blob: 999fadfac7f6aa4593607307d0258f28bb2e3e3d [file] [log] [blame] [edit]
# Owner(s): ["module: nn"]
from itertools import chain, product
from inspect import signature, isgenerator
from copy import deepcopy
import tempfile
from operator import methodcaller
import torch
from torch._subclasses.meta_utils import assert_metadata_eq
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCPU, onlyCUDA, toleranceOverride, tol, skipMeta)
from torch.testing._internal.common_modules import module_db, modules, ModuleErrorEnum, TrainEvalMode
from torch.testing._internal.common_utils import (
TestCase, run_tests, freeze_rng_state, mock_wrapper, get_tensors_from, gradcheck,
gradgradcheck, parametrize, wrapSwapTensorsTest)
from unittest.mock import patch, call
class TestModule(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
precision = 1e-5
rel_tol = 1e-5
def _assert_module_parameters_and_buffer_are(self, module, device, dtype):
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg or methods
# such as `float()` applies to.
if not isinstance(device, torch.device):
device = torch.device(device)
def _check_module(items, name, device=device, dtype=dtype):
for item_name, item in items:
self.assertEqual(
item.device, device,
f'{name} {item_name} is on device {item.device} instead of the expected device {device}')
if item.dtype.is_floating_point:
self.assertEqual(
item.dtype, dtype,
f'{name} {item_name} is of dtype {item.dtype} instead of the expected dtype {dtype}')
_check_module(module.named_parameters(), "Parameter")
_check_module(module.named_buffers(), "Buffer")
@modules(module_db)
def test_forward(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
dtype_to_method_caller = {
torch.float32: methodcaller("float"),
torch.float64: methodcaller("double"),
}
for module_input in module_inputs:
if module_input.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to a reference if one is specified. ===
# TODO: Handle precision
reference_fn = module_input.reference_fn
if reference_fn is not None:
ref_outputs = reference_fn(m, *args, **kwargs)
self.assertEqual(outputs, ref_outputs)
# === Use the method call and verify the parameters and buffers ===
if dtype in dtype_to_method_caller:
dtype_to_method_caller[dtype](m)
m(*args, **kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# Tests passing factory kwargs (e.g. device / dtype) during module instantiation.
# They should be applied to any created parameters and buffers.
@modules(module_db)
def test_factory_kwargs(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
# Check if this module creates parameters or registers buffers.
# The mock magic here passes through to the real Parameter / register_buffer
# logic and is only used to check call inputs.
module_creates_params_or_buffers = False
parameter_new = mock_wrapper(torch.nn.Parameter.__new__)
with patch.object(torch.nn.Parameter, '__new__', parameter_new):
register_buffer = mock_wrapper(torch.nn.Module.register_buffer)
with patch.object(torch.nn.Module, 'register_buffer', register_buffer):
m = module_cls(*args, **kwargs)
m.train(training)
# Check if a parameter or buffer was created with a tensor not passed to the constructor.
constructor_tensors = get_tensors_from(args, kwargs)
for mock in [parameter_new.mock, register_buffer.mock]:
for call_args, call_kwargs in mock.call_args_list:
call_tensors = get_tensors_from(call_args, call_kwargs)
if len(call_tensors) > 0 and not constructor_tensors.intersection(call_tensors):
module_creates_params_or_buffers = True
break
if not module_creates_params_or_buffers:
continue
# Instantiate module with the factory kwargs.
kwargs.update({
'device': device,
'dtype': dtype,
})
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
# Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers.
uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__)
with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new):
uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__)
with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new):
m = module_cls(*args, **kwargs)
m.train(training)
uninit_param_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls])
uninit_buffer_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls])
else:
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg applies to.
