assertEqual(l1[i], list1[index]) |
| self.assertEqual(l2[i], list2[index]) |
| self.assertEqual(l3[i], list3[index]) |
| self.assertEqual(num_tensors_seen, 2 * num_tensors_per_list) |
| |
| @onlyCUDA |
| def test_0dim_tensor_overload_cpu_ok(self): |
| tensors = [torch.ones((), device="cuda", dtype=torch.float32) for _ in range(2)] |
| scalar_cpu_tensor = torch.tensor(4.0, device="cpu") |
| |
| # For mul and div, the scalar is allowed to be on CPU too |
| actual = torch._foreach_mul(tensors, scalar_cpu_tensor) |
| self.assertEqual(actual, [t.mul(scalar_cpu_tensor) for t in tensors]) |
| actual = torch._foreach_div(tensors, scalar_cpu_tensor) |
| self.assertEqual(actual, [t.div(scalar_cpu_tensor) for t in tensors]) |
| |
| @onlyCUDA |
| def test_div_reciprocal(self): |
| expect_m, expect_e = torch.frexp( |
| torch.div(torch.tensor(0.1, device="cuda"), 10.0) |
| ) |
| actual_m, actual_e = torch.frexp( |
| torch._foreach_div([torch.tensor(0.1, device="cuda")], [10.0])[0] |
| ) |
| self.assertEqual(expect_m, actual_m) |
| self.assertEqual(expect_e, actual_e) |
| |
| @onlyCUDA |
| def test_0dim_tensor_overload_exception(self): |
| # check exceptions of fast path |
| tensors = [ |
| make_tensor((2, 2), dtype=torch.float, device="cuda") for _ in range(2) |
| ] |
| with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be on"): |
| torch._foreach_add(tensors, torch.tensor(1.0, device="cpu"), alpha=1.0) |
| |
| tensors = [ |
| make_tensor((2, 2), dtype=torch.float, device=d) for d in ("cpu", "cuda") |
| ] |
| with self.assertRaisesRegex( |
| RuntimeError, "scalar tensor expected to be 0 dim but" |
| ): |
| torch._foreach_mul(tensors, torch.tensor([1.0, 1.0], device="cuda")) |
| with self.assertRaisesRegex( |
| RuntimeError, "scalar tensor expected to be 0 dim but" |
| ): |
| torch._foreach_add(tensors, torch.tensor([1.0, 1.0], device="cuda")) |
| |
| @onlyCUDA |
| @ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db)) |
| def test_foreach_copy_with_multi_device_inputs(self, device, dtype, op): |
| foreach_copy_ = op.inplace_variant |
| copy_ = op.ref_inplace |
| for non_blocking in (False, True): |
| for sample in op.sample_inputs( |
| device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True |
| ): |
| with torch.no_grad(): |
| ref_input = [t.clone().detach() for t in sample.input] |
| foreach_copy_(sample.input, sample.args[0], non_blocking) |
| for t, s in zip(ref_input, sample.args[0]): |
| copy_(t, s, non_blocking) |
| self.assertEqual(sample.input, ref_input) |
| if torch.cuda.device_count() > 1: |
| device = torch.device("cuda", 1) |
| rhs_tensors = [t.to(device) for t in sample.args[0]] |
| foreach_copy_(sample.input, rhs_tensors, non_blocking) |
| for t, s in zip(ref_input, rhs_tensors): |
| copy_(t, s, non_blocking) |
| self.assertEqual(ref_input, sample.input) |
| |
| @onlyCUDA |
| @ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db)) |
| def test_foreach_copy_with_multi_dtypes(self, device, dtype, op): |
| # check (a) multi_tensor_apply is called and (b) numerical parity with for-loop and Tensor.copy_ |
| foreach_copy_ = ForeachFuncWrapper(op.inplace_variant) |
| for sample in op.sample_inputs( |
| device, dtype, noncontiguous=False, allow_higher_dtype_scalars=True |
| ): |
| for src_dtype in floating_types_and(torch.half, torch.bfloat16): |
| if src_dtype == dtype: |
| continue |
