blob: 5f192d7c349dfe8faec3b18e6c04ab9697c162c7 [file] [log] [blame] [edit]
# Owner(s): ["module: mkldnn"]
import copy
import itertools
import functools
import unittest
from contextlib import nullcontext
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS, \
skipIfTorchDynamo, xfailIfTorchDynamo
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
dtypes,
)
# batched grad doesn't support mkldnn
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
gradgradcheck = functools.partial(gradgradcheck, check_batched_grad=False)
types = [torch.float, torch.bfloat16, torch.half]
# Comment the line below to find out the CI machines having MKL-DNN build disabled
@unittest.skipIf(not torch.backends.mkldnn.is_available(), "MKL-DNN build is disabled")
class TestMkldnn(TestCase):
def test_conversion(self):
for cpu_tensor in [torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')),
torch.randn((1, 2, 3, 4, 5),
dtype=torch.float, device=torch.device('cpu'))[:, :, :, :, 1]]:
cpu_tensor.requires_grad_()
convert_dtypes = {torch.half: [torch.half, torch.float],
torch.bfloat16: [torch.bfloat16, torch.float],
torch.float: [torch.bfloat16, torch.half]}
# float/bfloat16/half cpu tensor to mkldnn tensortensor.
for dtype1 in types:
mkldnn_tensor = cpu_tensor.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat tensor to cpu float or bfloat tensor
for dtype2 in convert_dtypes[dtype1]:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
atol = 1e-5 if dtype1 == torch.float and dtype2 == torch.float else 1e-2
self.assertEqual(cpu_tensor, cpu_tensor_2.float(), atol=atol, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 == torch.float:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size() / 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
# bfloat cpu tensor to mkldnn float tensor or bfloat tensor.
for orig_dtype in [torch.half, torch.bfloat16]:
cpu_tensor_lower = cpu_tensor.to(dtype=orig_dtype)
for dtype1 in convert_dtypes[orig_dtype]:
mkldnn_tensor = cpu_tensor_lower.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat/half tensor to cpu float/bfloat/half tensor
for dtype2 in convert_dtypes[cpu_tensor_lower.dtype]:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
self.assertEqual(cpu_tensor_lower,
cpu_tensor_2.to(dtype=cpu_tensor_lower.dtype), atol=1e-5, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 in [torch.bfloat16, torch.half]:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_lower.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_lower.element_size() * 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_conversion_byte_char(self):
int8_types = [torch.int8, torch.uint8]
for int8_type in int8_types:
low = -100 if int8_type is torch.int8 else 0
high = 100
for cpu_tensor in [torch.randint(
low=low,
high=high,
size=(1, 2, 3, 4),
dtype=torch.int64,
device=torch.device('cpu')),
torch.randint(
low=low,
high=high,
size=(1, 2, 3, 4, 5),
dtype=torch.int64,
device=torch.device('cpu'))[:, :, :, :, :]]:
cpu_tensor = cpu_tensor.to(dtype=int8_type)
mkldnn_tensor = cpu_tensor.to_mkldnn(int8_type)
self.assertEqual(mkldnn_tensor.dtype, int8_type)
cpu_tensor_1 = mkldnn_tensor.to_dense()
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
self.assertEqual(cpu_tensor, cpu_tensor_1)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), cpu_tensor.size())
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_copy(self):
x = torch.randn(4, 5, dtype=torch.float32)
mkldnn_x = x.to_mkldnn()
mkldnn_y = torch.randn(4, 5, dtype=torch.float32).to_mkldnn()
mkldnn_z = torch.randn(4, 10, dtype=torch.float32).to_mkldnn()
mkldnn_y.copy_(mkldnn_x)
self.assertEqual(x, mkldnn_y.to_dense())
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: only support same size tensor.",
lambda: mkldnn_z.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = torch.FloatTensor and src type = Mkldnntorch.FloatTensor",
lambda: x.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = Mkldnntorch.FloatTensor and src type = torch.FloatTensor",
lambda: mkldnn_x.copy_(x))
def test_unsupported(self):
# unsupported types and unsupported types with gpu
for dtype in [torch.double, torch.uint8, torch.int8,
torch.short, torch.int, torch.long]:
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn()
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn()
# supported type with gpu
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=torch.float, device=torch.device('cuda')).to_mkldnn()
# some factory functions
for creator in [torch.ones, torch.randn, torch.rand]:
with self.assertRaises(RuntimeError) as context:
creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn)
def test_mkldnn_conv_shapecheck(self):
input = torch.full((1, 1, 1, 24,), 1, dtype=torch.float32)
w1 = torch.full((1, 1, 1, 24,), 1, dtype=torch.float32)
b1 = torch.full((1,), 1, dtype=torch.float32)
w2 = torch.full((1, 1, 2, 24,), 1, dtype=torch.float32)
b2 = torch.full((2,), 1, dtype=torch.float32)
options = zip([-1, 0, 0, 0, 0, 0, 0], # padding
[1, 0, 1, 1, 1, 1, 1], # stride
[1, 1, 0, 1, 1, 1, 1], # dilation
[1, 1, 1, 0, 2, 1, 1], # groups
[w1, w1, w1, w1, w1, w1, w2], # weight
[b1, b1, b1, b1, b1, b2, b1]) # bias
for pad, st, dil, gr, w, b in options:
with self.assertRaises(RuntimeError) as _:
torch.mkldnn_convolution(input, w, b, [pad] * 2, [st] * 2, [dil] * 2, gr)
def test_autograd_to_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
def func(root):
return root.to_mkldnn().to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradgradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_autograd_from_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
def func(root):
return root.to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_detach(self):
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
detach = root.detach()
self.assertEqual((4, 5), detach.size())
self.assertFalse(detach.requires_grad)
self.assertTrue(root.requires_grad)
detach_ = root.detach_()
self.assertEqual((4, 5), detach_.size())
self.assertFalse(detach_.requires_grad)
self.assertFalse(root.requires_grad)
def test_repr(self):
self.assertTrue("layout=torch._mkldnn" in str(torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')).to_mkldnn()))
def _test_conv_base(self, dim):
conv_module = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d}
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x1 = x.clone()
x2 = x.clone().to_mkldnn()
if not train:
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
elif train and dim != 1:
# TODO: enable conv1d training.
x1.requires_grad_()
x2.requires_grad_()
mkldnn_conv = copy.deepcopy(conv)
with torch.backends.mkldnn.flags(enabled=False):
y_aten = conv(x1)
if train and dim != 1:
loss1 = y_aten.sum()
loss1.backward()
if not train or (train and dim != 1):
y_mkldnn = mkldnn_conv(x2).to_dense()
self.assertEqual(y_aten, y_mkldnn)
if not train:
self._test_serialization(mkldnn_conv, (x.to_mkldnn(),))
self._test_tracing(mkldnn_conv, (x.to_mkldnn(),))
elif dim != 1:
loss2 = y_mkldnn.sum()
loss2.backward()
self.assertTrue(x2.grad.is_mkldnn)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(conv.weight.grad,
mkldnn_conv.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv.bias.grad, mkldnn_conv.bias.grad)
def test_conv1d(self):
self._test_conv_base(dim=1)
def test_conv2d(self):
self._test_conv_base(dim=2)
def test_conv3d(self):
self._test_conv_base(dim=3)
def _test_conv_deconv_lower_precision_base(self, dim, conv_module, dtype):
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [1, 2], [1, 4])
for bias, dilation, groups in options:
N = torch.randint(1, 3, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
# TODO: remove this when group depthwise is supported:
if conv_module in [torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d,
torch.nn.ConvTranspose3d] and groups > 1 and C == groups:
continue
conv = conv_module(in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x_lower = x.to(dtype=dtype)
if (dtype == torch.bfloat16 and torch.ops.mkldnn._is_mkldnn_bf16_supported()) or \
(dtype == torch.half and torch.ops.mkldnn._is_mkldnn_fp16_supported()):
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
mkldnn_conv_lower = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), dtype)
y = mkldnn_conv(x.to_mkldnn()).to_dense()
y_lower = mkldnn_conv_lower(x_lower.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_lower, atol=1e-1, rtol=1e-3)
else:
msg = {
torch.bfloat16: r"bf16 path needs the cpu support avx_ne_convert or avx512bw, avx512vl and avx512dq",
torch.half: r"fp16 path needs the cpu support avx_ne_convert or avx512_fp16",
}
with self.assertRaisesRegex(RuntimeError, msg[dtype]):
mkldnn_conv_lower = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), dtype)
y_lower = mkldnn_conv_lower(x_lower.to_mkldnn()).to_dense(torch.float32)
# test thnn impl
conv_lower = copy.deepcopy(conv).to(dtype=dtype)
conv_ref = copy.deepcopy(conv_lower).float()
with torch.backends.mkldnn.flags(enabled=False):
x_ref = x_lower.clone().float().detach().requires_grad_()
x_lower.requires_grad_()
y = conv_ref(x_ref)
y_lower = conv_lower(x_lower).float()
self.assertEqual(y, y_lower, atol=5e-2, rtol=5e-3)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_1d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(1, torch.nn.Conv1d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(1, torch.nn.ConvTranspose1d, dtype=dtype)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_2d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(2, torch.nn.Conv2d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(2, torch.nn.ConvTranspose2d, dtype=dtype)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_deconv_3d_lower_precision(self, dtype):
self._test_conv_deconv_lower_precision_base(3, torch.nn.Conv3d, dtype=dtype)
self._test_conv_deconv_lower_precision_base(3, torch.nn.ConvTranspose3d, dtype=dtype)
def _test_conv_deconv_nhwc_base(self, conv_module, weight_memory_format, dtype, prec=None):
input_shapes = {2: (55, 55), 3: (14, 14, 14)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
if conv_module in [torch.nn.Conv2d, torch.nn.ConvTranspose2d]:
cl_format = torch.channels_last
input_shape = input_shapes[2]
elif conv_module in [torch.nn.Conv3d, torch.nn.ConvTranspose3d]:
cl_format = torch.channels_last_3d
input_shape = input_shapes[3]
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shape
x = torch.randn(x_shape, dtype=dtype)
# conv1: mkldnn conv/deconv in contiguous memory format (nchw)
# conv2: mkldnn conv/deconv in channels last memory format (nhwc)
conv1 = conv_module(in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).to(dtype=dtype)
conv2 = copy.deepcopy(conv1).to(memory_format=weight_memory_format)
x1 = x.clone()
x2 = x.clone().to(memory_format=cl_format)
if train:
x1.requires_grad_()
x2.requires_grad_()
y1 = conv1(x1)
y2 = conv2(x2)
self.assertEqual(y1, y2, atol=prec, rtol=prec)
if train:
y1.sum().backward()
y2.sum().backward()
self.assertTrue(x2.grad.is_contiguous(memory_format=cl_format))
self.assertEqual(conv1.weight.grad,
conv2.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv1.bias.grad, conv2.bias.grad, atol=prec, rtol=prec)
self.assertEqual(x1.grad, x2.grad, atol=prec, rtol=prec)
def test_conv_nhwc_fp32(self):
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=torch.float32)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_nhwc_lower_precision(self, dtype):
# when torch.ops.mkldnn._is_mkldnn_bf16_supported() or torch.ops.mkldnn._is_mkldnn_fp16_supported()
# returns false, bf16/fp16 CPU conv will fall back to thnn impl
support_checks = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported
}
if support_checks[dtype]():
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=dtype)
# BF16/FP16 fallback implementations are divided into two parts im2col+gemm,
# and the number of data type conversions in the middle is more than that of onednn's direct conv,
# resulting in additional accuracy loss.
precisions = {
torch.bfloat16: 1e-2,
torch.float16: 2e-3,
}
prec = precisions[dtype]
with torch.backends.mkldnn.flags(enabled=False):
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv2d, torch.channels_last, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.Conv3d, torch.channels_last_3d, dtype=dtype, prec=prec)
def test_conv_transpose_nhwc_fp32(self):
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=torch.float32)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=torch.float32)
@dtypes(torch.float16, torch.bfloat16)
def test_conv_transpose_nhwc_lower_precision(self, dtype):
# when torch.ops.mkldnn._is_mkldnn_bf16_supported() or torch.ops.mkldnn._is_mkldnn_fp16_supported()
# returns false, bf16/fp16 CPU conv will fall back to thnn impl
support_checks = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported
}
if support_checks[dtype]():
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=dtype)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=dtype)
# BF16/FP16 fallback implementations are divided into two parts col2im+gemm,
# and the number of data type conversions in the middle is more than that of onednn's direct conv,
# resulting in additional accuracy loss.
precisions = {
torch.bfloat16: 2e-2,
torch.float16: 3e-3,
}
prec = precisions[dtype]
with torch.backends.mkldnn.flags(enabled=False):
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose2d, torch.channels_last, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.contiguous_format, dtype=dtype, prec=prec)
self._test_conv_deconv_nhwc_base(torch.nn.ConvTranspose3d, torch.channels_last_3d, dtype=dtype, prec=prec)
def _test_conv_transpose_base(self, dim):
conv_module = {
1: torch.nn.ConvTranspose1d,
2: torch.nn.ConvTranspose2d,
3: torch.nn.ConvTranspose3d
}
input_shapes = {1: (55,), 2: (28, 28), 3: (14, 14, 14)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
data = torch.randn(x_shape, dtype=torch.float32)
# conv: mkldnn tranpose conv fp32
# conv_ref: thnn transpose conv fp32
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=1,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).to(dtype=torch.float32)
x = data.clone()
x_ref = x.clone()
if train:
x.requires_grad_()
x_ref.requires_grad_()
conv_ref = copy.deepcopy(conv)
with torch.backends.mkldnn.flags(enabled=False):
y_ref = conv_ref(x_ref)
if train:
y_ref.sum().backward()
y = conv(x)
if train:
y.sum().backward()
self.assertEqual(y, y_ref)
if train:
self.assertEqual(x.grad, x_ref.grad)
self.assertEqual(conv.weight.grad,
conv_ref.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv.bias.grad, conv_ref.bias.grad)
def test_conv_transpose1d(self):
self._test_conv_transpose_base(dim=1)
def test_conv_transpose2d(self):
self._test_conv_transpose_base(dim=2)
def test_conv_transpose3d(self):
self._test_conv_transpose_base(dim=3)
def test_conv2d_legacy_jit_model(self):
"""
MKLDNN integration used to serialize models with 5d weight for grouped
convolutions, we'd like to preserve this behavior
"""
g = 4
conv2d = torch.nn.Conv2d(16, 16, 3, groups=g)
conv2d_mkldnn = torch.utils.mkldnn.to_mkldnn(conv2d)
# contrive legacy conv2d module with a 5-d weight
o, i, h, w = conv2d.weight.shape
weight_5d = conv2d.weight.reshape((g, o // g, i, h, w))
conv2d_mkldnn.weight = weight_5d.to_mkldnn()
x = torch.randn(1, 16, 8, 8)
with TemporaryFileName() as fname:
torch.jit.save(conv2d_mkldnn, fname)
conv2d_loaded = torch.jit.load(fname)
self.assertEqual(conv2d_mkldnn.weight.ndimension(), 5)
self.assertEqual(conv2d_loaded.weight.ndimension(), 4)
self.assertEqual(
conv2d(x),
conv2d_loaded(x.to_mkldnn()).to_dense())
# This test is to check whether 1D conv is supported for mkldnn tensor,
# which is exposed by Issue https://github.com/pytorch/pytorch/issues/68034.
def test_conv1d_functional(self):
input = torch.randn(2, 3, 10).to_mkldnn()
weight = torch.randn(3, 3, 3).to_mkldnn()
bias = torch.randn(3).to_mkldnn()
output = torch.nn.functional.conv1d(input, weight, bias)
self.assertEqual(output.size(), torch.Size([2, 3, 8]))
def test_relu(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu(x1)
y2 = torch.relu(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_relu_(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu_(x1.clone())
y2 = torch.relu_(x2.clone()).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_relu_bf16_base(self, name):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x_bf16 = x.bfloat16()
fn = getattr(torch, name)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = fn(x.to_mkldnn()).to_dense()
y_bf16 = fn(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: fn(x_bf16.to_mkldnn()))
def test_relu_bf16(self):
self._test_relu_bf16_base("relu")
def test_relu_inplace_bf16(self):
self._test_relu_bf16_base("relu_")
def test_gelu(self):
m = torch.nn.GELU()
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = m(x1)
y2 = m(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_gelu_bf16(self):
m = torch.nn.GELU()
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().to_mkldnn().requires_grad_()
x2 = x.clone().to_mkldnn(torch.bfloat16).requires_grad_()
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y1 = m(x1).to_dense()
y2 = m(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2.to(torch.float32), atol=1e-1, rtol=0)
self.assertEqual(x1.grad.to_dense(), x2.grad.to_dense(torch.float32), atol=1e-2, rtol=0)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: m(x2))
def _test_prelu_base(self, size, num_channels):
x = torch.randn(size, dtype=torch.float32)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
x3 = x.clone().to_mkldnn().requires_grad_()
m1 = torch.nn.PReLU(num_channels)
m2 = mkldnn_utils.to_mkldnn(copy.deepcopy(m1))
m3 = copy.deepcopy(m1)
y1 = m1(x1)
y2 = m2(x2).to_dense()
y3 = m3(x3).to_dense() # Only convert data to mkldnn, weight is Aten tensor
loss1 = y1.sum()
loss1.backward()
loss2 = y2.sum()
loss2.backward()
loss3 = y3.sum()
loss3.backward()
self.assertEqual(y1, y2)
self.assertEqual(y1, y3)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(x1.grad, x3.grad.to_dense())
def test_prelu(self):
self._test_prelu_base(torch.Size([16]), 1)
self._test_prelu_base(torch.Size([16, 64]), 1)
self._test_prelu_base(torch.Size([16, 64]), 64)
self._test_prelu_base(torch.Size([16, 64, 112]), 1)
self._test_prelu_base(torch.Size([16, 64, 112]), 64)
self._test_prelu_base(torch.Size([16, 64, 112, 112]), 1)
self._test_prelu_base(torch.Size([16, 64, 112, 112]), 64)
self._test_prelu_base(torch.Size([16, 64, 112, 112, 1]), 1)
self._test_prelu_base(torch.Size([16, 64, 112, 112, 1]), 64)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_prelu_bf16_base(self, size, num_channels):
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
x = torch.randn(size, dtype=torch.float32)
x_fp32 = x.clone().to_mkldnn().requires_grad_()
x_bf16 = x.clone().to_mkldnn(torch.bfloat16).requires_grad_()
m = mkldnn_utils.to_mkldnn(torch.nn.PReLU())
m_bf16 = mkldnn_utils.to_mkldnn(torch.nn.PReLU(), torch.bfloat16)
y = m(x_fp32).to_dense()
y_bf16 = m_bf16(x_bf16).to_dense()
self.assertEqual(y, y_bf16.to(torch.float32), atol=1e-1, rtol=1e-3)
loss = y.sum()
loss.backward()
loss_bf16 = y_bf16.sum()
loss_bf16.backward()
self.assertEqual(x_fp32.grad.to_dense(), x_bf16.grad.to_dense(torch.float32))
else:
x_bf16 = torch.randn(size, dtype=torch.bfloat16).requires_grad_()
m_bf16 = mkldnn_utils.to_mkldnn(torch.nn.PReLU(), torch.bfloat16)
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: m_bf16(x_bf16))
def test_prelu_bf16(self):
self._test_prelu_bf16_base(torch.Size([16]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64]), 64)
self._test_prelu_bf16_base(torch.Size([16, 64, 112]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64, 112]), 64)
self._test_prelu_bf16_base(torch.Size([16, 64, 112, 112, 1]), 1)
self._test_prelu_bf16_base(torch.Size([16, 64, 112, 112, 1]), 64)
def _test_max_pool_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = max_pool(x1)
y2 = max_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_max_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=2, input=x)
def test_max_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_max_pool_bf16_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
x_bf16 = input.bfloat16()
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = max_pool(input.to_mkldnn()).to_dense()
y_bf16 = max_pool(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=0.1, rtol=1e-3)
else:
msg = "mkldnn_max_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: max_pool(x_bf16.to_mkldnn()))
def test_max_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=2, input=x)
def test_max_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=3, input=x)
def test_max_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
for ceil_mode in [False, True]:
y1 = F.max_pool2d(
x,
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
y2 = F.max_pool2d(
x.to_mkldnn(),
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
self.assertEqual(y1, y2.to_dense())
# https://github.com/pytorch/pytorch/issues/127111
@xfailIfTorchDynamo
def test_max_pool_unsupported(self):
# OneDNN not support dilation max_pooling, will be avilabled in v2.0.
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
# 2d dilation case
x = torch.randn(N, C, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool2d = torch.nn.MaxPool2d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool2d does not support dilation case',
lambda: max_pool2d(x))
# 3d dilation case
x = torch.randn(N, C, 7, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool3d = torch.nn.MaxPool3d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool3d does not support dilation case',
lambda: max_pool3d(x))
def _test_avg_pool_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = avg_pool(x1)
y2 = avg_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=2, input=x)
def test_avg_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_avg_pool_bf16_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
x_bf16 = input.bfloat16()
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = avg_pool(input.to_mkldnn()).to_dense()
y_bf16 = avg_pool(x_bf16.to_mkldnn()).to_dense(torch.float)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_avg_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: avg_pool(x_bf16.to_mkldnn()))
def test_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=2, input=x)
def test_avg_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=3, input=x)
def test_avg_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
for count_include_pad in [True, False]:
y1 = F.avg_pool2d(
x,
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
y2 = F.avg_pool2d(
x.to_mkldnn(),
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
self.assertEqual(y1, y2.to_dense())
def test_adaptive_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = adaptive_avg_pool2d(x1)
y2 = adaptive_avg_pool2d(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_adaptive_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
x_bf16 = x.bfloat16()
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = adaptive_avg_pool2d(x.to_mkldnn()).to_dense()
y_bf16 = adaptive_avg_pool2d(x.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_adaptive_avg_pool2d: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: adaptive_avg_pool2d(x_bf16.to_mkldnn()))
def _test_batch_norm_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
bn = bn_module[dim](channels).float().train(False)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
self.assertEqual(
bn(input),
mkldnn_bn(input.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_bn, (input.to_mkldnn(),))
self._test_tracing(mkldnn_bn, (input.to_mkldnn(),))
def _test_batch_norm_train_base(self, dim, channels, input):
# TODO: support 3d batchnorm training.
bn_module = {2 : torch.nn.BatchNorm2d}
# TODO: support none affine.
options = itertools.product([True], [True, False])
for affine, track_running_stats in options:
bn = bn_module[dim](
num_features=channels,
affine=affine,
track_running_stats=track_running_stats).float().train(True)
mkldnn_bn = copy.deepcopy(bn)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = bn(x1)
y2 = mkldnn_bn(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(bn.weight.grad, mkldnn_bn.weight.grad, rtol=1e-3, atol=1e-3)
if track_running_stats:
self.assertEqual(bn.running_mean, mkldnn_bn.running_mean)
self.assertEqual(bn.running_var, mkldnn_bn.running_var, rtol=1e-5, atol=1e-5)
def test_batch_norm_2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=2, channels=C, input=x)
self._test_batch_norm_train_base(dim=2, channels=C, input=x)
def test_batch_norm_3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=3, channels=C, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_batch_norm_bf16_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
x_bf16 = input.bfloat16()
# TODO: support training
for train in [False]:
bn = bn_module[dim](channels).float().train(train)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
if torch.ops.mkldnn._is_mkldnn_bf16_supported():
y = bn(input.to_mkldnn().to_dense())
y_bf16 = bn(input.to_mkldnn().to_dense(torch.float))
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_batch_norm: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: bn(x_bf16.to_mkldnn()))
def test_batch_norm_2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=2, channels=C, input=x)
def test_batch_norm_3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=3, channels=C, input=x)
def test_add(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
alpha = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# add
self.assertEqual(
x + y,
(mx + my).to_dense())
self.assertEqual(
torch.add(x, y, alpha=alpha),
torch.add(mx, my, alpha=alpha).to_dense())
# add_
x += y
mx += my
self.assertEqual(x, mx.to_dense())
# add_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.add(x, y, alpha=alpha, out=out)
torch.add(mx, my, alpha=alpha, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
# add_out inplace case: first input
torch.add(x, y, alpha=alpha, out=x)
torch.add(mx, my, alpha=alpha, out=mx)
self.assertEqual(x, mx.to_dense())
# add_out inplace case: second input
torch.add(x, y, alpha=alpha, out=y)
torch.add(mx, my, alpha=alpha, out=my)
self.assertEqual(y, my.to_dense())
def test_mul(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
value = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# mul
self.assertEqual(
x * y,
(mx * my).to_dense())
self.assertEqual(
x * value,
(mx * value).to_dense())
self.assertEqual(
torch.mul(x, y),
torch.mul(mx, my).to_dense())
self.assertEqual(
torch.mul(x, value),
torch.mul(mx, value).to_dense())
# mul_
x *= y
mx *= my
self.assertEqual(x, mx.to_dense())
x *= value
mx *= value
self.assertEqual(x, mx.to_dense())
# mul_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, y, out=out)
torch.mul(mx, my, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, value, out=out)
torch.mul(mx, value, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
def test_0_dimension_tensor(self):
x = torch.rand([20, 20, 1, 1], dtype=torch.float)
y = torch.rand([20, 20, 0, 1], dtype=torch.float)
# unary ops work without modification
out_relu = torch.relu(y)
out_relu_mkldnn = torch.relu(y.to_mkldnn()).to_dense()
self.assertEqual(out_relu, out_relu_mkldnn)
out_mul = x * y
out_mul_mkldnn = (x.to_mkldnn() * y.to_mkldnn()).to_dense()
self.assertEqual(out_mul, out_mul_mkldnn)
out_add = x + y
out_add_mkldnn = (x.to_mkldnn() + y.to_mkldnn()).to_dense()
self.assertEqual(out_add, out_add_mkldnn)
x.requires_grad_(True)
y.requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "0-dimension Tensor in training"):
x.to_mkldnn() + y.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, "must match"):
torch.rand([5]).to_mkldnn() + torch.rand([0]).to_mkldnn()
C = 7
m = torch.nn.Conv2d(C, C, 3)
x = torch.randn(0, C, C, 8, dtype=torch.float)
out_eager = m(x)
out_mkldnn = mkldnn_utils.to_mkldnn(m)(x)
self.assertEqual(out_eager, out_mkldnn)
# https://github.com/pytorch/pytorch/issues/127111
@xfailIfTorchDynamo
def test_view(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
self.assertRaisesRegex(RuntimeError,
"Change to use reshape",
lambda: x.view(x.size(0), -1))
def test_reshape(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
self.assertEqual(
x.reshape(size),
x.to_mkldnn().reshape(size).to_dense(),
)
# test whether share same memory for plain format tensor
y = x.to_mkldnn()
z = y.reshape(size).add_(y.reshape(size))
self.assertEqual(
y.reshape(size).to_dense(),
z.to_dense(),
)
def test_reshape_blocked_format(self):
# construct an mkldnn blocked tensor with mkldnn conv2d
C = 7
m = mkldnn_utils.to_mkldnn(torch.nn.Conv2d(C, C, 3))
x = torch.randn(1, C, 8, 8).to_mkldnn()
# mkldnn tensor w/ blocked format
y_block = m(x)
# aten tensor w/ plain format
y_plain = y_block.to_dense()
y_block_reshape = y_block.reshape(C, -1)
y_plain_reshape = y_plain.reshape(C, -1)
self.assertEqual(y_plain_reshape, y_block_reshape.to_dense())
def test_reshape_backward(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
in_features = 20
out_features = torch.randint(3, 100, (1,)).item()
linear = torch.nn.Linear(in_features, out_features).float()
y1 = linear(x1.reshape(size)).sum()
y2 = linear(x2.reshape(size).to_dense()).sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_clone(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
self.assertEqual(
x.clone(),
x.to_mkldnn().clone().to_dense(),
)
# test whether share same memory
y = x.to_mkldnn()
z = y.clone().add_(y)
self.assertNotEqual(
y.to_dense(),
z.to_dense(),
)
def test_transpose(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim1 in range(x.ndim):
for dim2 in range(x.ndim):
self.assertEqual(
x.transpose(dim1, dim2),
x.to_mkldnn().transpose(dim1, dim2).to_dense(),
)
def test_transpose_invalid_dime(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
torch._mkldnn_transpose(x, 0, 12)
def test_linear_non_contiguous_weight(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
w = torch.randn(in_features, out_features, dtype=torch.float32)
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
linear.weight = torch.nn.Parameter(w.t())
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
