| # Owner(s): ["module: mps"] |
| |
| import io |
| import platform |
| import sys |
| import math |
| import random |
| import unittest |
| import warnings |
| import subprocess |
| import tempfile |
| import os |
| import copy |
| import gc |
| import threading |
| import torch |
| import torch.nn as nn |
| import torch.nn.functional as F |
| import itertools |
| from collections import defaultdict |
| from torch import inf |
| from torch.nn import Buffer, Parameter |
| from torch.testing._internal import opinfo |
| from torch.testing._internal.common_utils import \ |
| (gradcheck, gradgradcheck, parametrize, run_tests, TestCase, download_file, IS_CI, |
| NoTest, skipIfSlowGradcheckEnv, suppress_warnings, serialTest, instantiate_parametrized_tests) |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_dtype import get_all_dtypes, integral_types |
| import torch.backends.mps |
| from torch.distributions import Uniform, Exponential |
| from functools import partial |
| |
| from torch.testing._internal.common_methods_invocations import ( |
| op_db, |
| DecorateInfo, |
| UnaryUfuncInfo, |
| ReductionOpInfo, |
| SpectralFuncInfo, |
| BinaryUfuncInfo, |
| ) |
| from torch.testing._internal.common_device_type import ops, dtypes, instantiate_device_type_tests, OpDTypes |
| from torch.testing._internal.common_nn import NNTestCase |
| from torch.testing._internal.common_quantization import _group_quantize_tensor, _dynamically_quantize_per_channel |
| import numpy as np |
| import torch |
| import torch.utils._pytree as pytree |
| from itertools import product |
| import operator |
| |
| test_consistency_op_db = copy.deepcopy(op_db) |
| test_error_inputs_op_db = copy.deepcopy(op_db) |
| |
| # Copied from `test_ops.py` for the purposes of duplicating `test_numpy_ref` |
| _ref_test_ops = tuple( |
| filter( |
| lambda op: not isinstance( |
| op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo) |
| ) |
| and op.ref is not None, |
| op_db, |
| ) |
| ) |
| |
| def xfailIf(condition): |
| def wrapper(func): |
| if condition: |
| return unittest.expectedFailure(func) |
| else: |
| return func |
| return wrapper |
| |
| def xfailIfMacOS14_4Plus(func): |
| return unittest.expectedFailure(func) if product_version > 14.3 else func # noqa: F821 |
| |
| def mps_ops_grad_modifier(ops): |
| XFAILLIST_GRAD = { |
| |
| # precision issues |
| 'special.polygammaspecial_polygamma_n_0': [torch.float16], |
| 'polygammapolygamma_n_0': [torch.float16], |
| 'nn.functional.binary_cross_entropy': [torch.float16], |
| |
| # Unimplemented ops |
| '__getitem__': [torch.float16], |
| '_segment_reduce': [torch.float16, torch.float32], |
| '_chunk_cat': [torch.float16, torch.float32], |
| 'unfold_copy': [torch.float16, torch.float32], # unfold_backward is not implemented |
| 'unfold': [torch.float16, torch.float32], |
| 'sparse.mmreduce': [torch.float32], # csr not supported |
| 'unique_consecutive': [torch.float16, torch.float32], |
| 'special_modified_bessel_i0': [torch.float16, torch.float32], |
| 'scalar_tensor': [torch.float16, torch.float32], |
| 'cdist': [torch.float32], |
| 'masked.scatter': [torch.float16, torch.float32], |
| 'index_fill': [torch.float16, torch.float32], # missing `aten::_unique`. |
| 'linalg.lu_factor': [torch.float16, torch.float32], # missing `aten::lu_unpack`. |
| 'aminmax': [torch.float32, torch.float16], |
| |
| # Correctness issues |
| 'atanh': [torch.float32], |
| |
| # Random output |
| 'exponential': [torch.float16, torch.float32], |
| |
| # CPU errors |
| # derivative for aten::nextafter is not implemented on CPU |
| 'nextafter': None, |
| # derivative for aten::floor_divide is not implemented on CPU |
| 'floor_divide': [torch.float16, torch.float32], |
| # derivative for aten::narrow_copy is not implemented on CPU |
| 'narrow_copy': [torch.float16, torch.float32], |
| # derivative for aten::_histogramdd_from_bin_cts is not implemented on CPU |
| 'histogramdd': [torch.float16, torch.float32], |
| # derivative for aten::histogram is not implemented |
| 'histogram': [torch.float16, torch.float32], |
| # 'bool' object is not iterable |
| 'allclose': [torch.float16, torch.float32], |
| 'equal': [torch.float16, torch.float32], |
| # 'float' object is not iterable |
| 'item': [torch.float16, torch.float32], |
| # "mse_backward_cpu_out" not implemented for 'Half' |
| 'nn.functional.mse_loss': [torch.float16], |
| # "smooth_l1_backward_cpu_out" not implemented for 'Half' |
| 'nn.functional.smooth_l1_loss': [torch.float16], |
| # cpu error: grad requires non-empty inputs |
| 'randn': [torch.float16, torch.float32], |
| 'signal.windows.bartlett': [torch.float32], |
| 'signal.windows.blackman': [torch.float32], |
| 'signal.windows.cosine': [torch.float32], |
| 'signal.windows.exponential': [torch.float32], |
| 'signal.windows.gaussian': [torch.float32], |
| 'signal.windows.general_cosine': [torch.float32], |
| 'signal.windows.general_hamming': [torch.float32], |
| 'signal.windows.hamming': [torch.float32], |
| 'signal.windows.hann': [torch.float32], |
| 'signal.windows.kaiser': [torch.float32], |
| 'signal.windows.nuttall': [torch.float32], |
| 'eye': [torch.float16, torch.float32], |
| |
| # trunc_tensor not working properly for float16 |
| 'divtrunc_rounding': [torch.float16], |
| 'fmod': [torch.float16], |
| |
| # round not working properly for float16 |
| 'round': [torch.float16], |
| |
| # atomic operation in backward pass |
| '_unsafe_masked_index': [torch.float16], |
| '_unsafe_masked_index_put_accumulate': [torch.float16], |
| } |
| |
| MACOS_12_3_XFAILLIST_GRAD = { |
| # Unsupported Border padding mode, forward pass success as fallback to cpu |
| 'grid_sampler_2d': [torch.float32], |
| # Unimplemented |
| 'logaddexp2': [torch.float32], |
| |
| } |
| |
| MACOS_BEFORE_13_3_XFAILLIST_GRAD = { |
| # Failures due to precision issues (due to fast-math). These has been fixed in MacOS 13.3+ |
| 'masked.softmin': [torch.float32, torch.float16], |
| 'masked.softmax': [torch.float32, torch.float16], |
| 'masked.log_softmax': [torch.float32, torch.float16], |
| |
| # Unsupported Border padding mode, forward pass success as fallback to cpu |
| 'grid_sampler_2d': [torch.float32], |
| |
| # Same issue as `argsort` and `sort` with duplicate elements (undefined behaviour). |
| # Forward pass is passing since `msort` doesn't return the indices, just the values, which match the CPU. |
| # On the backward pass for `sort` both are used (values and indices), thus resulting in a issmatch between CPU and MPS. |
| # Running `msort` with stable `sort` passes. |
| 'msort': [torch.float16], |
| } |
| |
| SKIPLIST_GRAD = { |
| 'nn.functional.pairwise_distance': [torch.float16], |
| # failed assertion `destination datatype must be fp32' |
| 'nn.functional.conv1d': [torch.float16], |
| 'nn.functional.conv2d': [torch.float16], |
| 'nn.functional.conv3d': [torch.float16], |
| 'nn.functional.conv_transpose1d': [torch.float16], |
| 'nn.functional.conv_transpose2d': [torch.float16], |
| 'nn.functional.conv_transpose3d': [torch.float16], |
| } |
| |
| MACOS_13_3_XFAILLIST_GRAD = { |
| # Same issue as `argsort` and `sort` with duplicate elements (undefined behaviour). |
| # Forward pass is passing since `msort` doesn't return the indices, just the values, which match the CPU. |
| # On the backward pass for `sort` both are used (values and indices), thus resulting in a issmatch between CPU and MPS. |
| # Running `msort` with stable `sort` passes. |
| 'msort': [torch.float16], |
| } |
| |
| ON_MPS_XFAILLIST = { |
| # Failures due to lack of implementation of downstream functions on MPS backend |
| # TODO: remove these once downstream function 'aten::_linalg_svd.U' have been implemented |
| 'linalg.matrix_rank': None, |
| |
| # Exception: Caused by sample input at index 3 on MPS |
| 'nn.functional.conv3d': [torch.float32], |
| } |
| |
| def addDecorator(op, d) -> None: |
| op.decorators = list(op.decorators) if op.decorators is not None else [] |
| op.decorators.append(d) |
| |
| for op in ops: |
| key = op.name + op.variant_test_name |
| if key in XFAILLIST_GRAD: |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=XFAILLIST_GRAD[key])) |
| |
| if key in SKIPLIST_GRAD: |
| addDecorator(op, DecorateInfo( |
| unittest.skip, |
| dtypes=SKIPLIST_GRAD[key])) |
| |
| if key in ON_MPS_XFAILLIST: |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=ON_MPS_XFAILLIST[key])) |
| |
| if key in MACOS_12_3_XFAILLIST_GRAD and (not torch.backends.mps.is_macos13_or_newer()): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_12_3_XFAILLIST_GRAD[key])) |
| |
| if key in MACOS_BEFORE_13_3_XFAILLIST_GRAD and (torch.backends.mps.is_macos13_or_newer() and product_version < 13.3): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_BEFORE_13_3_XFAILLIST_GRAD[key])) |
| |
| if key in MACOS_13_3_XFAILLIST_GRAD and (product_version >= 13.3): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_13_3_XFAILLIST_GRAD[key])) |
| yield op |
| |
| def mps_ops_modifier(ops): |
| # Supported complex OPS |
| SUPPORTED_COMPLEX_OPS = { |
| '__radd__', |
| '__rmul__', |
| '__getitem__', |
| 'abs', |
| 'add', |
| 'alias_copy', |
| 'argwhere', |
| 'atleast_1d', |
| 'atleast_2d', |
| 'atleast_3d', |
| 'as_strided', |
| 'as_strided_copy', |
| 'as_strided_scatter', |
| 'broadcast_tensors', |
| 'broadcast_to', |
| 'chalf', |
| 'cfloat', |
| 'chunk', |
| 'clone', |
| 'conj', |
| 'conj_physical', |
| 'contiguous', |
| 'diag', |
| 'diag_embed', |
| 'diagflat', |
| 'diagonal', |
| 'diagonal_copy', |
| 'diagonal_scatter', |
| 'dsplit', |
| 'empty', |
| 'empty_permuted', |
| 'empty_strided', |
| 'eye', |
| 'exp', |
| 'expand', |
| 'expand_as', |
| 'expand_copy', |
| 'flatten', |
| 'fill', |
| 'full', |
| 'H', |
| 'hsplit', |
| 'imag', |
| 'index_select', |
| 'isfinite', |
| 'isinf', |
| 'isreal', |
| 'item', |
| 'kron', |
| 'linalg.diagonal', |
| 'linalg.svd', |
| 'linspace', |
| 'logspace', |
| 'linspacetensor_overload', |
| 'logspacetensor_overload', |
| 'mH', |
| 'mT', |
| 'masked_scatter', |
| 'masked_select', |
| 'meshgridlist_of_tensors', |
| 'meshgridvariadic_tensors', |
| 'movedim', |
| 'mul', |
| 'narrow', |
| 'narrow_copy', |
| 'nn.functional.conv1d', |
| 'nn.functional.conv2d', |
| 'nn.functional.conv_transpose1d', |
| 'nn.functional.conv_transpose2d', |
| 'nn.functional.feature_alpha_dropoutwithout_train', |
| 'nn.functional.padcircular', |
| 'nn.functional.tanhshrink', |
| 'nn.functional.unfold', |
| 'nonzero', |
| 'ones', |
| 'outer', |
| 'permute', |
| 'positive', |
| 'randn', |
| 'ravel', |
| 'real', |
| 'repeat_interleave', |
| 'reshape_as', |
| 'reshape', |
| 'resolve_conj', |
| 'resolve_neg', |
| 'scalar_tensor', |
| 'select', |
| 'sgn', |
| 'slice', |
| 'split', |
| 'split_with_sizes', |
| 'split_with_sizes_copy', |
| 'splitlist_args', |
| 'squeeze', |
| 'squeezemultiple', |
| 'sub', |
| 'svd', |
| 't', |
| 't_copy', |
| 'tanh', |
| 'tensor_split', |
| 'transpose', |
| 'T', |
| 'unbind', |
| 'unflatten', |
| 'unfold', |
| 'unfold_copy', |
| 'unsafe_chunk', |
| 'unsafe_split', |
| 'unsqueeze', |
| 'unsqueeze_copy', |
| 'view_as', |
| 'view_as_real', |
| 'view', |
| 'view_copy', |
| 'vsplit', |
| 'zero_', |
| 'zeros', |
| } |
| |
| AFTER_MACOS_14_0_SUPPORTED_COMPLEX_OPS = { |
| '__rdiv__', |
| '__rmatmul__', |
| '_chunk_cat', |
| '_unsafe_masked_index', |
| 'acos', |
| 'acosh', |
| 'all', |
| 'allclose', |
| 'any', |
| 'addcdiv', |
| 'addcmul', |
| 'addmmdecomposed', |
| 'addmv', |
| 'asin', |
| 'atan', |
| 'atanh', |
| 'bfloat16', |
| 'bmm', |
| 'bool', |
| 'cartesian_prod', |
| 'cat', |
| 'char', |
| 'column_stack', |
| 'combinations', |
| 'corrcoef', |
| 'constant_pad_nd', |
| 'cos', |
| 'cosh', |
| 'count_nonzero', |
| 'diff', |
| 'div', |
| 'divno_rounding_mode', |
| 'dot', |
| 'dstack', |
| 'einsum', |
| 'eq', |
| 'equal', |
| 'exp2', |
| 'expm1', |
| 'fft.fft', |
| 'fft.fft2', |
| 'fft.fftn', |
| 'fft.fftshift', |
| 'fft.ifft', |
| 'fft.ifft2', |
| 'fft.ifftn', |
| 'fft.ifftshift', |
| 'fft.irfftn', |
| 'fft.irfft2', |
| 'fft.irfft', |
| 'fft.hfftn', |
| 'fft.hfft2', |
| 'fft.hfft', |
| 'flip', |
| 'fliplr', |
| 'flipud', |
| 'float', |
| 'gradient', |
| 'half', |
| 'hstack', |
| 'inner', |
| 'int', |
| 'isclose', |
| 'isnan', |
| 'ldexp', |
| 'linalg.multi_dot', |
| 'linalg.pinv', |
| 'log10', |
| 'log1p', |
| 'log2', |
| 'log', |
| 'logical_and', |
| 'logical_not', |
| 'logical_or', |
| 'logical_xor', |
| 'logsumexp', |
| 'long', |
| 'masked_fill', |
| 'masked.mean', |
| 'masked.prod', |
| 'masked.std', |
| 'masked.sum', |
| 'masked.var', |
| 'masked.logsumexp', |
| 'matmul', |
| 'mean', |
| 'mm', |
| 'mv', |
| 'ne', |
| 'neg', |
| 'nn.functional.padconstant', |
| 'nn.functional.padreflect', |
| 'nn.functional.padreplicate', |
| 'nn.functional.pixel_shuffle', |
| 'nn.functional.pixel_unshuffle', |
| 'nn.functional.rms_norm', |
| 'nn.functional.softsign', |
| 'pinverse', |
| 'prod', |
| 'reciprocal', |
| 'roll', |
| 'rot90', |
| 'rsqrt', |
| 'short', |
| 'sigmoid', |
| 'sin', |
| 'sinh', |
| 'sqrt', |
| 'square', |
| 'stack', |
| 'stft', |
| 'sum', |
| 'sum_to_size', |
| 'tan', |
| 'tensordot', |
| 'trace', |
| 'trapz', |
| 'trapezoid', |
| 'tril', |
| 'triu', |
| 'true_divide', |
| 'vstack', |
| 'where', |
| 'byte', |
| } |
| # Those ops worked on MacOS12, but broken on MacOS13, see https://github.com/pytorch/pytorch/issues/85758 |
| MACOS_12_3_XFAILLIST = { |
| # Top 60 |
| # expected failures |
| # The result of pow(9 , 8) is showing 43046716, whereas it should've been 43046721. |
| # fixed in macOS 13.3. Currently error is not raised. |
| 'pow': [torch.int16, torch.int64, torch.uint8, torch.int8], |
| # expected failures |
| '__rpow__': [torch.uint8, torch.int8], |
| |
| # Failures due to precision issues (due to fast-math). These has been fixed in MacOS 13.3+ |
| 'cdist': [torch.float32], |
| 'tan': [torch.uint8, torch.float32], |
| |
| # Data type support starts from macOS 13 |
| 'nn.functional.avg_pool1d': [torch.int64], |
| 'nn.functional.avg_pool2d': [torch.int64], |
| 'nn.functional.local_response_norm': [torch.int64], |
| '__radd__': [torch.uint8], |
| '__rdiv__': [torch.uint8], |
| '__rmul__': [torch.uint8], |
| 'abs': [torch.uint8], |
| 'acos': [torch.uint8], |
| 'acosh': [torch.uint8], |
| 'add': [torch.uint8], |
| 'asin': [torch.uint8], |
| 'asinh': [torch.uint8], |
| 'atan': [torch.uint8], |
| 'atanh': [torch.uint8], |
| 'ceil': [torch.uint8], |
| 'corrcoef': [torch.uint8], |
| 'cos': [torch.uint8], |
| 'cosh': [torch.uint8], |
| 'cov': [torch.uint8], |
| 'cumulative_trapezoid': [torch.uint8], |
| 'deg2rad': [torch.uint8], |
| 'diff': [torch.uint8], |
| 'eq': [torch.uint8], |
| 'equal': [torch.uint8], |
| 'erf': [torch.uint8], |
| 'exp2': [torch.uint8], |
| 'exp': [torch.uint8], |
| 'expm1': [torch.uint8], |
| 'floor': [torch.uint8], |
| 'fmax': [torch.uint8], |
| 'fmin': [torch.uint8], |
| 'fmod': [torch.uint8], |
| 'ge': [torch.uint8], |
| 'gt': [torch.uint8], |
| 'isclose': [torch.uint8], |
| 'isnan': [torch.uint8], |
| 'kron': [torch.uint8], |
| 'le': [torch.uint8], |
| 'log10': [torch.uint8], |
| 'log1p': [torch.uint8], |
| 'log2': [torch.uint8], |
| 'log': [torch.uint8], |
| 'logical_and': [torch.uint8], |
| 'logical_or': [torch.uint8], |
| 'logical_xor': [torch.uint8], |
| 'logit': [torch.uint8], |
| 'lt': [torch.uint8], |
| 'masked.mean': [torch.uint8], |
| 'masked.std': [torch.uint8], |
| 'masked.var': [torch.uint8], |
| 'maximum': [torch.uint8], |
| 'minimum': [torch.uint8], |
| 'mul': [torch.uint8], |
| 'ne': [torch.uint8], |
| 'neg': [torch.uint8], |
| 'nn.functional.cosine_embedding_loss': [torch.uint8], |
| 'nn.functional.margin_ranking_loss': [torch.uint8], |
| 'nn.functional.poisson_nll_loss': [torch.uint8], |
| 'nn.functional.softsign': [torch.uint8], |
| 'nn.functional.tanhshrink': [torch.uint8], |
| 'nn.functional.triplet_margin_loss': [torch.uint8], |
| 'nn.functional.triplet_margin_with_distance_loss': [torch.uint8], |
| 'nn.functional.pairwise_distance': [torch.uint8], |
| 'outer': [torch.uint8], |
| 'rad2deg': [torch.uint8], |
| 'reciprocal': [torch.uint8], |
| 'remainder': [torch.uint8], |
| 'round': [torch.uint8], |
| 'rsqrt': [torch.uint8], |
| 'sigmoid': [torch.uint8], |
| 'sign': [torch.uint8], |
| 'signbit': [torch.uint8], |
| 'sin': [torch.uint8], |
| 'sinh': [torch.uint8], |
| 'special.ndtr': [torch.uint8], |
| 'sqrt': [torch.uint8], |
| 'sub': [torch.uint8], |
| 'trapezoid': [torch.uint8], |
| 'trapz': [torch.uint8], |
| 'true_divide': [torch.uint8], |
| 'trunc': [torch.uint8], |
| 'xlogy': [torch.uint8], |
| 'minbinary': [torch.uint8], |
| 'maxbinary': [torch.uint8], |
| 'divtrunc_rounding': [torch.uint8], |
| 'divfloor_rounding': [torch.uint8], |
| 'divno_rounding_mode': [torch.uint8], |
| 'floor_divide': [torch.uint8], |
| 'ldexp': [torch.uint8], |
| # square internally calls into power, and will type cast to int64, which supports starting from macOS 13 |
| 'square': [torch.bool, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| |
| # cpu not giving nan for x/0.0 |
| 'atan2': [torch.bool, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| |
| # inconsistency errors between cpu and mps, max seen atol is 2 |
| 'nn.functional.interpolatebilinear': [torch.uint8], |
| } |
| |
| MACOS_BEFORE_13_3_XFAILLIST = { |
| # Failures due to precision issues (due to fast-math). These has been fixed in MacOS 13.3+ |
| 'tan': [torch.float32], |
| 'cdist': [torch.float32], |
| |
| # CPU Error: cpu not giving nan for x/0.0 |
| 'atan2': [torch.bool, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| |
| # test blow pass on macOS 12 as it falls back to cpu |
| # Argsort case using duplicate indices (undefined behaviour): |
| # - CPU output: tensor([2546, 6917, 3181, ..., 7128, 5133, 30], devuce='cpu') |
| # - MPS output: tensor([2546, 6917, 3181, ..., 7128, 30, 5133], device='mps:0') |
| # Elements from index 30 and 5133 are both equal. |
| # Since CPU is not using argsort with stable=True, these cases result in undefined behaviour. |
| 'argsort': [torch.float16, torch.int8, torch.uint8, torch.bool], |
| # Same issue as `argsort` with duplicate indices. This test checks both the sorted values and the indices. |
| # The values of the sorted tensor match the CPU, but in case of the returned indices this results in undefined behaviour. |
| 'sort': [torch.int8, torch.uint8, torch.bool, torch.float16], |
| # Unsupported dtypes |
| 'cumsum': [torch.int64], |
| 'cumprod': [torch.int64], |
| 'cumulative_trapezoid': [torch.int64], |
| 'masked.cumsum': [torch.int64], |
| 'masked.cumprod': [torch.int64], |
| 'linalg.vander': [torch.int64], |
| } |
| |
| MACOS_AFTER_13_1_XFAILLIST = { |
| # before macOS 13.2 it falls back to cpu and pass the forward pass |
| 'grid_sampler_2d': [torch.float32], # Unsupported Border padding mode |
| # inconsistency errors between cpu and mps, max seen atol is 2 |
| 'nn.functional.interpolatebilinear': [torch.uint8], |
| } |
| |
| MACOS_13_3_XFAILLIST = { |
| # Failure due to precision issue for fp16 |
| # on both cpu and mps there are test cases that might produce inf result |
| # 'nn.functional.pairwise_distance': [torch.float16], |
| |
| # test blow pass on macOS 12 as it falls back to cpu |
| # Argsort case using duplicate indices (undefined behaviour): |
| # - CPU output: tensor([2546, 6917, 3181, ..., 7128, 5133, 30], devuce='cpu') |
| # - MPS output: tensor([2546, 6917, 3181, ..., 7128, 30, 5133], device='mps:0') |
| # Elements from index 30 and 5133 are both equal. |
| # Since CPU is not using argsort with stable=True, these cases result in undefined behaviour. |
| 'argsort': [torch.float16, torch.int8, torch.uint8, torch.bool], |
| # Same issue as `argsort` with duplicate indices. This test checks both the sorted values and the indices. |
| # The values of the sorted tensor match the CPU, but in case of the returned indices this results in undefined behaviour. |
| 'sort': [torch.int8, torch.uint8, torch.bool, torch.float16], |
| } |
| |
| MACOS_BEFORE_14_4_XFAILLIST = { |
| # These ops work fine in 14.4 but fail in 14.2 or 13.x |
| 'fft.hfft2': [torch.complex64], |
| } |
| |
| # Those ops are not expected to work |
| UNIMPLEMENTED_XFAILLIST = { |
| # Failures due to lack of op implementation on MPS backend |
| 'login': None, |
| 'linalg.eig': None, |
| 'linalg.eigvals': None, |
| 'put': None, |
| 'nn.functional.conv_transpose3d': None, |
| 'rounddecimals_neg_3': None, |
| 'rounddecimals_3': None, |
| 'rounddecimals_0': None, |
| '__rsub__': None, |
| 'angle': None, |
| 'cauchy_': None, |
| 'cauchy': None, |
| 'cholesky': None, |
| 'cholesky_inverse': None, |
| 'cholesky_solve': None, |
| 'cummax': None, |
| 'cummin': None, |
| 'erfc': None, |
| 'frexp': None, |
| 'gcd': None, |
| 'geqrf': None, |
| 'nn.functional.grid_sample': None, # Unsupported Border padding mode |
| 'heaviside': None, |
| 'i0': None, |
| 'igamma': None, |
| 'igammac': None, |
| 'index_copy': None, |
| 'index_reduceprod': None, |
| 'index_reducemean': None, |
| 'index_reduceamax': None, |
| 'index_reduceamin': None, |
| 'isneginf': None, |
| 'isposinf': None, |
| 'kthvalue': None, |
| 'lcm': None, |
| 'linalg.cholesky': None, |
| 'linalg.cholesky_ex': None, |
| 'linalg.cond': None, |
| 'linalg.detsingular': None, |
| 'linalg.det': None, |
| 'linalg.eigh': None, |
| 'linalg.eigvalsh': None, |
| 'linalg.householder_product': None, |
| 'linalg.ldl_factor': None, |
| 'linalg.ldl_factor_ex': None, |
| 'linalg.ldl_solve': None, |
| 'linalg.lstsq': None, |
| 'linalg.lstsqgrad_oriented': None, |
| 'linalg.lu': None, |
| 'linalg.lu_factor_ex': None, |
| 'linalg.lu_solve': None, |
| 'linalg.matrix_norm': [torch.float32], |
| 'linalg.norm': [torch.float32], |
| 'linalg.normsubgradients_at_zero': [torch.float32], |
| 'linalg.qr': None, |
| 'linalg.slogdet': None, |
| 'linalg.solve': None, |
| 'linalg.solve_ex': None, |
| 'linalg.svdvals': None, |
| 'linalg.tensorsolve': None, |
| 'linalg.vecdot': None, |
| 'logcumsumexp': None, |
| 'logdet': None, |
| 'lu': None, |
| 'lu_solve': None, |
| 'lu_unpack': None, |
| 'masked.median': None, |
| 'matrix_exp': None, |
| 'mode': None, |
| 'nanmedian': None, |
| 'native_dropout_backward': None, |
| 'normnuc': None, |
| 'nn.functional.fractional_max_pool2d': None, |
| 'nn.functional.fractional_max_pool3d': None, |
| 'nn.functional.adaptive_avg_pool3d': None, |
| 'nn.functional.adaptive_max_pool3d': None, |
| 'nn.functional.interpolatearea': None, |
| 'nn.functional.interpolatebicubic': None, |
| 'nn.functional.interpolatetrilinear': None, |
| 'nn.functional.max_unpool1dgrad': None, |
| 'nn.functional.max_unpool2dgrad': None, |
| 'nn.functional.max_unpool3dgrad': None, |
| 'nn.functional.avg_pool3d': None, |
| 'nn.functional.ctc_loss': None, |
| 'nn.functional.embedding_bag': None, |
| 'nn.functional.hardshrink': None, |
| 'nn.functional.max_pool3d': None, |
| 'nn.functional.max_unpool1d': None, |
| 'nn.functional.max_unpool2d': None, |
| 'nn.functional.max_unpool3d': None, |
| 'nn.functional.multi_margin_loss': None, |
| 'nn.functional.multilabel_margin_loss': None, |
| 'nn.functional.pdist': None, |
| 'nn.functional.rrelu': None, |
| 'nn.functional.norm': None, |
| 'ormqr': None, |
| 'pca_lowrank': None, |
| 'qr': None, |
| 'rsub': None, |
| 'scatter_reduceamax': None, |
| 'scatter_reduceamin': None, |
| 'scatter_reducemin': None, |
| 'scatter_reducemean': None, |
| 'scatter_reduceprod': None, |
| 'scatter_reducesum': None, |
| 'segment_reduce': None, |
| '_segment.reduce': None, |
| 'segment.reduce': None, |
| 'segment_reduce_offsets': None, |
| '_segment_reduce_offsets': None, |
| '_segment_reduce_lengths': None, |
| '_segment_reducelengths': None, |
| '_segment_reduceoffsets': None, |
| 'sinc': None, |
| 'sparse.mm': None, |
| 'sparse.mmreduce': None, |
| 'special.airy_ai': None, |
| 'special.bessel_j0': None, |
| 'special.bessel_j1': None, |
| 'special.bessel_y0': None, |
| 'special.bessel_y1': None, |
| 'special.chebyshev_polynomial_t': None, |
| 'special.chebyshev_polynomial_u': None, |
| 'special.entr': None, |
| 'special.erfcx': None, |
| 'special.hermite_polynomial_h': None, |
| 'special.hermite_polynomial_he': None, |
| 'special.i0e': None, |
| 'special.i1': None, |
| 'special.i1e': None, |
| 'special.laguerre_polynomial_l': None, |
| 'special.log_ndtr': None, |
| 'special.modified_bessel_i0': None, |
| 'special.modified_bessel_i1': None, |
| 'special.modified_bessel_k0': None, |
| 'special.modified_bessel_k1': None, |
| 'special.ndtri': None, |
| 'special.scaled_modified_bessel_k0': None, |
| 'special.scaled_modified_bessel_k1': None, |
| 'special.spherical_bessel_j0': None, |
| 'special.xlog1py': None, |
| 'special.zeta': None, |
| 'svd_lowrank': None, |
| 'symeig': None, |
| 'take': None, |
| 'to': None, |
| 'to_sparse': None, |
| 'unique': None, |
| 'vdot': None, |
| 'segment_reduce_': None, |
| '_upsample_bilinear2d_aa': None, |
| 'geometric' : None, |
| 'geometric_': None, |
| 'log_normal_': None, |
| 'log_normal': None, |
| 'cdouble': None, |
| 'double': None, |
| 'nn.functional.softminwith_dtype': None, |
| 'log_softmaxwith_dtype': None, |
| 'softmaxwith_dtype': None, |
| 'float_power': None, |
| 'full_like': None, |
| 'linalg.matrix_rankhermitian': None, |
| 'linalg.pinvhermitian': None, |
| 'nonzero_static': None, |
| |
| # MPS: input sizes must be divisible by output sizes |
| 'nn.functional.adaptive_avg_pool1d': None, |
| 'nn.functional.adaptive_avg_pool2d': None, |
| |
| # Unsupported dtypes |
| # bmm is not supported for integral types |
| 'nn.functional.bilinear': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'ones_like': None, |
| 'zeros_like': None, |
| |
| # Convolution for integral types is not supported on MPS |
| 'nn.functional.conv1d': [torch.int64], |
| 'nn.functional.conv2d': [torch.int64], |
| 'nn.functional.conv3d': [torch.int64], |
| 'nn.functional.conv_transpose1d': [torch.int64], |
| 'nn.functional.conv_transpose2d': [torch.int64], |
| |
| # Unsupported dtypes |
| 'dot': [torch.int64], |
| 'histc': [torch.float16], |
| 'index_add': [torch.int64], |
| 'log1p': [torch.int64], |
| 'sigmoid': [torch.int64], |
| 'atan2': [torch.int64], |
| |
| # GEMM on MPS is not supported for integral types |
| 'nn.functional.linear': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| '__rmatmul__': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'addmmdecomposed': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'addbmm': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'addmm': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'addmv': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'baddbmm': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'mm': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'bmm': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'einsum': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'inner': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'linalg.multi_dot': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'matmul': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'mat': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'mv': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'tensordot': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'unravel_index': [torch.int32, torch.int64], |
| |
| # new_zeros/new_ones: Cannot convert a MPS Tensor to float64 dtype as |
| # the MPS framework doesn't support float64 |
| 'new_zeros': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'new_ones': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'new_full': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| # returned output on CPU is float64 |
| 'bincount': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| |
| # trunc_tensor not working properly for float16 |
| 'divtrunc_rounding': [torch.float16], |
| 'fmod': [torch.float16], |
| |
| # round not working properly for float16 |
| 'round': [torch.float16], |
| |
| # atomic operations not supported |
| '_unsafe_masked_index_put_accumulate': [torch.bool, torch.int8, torch.uint8, torch.float16, torch.int16, torch.int64], |
| } |
| |
| if product_version < 14.0: |
| # FFT and BFloat16 support was added in MacOS 14 |
| UNIMPLEMENTED_XFAILLIST.update({ |
| 'bfloat16': None, |
| 'fft.fft': None, |
| 'fft.fft2': None, |
| 'fft.fftn': None, |
| 'fft.hfft': None, |
| 'fft.hfft2': None, |
| 'fft.hfftn': None, |
| 'fft.ifft': None, |
| 'fft.ifft2': None, |
| 'fft.ifftn': None, |
| 'fft.ihfft': None, |
| 'fft.ihfft2': None, |
| 'fft.ihfftn': None, |
| 'fft.irfft': None, |
| 'fft.irfft2': None, |
| 'fft.irfftn': None, |
| 'fft.rfft': None, |
| 'fft.rfft2': None, |
| 'fft.rfftn': None, |
| 'stft': None, |
| # Error in TestConsistencyCPU.test_output_match_isin_cpu fails for integers, |
| # not reproducible in later OS. Added assert to op if used in < 14.0 |
| 'isin': [torch.int64, torch.int32, torch.int16, torch.uint8, torch.int8], |
| 'nn.functional.max_pool2d': [torch.uint8], |
| }) |
| |
| if product_version < 15.0: |
| UNIMPLEMENTED_XFAILLIST.update({ |
| 'quantile': None, |
| 'nanquantile': None, |
| }) |
| |
| UNDEFINED_XFAILLIST = { |
| # Top 60 operators |
| # topk fails with duplicate indices |
| 'topk': [torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| |
| # Failures due to random output that they generate using |
| # Philox engine causing mismatch with CPU results |
| 'multinomial': [torch.float16, torch.float32], # random results |
| 'uniform': [torch.float16, torch.float32], |
| 'rand_like': [torch.float16, torch.float32], |
| 'randint_like': [torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'randn_like': [torch.float16, torch.float32], |
| 'bernoulli': [torch.float16, torch.float32], |
| 'exponential': [torch.float16, torch.float32], |
| 'nn.functional.feature_alpha_dropoutwith_train': [torch.float16, torch.float32], |
| 'normal': [torch.float16, torch.float32, torch.float16, torch.float32], |
| 'normalin_place': [torch.float16, torch.float32], |
| 'normalnumber_mean': [torch.float16, torch.float32], |
| 'nn.functional.alpha_dropout': [torch.float16, torch.float32], |
| 'nn.functional.dropout': [torch.float16, torch.float32], |
| 'nn.functional.dropout2d': [torch.float16, torch.float32], |
| 'nn.functional.dropout3d': [torch.float16, torch.float32], |
| # See https://github.com/pytorch/pytorch/issues/111479 |
| 'nn.functional.multi_head_attention_forward': [torch.float32, torch.float16], |
| |
| # duplicate indices are used in the testcase - undefined behaviour |
| 'index_put': None, |
| # zero to negative integer powers are undefined |
| '__rpow__': [torch.int8, torch.int16, torch.int32, torch.int64], |
| 'resize_': [torch.float16, torch.float32], |
| 'resize_as_': [torch.float16, torch.float32], |
| |
| # CPU Errors: |
| 'addr': [torch.bool, torch.int16, torch.int32, |
| torch.int64, torch.uint8, torch.int8], # "addmv_impl_cpu" not implemented for 'Half' |
| 'as_stridedpartial_views': [torch.bool, torch.float16, torch.float32, torch.int16, |
| torch.int32, torch.int64, torch.uint8, torch.int8], # cpu result off, showing random values |
| 'as_strided_partial_views': [torch.bool, torch.float16, torch.float32, torch.int16, |
| torch.int32, torch.int64, torch.uint8, torch.int8], # cpu result off, showing random values |
| |
| # random results |
| # mps vs cpu: |
| # Mismatched elements: 40 / 96 (41.7%) |
| # Greatest absolute difference: 17.892311096191406 at index (1, 0, 2) (up to 1e-05 allowed) |
| # Greatest relative difference: inf at index (1, 0, 0) (up to 1.3e-06 allowed) |
| # cuda(2.0.0.dev20230301+cu117) vs cpu: |
| # Mismatched elements: 56 / 96 (58.3%) |
| # Greatest absolute difference: 17.892311096191406 at index (1, 0, 2) (up to 1e-05 allowed) |
| # Greatest relative difference: inf at index (1, 0, 0) (up to 1.3e-06 allowed) |
| 'nn.functional.scaled_dot_product_attention': [torch.float32, torch.float16], |
| |
| # float output for float16 input on MPS |
| 'logit': [torch.float16], |
| } |
| |
| ON_MPS_XFAILLIST = { |
| # Failures due to lack of implementation of downstream functions on MPS backend |
| # TODO: remove these once downstream function 'aten::_linalg_svd.U' have been implemented |
| 'linalg.matrix_rank': None, |
| } |
| |
| EMPTY_OPS_SKIPLIST = { |
| # Fill tensors with uninitialized data, causing mismatch with CPU. |
| # They occasionally match, thus skipping them. |
| # See https://github.com/pytorch/pytorch/issues/100175 |
| 'new_empty': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'new_empty_strided': [torch.bool, torch.float16, torch.float32, torch.int16, |
| torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'empty_strided': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| # CPU: empty is returning all 0's and there is a mismatch with MPS |
| # allocation (MacOS 13). According to |
| # https://pytorch.org/docs/2.0/generated/torch.empty.html |
| 'empty': [torch.bool, torch.float16, torch.float32, torch.int16, |
| torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'empty_like': [torch.bool, torch.float16, torch.float32, torch.int16, torch.int32, torch.int64, torch.uint8, torch.int8], |
| 'empty_permuted': [torch.bool, torch.float16, torch.float32, torch.int16, |
| torch.int32, torch.int64, torch.uint8, torch.int8], |
| } |
| |
| SKIPLIST = { |
| # Unsupported |
| # input types 'tensor<1x3x9x9xf16>' and 'tensor<1xf32>' are not broadcast compatible |
| 'nn.functional.avg_pool2d': [torch.float16], |
| |
| # This doesn't work on M1, but is partially working on M2 with the exception of torch.float16 |
| 'nn.functional.conv3d': None, |
| } |
| |
| def addDecorator(op, d) -> None: |
| op.decorators = list(op.decorators) if op.decorators is not None else [] |
| op.decorators.append(d) |
| |
| for op in ops: |
| key = op.name + op.variant_test_name |
| if key in EMPTY_OPS_SKIPLIST: |
| addDecorator(op, DecorateInfo( |
| unittest.skip("Skipping empty ops."), |
| dtypes=EMPTY_OPS_SKIPLIST[key])) |
| if key in SKIPLIST: |
| addDecorator(op, DecorateInfo(unittest.skip("Skipped!"), dtypes=SKIPLIST[key])) |
| for xfaillist in [UNIMPLEMENTED_XFAILLIST, UNDEFINED_XFAILLIST, ON_MPS_XFAILLIST]: |
| if key in xfaillist: |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=xfaillist[key])) |
| |
| if key in MACOS_BEFORE_14_4_XFAILLIST and (product_version < 14.4): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_BEFORE_14_4_XFAILLIST[key])) |
| |
| if key in MACOS_BEFORE_13_3_XFAILLIST and (torch.backends.mps.is_macos13_or_newer() and product_version < 13.3): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_BEFORE_13_3_XFAILLIST[key])) |
| |
| if key in MACOS_AFTER_13_1_XFAILLIST and torch.backends.mps.is_macos13_or_newer(2): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_AFTER_13_1_XFAILLIST[key])) |
| |
| if key in MACOS_13_3_XFAILLIST and (product_version >= 13.3): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_13_3_XFAILLIST[key])) |
| |
| if key in MACOS_12_3_XFAILLIST and (not torch.backends.mps.is_macos13_or_newer()): |
| addDecorator(op, DecorateInfo( |
| unittest.expectedFailure, |
| dtypes=MACOS_12_3_XFAILLIST[key])) |
| |
| # If ops is not supported for complex types, expect it to fail |
| if key not in SUPPORTED_COMPLEX_OPS and (key not in AFTER_MACOS_14_0_SUPPORTED_COMPLEX_OPS or product_version < 14.0): |
| addDecorator(op, DecorateInfo(unittest.expectedFailure, dtypes=[torch.complex32, torch.complex64])) |
| |
| yield op |
| |
| def mps_ops_error_inputs_modifier(ops): |
| # Error input samples do not take a dtype argument. |
| XFAILLIST = { |
| # Exceptions are not raised |
| '__rmod__', |
| '__rsub__', |
| '__rpow__', |
| 'bernoulli', |
| 'clamp_max', |
| 'clamp_min', |
| 'masked_scatter', |
| |
| # unsupported float64 dtype |
| 'cat', |
| 'complex', |
| 'multinomial', |
| 'nn.functional.conv1d', |
| 'nn.functional.conv2d', |
| 'nn.functional.conv3d', |
| 'gather', |
| 'scatter', |
| 'scatter_add', |
| |
| # unsupported complex dtypes |
| 'masked_fill', |
| |
| # MPS does not support tensor dimensions > 16 |
| 'amax', |
| 'amin', |
| 'aminmax', |
| |
| # memory overlapping checks |
| 'index_select', |
| |
| # unimplemented |
| 'logcumsumexp', |
| } |
| |
| def addDecorator(op, d) -> None: |
| op.decorators = list(op.decorators) if op.decorators is not None else [] |
| op.decorators.append(d) |
| |
| for op in ops: |
| if op.error_inputs_func is None: |
| continue |
| key = op.name + op.variant_test_name |
| if key in XFAILLIST: |
| addDecorator(op, DecorateInfo(unittest.expectedFailure)) |
| yield op |
| |
| # Same logic as test_cuda.py |
| if not torch.backends.mps.is_available(): |
| print('MPS not available, skipping tests', file=sys.stderr) |
| TestCase = NoTest # noqa: F811 |
| NNTestCase = NoTest # noqa: F811 |
| |
| product_version = float('.'.join(platform.mac_ver()[0].split('.')[:2]) or -1) |
| total_memory = int(subprocess.check_output(["sysctl", "-n", "hw.memsize"])) |
| |
| # Determine whether to enable MPS memory leak check (uses same code as CUDA). |
| TEST_MPS_MEM_LEAK_CHECK = os.getenv('PYTORCH_TEST_MPS_MEM_LEAK_CHECK', '0') == '1' |
| |
| def skipMPSMemoryLeakCheckIf(condition): |
| def dec(fn): |
| if getattr(fn, '_do_mps_memory_leak_check', True): |
| fn._do_mps_memory_leak_check = not condition |
| return fn |
| return dec |
| |
| class MpsMemoryLeakCheck: |
| def __init__(self, testcase, name=None): |
| self.name = testcase.id() if name is None else name |
| self.testcase = testcase |
| |
| def __enter__(self): |
| # Performs a gc if required (required if any memory is held) |
| caching_allocator_mem_allocated = torch.mps.current_allocated_memory() |
| if caching_allocator_mem_allocated > 0: |
| gc.collect() |
| torch.mps.empty_cache() |
| |
| # Acquires caching allocator and driver statistics before the test is run |
| self.caching_allocator_before = torch.mps.current_allocated_memory() |
| self.driver_before = torch.mps.driver_allocated_memory() |
| |
| def __exit__(self, exec_type, exec_value, traceback): |
| # Don't check for leaks if an exception was thrown |
| if exec_type is not None: |
| return |
| # Compares caching allocator before/after statistics |
| # An increase in allocated memory is a discrepancy indicating a possible memory leak |
| discrepancy_detected = False |
| caching_allocator_mem_allocated = torch.mps.current_allocated_memory() |
| if caching_allocator_mem_allocated > self.caching_allocator_before: |
| discrepancy_detected = True |
| |
| # Short-circuits if no discrepancy detected |
| if not discrepancy_detected: |
| return |
| # Validates the discrepancy persists after garbage collection and |
| # is confirmed by the driver API |
| gc.collect() |
| torch.mps.empty_cache() |
| |
| discrepancy_detected = True |
| # Query memory multiple items to ensure leak was not transient |
| for n in range(3): |
| caching_allocator_mem_allocated = torch.mps.current_allocated_memory() |
| driver_mem_allocated = torch.mps.driver_allocated_memory() |
| |
| caching_allocator_discrepancy = False |
| driver_discrepancy = False |
| |
| if caching_allocator_mem_allocated > self.caching_allocator_before: |
| caching_allocator_discrepancy = True |
| |
| if driver_mem_allocated > self.driver_before: |
| driver_discrepancy = True |
| |
| if not (caching_allocator_discrepancy or driver_discrepancy): |
| # Leak was false positive, exit loop |
| discrepancy_detected = False |
| break |
| |
| if caching_allocator_discrepancy and not driver_discrepancy: |
| # Just raises a warning if the leak is not validated by the driver API |
| msg = ("MPS caching allocator reports a memory leak not " |
| f"verified by the driver API in {self.name}! " |
| f"Caching allocator allocated memory was {self.caching_allocator_before} " |
| f"and is now reported as {caching_allocator_mem_allocated}. " |
| f"MPS driver allocated memory was {self.driver_before} and is now {driver_mem_allocated}.") |
| warnings.warn(msg) |
| elif caching_allocator_discrepancy and driver_discrepancy: |
| # A caching allocator discrepancy validated by the driver API is a failure |
| msg = (f"MPS driver API confirmed a leak in {self.name}! " |
| f"Caching allocator allocated memory was {self.caching_allocator_before} " |
| f"and is now reported as {caching_allocator_mem_allocated}. " |
| f"MPS driver allocated memory was {self.driver_before} and is now {driver_mem_allocated}.") |
| |
| raise RuntimeError(msg) |
| |
| class TestAutocastMPS(TestCase): |
| |
| def test_matmul_autocast(self): |
| autocast_tensor_A = torch.rand((8, 8), device="mps") |
| autocast_tensor_B = torch.rand((8, 8), device="mps") |
| tensor_A = autocast_tensor_A.clone().detach() |
| tensor_B = autocast_tensor_B.clone().detach() |
| autocast_output_tensor = torch.empty(8, 8) |
| output_tensor = autocast_output_tensor.clone().detach() |
| |
| with torch.autocast(device_type="mps"): |
| autocast_output_tensor = torch.mm(autocast_tensor_A, autocast_tensor_B) |
| autocast_output_tensor = torch.mm(autocast_tensor_A, autocast_output_tensor) |
| |
| output_tensor = torch.mm(tensor_A, tensor_B) |
| output_tensor = torch.mm(tensor_A, output_tensor) |
| |
| self.assertEqual(autocast_output_tensor.dtype, torch.float16, "Autocast output tensor was not expected type float16") |
| self.assertEqual(autocast_output_tensor, |
| output_tensor.to(torch.float16), |
| f"Autocast & non-autocast tensors did not match, \ |
| got:\n{autocast_output_tensor} \n{output_tensor.to(torch.float16)}") |
| |
| # Expand TestCase class with Memory Leak Detection on MPS device |
| class TestCaseMPS(TestCase): |
| _do_mps_memory_leak_check = True |
| |
| def __init__(self, method_name='runTest'): |
| super().__init__(method_name) |
| test_method = getattr(self, method_name, None) |
| if test_method is not None: |
| # Wraps the tested method if we should do MPS memory check. |
| if TEST_MPS_MEM_LEAK_CHECK: |
| if self._do_mps_memory_leak_check: |
| self.wrap_with_mps_policy(method_name, self.assertLeaksNoMpsTensors) |
| |
| def assertLeaksNoMpsTensors(self, name=None): |
| name = self.id() if name is None else name |
| return MpsMemoryLeakCheck(self, name) |
| |
| def wrap_with_mps_policy(self, method_name, policy): |
| test_method = getattr(self, method_name) |
| setattr(self, method_name, super().wrap_method_with_policy(test_method, policy)) |
| |
| # checks for leaks even if TEST_MPS_MEM_LEAK_CHECK is 0 |
| def wrap_with_mps_memory_check(self, method): |
| return super().wrap_method_with_policy(method, self.assertLeaksNoMpsTensors) |
| |
| class TestMemoryLeak(TestCaseMPS): |
| def test_mps_memory_leak_detection(self): |
| l = [] |
| |
| @self.wrap_with_mps_memory_check |
| def no_leak(): |
| pass |
| |
| # Trigger an intentional memory leak |
| @self.wrap_with_mps_memory_check |
| def leak_gpu0(): |
| # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms |
| l.append(torch.randn(1024 * 1024 * 8, device=torch.device("mps"))) |
| |
| no_leak() |
| |
| # check if a runtime error for memory leak was emitted which would |
| # confirm whether memory leak detection worked successfully or not. |
| with self.assertRaisesRegex(RuntimeError, r"MPS driver API confirmed .+"): |
| leak_gpu0() |
| |
| def test_copy_cast_no_leak(self): |
| |
| def step(x): |
| x = x.to(device='cpu', dtype=torch.float32) |
| x = x.to(device='mps', dtype=torch.float16) |
| |
| a = torch.randn(128, 128, device='mps', dtype=torch.float16) |
| # Warm up / prebuild MPS shaders (otherwise check fails on 13.2) |
| step(a) |
| torch.mps.empty_cache() |
| driver_before = torch.mps.driver_allocated_memory() |
| step(a) |
| torch.mps.empty_cache() |
| driver_after = torch.mps.driver_allocated_memory() |
| self.assertEqual(driver_before, driver_after, f"Detected {driver_after-driver_before} bytes leak of GPU memory") |
| |
| |
| class TestPixelShuffle(TestCaseMPS): |
| def test_pixel_shuffle_unshuffle(self): |
| def _test_pixel_shuffle_unshuffle_helper(num_input_dims, valid_channels_dim=True, |
| upscale_factor=None, is_contiguous=True): |
| |
| def generate_input(): |
| # If valid_channels_dim=False, add 1 to make channels dim indivisible by upscale_factor ** 2. |
| channels = random.randint(1, 4) * upscale_factor ** 2 + (0 if valid_channels_dim else 1) |
| height = random.randint(5, 10) |
| width = random.randint(5, 10) |
| |
| if num_input_dims == 1: |
| input = torch.rand(channels, requires_grad=True, device='mps') |
| assert is_contiguous |
| elif num_input_dims == 2: |
| input = torch.rand(width, height, requires_grad=True, device='mps').T |
| if is_contiguous: |
| input = input.contiguous() |
| else: |
| batch_sizes = [random.randint(1, 3) for _ in range(num_input_dims - 3)] |
| input = torch.rand(*batch_sizes, channels, width, height, requires_grad=True, device='mps') |
| input = input.transpose(-1, -2) |
| if is_contiguous: |
| input = input.contiguous() |
| |
| if not is_contiguous and len(input.reshape(-1)) > 0: |
| assert not input.is_contiguous() |
| |
| input = input.detach().clone() |
| input.requires_grad = True |
| return input |
| |
| # Function to imperatively ensure pixels are shuffled to the correct locations. |
| # Used to validate the batch operations in pixel_shuffle. |
| def _verify_pixel_shuffle(input, output, upscale_factor): |
| for c in range(output.size(-3)): |
| for h in range(output.size(-2)): |
| for w in range(output.size(-1)): |
| height_idx = h // upscale_factor |
| weight_idx = w // upscale_factor |
| channel_idx = (upscale_factor * (h % upscale_factor)) + (w % upscale_factor) + \ |
| (c * upscale_factor ** 2) |
| self.assertEqual(output[..., c, h, w], input[..., channel_idx, height_idx, weight_idx]) |
| |
| upscale_factor = random.randint(2, 5) if upscale_factor is None else upscale_factor |
| input = generate_input() |
| |
| ps = nn.PixelShuffle(upscale_factor) |
| pus = nn.PixelUnshuffle(downscale_factor=upscale_factor) |
| |
| if num_input_dims >= 3 and valid_channels_dim and upscale_factor > 0: |
| output = ps(input) |
| _verify_pixel_shuffle(input, output, upscale_factor) |
| output.backward(output.data) |
| self.assertEqual(input.data, input.grad.data) |
| |
| # Ensure unshuffle properly inverts shuffle. |
| unshuffle_output = pus(output) |
| self.assertEqual(input, unshuffle_output) |
| else: |
| self.assertRaises(RuntimeError, lambda: ps(input)) |
| |
| def _test_pixel_unshuffle_error_case_helper(num_input_dims, valid_height_dim=True, valid_width_dim=True, |
| downscale_factor=None): |
| downscale_factor = random.randint(2, 5) if downscale_factor is None else downscale_factor |
| channels = random.randint(1, 4) |
| # If valid_height_dim=False, add 1 to make height dim indivisible by downscale_factor. |
| height = random.randint(3, 5) * abs(downscale_factor) + (0 if valid_height_dim else 1) |
| # If valid_width_dim=False, add 1 to make width dim indivisible by downscale_factor. |
| width = random.randint(3, 5) * abs(downscale_factor) + (0 if valid_width_dim else 1) |
| |
| if num_input_dims == 1: |
| input = torch.rand(channels, requires_grad=True, device='mps') |
| elif num_input_dims == 2: |
| input = torch.rand(height, width, requires_grad=True, device='mps') |
| else: |
| batch_sizes = [random.randint(1, 3) for _ in range(num_input_dims - 3)] |
| input = torch.rand(*batch_sizes, channels, height, width, requires_grad=True, device='mps') |
| |
| pus = nn.PixelUnshuffle(downscale_factor) |
| self.assertRaises(RuntimeError, lambda: pus(input)) |
| |
| def _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims): |
| # For 1D - 2D, this is an error case. |
| # For 3D - 5D, this is a success case for pixel_shuffle + pixel_unshuffle. |
| is_contiguous_check = [True, False] if num_input_dims > 1 else [True] |
| for is_contiguous in is_contiguous_check: |
| _test_pixel_shuffle_unshuffle_helper( |
| num_input_dims=num_input_dims, is_contiguous=is_contiguous |
| ) |
| _test_pixel_shuffle_unshuffle_helper( |
| num_input_dims=num_input_dims, valid_channels_dim=False, is_contiguous=is_contiguous |
| ) |
| _test_pixel_shuffle_unshuffle_helper( |
| num_input_dims=num_input_dims, upscale_factor=0, is_contiguous=is_contiguous |
| ) |
| _test_pixel_shuffle_unshuffle_helper( |
| num_input_dims=num_input_dims, upscale_factor=-2, is_contiguous=is_contiguous |
| ) |
| |
| # Error cases for pixel_unshuffle. |
| _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, valid_height_dim=False) |
| _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, valid_width_dim=False) |
| _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, downscale_factor=0) |
| _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, downscale_factor=-2) |
| |
| def test_pixel_shuffle_unshuffle_1D(): |
| _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=1) |
| |
| def test_pixel_shuffle_unshuffle_2D(): |
| _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=2) |
| |
| def test_pixel_shuffle_unshuffle_3D(): |
| _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=3) |
| |
| def test_pixel_shuffle_unshuffle_4D(): |
| _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=4) |
| |
| def test_pixel_shuffle_unshuffle_5D(): |
| _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=5) |
| |
| test_pixel_shuffle_unshuffle_1D() |
| test_pixel_shuffle_unshuffle_2D() |
| test_pixel_shuffle_unshuffle_3D() |
| test_pixel_shuffle_unshuffle_4D() |
| test_pixel_shuffle_unshuffle_5D() |
| |
| class MPSReluTest(TestCaseMPS): |
| def _npRelu(self, np_features): |
| return np.maximum(np_features, np.zeros(np_features.shape)).astype(np_features.dtype) |
| |
| def testNpRelu(self): |
| torch.testing.assert_close( |
| np.array([[0., 0.7, 0.0, 0.3, 0.0], [0.1, 0.0, 0.5, 0.0, 0.9]]), |
| self._npRelu( |
| np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, |
| 0.9]]))) |
| |
| def _testRelu(self, np_features, device): |
| np_relu = self._npRelu(np_features) |
| # Convert the numpy array to a PyTorch Tensor, |
| # and move the Tensor to the CPU/GPU based on the "device" parameter |
| py_tensor = torch.from_numpy(np_features).to(device) |
| py_relu = torch.nn.ReLU(inplace=False)(py_tensor) |
| py_relu_cpu = py_relu.to("cpu") |
| |
| self.assertEqual(np_relu, py_relu_cpu) |
| |
| def _testReluInPlace(self, np_features, device): |
| np_relu = self._npRelu(np_features) |
| # Convert the numpy array to a PyTorch Tensor, |
| # and move the Tensor to the CPU/GPU based on the "device" parameter |
| py_tensor = torch.from_numpy(np_features).to(device) |
| py_relu = torch.nn.ReLU(inplace=True)(py_tensor) |
| py_relu_cpu = py_relu.to("cpu") |
| |
| self.assertEqual(np_relu, py_relu_cpu) |
| # Inplace Relu modifies the initial input and it should match the output of Relu |
| self.assertEqual(np_relu, py_tensor.to("cpu")) |
| |
| def testNumbersCPU(self): |
| for t in [np.int32]: |
| # Force execution on CPU even if a GPU kernel is available for the type. |
| self._testRelu( |
| np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| device="cpu") |
| self._testReluInPlace( |
| np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| device="cpu") |
| |
| def testNumbersGPU(self): |
| for t in [np.float16, np.float32]: |
| self._testRelu( |
| np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| device="mps") |
| self._testReluInPlace( |
| np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| device="mps") |
| self._testRelu(np.array([]).astype(t), device="mps") |
| self._testReluInPlace(np.array([]).astype(t), device="mps") |
| |
| class MatmulTest(TestCaseMPS): |
| def _helper(self, shape_tensor_1, shape_tensor_2, expand_tensor_1_shape=None, expand_tensor_2_shape=None): |
| if expand_tensor_1_shape: |
| tensor1_mps = torch.randn(shape_tensor_1, device="mps").expand(expand_tensor_1_shape) |
| else: |
| tensor1_mps = torch.randn(shape_tensor_1, device="mps") |
| |
| if expand_tensor_2_shape: |
| tensor2_mps = torch.randn(shape_tensor_2, device="mps").expand(expand_tensor_2_shape) |
| else: |
| tensor2_mps = torch.randn(shape_tensor_2, device="mps") |
| |
| tensor1_cpu = tensor1_mps.to("cpu") |
| tensor2_cpu = tensor2_mps.to("cpu") |
| |
| matmul_cpu = torch.matmul(tensor1_cpu, tensor2_cpu) |
| matmul_mps = torch.matmul(tensor1_mps, tensor2_mps) |
| |
| self.assertEqual(matmul_cpu, matmul_mps.to("cpu")) |
| |
| def test_vector_x_vector(self): |
| # uses `dot` |
| self._helper(3, 3) |
| |
| def test_matrix_x_vector(self): |
| # uses `addmv` |
| self._helper((3, 4), 4) |
| |
| def test_batched_matrix_x_broadcasted_vector(self): |
| self._helper((10, 3, 4), 4) |
| |
| def test_batched_matrix_x_batched_matrix(self): |
| # uses `bmm.out` |
| self._helper((10, 3, 4), (10, 4, 5)) |
| |
| def test_batched_matrix_x_broadcasted_matrix(self): |
| self._helper((10, 3, 4), (4, 5)) |
| |
| |
| class MPSLeakyReluTest(TestCaseMPS): |
| def _npLeakyRelu(self, np_features, negative_slope=0.1): |
| return np.maximum(np_features, negative_slope * np_features).astype(np_features.dtype) |
| |
| def testNpLeakyRelu(self): |
| torch.testing.assert_close( |
| np.array([[-0.09, 0.7, -0.05, 0.3, -0.01], |
| [0.1, -0.03, 0.5, -0.07, 0.9]]), |
| self._npLeakyRelu( |
| np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, |
| 0.9]]), |
| negative_slope=0.1)) |
| |
| def _testLeakyRelu(self, shape, dtype, negative_slope, contiguous): |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype) |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| if not contiguous and not (0 in shape or len(shape) < 2): |
| # Tranposing will make the tensor non-contiguous |
| cpu_x = cpu_x.transpose(0, 1) |
| mps_x = mps_x.transpose(0, 1) |
| assert not mps_x.is_contiguous() |
| |
| cpu_x.requires_grad_() |
| mps_x.requires_grad_() |
| |
| relu_op = torch.nn.LeakyReLU(negative_slope) |
| |
| cpu_leaky_relu = relu_op(cpu_x) |
| mps_leaky_relu = relu_op(mps_x) |
| torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) |
| |
| # test backward pass |
| |
| cpu_grad = torch.ones_like(cpu_leaky_relu) |
| mps_grad = cpu_grad.to('mps') |
| |
| mps_leaky_relu.backward(gradient=mps_grad) |
| cpu_leaky_relu.backward(gradient=cpu_grad) |
| |
| assert cpu_x.grad is not None # Check that the grad is well-populated |
| self.assertEqual(cpu_x.grad, mps_x.grad) |
| |
| def testNumbersCPU(self): |
| for t in [torch.float, torch.half]: |
| for shape in [[], (0,), (0, 3), (4,), (4, 3), (5, 4, 3)]: |
| for contiguous in [True, False]: |
| self._testLeakyRelu(shape, |
| dtype=t, |
| negative_slope=0.2, |
| contiguous=contiguous) |
| |
| class TestAvgPool(TestCaseMPS): |
| def _sum_pool2d(self, x, kernel_size): |
| windows = torch.nn.functional.unfold(x, kernel_size=kernel_size, stride=kernel_size) |
| return torch.sum(windows, dim=1) |
| |
| def _sum_pool3d(self, x, kernel_size): |
| # Because unfold does not support 3D sliding window we will split tensor to multiple tensors and calculate sum |
| h = kernel_size[0] |
| splited_x = [t.sum(0) for t in x.split(h) if t.size(0) == h] |
| # sum_pool2d assumes tensor in (1, 1, n, m) view, so unsqueeze two times |
| splited_x = [self._sum_pool2d(t.unsqueeze(0).unsqueeze(0), kernel_size[1:]) for t in splited_x] |
| joined_x = torch.cat(splited_x) |
| return joined_x.view(1, joined_x.numel()) |
| |
| def _avg_pool2d(self, x, kernel_size): |
| size = reduce(operator.mul, kernel_size) # noqa: F821 |
| return self._sum_pool2d(x, kernel_size) / size |
| |
| def _avg_pool3d(self, x, kernel_size): |
| size = reduce(operator.mul, kernel_size) # noqa: F821 |
| return self._sum_pool3d(x, kernel_size) / size |
| |
| def test_avg_pool2d_with_zero_divisor(self): |
| self.assertRaisesRegex(RuntimeError, "divisor must be not zero", |
| lambda: F.avg_pool2d(torch.zeros(3, 3, 3), (2, 2), divisor_override=0)) |
| |
| def test_doubletensor_avg_pool2d_with_divisor(self): |
| n, m = 3, 3 |
| input = torch.rand(1, 1, n, m) |
| for i in range(1, n + 1): |
| for j in range(1, m + 1): |
| for divisor in [1, 7, i * j]: |
| actual = F.avg_pool2d(input[0], (i, j), divisor_override=divisor) |
| actual = actual.view(1, actual.numel()) |
| expected = self._sum_pool2d(input, (i, j)) / divisor |
| self.assertEqual(actual, expected, rtol=0, atol=1e-5) |
| |
| def test_avg_pool2d_ceil_mode(self): |
| # Regression test for gh-36977 |
| x = 10 * torch.randn((1, 16, 4, 4)) |
| y = torch.nn.functional.avg_pool2d( |
| x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), |
| padding=(0, 1), stride=2) |
| self.assertFalse(torch.isnan(y).any()) |
| y = torch.nn.functional.avg_pool2d( |
| x.to('mps'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), |
| padding=(0, 1), stride=2) |
| self.assertFalse(torch.isnan(y).any()) |
| |
| |
| class TestMPS(TestCaseMPS): |
| def test_exp(self, device="mps", dtype=torch.float): |
| for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()): |
| b = torch.arange(18, dtype=dtype, device=device) / 3 * math.pi |
| a = torch.tensor(v, dtype=dtype, device="mps") * b |
| self.compare_with_numpy(torch.exp, np.exp, a) |
| |
| def test_conv_raises_error(self, device='mps', dtype=torch.float): |
| conv = nn.Conv1d(1, 65537, 3, padding=1).to('mps') |
| |
| x = torch.ones([1, 1, 3]) |
| with self.assertRaises(NotImplementedError): |
| y = conv(x.to("mps")) |
| |
| def test_triu_inf(self, device="mps", dtype=torch.float): |
| for diag in [-1, 0, 1]: |
| mask = torch.full((3, 6, 6), float("-inf")) |
| mask_mps = mask.clone().detach().to('mps') |
| cpu_ref = torch.triu(mask, diagonal=diag) |
| mps_out = torch.triu(mask_mps, diagonal=diag) |
| self.assertEqual(cpu_ref, mps_out) |
| |
| def test_exp1(self, device="mps", dtype=torch.float): |
| input = torch.tensor([-0.1, 1.0, -0.9, 0.1], device=device, dtype=dtype) |
| output = torch.exp(input) |
| output_cpu = torch.exp(input.cpu()) |
| # If exponentWithTensor: MPS call is used on M1 running 14.5 test will fail with |
| # Mismatched elements: 3 / 4 (75.0%) |
| # Greatest absolute difference: 1.1920928955078125e-07 at index (3,) (up to 1e-08 allowed) |
| # Greatest relative difference: 1.0786502002702036e-07 at index (3,) (up to 1e-08 allowed) |
| self.assertEqual(output, output_cpu, atol=1e-8, rtol=1e-8) |
| |
| def test_exp_strided_output(self): |
| x = torch.rand((256, 10), device='mps') |
| x_cpu = x.to("cpu") |
| |
| x = x.permute(1, 0) |
| x_cpu = x_cpu.permute(1, 0) |
| |
| res = x.exp() |
| res_cpu = x_cpu.exp() |
| self.assertEqual(res, res_cpu) |
| |
| def _testLeakyRelu(self, np_features, negative_slope, device): |
| cpu_x = torch.from_numpy(np_features).requires_grad_() |
| mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() |
| relu_op = torch.nn.LeakyReLU(negative_slope) |
| |
| cpu_leaky_relu = relu_op(cpu_x) |
| mps_leaky_relu = relu_op(mps_x) |
| torch.testing.assert_close(cpu_leaky_relu, mps_leaky_relu.to('cpu')) |
| |
| # test backward pass |
| cpu_grad = torch.ones_like(cpu_leaky_relu) |
| mps_grad = cpu_grad.to('mps') |
| cpu_leaky_relu.backward(gradient=cpu_grad) |
| mps_leaky_relu.backward(gradient=mps_grad) |
| torch.testing.assert_close(cpu_x.grad, mps_x.grad.to('cpu')) |
| |
| def testNumbersGPU(self): |
| for t in [np.float32]: |
| self._testLeakyRelu( |
| np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| negative_slope=0.1, |
| device="mps") |
| |
| def test_fill(self): |
| |
| def helper(val, shape, dtype): |
| tensor = torch.zeros(shape, device='mps', dtype=dtype) |
| tensor_mps = tensor.fill_(val) |
| |
| tensor_0 = torch.zeros(shape, device='cpu', dtype=dtype) |
| tensor_cpu = tensor_0.fill_(val) |
| |
| self.assertEqual(tensor_mps, tensor_cpu) |
| |
| helper(0, [1024], torch.float32) |
| helper(0.2, [2, 3], torch.float32) |
| helper(0.2 + 0.5j, [2, 3], torch.complex64) |
| |
| def test_fill_storage_offset(self): |
| shape = [2, 10] |
| val = 0.2 |
| tensor = torch.ones(shape, device="mps") |
| tensor_mps = tensor[:][1].fill_(val) |
| tensor_0 = torch.ones(shape, device="cpu") |
| tensor_cpu = tensor_0[:][1].fill_(val) |
| |
| self.assertEqual(tensor_mps, tensor_cpu) |
| self.assertEqual(tensor, tensor_0) |
| |
| shape = [1, 10] |
| val = 0.0 |
| tensor = torch.ones(shape, device="mps") |
| val_tensor_mps = torch.tensor(val, device="mps") |
| tensor_mps = tensor[:, 9].fill_(val_tensor_mps) |
| # Regression test for https://github.com/pytorch/pytorch/issues/114692 |
| tensor[:, 5].fill_(val_tensor_mps) |
| tensor_0 = torch.ones(shape, device="cpu") |
| val_tensor_cpu = torch.tensor(val, device="cpu") |
| tensor_cpu = tensor_0[:, 9].fill_(val_tensor_cpu) |
| tensor_0[:, 5].fill_(val_tensor_cpu) |
| |
| self.assertEqual(tensor_mps.to(device="cpu"), tensor_cpu) |
| self.assertEqual(tensor.to(device="cpu"), tensor_0) |
| |
| def test_cdist_large(self, device="mps"): |
| for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| x = torch.randn(100, 10, device=device) |
| y = torch.randn(100, 10, device=device) |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertEqual(expected, actual) |
| |
| def test_cdist_large_batch(self, device="mps"): |
| for cm in ['use_mm_for_euclid_dist_if_necessary', 'use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| x = torch.randn(4, 3, 100, 10, device=device) |
| y = torch.randn(4, 3, 100, 10, device=device) |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertEqual(expected, actual) |
| |
| def test_cdist_non_contiguous(self, device="mps"): |
| for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| x = torch.randn(5, 7, device=device).mT |
| y = torch.randn(5, 3, device=device).mT |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertFalse(x.is_contiguous()) |
| self.assertFalse(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| x = torch.randn(7, 5, device=device) |
| y = torch.randn(5, 3, device=device).t() |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertTrue(x.is_contiguous()) |
| self.assertFalse(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| x = torch.randn(5, 7, device=device).t() |
| y = torch.randn(3, 5, device=device) |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertFalse(x.is_contiguous()) |
| self.assertTrue(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| def test_cdist_non_contiguous_batch(self, device="mps"): |
| for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| x = torch.randn(4, 3, 2, 5, 7, device=device).mT |
| y = torch.randn(4, 3, 2, 5, 3, device=device).mT |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertFalse(x.is_contiguous()) |
| self.assertFalse(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| x = torch.randn(7, 2, 7, 5, device=device) |
| y = torch.randn(7, 2, 5, 3, device=device).mT |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertTrue(x.is_contiguous()) |
| self.assertFalse(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| x = torch.randn(4, 5, 7, device=device).mT |
| y = torch.randn(4, 3, 5, device=device) |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertFalse(x.is_contiguous()) |
| self.assertTrue(y.is_contiguous()) |
| self.assertEqual(expected, actual) |
| |
| def test_cdist_euclidean_large(self, device="mps"): |
| def _test_euclidean_large_cdist(sizex, sizey=None): |
| if sizey is None: |
| sizey = sizex |
| x = torch.randn(sizex, device=device, dtype=torch.float) |
| y = torch.randn(sizey, device=device, dtype=torch.float) |
| eps = 1e-6 |
| # to avoid extremum |
| x = x - (((x - y) < eps).float() * 2 * eps) |
| x.requires_grad = True |
| y.requires_grad = True |
| dist = torch.cdist(x, y, p=2) |
| # Do a backward pass to check that it is valid for large |
| # matrices |
| loss = dist.sum() |
| loss.backward() |
| |
| _test_euclidean_large_cdist((2000, 5)) |
| |
| def test_cdist_same_inputs(self, device="mps"): |
| # Test to detect issues in cdist gradient calculation |
| # When the distances are 0 |
| sizex = (1, 27, 32) |
| for p in [0, 1, 2, 3, 1.5, 2.5, float('inf')]: |
| x = torch.randn(sizex, device=device, dtype=torch.float) |
| dist_grad = torch.randn((1, 27, 27), device=device, dtype=torch.float) |
| y = x.clone() |
| eps = 1e-6 |
| x.requires_grad = True |
| d = torch.cdist(x, y) |
| d.backward(dist_grad) |
| # Check that the backward passs does not contain invalid |
| # values such as nan or inf |
| assert torch.isfinite(x.grad).all() |
| |
| |
| def _brute_cdist(self, x, y, p=2): |
| r1 = x.shape[-2] |
| r2 = y.shape[-2] |
| if r1 == 0 or r2 == 0: |
| return torch.empty(r1, r2, device=x.device) |
| return torch.norm(x[..., None, :] - y[..., None, :, :], p=p, dim=-1) |
| |
| def test_cdist_norm(self, device="mps"): |
| for r1 in [3, 4]: |
| for m in [2, 3]: |
| for r2 in [4, 6]: |
| for p in [0, 1, 1.5, 2.5, float('inf')]: |
| x = torch.randn(r1, m, device=device) |
| y = torch.randn(r2, m, device=device) |
| if p == 2: |
| for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertEqual(expected, actual, rtol=0, atol=0.02) |
| else: |
| actual = torch.cdist(x, y, p=p) |
| expected = self._brute_cdist(x, y, p=p) |
| self.assertEqual(expected, actual) |
| |
| def test_cdist_norm_batch(self, device="mps"): |
| for r1 in [3, 4]: |
| for m in [2, 3]: |
| for r2 in [4, 6]: |
| for p in [0, 3, 1.5, 2.5, float('inf')]: |
| x = torch.randn(2, 3, 6, r1, m, device=device) |
| y = torch.randn(2, 3, 6, r2, m, device=device) |
| if p == 2: |
| for cm in ['use_mm_for_euclid_dist', 'donot_use_mm_for_euclid_dist']: |
| actual = torch.cdist(x, y, p=2, compute_mode=cm) |
| expected = self._brute_cdist(x, y, p=2) |
| self.assertEqual(expected, actual, rtol=0, atol=0.02) |
| else: |
| actual = torch.cdist(x, y, p=p) |
| expected = self._brute_cdist(x, y, p=p) |
| self.assertEqual(expected, actual) |
| |
| def test_mm(self): |
| B = torch.ones(5, 6).to("mps") |
| C = torch.ones(6, 5).to("mps") |
| D = torch.mm(B, C).cpu() |
| torch.testing.assert_close(D, torch.full((5, 5), 6.0)) |
| |
| def test_linalg_cross(self): |
| def helper(dtype): |
| device = "mps" |
| if dtype is torch.int32 or dtype is torch.int64: |
| x = torch.randint(0, 99999, (100, 3, 100), dtype=dtype, device=device) |
| y = torch.randint(0, 99999, (100, 3, 100), dtype=dtype, device=device) |
| else: |
| x = torch.rand(100, 3, 100, dtype=dtype, device=device) |
| y = torch.rand(100, 3, 100, dtype=dtype, device=device) |
| x_cpu = x.to("cpu") |
| y_cpu = y.to("cpu") |
| res1 = torch.linalg.cross(x, y, dim=1) |
| res2 = torch.tensor((), dtype=dtype, device=device) |
| res1_cpu = torch.linalg.cross(x_cpu, y_cpu, dim=1) |
| res2_cpu = torch.tensor((), dtype=dtype, device="cpu") |
| torch.linalg.cross(x, y, dim=1, out=res2) |
| torch.linalg.cross(x_cpu, y_cpu, dim=1, out=res2_cpu) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res1_cpu) |
| self.assertEqual(res2, res2_cpu) |
| |
| # test for broadcastable inputs |
| if dtype is torch.int32 or dtype is torch.int64: |
| x = torch.randint(0, 99999, (1, 3, 2), dtype=dtype, device=device) |
| y = torch.randint(0, 99999, (4, 3, 1), dtype=dtype, device=device) |
| else: |
| x = torch.rand(1, 3, 2, dtype=dtype, device=device) |
| y = torch.rand(4, 3, 1, dtype=dtype, device=device) |
| x_cpu = x.to("cpu") |
| y_cpu = y.to("cpu") |
| res1 = torch.linalg.cross(x, y, dim=1) |
| res2 = torch.tensor((), dtype=dtype, device=device) |
| res1_cpu = torch.linalg.cross(x_cpu, y_cpu, dim=1) |
| res2_cpu = torch.tensor((), dtype=dtype, device="cpu") |
| torch.linalg.cross(x, y, dim=1, out=res2) |
| torch.linalg.cross(x_cpu, y_cpu, dim=1, out=res2_cpu) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res1_cpu) |
| self.assertEqual(res2, res2_cpu) |
| [helper(dtype) for dtype in [torch.int32, torch.int64, torch.float32]] |
| |
| def test_cross(self): |
| a = torch.randn(4, 3, device="mps") |
| b = torch.randn(4, 3, device="mps") |
| a_cpu = a.to("cpu") |
| b_cpu = b.to("cpu") |
| res = torch.cross(a, b, dim=1) |
| res_cpu = torch.cross(a_cpu, b_cpu, dim=1) |
| self.assertEqual(res, res_cpu) |
| |
| def test_addmm(self): |
| A = torch.ones(5, 5).to("mps") |
| B = torch.ones(5, 6).to("mps") |
| C = torch.ones(6, 5).to("mps") |
| D = torch.addmm(A, B, C).to("cpu") |
| torch.testing.assert_close(D, torch.full((5, 5), 7.0)) |
| |
| def test_bmm(self): |
| batch1_cpu = torch.randn(10, 3, 4) |
| batch2_cpu = torch.randn(10, 4, 5) |
| |
| batch1_mps = batch1_cpu.detach().clone().to("mps") |
| batch2_mps = batch2_cpu.detach().clone().to("mps") |
| |
| output_cpu = torch.bmm(batch1_cpu, batch2_cpu) |
| output_mps = torch.bmm(batch1_mps, batch2_mps) |
| |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| @xfailIf(product_version < 15.0) |
| @parametrize("dtype", [torch.float16, torch.bfloat16]) |
| def test_large_bmm(self, dtype): |
| batch1 = torch.randn(11, 20064, 128, dtype=dtype, device='mps') |
| batch2 = torch.randn(11, 128, 20064, dtype=dtype, device='mps') |
| output_cpu = torch.bmm(batch1.cpu(), batch2.cpu()) |
| output_mps = torch.bmm(batch1, batch2) |
| |
| # Using the low precision comparison for FP16 |
| tol = 1e-2 if dtype == torch.float16 else None |
| self.assertEqual(output_cpu, output_mps, atol=tol, rtol=tol) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| |
| def test_addr(self): |
| A = torch.ones(5, 10).to("mps") |
| B = torch.ones(5).to("mps") |
| C = torch.ones(10).to("mps") |
| D = torch.addr(A, B, C).to("cpu") |
| torch.testing.assert_close(D, torch.full((5, 10), 2.0)) |
| |
| def test_trace(self): |
| M_cpu = torch.randn(3, 3) |
| M_mps = M_cpu.detach().clone().to("mps") |
| |
| output_cpu = torch.trace(M_cpu) |
| output_mps = torch.trace(M_mps) |
| |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| def test_addbmm(self): |
| M_cpu = torch.randn(3, 5) |
| batch1_cpu = torch.randn(10, 3, 4) |
| batch2_cpu = torch.randn(10, 4, 5) |
| |
| M_mps = M_cpu.detach().clone().to("mps") |
| batch1_mps = batch1_cpu.detach().clone().to("mps") |
| batch2_mps = batch2_cpu.detach().clone().to("mps") |
| |
| output_cpu = torch.addbmm(M_cpu, batch1_cpu, batch2_cpu) |
| output_mps = torch.addbmm(M_mps, batch1_mps, batch2_mps) |
| |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| def test_baddbmm(self): |
| def helper(input_shape, batch1_shape, batch2_shape): |
| M_cpu = torch.randn(input_shape) |
| batch1_cpu = torch.randn(batch1_shape) |
| batch2_cpu = torch.randn(batch2_shape) |
| alpha = 1.2 |
| beta = 0.8 |
| |
| M_mps = M_cpu.detach().clone().to("mps") |
| batch1_mps = batch1_cpu.detach().clone().to("mps") |
| batch2_mps = batch2_cpu.detach().clone().to("mps") |
| |
| output_cpu = torch.baddbmm(M_cpu, batch1_cpu, batch2_cpu, beta=beta, alpha=alpha) |
| output_mps = torch.baddbmm(M_mps, batch1_mps, batch2_mps, beta=beta, alpha=alpha) |
| |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| helper(input_shape=(3, 5), batch1_shape=(10, 3, 4), batch2_shape=(10, 4, 5)) |
| helper(input_shape=(10, 3, 5), batch1_shape=(10, 3, 4), batch2_shape=(10, 4, 5)) |
| helper(input_shape=(1, 77, 77), batch1_shape=(8, 77, 64), batch2_shape=(8, 64, 77)) |
| |
| def test_local_scalar_dense_mps(self): |
| x_cpu = torch.randn(1) |
| y_mps = x_cpu.to("mps") |
| torch.testing.assert_close(x_cpu.item(), y_mps.item()) |
| |
| def test_linear_1d_weight(self): |
| device = 'cpu' |
| projected = torch.rand([8]).to(device) |
| x = torch.rand([1, 2, 2, 8]).to(device) |
| x_mps = x.to('mps') |
| projected_mps = projected.to('mps') |
| linear = F.linear(x, projected) |
| linear_mps = F.linear(x_mps, projected_mps) |
| |
| self.assertEqual(linear, linear_mps) |
| |
| projected = torch.rand([1, 8]).to(device) |
| x = torch.rand([1, 2, 2, 8]).to(device) |
| x_mps = x.to('mps') |
| projected_mps = projected.to('mps') |
| linear = F.linear(x, projected) |
| linear_mps = F.linear(x_mps, projected_mps) |
| |
| self.assertEqual(linear, linear_mps) |
| |
| def test_linear_bias(self): |
| def helper(bias_shape): |
| device = "cpu" |
| x = torch.randn(2, 2, 2, 64, device=device) |
| linear = torch.nn.Linear(64, 4, device=device) |
| linear.bias = torch.nn.Parameter(torch.randn(bias_shape, dtype=torch.float32, device=device)) |
| y = linear(x) |
| device = "mps" |
| x_mps = x.to(device) |
| linear.to(device) |
| y_mps = linear(x_mps) |
| self.assertEqual(y, y_mps) |
| |
| helper(()) |
| helper((2, 4)) |
| |
| def test_linear_errors(self): |
| # Mixed CPU<->MPS tensors |
| size = (3, 3) |
| |
| # Unsupported dtypes |
| with self.assertRaisesRegex(RuntimeError, "does not support linear for non-float weights"): |
| torch.nn.functional.linear(torch.rand(size, device='mps'), |
| torch.randint(-10, 10, size, dtype=torch.int8, device='mps')) |
| |
| # Weigths on wrong device |
| with self.assertRaisesRegex(RuntimeError, "argument weight is on cpu but expected on mps"): |
| torch.nn.functional.linear(torch.rand(size, device='mps'), |
| torch.rand(size, device='cpu')) |
| |
| # Input on wrong device |
| with self.assertRaisesRegex(RuntimeError, "argument input is on cpu but expected on mps"): |
| torch.nn.functional.linear(torch.rand(size, device='cpu'), |
| torch.rand(size, device='mps')) |
| |
| def _linear_helper(self, in_features, out_features, shape, bias=True, backward_pass=False): |
| cpu_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="cpu", bias=bias) |
| mps_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="mps", bias=bias) |
| |
| # Use the same weights and bias as the ones from the cpu |
| mps_linear.weight.data = cpu_linear.weight.data.detach().clone().to("mps") |
| |
| if bias: |
| mps_linear.bias.data = cpu_linear.bias.data.detach().clone().to("mps") |
| |
| linear_mps_input = torch.randn(shape).to('mps') |
| linear_cpu_input = linear_mps_input.detach().clone().to('cpu') |
| |
| if backward_pass: |
| linear_mps_input = linear_mps_input.requires_grad_() |
| linear_cpu_input = linear_cpu_input.requires_grad_() |
| |
| linear_cpu_output = cpu_linear(linear_cpu_input) |
| linear_mps_output = mps_linear(linear_mps_input) |
| |
| self.assertEqual(linear_cpu_output, linear_mps_output.to('cpu')) |
| self.assertEqual(linear_cpu_output.size(), linear_mps_output.size()) |
| |
| if backward_pass: |
| cpu_grad = torch.rand_like(linear_cpu_output, requires_grad=True) |
| grad = cpu_grad.detach().to('mps').requires_grad_() |
| |
| linear_cpu_output.backward(gradient=cpu_grad, create_graph=True) |
| linear_mps_output.backward(gradient=grad, create_graph=True) |
| |
| self.assertEqual(linear_cpu_input.grad.size(), linear_mps_input.grad.size()) |
| self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| |
| self.assertEqual(cpu_linear.weight.grad.size(), mps_linear.weight.grad.size()) |
| self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| if bias: |
| self.assertEqual(cpu_linear.bias.grad.size(), mps_linear.bias.grad.size()) |
| self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| |
| # test gradgrad |
| x_grad_out = torch.rand_like(linear_cpu_input) |
| x_grad_out_mps = x_grad_out.to("mps") |
| w_grad_out = torch.rand_like(cpu_linear.weight) |
| w_grad_out_mps = w_grad_out.to("mps") |
| |
| linear_cpu_input.grad.detach().zero_() |
| linear_mps_input.grad.detach().zero_() |
| cpu_linear.weight.grad.detach().zero_() |
| mps_linear.weight.grad.detach().zero_() |
| if bias: |
| b_grad_out = torch.rand_like(cpu_linear.bias) |
| b_grad_out_mps = b_grad_out.to("mps") |
| cpu_linear.bias.grad.detach().zero_() |
| mps_linear.bias.grad.detach().zero_() |
| |
| linear_cpu_input.grad.backward(x_grad_out, retain_graph=True) |
| linear_mps_input.grad.backward(x_grad_out_mps, retain_graph=True) |
| cpu_linear.weight.grad.backward(w_grad_out, retain_graph=True) |
| mps_linear.weight.grad.backward(w_grad_out_mps, retain_graph=True) |
| if bias: |
| cpu_linear.bias.grad.backward(b_grad_out, retain_graph=True) |
| mps_linear.bias.grad.backward(b_grad_out_mps, retain_graph=True) |
| |
| self.assertEqual(cpu_grad.grad, grad.grad) |
| self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad) |
| self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad) |
| if bias: |
| self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad) |
| |
| def test_linear1D(self): |
| self._linear_helper(in_features=2, out_features=3, shape=([2]), bias=True, backward_pass=False) |
| |
| def test_linear1D_backward(self): |
| self._linear_helper(in_features=2, out_features=3, shape=([2]), bias=True, backward_pass=True) |
| |
| def test_linear2D(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=False) |
| |
| def test_linear2D_backward(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=True) |
| |
| def test_linear2D_no_bias(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=False) |
| |
| def test_linear2D_no_bias_backward(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=True) |
| |
| def test_linear3D(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=False) |
| |
| def test_linear3D_backward(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=True) |
| |
| def test_linear3D_no_bias(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=False) |
| |
| def test_linear3D_no_bias_backward(self): |
| self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=True) |
| |
| def test_uniform(self): |
| low = torch.zeros(5, 5, requires_grad=True) |
| high = (torch.ones(5, 5) * 3).requires_grad_() |
| low_1d = torch.zeros(1, requires_grad=True) |
| high_1d = (torch.ones(1) * 3).requires_grad_() |