| self_tensors = [t.clone() for t in sample.input] |
| src_tensors = [t.to(src_dtype) for t in self_tensors] |
| out = foreach_copy_( |
| (self_tensors, src_tensors), is_cuda=True, expect_fastpath=True |
| ) |
| ref_out = [ |
| torch.empty_like(t).copy_(s) |
| for t, s in zip(self_tensors, src_tensors) |
| ] |
| for t, ref_t in zip(out, ref_out): |
| self.assertTrue(torch.equal(t, ref_t)) |
| |
| # Test reverse-mode & forward-mode AD if supported. |
| @onlyCUDA |
| @ops( |
| foreach_unary_op_db |
| + foreach_binary_op_db |
| + foreach_pointwise_op_db |
| + foreach_reduce_op_db |
| + foreach_other_op_db, |
| dtypes=OpDTypes.supported, |
| allowed_dtypes=(torch.float64, torch.complex128), |
| ) |
| @parametrize( |
| "inplace", (False, True), name_fn=lambda x: "inplace" if x else "outplace" |
| ) |
| def test_autodiff(self, device, dtype, op, inplace): |
| if (not inplace) and not op.supports_out: |
| self.skipTest("out-of-place not implemented") |
| if inplace and op.has_no_in_place: |
| self.skipTest("in-place not implemented") |
| if not ( |
| op.supports_autograd |
| or op.supports_inplace_autograd |
| or op.supports_forward_ad |
| ): |
| self.skipTest("neither reverse mode nor forward mode supported") |
| |
| # note(crcrpar): without this, some unary functions fail, unlike inplace and/or complex. |
| if ( |
| (not inplace) |
| and dtype == torch.float64 |
| and op.name |
| in ( |
| "_foreach_acos", |
| "_foreach_asin", |
| "_foreach_log10", |
| "_foreach_log1p", |
| "_foreach_log2", |
| "_foreach_log", |
| "_foreach_pow", |
| "_foreach_sqrt", |
| ) |
| ): |
| value_range = {"low": 0.5, "high": 1.0} |
| else: |
| value_range = {} |
| for sample in op.sample_inputs( |
| device, |
| dtype, |
| requires_grad=True, |
| num_input_tensors=[5], |
| allow_higher_dtype_scalars=True, |
| **value_range, |
| ): |
| # Skip `_foreach_pow.ScalarAndTensor(Scalar, Tensor[])` |
| if op.name == "_foreach_pow" and isinstance(sample.input, Number): |
| continue |
| |
| func = None |
| if inplace: |
| # Call `clone` to avoid inplace modifications likewise |
| # `torch.testing._internal.common_utils.TestGradients._get_safe_inplace` |
| def inplace_func(*tensorlist): |
| kwargs = ( |
| {"alpha": sample.kwargs["alpha"]} |
| if "alpha" in sample.kwargs |
| else {} |
| ) |
| op.inplace_variant( |
| tuple(t.clone() for t in tensorlist), *sample.args, **kwargs |
| ) |
| return tensorlist |
| |
| func = inplace_func |
| else: |
| |
| def outplace_func(*tensorlist): |
| kwargs = ( |
| {"alpha": sample.kwargs["alpha"]} |
| if "alpha" in sample.kwargs |
| else {} |
| ) |
| return op.method_variant(tensorlist, *sample.args, **kwargs) |
| |
| func = outplace_func |
| |
| working_sample, err_msg_pattern = check_autodiff_sample( |
| op, sample, dtype, inplace |
| ) |
| |
| def call_gradcheck(): |
| gradcheck( |
| func, |
| sample.input, |
| raise_exception=True, |
| check_forward_ad=op.supports_forward_ad, |
| check_batched_forward_grad=False, |
| check_backward_ad=op.supports_autograd, |
| check_batched_grad=False, |
| ) |
| |
| if not working_sample: |
| if not err_msg_pattern: |
| # lhs of float64 and rhs of complex. |
| continue |
| with self.assertRaisesRegex(RuntimeError, re.escape(err_msg_pattern)): |
| call_gradcheck() |
| continue |
| call_gradcheck() |
| |
| # Test per-tensor `grad_fn` behavior. |
| if inplace and op.supports_inplace_autograd: |
| # per-tensor `grad_fn` check. |