def test_linear(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
self.assertEqual(
linear(x),
mkldnn_linear(x.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_linear, (x.to_mkldnn(),))
self._test_tracing(mkldnn_linear, (x.to_mkldnn(),))
def test_linear_backward(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
@dtypes(torch.float16, torch.bfloat16)
def test_linear_lowp(self, dtype):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
x_lowp = x.to(dtype=dtype)
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
mkldnn_linear_lowp = mkldnn_utils.to_mkldnn(
copy.deepcopy(linear), dtype
)
lowp_support = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.half: torch.ops.mkldnn._is_mkldnn_fp16_supported,
}
if lowp_support[dtype]():
y = mkldnn_linear(x.to_mkldnn()).to_dense()
y_lowp = mkldnn_linear_lowp(x_lowp.to_mkldnn()).to_dense(
torch.float32
)
if dtype == torch.bfloat16:
self.assertEqual(y, y_lowp, atol=1e-1, rtol=1e-3)
else:
self.assertEqual(y, y_lowp, atol=5e-3, rtol=1e-3)
else:
msg = {
torch.bfloat16: r"bf16 path needs the cpu support avx_ne_convert or avx512bw, avx512vl and avx512dq",
torch.half: r"fp16 path needs the cpu support avx_ne_convert or avx512_fp16",
}
self.assertRaisesRegex(
RuntimeError,
msg[dtype],
lambda: mkldnn_linear_lowp(x_lowp.to_mkldnn()),
)
def test_softmax(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim in range(x.ndim):
softmax = torch.nn.Softmax(dim=dim)
self.assertEqual(
softmax(x),
softmax(x.to_mkldnn()).to_dense())
def test_sigmoid(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.sigmoid(x),
torch.sigmoid(mkldnn_x).to_dense(),
)
# inplace
torch.sigmoid_(x)
torch.sigmoid_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def test_tanh(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.tanh(x),
torch.tanh(mkldnn_x).to_dense(),
)
# inplace
torch.tanh_(x)
torch.tanh_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def _test_serialization(self, module, inputs):
with TemporaryFileName() as fname:
torch.jit.save(module, fname)
loaded = torch.jit.load(fname)
self.assertEqual(
module(*inputs).to_dense(),
loaded(*inputs).to_dense())
def _test_tracing(self, module, inputs):
traced = torch.jit.trace(module, inputs)
self.assertEqual(
module(*inputs).to_dense(),
traced(*inputs).to_dense())
def test_set_data_tensorimpl_type(self):
# Dense tensor has impl of type `TensorImpl`, while MKL-DNN tensor has impl
# of type `OpaqueTensorImpl<IDeepTensorWrapperPtr>`.
x = torch.randn((1, 2), dtype=torch.float, device=torch.device('cpu'))
x_mkldnn = x.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, 'incompatible tensor type'):
x.data = x_mkldnn
def test_empty(self):
x1 = torch.empty(4, 5, 2, 3, dtype=torch.float32)
x2 = torch.empty(4, 5, 2, 3, dtype=torch.float32, layout=torch._mkldnn)
self.assertEqual(x1.size(), x2.to_dense().size())
self.assertEqual(x1.dtype, x2.to_dense().dtype)
def test_zero_(self):
x1 = torch.randn(4, 5, dtype=torch.float32) * 10
x2 = x1.clone().to_mkldnn()
self.assertEqual(
x1.zero_(),
x2.zero_().to_dense(),
)
def test_is_mkldnn(self):
x = torch.randn(1, dtype=torch.float32)
self.assertFalse(x.is_mkldnn)
self.assertTrue(x.to_mkldnn().is_mkldnn)
# legacy constructor/new doesn't support mkldnn tensors
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1992")
def test_legacy_new_failure(self):
x = torch.randn(1, dtype=torch.float32)
x_mkldnn = x.to_mkldnn()
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x.storage()))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(x))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new(torch.Size([2, 3])))
self.assertRaises(RuntimeError, lambda: x_mkldnn.new([6]))
def test_is_mkldnn_jit(self):
class EnsureMkldnn(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
if not x.is_mkldnn:
x = x.to_mkldnn()
return x
m = EnsureMkldnn()
x = torch.randn(1, dtype=torch.float32)
self.assertTrue(m(x).is_mkldnn)
self.assertTrue(m(x.to_mkldnn()).is_mkldnn)
def _test_imagenet_model(self, model):
model = model.train(False).float()
mkldnn_model = mkldnn_utils.to_mkldnn(copy.deepcopy(model))
x = torch.randn(1, 3, 224, 224, dtype=torch.float32)
with torch.no_grad():
self.assertEqual(
model(x),
mkldnn_model(x.to_mkldnn()).to_dense(),
)
@skipIfNoTorchVision
def test_resnet18(self):
model = torchvision.models.resnet.resnet18(weights=None)
self._test_imagenet_model(model)
@skipIfNoTorchVision
def test_resnext50_32x4d(self):
model = torchvision.models.resnet.resnext50_32x4d(weights=None)
self._test_imagenet_model(model)
def _lstm_params_list(self):
params_dict = {
"input_size": [1, 5],
"hidden_size": [5, 16],
"num_layers": [1, 3],
"bidirectional": [False, True],
"bias": [False, True],
"batch_first": [False, True],
"dropout": [0, 0.4, 0.7, 1],
"batch_size": [1, 2],
"seq_len": [1, 3],
"training": [False, True]
}
params_list = list(params_dict.values())
return params_list
def _cast_dtype(self, input, dtype):
if dtype == torch.bfloat16:
input = input.to(torch.bfloat16)
elif dtype == torch.half:
input = input.to(torch.half)
return input
def test_lstm(self):
seed = 2023
torch.manual_seed(seed)
params_list = self._lstm_params_list()
for dtype in types:
bf16 = dtype == torch.bfloat16
fp16 = dtype == torch.half
rtol = 1.3e-6
atol = 1e-5
if bf16:
rtol = 0.02
atol = 0.02
if fp16:
rtol = 1e-3
atol = 1e-3
for input_size, hidden_size, num_layers, bidirectional, bias, batch_first, dropout, batch_size, seq_len, training \
in itertools.product(*params_list):
num_directions = 2 if bidirectional else 1
if batch_first:
input = torch.randn(batch_size, seq_len, input_size, dtype=torch.float32)
else:
input = torch.randn(seq_len, batch_size, input_size, dtype=torch.float32)
h = torch.randn(num_layers * num_directions, batch_size, hidden_size, dtype=torch.float32)
c = torch.randn(num_layers * num_directions, batch_size, hidden_size, dtype=torch.float32)
if fp16:
# TODO add traing support when oneDNN support lstm FP16 training
training = False
model = torch.nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional,
bias=bias, dropout=dropout, batch_first=batch_first).float()
model.train() if training else model.eval()
input1 = input.clone().requires_grad_(training)
input2 = input.clone().requires_grad_(training)
h1 = h.clone().requires_grad_(training)
h2 = h.clone().requires_grad_(training)
c1 = c.clone().requires_grad_(training)
c2 = c.clone().requires_grad_(training)
model1 = copy.deepcopy(model)
model2 = copy.deepcopy(model)
with torch.no_grad() if not training else nullcontext():
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
output1, (hn1, cn1) = self._cast_dtype(model1, dtype)(
self._cast_dtype(input1, dtype),
(
self._cast_dtype(h1, dtype),
self._cast_dtype(c1, dtype),
),
)
torch.manual_seed(seed)
output2, (hn2, cn2) = self._cast_dtype(model2, dtype)(
self._cast_dtype(input2, dtype),
(
self._cast_dtype(h2, dtype),
self._cast_dtype(c2, dtype),
),
)
self.assertEqual(output1, output2, rtol=rtol, atol=atol)
self.assertEqual(hn1, hn2, rtol=rtol, atol=atol)
self.assertEqual(cn1, cn2, rtol=rtol, atol=atol)
if training:
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
output1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
output2.sum().backward(retain_graph=True)
self.assertEqual(input1.grad, input2.grad, rtol=rtol, atol=atol)
for name, para in model1.named_parameters():
self.assertEqual(para, getattr(model2, name))
self.assertEqual(
para.grad,
getattr(model2, name).grad,
rtol=rtol,
atol=atol,
)
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
hn1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
hn2.sum().backward(retain_graph=True)
self.assertEqual(h1.grad, h2.grad, rtol=rtol, atol=atol)
with torch.backends.mkldnn.flags(enabled=False):
torch.manual_seed(seed)
cn1.sum().backward(retain_graph=True)
torch.manual_seed(seed)
cn2.sum().backward(retain_graph=True)
self.assertEqual(c1.grad, c2.grad, rtol=rtol, atol=atol)
@dtypes(torch.float16, torch.bfloat16)
def test_matmul_lower_precision(self, dtype):
support_check = {
torch.bfloat16: torch.ops.mkldnn._is_mkldnn_bf16_supported,
torch.float16: torch.ops.mkldnn._is_mkldnn_fp16_supported,
}
def common(self, shape1, shape2, op, dtype):
a = torch.randn(shape1, dtype=dtype)
a_ref = a.float()
b = torch.randn(shape2, dtype=dtype)
b_ref = b.float()
y = op(a, b)
y_ref = op(a_ref, b_ref)
self.assertEqual(y, y_ref, exact_dtype=False)
if support_check[dtype]():
a1 = torch.randn([64, 1, 33], dtype=dtype)
# a2 is contiguous tensor but it's strides
# is not default contiguous strides.
a2 = torch.as_strided(a1.clone(), [64, 1, 33], [33, 3, 1])
self.assertTrue(a2.is_contiguous())
b = torch.randn(64, 33, 256).to(dtype=dtype)
y1 = torch.ops.aten.bmm(a1, b)
y2 = torch.bmm(a2, b)
self.assertEqual(y1, y2)
for shape1, shape2, op in [
((33, 77), (77, 22), torch.matmul),
((128, 256), (256, 10), torch.matmul),
((7, 300), (300, 3), torch.matmul),
((1, 100), (100, 60), torch.matmul),
((100, 1), (1, 100), torch.matmul),
((20, 54, 78), (20, 78, 10), torch.bmm),
((1, 300, 1), (1, 1, 300), torch.bmm),
]:
common(self, shape1, shape2, op, dtype)
instantiate_device_type_tests(TestMkldnn, globals(), only_for=('cpu',))
if __name__ == '__main__':
run_tests()