m = module_cls(*args, **kwargs)
m.train(training)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
@onlyCUDA
@modules(module_db)
def test_multiple_device_transfer(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs_device = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=False, training=training)
for module_input_device, module_input_cpu in zip(module_inputs_device, module_inputs_cpu):
if module_input_device.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input_device.constructor_input.args, module_input_device.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass on GPU ===
input_device_args = module_input_device.forward_input.args
input_device_kwargs = module_input_device.forward_input.kwargs
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# === Move to CPU ===
input_cpu_args = module_input_cpu.forward_input.args
input_cpu_kwargs = module_input_cpu.forward_input.kwargs
m.cpu()
m(*input_cpu_args, **input_cpu_kwargs)
self._assert_module_parameters_and_buffer_are(m, "cpu", dtype)
# === Move back to GPU and forward pass ===
m.cuda()
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
if torch.cuda.device_count() >= 2:
# === test cross-GPU transfer works
def _to_device1(objs):
if isinstance(objs, (tuple, list)):
return type(objs)(_to_device1(item) for item in objs)
elif isinstance(objs, dict):
return {name: _to_device1(item) for name, item in objs.items()}
elif isinstance(objs, torch.Tensor):
return objs.cuda(1)
else:
return objs
input_device_1_args = _to_device1(input_device_args)
input_device_1_kwargs = _to_device1(input_device_kwargs)
m.cuda(1)
with torch.cuda.device(1):
m(*input_device_1_args, **input_device_1_kwargs)
self._assert_module_parameters_and_buffer_are(m, torch.device("cuda:1"), dtype)
@modules(module_db)
def test_repr(self, device, dtype, module_info, training):
# Test module can be represented with repr and str without errors.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Check that these methods do not raise errors
m.__repr__()
str(m)
@modules(module_db)
def test_save_load(self, device, dtype, module_info, training):
# Test that module can be pickled and unpickled.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
sd = m.state_dict()
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
output = m(*args, **kwargs)
# === Check saved/loaded module gives the same output. ===
with tempfile.TemporaryFile() as f:
torch.save(m, f)
f.seek(0)
# weights_only=False as this is legacy code that saves the model
m_copy = torch.load(f, weights_only=False)
output_from_copy = m_copy(*args, **kwargs)
self.assertEqual(output, output_from_copy)
# === Check saved/loaded state_dict are the same (including weights_only load). ===
with tempfile.TemporaryFile() as f:
torch.save(sd, f)
f.seek(0)
sd_copy = torch.load(f)
self.assertEqual(sd_copy, sd)
del sd_copy
f.seek(0)
sd_copy_wo = torch.load(f, weights_only=True)
self.assertEqual(sd_copy_wo, sd)
@skipMeta
@modules([module_info for module_info in module_db
if 'inplace' in signature(module_info.module_cls).parameters])
def test_check_inplace(self, device, dtype, module_info, training):
# Check if the inplace variant of the module gives the same result as the out of place
# variant.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m_op = module_cls(*args, **kwargs, inplace=False)
m_op.to(device).to(dtype)
m_op.train(training)
m_inplace = module_cls(*args, **kwargs, inplace=True)
m_inplace.to(device).to(dtype)
m_inplace.train(training)
# === Inplace modules only supports inplace operations on the first argument ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
# === Do not allow the first input to be in input_kwargs ===
forward_sig = signature(m_op).parameters
self.assertGreaterEqual(len(forward_sig), 1)
first_param_name = next(iter(forward_sig.items()))
self.assertNotIn(first_param_name, input_kwargs)
# === Out of place operation does not write to original tensor ===
self.assertGreaterEqual(len(input_args), 1)
input_version = input_args[0]._version
with freeze_rng_state():
output_op = m_op(*input_args, **input_kwargs)
self.assertEqual(input_args[0]._version, input_version)
# === Check that the inplace operation gives the same result ===
input_arg_copy = deepcopy(input_args)
input_arg_clone = tuple(i.clone() for i in input_arg_copy)
input_clone_version = input_arg_clone[0]._version
with freeze_rng_state():
output_ip = m_inplace(*input_arg_clone, **input_kwargs)
self.assertGreater(input_arg_clone[0]._version, input_clone_version)
self.assertEqual(output_op, output_ip)
# === Check that the gradients are the same ===
grad = output_op.data.clone().normal_()
output_op.backward(grad)
output_ip.backward(grad)
self.assertEqual(input_args[0].grad, input_arg_copy[0].grad)
def _traverse_obj(self, obj, func):
if isinstance(obj, (tuple, list)):
return type(obj)(self._traverse_obj(o, func) for o in obj)
elif isgenerator(obj):
return tuple(self._traverse_obj(o, func) for o in obj)
elif isinstance(obj, dict):
return {name: self._traverse_obj(o, func) for name, o in obj.items()}
elif isinstance(obj, (torch.Tensor, torch.nn.Parameter)):
return func(obj)
else:
return obj
def _retain_grad(self, obj):
# gradients needs to be retained to check for grad. This is useful when
# non-leafs are present in the graph.
def inner_retain_grad(obj):
if obj.requires_grad:
obj.retain_grad()
self._traverse_obj(obj, inner_retain_grad)
def _get_grads(self, obj):
def inner_get_grad(obj):
if obj.requires_grad:
return obj.grad
return self._traverse_obj(obj, inner_get_grad)
def _zero_grad(self, obj):
def inner_zero_grad(obj):
if obj.grad is not None:
obj.grad = None
self._traverse_obj(obj, inner_zero_grad)
@modules(module_db)
def test_non_contiguous_tensors(self, device, dtype, module_info, training):
# Check modules work with non-contiguous tensors
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
def _make_non_contiguous(obj):
def inner_make_non_contiguous(obj):
# Scalar tensors can not be made non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return obj
out = torch.repeat_interleave(obj, 2, dim=-1)
out = out[..., ::2].detach()
out.requires_grad = obj.requires_grad
return out
return self._traverse_obj(obj, inner_make_non_contiguous)
def _can_be_noncontiguous(obj):
if isinstance(obj, (tuple, list)):
return any(_can_be_noncontiguous(o) for o in obj)
elif isinstance(obj, dict):
return any(_can_be_noncontiguous(o) for o in obj.values())
# scalar tensors can not be non-contiguous
return isinstance(obj, torch.Tensor) and obj.dim() != 0
for module_input in module_inputs:
if module_input.forward_input is None:
continue
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if not (_can_be_noncontiguous(input_args) or _can_be_noncontiguous(input_kwargs)):
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
self._retain_grad((input_args, input_kwargs))
# === Forward with default input
with freeze_rng_state():
default_output = m(*input_args, **input_kwargs)
if isinstance(default_output, torch.Tensor):
grad_output = default_output.clone().detach_().normal_()
default_output.backward(grad_output, retain_graph=True)
else:
grad_output = tuple(self._traverse_obj(o, lambda o: o.clone().detach_().normal_() if o.requires_grad else None)
for o in default_output)
flattened_default_output = torch.utils._pytree.tree_leaves(default_output)
flattened_grad_output = torch.utils._pytree.tree_leaves(grad_output)
for o, g_o in zip(flattened_default_output, flattened_grad_output):
if (o.requires_grad):
o.backward(g_o, retain_graph=True)
default_input_args_grad, default_input_kwargs_grad = deepcopy(self._get_grads((input_args, input_kwargs)))
default_param_grad = deepcopy([p.grad for p in m.parameters()])
# === Construct non-contiguous tensors ===
nc_input_args, nc_input_kwargs = _make_non_contiguous((input_args, input_kwargs))
nc_grad_output = _make_non_contiguous(grad_output)
# === Compare results with non-contiguous and contiguous tensors ===
inputs = [(input_args, input_kwargs), (nc_input_args, nc_input_kwargs)]
grads = [grad_output, nc_grad_output]
for (in_args, in_kwargs), g_out in product(inputs, grads):
g_out_copy = deepcopy(g_out)
self._zero_grad((in_args, in_kwargs))
self._zero_grad(m.parameters())
with freeze_rng_state():
out = m(*in_args, **in_kwargs)
if isinstance(out, torch.Tensor):
out.backward(g_out_copy, retain_graph=True)
else:
flattened_out = torch.utils._pytree.tree_leaves(out)
flattened_g_out_copy = torch.utils._pytree.tree_leaves(g_out_copy)
for o, g_o in zip(flattened_out, flattened_g_out_copy):
if o.requires_grad:
o.backward(g_o, retain_graph=True)
input_args_grad, input_kwargs_grad = self._get_grads((in_args, in_kwargs))
self.assertEqual(out, default_output)
self.assertEqual(input_args_grad, default_input_args_grad, atol=1e-4, rtol=0)
self.assertEqual(input_kwargs_grad, default_input_kwargs_grad, atol=1e-4, rtol=0)
param_grad = [p.grad for p in m.parameters()]
self.assertEqual(param_grad, default_param_grad)
def _test_gradients_helper(self, device, dtype, module_info, training, check):
# Check gradients
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
# === Set nondet tol for gradcheck to user-defined value if on CUDA and cudNN is enabled
gradcheck_nondet_tol = 0.0
if (torch.device(device).type == 'cuda' and torch.backends.cudnn.enabled):
gradcheck_nondet_tol = module_info.gradcheck_nondet_tol
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
params = tuple(m.parameters())
# === Lazy modules need to see an input to initialize params before gradcheck is run. ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
m(*input_args, **input_kwargs)
# === Perform gradient check on the input_args ===
other_kwargs = {}
kwarg_tensors = []
for name, obj in input_kwargs.items():
if isinstance(obj, torch.Tensor):
kwarg_tensors.append((name, obj))
else:
other_kwargs[name] = obj
def fn_to_gradcheck(*flat_input_and_params):
input_and_params = torch.utils._pytree.tree_unflatten(flat_input_and_params, flat_spec)
new_input_args = input_and_params[:len(input_args)]
kwarg_args = input_and_params[-len(kwarg_tensors):]
new_kwargs = {name: obj for (name, _), obj in zip(kwarg_tensors, kwarg_args)}
with freeze_rng_state():
output = m(*new_input_args, **new_kwargs, **other_kwargs)
output_flattened = torch.utils._pytree.tree_leaves(output)
return output_flattened
# check total derivative
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
# check partial derivatives
old_params_requires_grad = [p.requires_grad for p in params]
for p in params:
p.requires_grad = False
old_kwargs_requires_grad = [obj.requires_grad for (_, obj) in kwarg_tensors]
for (_, obj) in kwarg_tensors:
obj.requires_grad = False
for p, old in zip(params, old_params_requires_grad):
p.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
p.requires_grad = False
for (_, obj), old in zip(kwarg_tensors, old_kwargs_requires_grad):
obj.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
obj.requires_grad = False
@modules(module_db, allowed_dtypes=[torch.double])
def test_grad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradcheck)
@modules([m for m in module_db if m.supports_gradgrad],
allowed_dtypes=[torch.double])
def test_gradgrad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradgradcheck)
@onlyCUDA
@with_tf32_off # Turn off TF32 to compute at full precision https://github.com/pytorch/pytorch/issues/86798
@toleranceOverride({torch.float32: tol(5e-2, 0),
torch.float64: tol(4e-4, 0)})
@modules(module_db)
def test_cpu_gpu_parity(self, device, dtype, module_info, training):
# TODO: RNN / GRU / LSTM don't support backwards on eval mode for cuDNN; skip this in a
# nicer way for eval mode only.
# See https://github.com/pytorch/pytorch/issues/79161
rnn_modules = {torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM}
if (module_info.module_cls in rnn_modules
and not training
and 'cuda' in device
and torch.backends.cudnn.enabled):
return
# Test cpu and gpu results are the same
module_cls = module_info.module_cls
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=True, training=training)
def _to_device(obj):
if isinstance(obj, torch.Tensor):
res = obj.detach().to(device=device)
res.requires_grad = obj.requires_grad
return res
elif isinstance(obj, tuple):
return tuple(_to_device(o) for o in obj)
elif isinstance(obj, dict):
return {key: _to_device(o) for key, o in obj.items()}
else:
return deepcopy(obj)
for module_input in module_inputs_cpu:
# === Move input from cpu to device ===
cpu_forward_args = module_input.forward_input.args
cpu_forward_kwargs = module_input.forward_input.kwargs
gpu_forward_args, gpu_forward_kwargs = _to_device((cpu_forward_args, cpu_forward_kwargs))
self._retain_grad((cpu_forward_args, cpu_forward_kwargs, gpu_forward_args, gpu_forward_kwargs))
# === Construct module on cpu and gpu ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
cpu_module = module_cls(*args, **kwargs).to(dtype).to("cpu")
cpu_module.train(training)
gpu_module = module_cls(*args, **kwargs).to(dtype).to(device)
gpu_module.train(training)
# === Lazy modules need to see an input to initialize params ===
if issubclass(module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
gpu_p.data.copy_(cpu_p)
# === Compare forward output between cpu and gpu ===
cpu_outputs = cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_outputs = gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
self.assertEqual(cpu_outputs, gpu_outputs)
# === Run backwards on CPU and GPU and compare results ===
def check_backward(cpu_output, gpu_output):
cpu_grad_output = cpu_output.clone().normal_()
gpu_grad_output = cpu_grad_output.type_as(gpu_output)
cpu_output.backward(cpu_grad_output, retain_graph=True)
gpu_output.backward(gpu_grad_output, retain_graph=True)
cpu_grad_input = self._get_grads(cpu_forward_args)
gpu_grad_input = self._get_grads(gpu_forward_args)
self.assertEqual(cpu_grad_input, gpu_grad_input)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
self.assertEqual(cpu_p.grad, gpu_p.grad)
cpu_grad_kwarg_input = self._get_grads(cpu_forward_kwargs)
gpu_grad_kwarg_input = self._get_grads(gpu_forward_kwargs)
self.assertEqual(cpu_grad_kwarg_input, gpu_grad_kwarg_input)
for _ in range(5):
if isinstance(cpu_outputs, torch.Tensor):
check_backward(cpu_outputs, gpu_outputs)
else:
flatten_cpu_outputs = torch.utils._pytree.tree_leaves(cpu_outputs)
flatten_gpu_outputs = torch.utils._pytree.tree_leaves(gpu_outputs)
for cpu_output, gpu_output in zip(flatten_cpu_outputs, flatten_gpu_outputs):
if cpu_output.requires_grad:
check_backward(cpu_output, gpu_output)
@with_tf32_off
@modules(module_db)
def test_memory_format(self, device, dtype, module_info, training):
is_sm86or80 = device.startswith("cuda") and (torch.cuda.get_device_capability(0) == (8, 6)
or torch.cuda.get_device_capability(0) == (8, 0))
# TODO tighten it to a specific module
atol, rtol = (3e-3, 7e-3) if is_sm86or80 else (None, None)
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
module_memformat_affects_out = module_info.module_memformat_affects_out
def _get_mem_formats(channels_last=False, channels_last_3d=False):
if channels_last:
return ([torch.contiguous_format, torch.channels_last],
[torch.preserve_format, torch.contiguous_format, torch.channels_last])
elif channels_last_3d:
return ([torch.contiguous_format, torch.channels_last_3d],
[torch.preserve_format, torch.contiguous_format, torch.channels_last_3d])
else:
return ([torch.contiguous_format],
[torch.preserve_format, torch.contiguous_format])
# Check that at least one Tensor input has dim == n
def _check_dims(obj, n):
if isinstance(obj, torch.Tensor):
return obj.dim() == n
elif isinstance(obj, (tuple, list)):
return any(_check_dims(o, n) for o in obj)
else:
return False
# Called after _check_dims, when we know that >= 1 tensor can be converted to mem_format
def _to_mem_format(mem_format, obj):
def inner_to_mem_format(obj):
d = obj.dim()
if ((mem_format == torch.channels_last and d != 4)
or (mem_format == torch.channels_last_3d and d != 5)):
return obj.clone().detach().requires_grad_(obj.requires_grad)
return obj.clone().to(memory_format=mem_format).detach().requires_grad_(obj.requires_grad)
return self._traverse_obj(obj, inner_to_mem_format)
def _check_out_mem_format(output, input_mem_format, module_mem_format):
def inner_check_out_mem_format(output):
d = output.dim()
if (d == 4 and ((input_mem_format == torch.channels_last)
or (module_mem_format == torch.channels_last and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last))
elif (d == 5 and ((input_mem_format == torch.channels_last_3d)
or (module_mem_format == torch.channels_last_3d and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last_3d))
else:
self.assertTrue(output.is_contiguous())
return self._traverse_obj(output, inner_check_out_mem_format)
def _req_grad(t):
return isinstance(t, torch.Tensor) and t.requires_grad
for module_input in module_inputs:
if module_input.forward_input is None:
continue
supports_channels_last = _check_dims(module_input.forward_input.args, 4)
supports_channels_last_3d = _check_dims(module_input.forward_input.args, 5)
input_mem_formats, module_mem_formats = _get_mem_formats(supports_channels_last, supports_channels_last_3d)
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Get output in (contiguous, contiguous) configuration. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
desired_outputs = m(*args, **kwargs)
# === Do backward pass. ===
ref_diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(desired_outputs) if _req_grad(t))
if training and len(ref_diff_outputs) > 0:
params = tuple(p for p in m.parameters())
ref_diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
ref_grad_outputs = tuple(
torch.rand_like(t)
for t in ref_diff_outputs
)
ref_grad_inputs = torch.autograd.grad(
ref_diff_outputs,
ref_diff_inputs,
grad_outputs=ref_grad_outputs,
)
for input_mem_format in input_mem_formats:
# === Change memformat of input. ===
d_args = _to_mem_format(input_mem_format, module_input.forward_input.args)
d_kwargs = _to_mem_format(input_mem_format, module_input.forward_input.kwargs)
# See https://github.com/pytorch/pytorch/issues/107861
# When inductor tests are turned on, the setting of requires_grad will be lost
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_args),
torch.utils._pytree.tree_leaves(module_input.forward_input.args),
):
t1.requires_grad_(t2.requires_grad)
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_kwargs),
torch.utils._pytree.tree_leaves(module_input.forward_input.kwargs),
):
t1.requires_grad_(t2.requires_grad)
module_input.forward_input.args = d_args
module_input.forward_input.kwargs = d_kwargs
for module_mem_format in module_mem_formats:
# === Change memformat of module ===
m.to(memory_format=module_mem_format)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to (contiguous, contiguous) output. ===
if input_mem_format != torch.contiguous_format or module_mem_format != torch.contiguous_format:
self.assertEqual(outputs, desired_outputs, rtol=rtol, atol=atol)
# === Check mem format of output. ===
_check_out_mem_format(outputs, input_mem_format, module_mem_format)
# === Do backward pass. ===
diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(outputs) if _req_grad(t))
if training and len(diff_outputs) > 0:
params = tuple(p for p in m.parameters())
diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
grad_outputs = tuple(
torch.empty_like(t1).copy_(t2)
for (t1, t2) in zip(diff_outputs, ref_grad_outputs)
)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs=grad_outputs,
)
if (
input_mem_format != torch.contiguous_format
or module_mem_format != torch.contiguous_format
):
self.assertEqual(
grad_inputs, ref_grad_inputs, rtol=rtol, atol=atol
)
# === Check mem format of grad_inputs. ===
_check_out_mem_format(grad_inputs, input_mem_format, module_mem_format)
# Test whether train and eval modes differ for each module. Use to verify
# that the ModuleInfo entry flag is correct.
@modules(module_db, train_eval_mode=TrainEvalMode.train_only)
def test_if_train_and_eval_modes_differ(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
# Run forward inputs through to see if the training flag is accessed during forward.
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Remove training attribute and see if forward still works.
delattr(m, 'training')
# === Do forward pass. ===
try:
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m(*args, **kwargs)
except AttributeError as e:
if "'training'" in str(e):
self.assertTrue(module_info.train_and_eval_differ,
f"The ModuleInfo entry for {module_info.name} has "
"train_and_eval_differ=False, but the training mode was found to "
"affect the forward pass. Consider setting train_and_eval_differ=True "
"for this ModuleInfo entry.")
else:
raise e
@onlyCPU
@modules(module_db)
def test_device_ctx_init(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
with torch.device('meta'):
module_inputs_meta = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
for module_input, module_input_meta in zip(module_inputs, module_inputs_meta):
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
c_args_meta, c_kwargs_meta = module_input_meta.constructor_input.args, module_input_meta.constructor_input.kwargs
m_cpu = module_cls(*c_args, **c_kwargs)
with torch.device('meta'):
m = module_cls(*c_args_meta, **c_kwargs_meta)
for (p_meta, p_cpu) in chain(zip(m.parameters(), m_cpu.parameters()),
zip(m.buffers(), m_cpu.buffers())):
if torch.nn.parameter.is_lazy(p_meta):
continue
self.assertTrue(p_meta.is_meta)
assert_metadata_eq(self.assertEqual, p_meta, p_cpu)
@modules([module for module in module_db if module.module_error_inputs_func is not None])
def test_errors(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
error_inputs = module_info.module_error_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for error_input in error_inputs:
module_input = error_input.module_error_input
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
if error_input.error_on == ModuleErrorEnum.CONSTRUCTION_ERROR:
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m = module_cls(*c_args, **c_kwargs)
elif error_input.error_on == ModuleErrorEnum.FORWARD_ERROR:
m = module_cls(*c_args, **c_kwargs)
fw_args, fw_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m(*fw_args, **fw_kwargs)
else:
raise NotImplementedError(f"Unknown error type {error_input.error_on}")
# Only run this test for float32 because the test loops over all the dtypes
@modules([module for module in module_db if not module.is_lazy], allowed_dtypes=[torch.float32])
@parametrize('swap', [True, False])
@parametrize('set_grad', [True, False])
@wrapSwapTensorsTest()
def test_to(self, device, dtype, module_info, training, swap, set_grad):
module_cls = module_info.module_cls
devices = ['cpu']
if torch.cuda.is_available():
devices += ['cuda']
dtypes = module_info.dtypes
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m = module_cls(*c_args, **c_kwargs)
# Avoid using `module.to()` when constructing module since that is the method we are testing
def _to(m, set_grad=False):
for c in m.children():
_to(c, set_grad=set_grad)
for n, p in m.named_parameters(recurse=False):
new_p = torch.nn.Parameter(p.detach().clone().to(device, dtype))
setattr(m, n, new_p)
if set_grad:
new_p.grad = torch.randn_like(new_p)
for n, b in m.named_buffers(recurse=False):
new_b = b.detach().clone().to(device, dtype)
setattr(m, n, new_b)
_to(m, set_grad=set_grad)
# Check .to() can be run after forward and backward with swap
has_params = len(list(m.parameters())) > 0
if swap and not set_grad and has_params:
out = m(*args, **kwargs)
if isinstance(out, tuple):
out = out[0]
out.sum().backward()
m.to(dtype=torch.half)
# reset
m.to(dtype=torch.float32)
prev_device, prev_dtype = device, dtype
for device_, dtype_ in product(devices, dtypes):
# if device/dtype do not change, grad.to(device, dtype) is a no-op so
# swapping will not change ._cdata
# parameters will be wrapped in an nn.Parameter before swapping
# which will cause the ._cdata to change
g_no_swap = device_ == prev_device and dtype_ == prev_dtype
prev_prev_device, prev_prev_dtype = prev_device, prev_dtype
prev_device, prev_dtype = device_, dtype_
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
if set_grad:
g_ids_before = [id(p.grad) for p in m.parameters()]
g_cdatas_before = [p.grad._cdata for p in m.parameters()]
m.to(device=device_, dtype=dtype_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype_ for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if set_grad:
self.assertTrue(all(p.grad.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.grad.dtype == dtype_ for p in m.parameters()))
g_ids_after = [id(p.grad) for p in m.parameters()]
g_cdatas_after = [p.grad._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
if set_grad:
self.assertTrue(
all(a == b if g_no_swap else a != b for a, b in zip(g_cdatas_before, g_cdatas_after)))
else:
# id and _cdata remain the same --> .data setting
self.assertTrue(all(a == b for a, b in zip(p_cdatas_before, p_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
if set_grad:
self.assertTrue(all(a == b for a, b in zip(g_cdatas_before, g_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(g_ids_before, g_ids_after)))
@modules([module for module in module_db if not module.is_lazy], allowed_dtypes=[torch.float32])
@parametrize('swap', [True, False])
@wrapSwapTensorsTest()
def test_to_empty(self, device, dtype, module_info, swap, training):
module_cls = module_info.module_cls
with torch.device("meta"):
module_inputs = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
device_ = torch.device(device)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with torch.device("meta"):
m = module_cls(*c_args, **c_kwargs)
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
m.to_empty(device=device_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
else:
# id and ._cdata differ
# meta and device have different shallow copy types, so this will create a new
# parameter and assign it to the module
self.assertTrue(all(a != b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
instantiate_device_type_tests(TestModule, globals(), allow_mps=True)
if __name__ == '__main__':
run_tests()