| hook_buffer = [] |
| |
| def get_grad_fn_hook(i): |
| def hook(grad_inputs, grad_outputs) -> None: |
| hook_buffer.append(i) |
| |
| return hook |
| |
| _inputs = [t.clone().detach().requires_grad_() for t in sample.input] |
| inputs = [t.clone() for t in _inputs] |
| kwargs = ( |
| {"alpha": sample.kwargs["alpha"]} |
| if "alpha" in sample.kwargs |
| else {} |
| ) |
| op.inplace_variant(inputs, *sample.args, **kwargs) |
| |
| self.assertEqual(len({t.grad_fn for t in inputs}), len(inputs)) |
| |
| for i, t in enumerate(inputs): |
| t.grad_fn.register_hook(get_grad_fn_hook(i)) |
| |
| torch.autograd.grad( |
| inputs[0], |
| inputs=(_inputs[0],), |
| grad_outputs=(torch.rand_like(inputs[0]),), |
| retain_graph=True, |
| ) |
| self.assertEqual(hook_buffer, [0]) |
| hook_buffer.clear() |
| |
| # tensors have different shapes. |
| sum_of_cloned_tensors = torch.cat([t.view(-1) for t in inputs]).sum() |
| grad_output = torch.rand_like(sum_of_cloned_tensors) |
| torch.autograd.grad( |
| sum_of_cloned_tensors, |
| inputs=tuple(_inputs), |
| grad_outputs=(grad_output,), |
| retain_graph=False, |
| ) |
| self.assertEqual(hook_buffer, list(reversed(range(len(inputs))))) |
| |
| |
| # TODO(crcrpar): Hide this inside torch/testing/_internal. |
| # would end up adding another layer to `foreach_inputs_sample_func.__call__` |
| # so that we can use this function as something like the first argument of `filter` function. |
| # Even after moving this function to testing, I personally think it'd be better to check the error message. |
| def check_autodiff_sample(op, sample, dtype, is_inplace): |
| if op.name == "_foreach_abs" and is_inplace and dtype == torch.complex128: |
| return False, "In-place abs is not supported for complex tensors." |
| if op.name == "_foreach_sub" and ( |
| ( |
| isinstance(sample.args[-1], list) |
| and any(isinstance(a, bool) for a in sample.args[-1]) |
| ) |
| or isinstance(sample.args[-1], bool) |
| ): |
| return False, _BOOL_SUB_ERR_MSG |
| if op.name == "_foreach_norm" and (not is_inplace): |
| return ( |
| False, |
| "Trying to set a forward gradient that has a different size than that of the original Tensor, " |
| "this is not supported. Tensor is of size [] while the given forward gradient is of size [1, 1].", |
| ) |
| rhs_arg_has_complex_number = sample.args and ( |
| ( |
| isinstance(sample.args[-1], list) |
| and any(isinstance(a, complex) for a in sample.args[-1]) |
| ) |
| or (isinstance(sample.args[-1], complex)) |
| ) |
| if rhs_arg_has_complex_number and dtype == torch.float64: |
| if op.name in ( |
| "_foreach_clamp_max", |
| "_foreach_clamp_min", |
| "_foreach_maximum", |
| "_foreach_minimum", |
| ): |
| return False, "clamp is not supported for complex types" |
| if op.name == "_foreach_lerp" and is_inplace: |
| return False, "value cannot be converted to type double without overflow" |
| if not is_inplace: |
| return False, "" |
| else: |
| if op.name == "_foreach_pow": |
| return False, "Found dtype Double but expected ComplexDouble" |
| if op.name in ( |
| "_foreach_add", |
| "_foreach_sub", |
| "_foreach_mul", |
| "_foreach_div", |
| ): |
| return ( |
| False, |
| "result type ComplexDouble can't be cast to the desired output type Double", |
| ) |
| return True, "" |
| |
| |
| instantiate_device_type_tests(TestForeach, globals()) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |