| # Owner(s): ["module: masked operators"] |
| |
| import torch |
| import unittest |
| from torch.testing._internal.common_utils import ( |
| decorateIf, |
| TestCase, |
| run_tests, |
| make_tensor, |
| parametrize, |
| instantiate_parametrized_tests, |
| ) |
| from torch.testing._internal.common_device_type import ( |
| instantiate_device_type_tests, |
| ops, |
| ) |
| from torch.testing._internal.common_methods_invocations import ( |
| SampleInput, |
| binary_ufuncs, |
| reduction_ops, |
| unary_ufuncs, |
| ) |
| |
| from torch.masked import as_masked_tensor, masked_tensor, _combine_input_and_mask |
| from torch.masked.maskedtensor.core import _masks_match, _tensors_match |
| from torch.masked.maskedtensor.unary import NATIVE_INPLACE_UNARY_FNS, NATIVE_UNARY_FNS, UNARY_NAMES |
| from torch.masked.maskedtensor.binary import NATIVE_BINARY_FNS, NATIVE_INPLACE_BINARY_FNS, BINARY_NAMES |
| from torch.masked.maskedtensor.reductions import REDUCE_NAMES |
| |
| |
| def _compare_mt_t(mt_result, t_result, rtol=1e-05, atol=1e-05): |
| mask = mt_result.get_mask() |
| mt_result_data = mt_result.get_data() |
| if mask.layout in {torch.sparse_coo, torch.sparse_csr}: |
| mask = mask.to_dense() |
| if mt_result_data.layout in {torch.sparse_coo, torch.sparse_csr}: |
| mt_result_data = mt_result_data.to_dense() |
| a = mt_result_data.detach().masked_fill_(~mask, 0) |
| b = t_result.detach().masked_fill_(~mask, 0) |
| if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol): |
| raise ValueError("The data in MaskedTensor a and Tensor b do not match") |
| |
| def _compare_mts(mt1, mt2, rtol=1e-05, atol=1e-08): |
| mt_data1 = mt1.get_data() |
| mt_data2 = mt2.get_data() |
| if mt_data1.layout != mt_data2.layout: |
| raise ValueError("mt1's data and mt2's data do not have the same layout. " |
| f"mt1.get_data().layout = {mt_data1.layout} while mt2.get_data().layout = {mt_data2.layout}") |
| |
| mask = mt1.get_mask() |
| mask2 = mt2.get_mask() |
| if not _masks_match(mt1, mt2): |
| raise ValueError("mt1 and mt2 must have matching masks") |
| if mask.layout != mask2.layout: |
| raise ValueError("mt1's mask and mt2's mask do not have the same layout. " |
| f"mt1.get_mask().layout = {mask.layout} while mt2.get_mask().layout = {mask2.layout}") |
| if mask.layout in {torch.sparse_coo, torch.sparse_csr}: |
| mask = mask.to_dense() |
| |
| if mt_data1.layout in {torch.sparse_coo, torch.sparse_csr}: |
| mt_data1 = mt_data1.to_dense() |
| mt_data2 = mt_data2.to_dense() |
| a = mt_data1.detach().masked_fill_(~mask, 0) |
| b = mt_data2.detach().masked_fill_(~mask, 0) |
| |
| if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol): |
| raise ValueError("The data in MaskedTensor mt1 and MaskedTensor mt2 do not match") |
| |
| def _compare_forward_backward(data, mask, fn): |
| mt = masked_tensor(data, mask, requires_grad=True) |
| masked_res = fn(mt) |
| masked_res.sum().backward() |
| |
| t = data.masked_fill(~mask, float("-inf")).detach().clone().requires_grad_() |
| tensor_res = fn(t) |
| tensor_res.sum().backward() |
| |
| _compare_mt_t(masked_res, tensor_res) |
| _compare_mt_t(mt.grad, t.grad, atol=1e-06) |
| |
| |
| def _create_random_mask(shape, device): |
| return make_tensor(shape, device=device, dtype=torch.bool) |
| |
| def _generate_sample_data( |
| device="cpu", dtype=torch.float, requires_grad=True, layout=torch.strided |
| ): |
| assert layout in { |
| torch.strided, |
| torch.sparse_coo, |
| torch.sparse_csr, |
| }, "Layout must be strided/sparse_coo/sparse_csr" |
| shapes = [ |
| [], |
| [2], |
| [3, 5], |
| [3, 2, 1, 2], |
| ] |
| inputs = [] |
| for s in shapes: |
| data = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) # type: ignore[arg-type] |
| mask = _create_random_mask(s, device) |
| if layout == torch.sparse_coo: |
| mask = mask.to_sparse_coo().coalesce() |
| data = data.sparse_mask(mask).requires_grad_(requires_grad) |
| elif layout == torch.sparse_csr: |
| if data.ndim != 2 and mask.ndim != 2: |
| continue |
| mask = mask.to_sparse_csr() |
| data = data.sparse_mask(mask) |
| inputs.append(SampleInput(data, kwargs={"mask": mask})) |
| return inputs |
| |
| def _fix_fn_name(fn_name): |
| if fn_name[-1] == "_": |
| fn_name = fn_name[:-1] |
| return fn_name |
| |
| |
| class TestBasics(TestCase): |
| def test_invalid_tensor_inputs(self, device): |
| data = torch.randn((3, 4), device=device) |
| mask = _create_random_mask((3, 4), device=device) |
| mt = masked_tensor(data, mask) |
| |
| with self.assertRaisesRegex(TypeError, "data must be a Tensor"): |
| masked_tensor(mt, mask) |
| with self.assertRaisesRegex(TypeError, "data must be a Tensor"): |
| masked_tensor(0, mask) |
| with self.assertRaisesRegex(TypeError, "mask must be a Tensor"): |
| masked_tensor(data, mt) |
| with self.assertRaisesRegex(TypeError, "mask must be a Tensor"): |
| masked_tensor(data, 0) |
| |
| def test_diff_layouts(self, device): |
| data = torch.randn((3, 4), device=device).to_sparse_coo() |
| mask = _create_random_mask((3, 4), device=device) |
| with self.assertRaisesRegex(TypeError, "data and mask must have the same layout"): |
| masked_tensor(data, mask) |
| |
| def test_diff_dim(self, device): |
| data = torch.randn((3, 4, 5), device=device) |
| mask = _create_random_mask((3, 4), device=device) |
| with self.assertRaisesRegex(ValueError, "data.dim\\(\\) must equal mask.dim\\(\\)"): |
| masked_tensor(data, mask) |
| |
| def test_diff_sizes(self, device): |
| data = torch.randn((3, 4), device=device) |
| mask = _create_random_mask((3, 3), device=device) |
| with self.assertRaisesRegex(ValueError, "data.size\\(\\) must equal mask.size\\(\\)"): |
| masked_tensor(data, mask) |
| |
| def test_grad_warning(self, device): |
| data = torch.randn((3, 4), device=device, requires_grad=True) |
| mask = _create_random_mask((3, 4), device=device) |
| msg = "It is not recommended to create a MaskedTensor with a tensor that requires_grad." |
| with self.assertWarnsRegex(UserWarning, msg): |
| mt = masked_tensor(data, mask) |
| |
| def test_add(self, device): |
| data = torch.arange(5.0, device=device) |
| mask = torch.tensor([True, True, False, True, False], device=device) |
| m0 = masked_tensor(data, mask) |
| m1 = masked_tensor(data, ~mask) |
| with self.assertRaisesRegex(ValueError, "Input masks must match."): |
| m0 + m1 |
| _compare_mts(m0 + m0, masked_tensor(torch.tensor([0., 2, 0, 6, 0], device=device), mask)) |
| |
| def test_softmax(self, device): |
| data = torch.randn((3, 4), device=device) * 0.1 |
| mask = torch.tensor( |
| [ |
| [True, True, True, False], |
| [False, True, False, True], |
| [True, True, False, False], |
| ], |
| device=device |
| ) |
| |
| _compare_forward_backward(data, mask, lambda t: torch.softmax(t, -1)) |
| |
| def test_where(self, device): |
| data = torch.tensor([-10.0, -5, 0, 5, 10, 50, 60, 70, 80, 90, 100], device=device) |
| mask = data < 0 |
| |
| mx = masked_tensor(data, mask, requires_grad=True) |
| my = masked_tensor(torch.ones_like(data), ~mask, requires_grad=True) |
| masked_res = torch.where(mask, torch.exp(mx), my) |
| masked_res.sum().backward() |
| |
| x = data.detach().clone().requires_grad_() |
| y = torch.ones_like(x, device=device, requires_grad=True) |
| tensor_res = torch.where(mask, torch.exp(x), y) |
| tensor_res.sum().backward() |
| |
| _compare_mt_t(masked_res, tensor_res) |
| _compare_mt_t(mx.grad, x.grad) |
| _compare_mt_t(my.grad, y.grad) |
| |
| def test_unfold(self, device): |
| data = torch.rand(5, 5, device=device) |
| mask = torch.rand(5, 5, device=device) > 0.5 |
| _compare_forward_backward(data, mask, lambda t: t.unfold(1, 2, 2)) |
| |
| def test_nn_unfold(self, device): |
| data = torch.rand(2, 5, 3, 4, device=device) |
| mask = torch.rand(2, 5, 3, 4, device=device) > 0.5 |
| _compare_forward_backward(data, mask, lambda t: torch.nn.functional.unfold(t, kernel_size=(2, 3))) |
| |
| def test_stack(self, device): |
| masked_tensors = [ |
| masked_tensor( |
| torch.rand(2, 5, 3, 4, device=device), |
| torch.rand(2, 5, 3, 4, device=device) > 0.5, |
| requires_grad=True, |
| ) for _ in range(3) |
| ] |
| |
| data_tensors = [mt.get_data().detach().clone().requires_grad_() for mt in masked_tensors] |
| masked_res = torch.stack(masked_tensors) |
| tensor_res = torch.stack(data_tensors) |
| |
| masked_res.sum().backward() |
| tensor_res.sum().backward() |
| _compare_mt_t(masked_res, tensor_res) |
| for mt, t in zip(masked_tensors, data_tensors): |
| _compare_mt_t(mt.grad, t.grad, atol=1e-06) |
| |
| def test_to_sparse(self, device): |
| for sample in _generate_sample_data(device=device): |
| data = sample.input |
| mask = sample.kwargs["mask"] |
| mt = masked_tensor(data.clone().detach(), mask, requires_grad=True) |
| |
| sparse_mt = mt.to_sparse() |
| data.to_sparse().to_dense().sum().backward() |
| sparse_mt.to_dense().sum().backward() |
| |
| _compare_mt_t(sparse_mt, data) |
| _compare_mt_t(mt.grad, data.grad) |
| |
| def test_to_dense(self, device): |
| samples = _generate_sample_data( |
| device=device, |
| layout=torch.sparse_coo |
| ) + _generate_sample_data(device=device, layout=torch.sparse_csr) |
| for sample in samples: |
| data = sample.input |
| mask = sample.kwargs["mask"] |
| mt = masked_tensor(data, mask, requires_grad=True) |
| |
| dense_data = data.to_dense().detach().clone().requires_grad_(True) |
| dense_mt = mt.to_dense() |
| dense_data.sum().backward() |
| dense_mt.sum().backward() |
| |
| _compare_mt_t(dense_mt, dense_data) |
| _compare_mt_t(mt.grad.to_dense(), dense_data.grad) |
| |
| def test_to_dense_and_sparse_coo(self, device): |
| for sample in _generate_sample_data(device=device, layout=torch.strided): |
| data = sample.input |
| mask = sample.kwargs["mask"] |
| ms = mask.to_sparse_coo().coalesce() |
| |
| mt = masked_tensor(data, mask, requires_grad=True) |
| mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True) |
| |
| converted = mt.to_sparse().to_dense() |
| converted.sum().backward() |
| |
| converted2 = mts.to_dense() |
| converted2.sum().backward() |
| |
| _compare_mts(converted, converted2) |
| _compare_mts(mt.grad, mts.grad.to_dense()) |
| |
| def test_to_dense_and_sparse_csr(self, device): |
| for sample in _generate_sample_data(device=device, layout=torch.strided): |
| data = sample.input |
| mask = sample.kwargs["mask"] |
| if data.ndim != 2: |
| continue |
| ms = mask.to_sparse_csr() |
| |
| mt = masked_tensor(data, mask, requires_grad=True) |
| mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True) |
| |
| converted = mt.to_sparse_csr().to_dense() |
| converted.sum().backward() |
| |
| converted2 = mts.to_dense() |
| converted2.sum().backward() |
| |
| _compare_mts(converted, converted2) |
| _compare_mts(mt.grad, mts.grad.to_dense()) |
| |
| def test_invalid_sparse_layout(self, device): |
| data = torch.randn((3, 4), device=device).to_sparse_csc() |
| mask = _create_random_mask((3, 4), device=device).to_sparse_csc() |
| with self.assertRaisesRegex(TypeError, "data layout of torch.sparse_csc is not supported"): |
| masked_tensor(data, mask) |
| |
| def test_invalid_sparse_coo_values(self, device): |
| v = torch.tensor([3, 4, 5], dtype=torch.float32) |
| i1 = torch.tensor([[0, 1, 1], [2, 0, 2]]) |
| i2 = torch.tensor([[0, 1, 1], [2, 1, 2]]) |
| |
| t = torch.sparse_coo_tensor(i1, v, (2, 4), device=device) |
| mask = torch.sparse_coo_tensor(i2, torch.tensor([True, True, True]), (2, 4), device=device) |
| |
| msg = "data and mask are both sparse COO tensors but do not have the same indices." |
| with self.assertRaisesRegex(ValueError, msg): |
| masked_tensor(t, mask) |
| |
| def test_invalid_sparse_csr_values(self, device): |
| crow_indices1 = [0, 2, 3] |
| crow_indices2 = [0, 1, 3] |
| col_indices1 = [0, 1, 2] |
| col_indices2 = [1, 2, 3] |
| |
| values = [2, 3, 4] |
| mask_values = [True, True, True] |
| |
| t1 = torch.sparse_csr_tensor( |
| torch.tensor(crow_indices1, dtype=torch.int64), |
| torch.tensor(col_indices1, dtype=torch.int64), |
| torch.tensor(values), |
| size=(2, 4) |
| ) |
| mask1 = torch.sparse_csr_tensor( |
| torch.tensor(crow_indices2, dtype=torch.int64), |
| torch.tensor(col_indices1, dtype=torch.int64), |
| torch.tensor(mask_values), |
| dtype=torch.bool, |
| size=(2, 4), |
| ) |
| t2 = torch.sparse_csr_tensor( |
| torch.tensor(crow_indices2, dtype=torch.int64), |
| torch.tensor(col_indices1, dtype=torch.int64), |
| torch.tensor(values), |
| size=(2, 4), |
| ) |
| mask2 = torch.sparse_csr_tensor( |
| torch.tensor(crow_indices2, dtype=torch.int64), |
| torch.tensor(col_indices2, dtype=torch.int64), |
| torch.tensor(mask_values), |
| dtype=torch.bool, |
| size=(2, 4), |
| ) |
| |
| msg = "data and mask are both sparse CSR tensors but do not share either crow or col indices." |
| with self.assertRaisesRegex(ValueError, msg): |
| masked_tensor(t1, mask1) |
| with self.assertRaisesRegex(ValueError, msg): |
| masked_tensor(t2, mask2) |
| |
| def test_contiguous(self, device): |
| data = torch.randn((3, 3), device=device) |
| |
| contiguous_data = data.clone() |
| mask1 = (contiguous_data > 0).bool() |
| not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2)) |
| mask2 = (not_contiguous_data > 0).bool() |
| |
| contiguous_mt = masked_tensor(contiguous_data, mask1) |
| not_contiguous_mt = masked_tensor(not_contiguous_data, mask2) |
| |
| contiguous_mt_sparse = masked_tensor( |
| contiguous_data.to_sparse_coo(), mask1.to_sparse_coo() |
| ) |
| not_contiguous_mt_sparse = masked_tensor( |
| not_contiguous_data.to_sparse_coo(), mask2.to_sparse_coo() |
| ) |
| |
| self.assertEqual(contiguous_data.is_contiguous(), True) |
| self.assertEqual(not_contiguous_data.is_contiguous(), False) |
| |
| self.assertEqual(contiguous_mt.is_contiguous(), True) |
| self.assertEqual(not_contiguous_mt.is_contiguous(), False) |
| |
| error_msg = "MaskedTensors with sparse data do not have is_contiguous" |
| for t in [contiguous_mt_sparse, not_contiguous_mt_sparse]: |
| with self.assertRaisesRegex(ValueError, error_msg): |
| t.is_contiguous() |
| with self.assertRaisesRegex(ValueError, error_msg): |
| t.contiguous() |
| |
| now_contiguous_mt = not_contiguous_mt.contiguous() |
| |
| _compare_mts(not_contiguous_mt, now_contiguous_mt) |
| |
| self.assertEqual(now_contiguous_mt.is_contiguous(), True) |
| self.assertEqual(now_contiguous_mt.get_data().is_contiguous(), True) |
| self.assertEqual(now_contiguous_mt.is_contiguous(), True) |
| |
| class TestUnary(TestCase): |
| def _get_test_data(self, fn_name): |
| data = torch.randn(10, 10) |
| mask = torch.rand(10, 10) > 0.5 |
| fn_name = _fix_fn_name(fn_name) |
| if fn_name in ["log", "log10", "log1p", "log2", "sqrt"]: |
| data = data.mul(0.5).abs() |
| if fn_name in ["rsqrt"]: |
| data = data.abs() + 1 # Void division by zero |
| if fn_name in ["acos", "arccos", "asin", "arcsin", "logit"]: |
| data = data.abs().mul(0.5).clamp(0, 1) |
| if fn_name in ["atanh", "arctanh", "erfinv"]: |
| data = data.mul(0.5).clamp(-1, 1) |
| if fn_name in ["acosh", "arccosh"]: |
| data = data.abs() + 1 |
| if fn_name in ["bitwise_not"]: |
| data = data.mul(128).to(torch.int8) |
| return data, mask |
| |
| def _get_sample_kwargs(self, fn_name): |
| fn_name = _fix_fn_name(fn_name) |
| kwargs = {} |
| if fn_name in ["clamp", "clip"]: |
| kwargs["min"] = -0.5 |
| kwargs["max"] = 0.5 |
| return kwargs |
| |
| def _get_sample_args(self, fn_name, data, mask): |
| fn_name = _fix_fn_name(fn_name) |
| mt = masked_tensor(data, mask) |
| t_args = [data] |
| mt_args = [mt] |
| if fn_name in ["pow"]: |
| t_args += [2.0] |
| mt_args += [2.0] |
| return t_args, mt_args |
| |
| @parametrize("fn", NATIVE_UNARY_FNS) |
| def test_unary(self, fn): |
| torch.random.manual_seed(0) |
| fn_name = fn.__name__ |
| data, mask = self._get_test_data(fn_name) |
| kwargs = self._get_sample_kwargs(fn_name) |
| |
| t_args, mt_args = self._get_sample_args(fn_name, data, mask) |
| |
| mt_result = fn(*mt_args, **kwargs) |
| t_result = fn(*t_args, **kwargs) |
| _compare_mt_t(mt_result, t_result) |
| |
| @parametrize("fn", NATIVE_INPLACE_UNARY_FNS) |
| def test_inplace_unary(self, fn): |
| torch.random.manual_seed(0) |
| fn_name = fn.__name__ |
| data, mask = self._get_test_data(fn_name) |
| kwargs = self._get_sample_kwargs(fn_name) |
| |
| t_args, mt_args = self._get_sample_args(fn_name, data, mask) |
| |
| mt_result = fn(*mt_args, **kwargs) |
| t_result = fn(*t_args, **kwargs) |
| _compare_mt_t(mt_result, t_result) |
| |
| class TestBinary(TestCase): |
| def _get_test_data(self, fn_name): |
| fn_name = _fix_fn_name(fn_name) |
| data0 = torch.randn(10, 10) |
| data1 = torch.randn(10, 10) |
| mask = torch.rand(10, 10) > 0.5 |
| if fn_name in ["bitwise_and", "bitwise_or", "bitwise_xor"]: |
| data0 = data0.mul(128).to(torch.int8) |
| data1 = data1.mul(128).to(torch.int8) |
| if fn_name in ["bitwise_left_shift", "bitwise_right_shift"]: |
| data0 = data0.abs().to(torch.int64) |
| data1 = data1.abs().to(torch.int64) |
| return data0, data1, mask |
| |
| def _get_sample_kwargs(self, fn_name): |
| fn_name = _fix_fn_name(fn_name) |
| kwargs = {} |
| return kwargs |
| |
| def _yield_sample_args(self, fn_name, data0, data1, mask): |
| """ Returns two sets of Tensor and MaskedTensor args for a binary function to compute. |
| Tensor args are all the same (just the two provided data tensors), |
| while the MaskedTensor args tests both (MaskedTensor, MaskedTensor) and (MaskedTensor, Tensor) |
| """ |
| fn_name = _fix_fn_name(fn_name) |
| mt0 = masked_tensor(data0, mask) |
| mt1 = masked_tensor(data1, mask) |
| |
| t_args = [data0, data1] |
| mt_args = [mt0, mt1] |
| yield t_args, mt_args |
| |
| t_args = [data0, data1] |
| mt_args = [mt0, data1] |
| yield t_args, mt_args |
| |
| @parametrize("fn", NATIVE_BINARY_FNS) |
| def test_binary(self, fn): |
| torch.random.manual_seed(0) |
| fn_name = fn.__name__ |
| data0, data1, mask = self._get_test_data(fn_name) |
| kwargs = self._get_sample_kwargs(fn_name) |
| |
| for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask): |
| mt_result = fn(*mt_args, **kwargs) |
| t_result = fn(*t_args, **kwargs) |
| _compare_mt_t(mt_result, t_result) |
| |
| @parametrize("fn", NATIVE_INPLACE_BINARY_FNS) |
| def test_inplace_binary(self, fn): |
| torch.random.manual_seed(0) |
| fn_name = fn.__name__ |
| data0, data1, mask = self._get_test_data(fn_name) |
| kwargs = self._get_sample_kwargs(fn_name) |
| |
| for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask): |
| mt_result = fn(*mt_args, **kwargs) |
| t_result = fn(*t_args, **kwargs) |
| _compare_mt_t(mt_result, t_result) |
| |
| @parametrize("fn_name", ["add", "add_"]) |
| def test_masks_match(self, fn_name): |
| torch.random.manual_seed(0) |
| fn = getattr(torch.ops.aten, fn_name) |
| data0, data1, mask = self._get_test_data(fn_name) |
| mask0 = mask |
| mask1 = torch.rand(mask.size()) > 0.5 |
| mt0 = masked_tensor(data0, mask0) |
| mt1 = masked_tensor(data1, mask1) |
| try: |
| fn(mt0, mt1) |
| raise AssertionError |
| except ValueError as e: |
| assert ( |
| "Input masks must match. If you need support for this, please open an issue on Github." |
| == str(e) |
| ) |
| |
| class TestReductions(TestCase): |
| def test_max_not_implemented(self): |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m) |
| with self.assertRaisesRegex(TypeError, "torch._ops.aten.max.default"): |
| mt.max() |
| |
| def test_sum(self): |
| d = torch.tensor([[0, 1, 2, 6], [3, 4, 5.0, 7]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(17.0), torch.tensor(True)), mt.sum()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([0.0, 4.0, 1.0, 13]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.sum(dim=0), |
| ) |
| |
| def test_sum_grad(self): |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.sum().backward() |
| _compare_mts(mt.grad, masked_tensor(torch.tensor(1.0).expand_as(m), m)) |
| |
| def test_mean(self): |
| d = torch.tensor([[0, 1, 3, 2], [3, 4, 1.0, 4]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(2.5), torch.tensor(True)), mt.mean()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([0.0, 4.0, 1.0, 3]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.mean(dim=0), |
| ) |
| |
| """ |
| The following block of tests "test_mean_grad_case_1[a through e] are used to test the functionality of |
| the two different ways of constructing MaskedTensors: |
| masked_tensor(data, mask, requires_grad=True/False) -- NO differentiable constructor and always a leaf |
| as_masked_tensor(data, mask) -- differentiable constructor |
| |
| Like torch.tensor(data), masked_tensor(data, mask) will provide a UserWarning if data.requires_grad=True |
| as_masked_tensor does not take in requires_grad -- it just takes on the requires_grad from data |
| |
| Therefore, there are 6 cases to test and we use `mean` as a proxy to test the different combinations |
| |
| Assuming mt.mean().backward() is run after each constructor: |
| |
| Case 1a: |
| values.requires_grad = True |
| mt = masked_tensor(values, mask, requires_grad=True) |
| yields |
| - Provide a UserWarning because values.requires_grad=True |
| - values.grad = None |
| - mt.grad is a MaskedTensor with the correct gradient |
| |
| Case 1b: |
| values.requires_grad = False |
| mt = masked_tensor(values, mask, requires_grad=True) |
| yields |
| - values.grad = None |
| - mt.grad is a MaskedTensor with the correct gradient |
| |
| Case 2a/2b: |
| values.requires_grad = True/False |
| mt = masked_tensor(values, mask, requires_grad=False) |
| |
| will both yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn" |
| as expected. When values.requires_grad=True, we will also get a UserWarning |
| |
| Case 3a: |
| values.requires_grad = True |
| mt = as_masked_tensor(values, mask) |
| yields |
| - values.grad is a MaskedTensor with the correct gradient |
| - mt.grad is None and gives a UserWarning that |
| "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad" |
| |
| Case 3b: |
| values.requires_grad = False |
| mt = as_masked_tensor(values, mask) |
| |
| will yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn" |
| as expected. |
| """ |
| def test_mean_grad_case_1a(self): |
| """ values.requires_grad = True |
| mt = masked_tensor(values, mask, requires_grad=True) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"): |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.mean().backward() |
| self.assertIsNone(d.grad) |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m)) |
| |
| def test_mean_grad_case_1b(self): |
| """ values.requires_grad = False |
| mt = masked_tensor(values, mask, requires_grad=True) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.mean().backward() |
| self.assertIsNone(d.grad) |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m)) |
| |
| def test_mean_grad_case_1c(self): |
| """ values.requires_grad = True |
| mt = masked_tensor(values, mask, requires_grad=False) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"): |
| mt = masked_tensor(d, m, requires_grad=False) |
| result = mt.mean() |
| msg = "element 0 of tensors does not require grad and does not have a grad_fn" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| result.backward() |
| |
| |
| def test_mean_grad_case_1d(self): |
| """ values.requires_grad = False |
| mt = masked_tensor(values, mask, requires_grad=False) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=False) |
| result = mt.mean() |
| msg = "element 0 of tensors does not require grad and does not have a grad_fn" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| result.backward() |
| |
| def test_mean_grad_case_1e(self): |
| """ values.requires_grad = True |
| mt = as_masked_tensor(values, mask) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = as_masked_tensor(d, m) |
| mt.mean().backward() |
| _compare_mts(d.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m)) |
| msg = "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad" |
| with self.assertWarnsRegex(UserWarning, msg): |
| self.assertIsNone(mt.grad) |
| |
| def test_mean_grad_case_1f(self): |
| """ values.requires_grad = False |
| mt = as_masked_tensor(values, mask) |
| """ |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = as_masked_tensor(d, m) |
| result = mt.mean() |
| msg = "element 0 of tensors does not require grad and does not have a grad_fn" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| result.backward() |
| |
| def test_mean_dim_grad(self): |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, True, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.mean(1).sum().backward() |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0.5, 0], [0, 1, 0]]), m)) |
| |
| def test_amax(self): |
| d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(3.0), torch.tensor(True)), mt.amax()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([0.0, -4.0, 1.0, 3]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.amax(dim=0), |
| ) |
| |
| def test_amax_grad(self): |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.amax().backward() |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[0.0, 0, 0], [0, 1, 0]]), m)) |
| |
| def test_amin(self): |
| d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(-4.0), torch.tensor(True)), mt.amin()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([0.0, -4.0, 1.0, -3]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.amin(dim=0), |
| ) |
| |
| def test_amin_grad(self): |
| d = torch.tensor([[0, 1, 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.amin().backward() |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[1.0, 0, 0], [0, 0, 0]]), m)) |
| |
| def test_prod(self): |
| d = torch.tensor([[0, 1, 3, 0.0], [float("nan"), 4, 1.0, 5.0]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(0.0), torch.tensor(True)), mt.prod()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([0.0, 4.0, 1.0, 0.0]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.prod(dim=0), |
| ) |
| |
| def test_prod_grad(self): |
| d = torch.tensor([[2, float("nan"), 2], [3, 4, 5.0]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| mt = masked_tensor(d, m, requires_grad=True) |
| mt.prod().backward() |
| _compare_mts(mt.grad, masked_tensor(torch.tensor([[4.0, 0, 0], [0, 2, 0]]), m)) |
| |
| def test_all(self): |
| d = torch.tensor([[True, True, False, False], [False, True, True, True]]) |
| m = torch.tensor([[True, False, False, True], [False, True, False, True]]) |
| mt = masked_tensor(d, m) |
| _compare_mts(masked_tensor(torch.tensor(False), torch.tensor(True)), mt.all()) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([True, True, True, False]), |
| torch.tensor([True, True, False, True]), |
| ), |
| mt.all(dim=0), |
| ) |
| |
| m = torch.tensor([[True, False, True, False], [False, True, False, False]]) |
| mt = masked_tensor(d, m) |
| _compare_mts( |
| masked_tensor( |
| torch.tensor([True, True, False, True]), |
| torch.tensor([True, True, True, False]), |
| ), |
| mt.all(dim=0), |
| ) |
| |
| def test_grad_dtype(self): |
| d = torch.tensor([[True, True, False], [False, True, True]]) |
| m = torch.tensor([[True, False, False], [False, True, False]]) |
| msg = "Only Tensors of floating point and complex dtype can require gradients" |
| with self.assertRaisesRegex(RuntimeError, msg): |
| masked_tensor(d, m, requires_grad=True) |
| |
| def test_any_true_dtype(self): |
| mt = torch.masked.MaskedTensor( |
| torch.rand(2, 2), |
| torch.rand(2, 2) > 0.5 |
| ) |
| msg = "expected a boolean tensor" |
| with self.assertRaisesRegex(ValueError, msg): |
| mt._is_any_true() |
| |
| def test__is_any_true(self): |
| mt = torch.masked.MaskedTensor( |
| torch.tensor([[True, True, False], [False, False, True]]), |
| torch.tensor([[True, False, False], [False, True, False]]), |
| ) |
| _compare_mts( |
| masked_tensor(torch.tensor(True), torch.tensor(True)), |
| mt._is_any_true(), |
| ) |
| |
| def test__is_any_true_false(self): |
| mt = torch.masked.MaskedTensor( |
| torch.tensor([[True, True, False], [False, False, True]]), |
| torch.tensor([[False, False, False], [False, False, False]]), |
| ) |
| _compare_mts( |
| masked_tensor(torch.tensor(False), torch.tensor(True),), |
| mt._is_any_true(), |
| ) |
| |
| def test_backward(self): |
| # See https://github.com/pytorch/pytorch/issues/128557 |
| with torch.autograd.detect_anomaly(): |
| mt = torch.masked.MaskedTensor( |
| torch.rand(2, 2), |
| torch.rand(2, 2) > 0.5, |
| requires_grad=True |
| ) |
| mt.sum().backward() |
| |
| |
| def is_unary(op): |
| return op.name in UNARY_NAMES |
| |
| def is_binary(op): |
| return op.name in BINARY_NAMES |
| |
| def is_reduction(op): |
| return op.name in REDUCE_NAMES and op.name not in {"all", "mean", "std", "var"} |
| |
| mt_unary_ufuncs = [op for op in unary_ufuncs if is_unary(op)] |
| mt_binary_ufuncs = [op for op in binary_ufuncs if is_binary(op)] |
| mt_reduction_ufuncs = [op for op in reduction_ops if is_reduction(op)] |
| |
| MASKEDTENSOR_FLOAT_TYPES = { |
| torch.float16, |
| torch.float32, |
| torch.float64, |
| } |
| |
| class TestOperators(TestCase): |
| def _convert_mt_args(self, args, mask, layout): |
| return [ |
| masked_tensor( |
| arg.sparse_mask(mask) if layout != torch.strided else arg, mask |
| ) |
| if torch.is_tensor(arg) |
| else arg |
| for arg in args |
| ] |
| |
| def _test_unary_binary_equality(self, device, dtype, op, layout=torch.strided): |
| samples = op.sample_inputs(device, dtype, requires_grad=True) |
| |
| for sample in samples: |
| input = sample.input |
| sample_args, sample_kwargs = sample.args, sample.kwargs |
| mask = ( |
| _create_random_mask(input.shape, device) |
| if "mask" not in sample_kwargs |
| else sample_kwargs.pop("mask") |
| ) |
| |
| if layout == torch.sparse_coo: |
| mask = mask.to_sparse_coo().coalesce() |
| input = input.sparse_mask(mask) |
| elif layout == torch.sparse_csr: |
| if input.ndim != 2 or mask.ndim != 2: |
| continue |
| mask = mask.to_sparse_csr() |
| input = input.sparse_mask(mask) |
| |
| # Binary operations currently only support same size masks |
| if is_binary(op): |
| if input.shape != sample_args[0].shape: |
| continue |
| # Binary operations also don't support kwargs right now |
| else: |
| sample_kwargs = {} |
| |
| mt = masked_tensor(input, mask) |
| mt_args = self._convert_mt_args(sample_args, mask, layout) |
| |
| mt_result = op(mt, *mt_args, **sample_kwargs) |
| t_result = op(sample.input, *sample_args, **sample_kwargs) |
| |
| _compare_mt_t(mt_result, t_result) |
| |
| # If the operation is binary, check that lhs = masked, rhs = regular tensor also works |
| if is_binary(op) and layout == torch.strided: |
| mt_result2 = op(mt, *sample_args, **sample_kwargs) |
| _compare_mt_t(mt_result2, t_result) |
| |
| def _test_reduction_equality(self, device, dtype, op, layout=torch.strided): |
| samples = op.sample_inputs(device, dtype, requires_grad=True) |
| |
| for sample in samples: |
| input = sample.input |
| # Reduction operations don't support more advanced args/kwargs right now |
| sample_args, sample_kwargs = (), {} |
| |
| if input.dim() == 0 or input.numel() == 0: |
| continue |
| |
| mask = _create_random_mask(input.shape, device) |
| |
| if torch.count_nonzero(mask) == 0: |
| continue |
| |
| tensor_input = _combine_input_and_mask(op.op, input, mask) |
| if layout == torch.sparse_coo: |
| mask = mask.to_sparse_coo().coalesce() |
| input = input.sparse_mask(mask) |
| elif layout == torch.sparse_csr: |
| if input.ndim != 2 or mask.ndim != 2: |
| continue |
| mask = mask.to_sparse_csr() |
| input = input.sparse_mask(mask) |
| |
| mt = masked_tensor(input, mask) |
| mt_args = self._convert_mt_args(sample_args, mask, layout) |
| |
| mt_result = op(mt, *mt_args, **sample_kwargs) |
| t_result = op(tensor_input, *sample_args, **sample_kwargs) |
| |
| _compare_mt_t(mt_result, t_result) |
| |
| @ops(mt_unary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type] |
| @parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr]) |
| def test_unary_core(self, device, dtype, op, layout): |
| # Skip tests that don't have len(kwargs) == 0 |
| skip_variants = { |
| "decimals_0", |
| "decimals_3", |
| "decimals_neg_3", |
| } |
| if op.name == "round" and op.variant_test_name in skip_variants: |
| return |
| self._test_unary_binary_equality(device, dtype, op) |
| |
| @ops(mt_binary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type] |
| @parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr]) |
| # FIXME: |
| # Result is just wrong; production logic should be fixed |
| @decorateIf( |
| unittest.expectedFailure, |
| lambda params: ( |
| params["op"].name == "add" and |
| params["dtype"] in [torch.float16, torch.float32] and |
| params["device"] == "cpu" and |
| params["layout"] == torch.sparse_csr |
| ) |
| ) |
| # Result is just wrong; production logic should be fixed |
| @decorateIf( |
| unittest.expectedFailure, |
| lambda params: ( |
| params["op"].name == "sub" and |
| params["dtype"] in [torch.float16, torch.float32] and |
| params["device"] == "cpu" and |
| params["layout"] == torch.sparse_csr |
| ) |
| ) |
| # Result is just wrong; production logic should be fixed |
| @decorateIf( |
| unittest.expectedFailure, |
| lambda params: ( |
| params["op"].name == "eq" and |
| params["dtype"] == torch.float64 and |
| params["device"] == "cpu" and |
| params["layout"] == torch.sparse_csr |
| ) |
| ) |
| def test_binary_core(self, device, dtype, op, layout): |
| self._test_unary_binary_equality(device, dtype, op, layout) |
| |
| @ops(mt_reduction_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type] |
| @parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr]) |
| def test_reduction_all(self, device, dtype, op, layout): |
| # argmin and argmax are not currently supported for torch.sparse_csr |
| if op.name in {"argmin", "argmax"} and layout == torch.sparse_csr: |
| return |
| |
| self._test_reduction_equality(device, dtype, op, layout) |
| |
| |
| only_for = ("cpu", "cuda") |
| instantiate_device_type_tests(TestOperators, globals(), only_for=only_for) |
| |
| instantiate_device_type_tests(TestBasics, globals(), only_for=only_for) |
| instantiate_parametrized_tests(TestUnary) |
| instantiate_parametrized_tests(TestBinary) |
| instantiate_parametrized_tests(TestReductions) |
| |
| if __name__ == '__main__': |
| run_tests() |