| self.assertEqual(Uniform(low, high).sample().size(), (5, 5)) |
| self.assertEqual(Uniform(low, high).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Uniform(low_1d, high_1d).sample().size(), (1,)) |
| self.assertEqual(Uniform(low_1d, high_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Uniform(0.0, 1.0).sample((1,)).size(), (1,)) |
| |
| # Check log_prob computation when value outside range |
| uniform = Uniform(low_1d, high_1d, validate_args=False) |
| above_high = torch.tensor([4.0]) |
| below_low = torch.tensor([-1.0]) |
| self.assertEqual(uniform.log_prob(above_high).item(), -inf) |
| self.assertEqual(uniform.log_prob(below_low).item(), -inf) |
| |
| # check cdf computation when value outside range |
| self.assertEqual(uniform.cdf(below_low).item(), 0) |
| self.assertEqual(uniform.cdf(above_high).item(), 1) |
| |
| state = torch.get_rng_state() |
| rand = low.new(low.size()).uniform_() |
| torch.set_rng_state(state) |
| u = Uniform(low, high).rsample() |
| u.backward(torch.ones_like(u)) |
| self.assertEqual(low.grad, 1 - rand) |
| self.assertEqual(high.grad, rand) |
| low.grad.zero_() |
| high.grad.zero_() |
| |
| def test_randperm(self, device="mps"): |
| rng_device = None |
| for n in (5, 100, 50000, 100000): |
| for dtype in (torch.long, torch.half, torch.float): |
| if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here. |
| continue |
| if n > 256 and dtype == torch.bfloat16: |
| continue |
| with torch.random.fork_rng(devices=rng_device): |
| res1 = torch.randperm(n, dtype=dtype, device=device) |
| res2 = torch.empty(0, dtype=dtype, device=device) |
| torch.randperm(n, out=res2, dtype=dtype, device=device) |
| self.assertEqual(res1.cpu().sort().values.long(), torch.arange(n, device=device)) |
| |
| # Default type is long |
| for n in (100, 10000): |
| self.assertEqual(torch.randperm(n, device=device).dtype, torch.long) |
| |
| # randperm of 0 elements is an empty tensor |
| res1 = torch.randperm(0) |
| res2 = torch.tensor(5, dtype=dtype, device=device) |
| torch.randperm(0, out=res2) |
| self.assertEqual(res1.numel(), 0) |
| self.assertEqual(res2.numel(), 0) |
| |
| # Test non-contiguous tensors |
| for n in (4, 5, 6, 10, 20): |
| non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t() |
| self.assertFalse(non_contiguous_tensor.is_contiguous()) |
| with torch.random.fork_rng(devices=rng_device): |
| res = torch.randperm(n, dtype=torch.long, device=device) |
| torch.randperm(n, out=non_contiguous_tensor) |
| self.assertEqual(res.cpu().sort().values.long(), torch.arange(n, device=device)) |
| |
| # Test forward maxpool2d |
| def test_max_pool2d(self): |
| def helper(shape, ks, padding=0, dilation=1, ceil_mode=False, return_indices=False, test_ties=False): |
| |
| cpu_x = None |
| if (test_ties): |
| cpu_x = torch.ones(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| else: |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| pool = torch.nn.MaxPool2d(kernel_size=ks, padding=padding, dilation=dilation, |
| ceil_mode=ceil_mode, return_indices=return_indices) |
| |
| if (return_indices is False): |
| y = pool(x) |
| ref_y = pool(cpu_x) |
| |
| cpu_grad = torch.ones_like(ref_y) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y) |
| self.assertEqual(x.grad, cpu_x.grad) |
| else: |
| y, idx = pool(x) |
| ref_y, ref_idx = pool(cpu_x) |
| |
| cpu_grad = torch.ones_like(ref_y) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y) |
| self.assertEqual(idx, ref_idx) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test with no batch dimension |
| helper((8, 4, 4), ks=2) |
| helper((2, 8, 4, 4), ks=2) |
| helper((1, 1000, 32, 32), ks=4) |
| helper((1, 1000, 1, 4), ks=(1, 4)) # test for max_pool1d |
| # Test padding |
| helper((1, 1000, 32, 32), ks=4, padding=1) |
| helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 1)) # test for max_pool1d |
| # Test dilation |
| helper((1, 1000, 32, 32), ks=4, dilation=2) |
| helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 2)) # test for max_pool1d |
| # Test ceil mode |
| helper((1, 1000, 32, 32), ks=4, ceil_mode=True) |
| helper((1, 1000, 1, 4), ks=(1, 4), ceil_mode=True) # test for max_pool1d |
| |
| # Test return indices |
| for test_ties in [False, True]: |
| # Test with no batch dimension |
| helper((8, 4, 4), ks=2, return_indices=True, test_ties=test_ties) |
| helper((2, 8, 4, 4), ks=2, return_indices=True, test_ties=test_ties) |
| helper((1, 1000, 32, 32), ks=4, return_indices=True, test_ties=test_ties) |
| helper((1, 1000, 1, 4), ks=(1, 4), return_indices=True, test_ties=test_ties) # test for max_pool1d |
| # Test padding |
| helper((1, 1000, 32, 32), ks=4, padding=1, return_indices=True, test_ties=test_ties) |
| helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 1), |
| return_indices=True, test_ties=test_ties) # test for max_pool1d |
| # Test dilation |
| helper((1, 1000, 32, 32), ks=4, dilation=2, return_indices=True, test_ties=test_ties) |
| helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 2), |
| return_indices=True, test_ties=test_ties) # test for max_pool1d |
| # Test ceil mode |
| helper((1, 1000, 32, 32), ks=4, ceil_mode=True, return_indices=True, test_ties=test_ties) |
| helper((1, 1000, 1, 4), ks=(1, 4), ceil_mode=True, |
| return_indices=True, test_ties=test_ties) # test for max_pool1d |
| |
| def test_adaptive_avg_pool2d_output_size_one(self): |
| def helper(size, memory_format): |
| x = torch.randint(1, 10, size, dtype=torch.float, device='mps', requires_grad=True) |
| if memory_format == 'non_contiguous': |
| x = x[::2, ::2, ::2, ::2] |
| else: |
| x = x.to(memory_format=memory_format) |
| |
| net = torch.nn.AdaptiveAvgPool2d((1, 1)) |
| out = net(x) |
| ref_out = x.contiguous().mean((-1, -2)).view((x.size(0), x.size(1), 1, 1)) |
| |
| out.sum().backward() # make sure it doesn't crash |
| |
| self.assertEqual(out, ref_out) |
| if memory_format == torch.channels_last: |
| self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) |
| c = out.size(1) |
| self.assertEqual(out.stride(), [c, 1, c, c]) |
| else: |
| self.assertTrue(out.is_contiguous()) |
| c = out.size(1) |
| self.assertEqual(out.stride(), [c, 1, 1, 1]) |
| |
| helper((2, 3, 6, 6), torch.contiguous_format) |
| |
| def test_masked_scatter(self): |
| def helper(shape): |
| x_mps = torch.randn(shape, device="mps") |
| x_cpu = x_mps.detach().clone().cpu() |
| |
| mask_mps = torch.rand(shape, device="mps") < 0.6 |
| mask_cpu = mask_mps.detach().clone().cpu() |
| |
| y_mps = torch.randn(shape, device="mps") |
| y_cpu = y_mps.detach().clone().cpu() |
| |
| y_mps.masked_scatter_(mask_mps, x_mps) |
| y_cpu.masked_scatter_(mask_cpu, x_cpu) |
| |
| self.assertEqual(y_mps, y_cpu) |
| helper([2, 5]) |
| helper([10, 10]) |
| helper([5, 10, 3]) |
| helper([10, 5, 10, 3]) |
| helper([10, 5, 10, 3, 20]) |
| |
| def test_masked_fill(self): |
| device = "mps" |
| dtype = torch.float32 |
| mask_dtype = torch.bool |
| num_dest = 10 |
| |
| dst = torch.zeros(num_dest, dtype=dtype, device=device) |
| mask = torch.randint(2, (num_dest,), dtype=mask_dtype, device=device) |
| val = random.random() |
| dst2 = torch.zeros(num_dest, dtype=dtype) |
| mask_cpu = mask.to("cpu") |
| |
| dst.masked_fill_(mask, val) |
| for i in range(num_dest): |
| if mask_cpu[i]: |
| dst2[i] = val |
| self.assertEqual(dst.to("cpu"), dst2, atol=0, rtol=0) |
| |
| def test_masked_fill__non_contiguous(self): |
| shape = (3, 5) |
| |
| x_mps = torch.randn(shape, device="mps") |
| x_cpu = x_mps.detach().clone().cpu() |
| mask_mps = torch.zeros(shape, device="mps", dtype=torch.bool) |
| mask_cpu = mask_mps.detach().clone().cpu() |
| |
| x_mps_strided = x_mps.T |
| x_cpu_strided = x_cpu.T |
| |
| x_mps_strided.masked_fill_(mask_mps.T, float("-inf")) |
| x_cpu_strided.masked_fill_(mask_cpu.T, float("-inf")) |
| |
| self.assertEqual(x_mps_strided, x_cpu_strided) |
| self.assertFalse((x_mps_strided == float("-inf")).any()) |
| |
| def test_nhwc_operation(self): |
| def helper(shape, channels_last=False): |
| import numpy as np |
| np.random.seed(332) |
| arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| # This passes |
| self.assertEqual(x, cpu_x) |
| |
| helper((2, 2, 2, 2), True) |
| |
| # Test forward batch norm |
| def test_batch_norm(self): |
| def helper(shape, eps=1, momentum=0.1, wts=False, training=False, channels_last=False, |
| track_running_stats=True, test_module=False): |
| |
| import numpy as np |
| np.random.seed(332) |
| arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| mean_shape = [shape[1]] |
| cpu_running_mean = None |
| cpu_running_var = None |
| running_mean = None |
| running_var = None |
| if (track_running_stats): |
| mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140 |
| cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float) |
| var_arr = 32 * np.random.random_sample(size=mean_shape) |
| cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float) |
| running_mean = cpu_running_mean.detach().clone().to('mps') |
| running_var = cpu_running_var.detach().clone().to('mps') |
| |
| weight = None |
| cpu_weight = None |
| bias = None |
| cpu_bias = None |
| if (wts): |
| cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| weight = cpu_weight.detach().clone().to('mps').requires_grad_() |
| cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| y = None |
| ref_y = None |
| |
| if (not test_module): |
| y = torch.nn.functional.batch_norm(x, running_mean, running_var, |
| weight=weight, |
| bias=bias, |
| training=training, |
| momentum=momentum, eps=eps) |
| ref_y = torch.nn.functional.batch_norm(cpu_x, cpu_running_mean, cpu_running_var, |
| weight=cpu_weight, |
| bias=cpu_bias, |
| training=training, |
| momentum=momentum, eps=eps) |
| |
| else: |
| |
| batchnorm_op = None |
| mps_batchnorm_op = None |
| |
| if (len(shape) == 3): |
| batchnorm_op = torch.nn.BatchNorm1d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_batchnorm_op = torch.nn.BatchNorm1d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| elif (len(shape) == 4): |
| batchnorm_op = torch.nn.BatchNorm2d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_batchnorm_op = torch.nn.BatchNorm2d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| elif (len(shape) == 5): |
| batchnorm_op = torch.nn.BatchNorm3d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_batchnorm_op = torch.nn.BatchNorm3d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| |
| if (track_running_stats): |
| batchnorm_op.running_mean = cpu_running_mean |
| batchnorm_op.running_var = cpu_running_var |
| mps_batchnorm_op.running_mean = running_mean |
| mps_batchnorm_op.running_var = running_var |
| if (wts): |
| batchnorm_op.weight = torch.nn.Parameter(cpu_weight) |
| batchnorm_op.bias = torch.nn.Parameter(cpu_bias) |
| mps_batchnorm_op.weight = torch.nn.Parameter(weight) |
| mps_batchnorm_op.bias = torch.nn.Parameter(bias) |
| |
| ref_y = batchnorm_op(cpu_x) |
| y = mps_batchnorm_op(x) |
| |
| self.assertEqual(y, ref_y) |
| if (not test_module): |
| self.assertEqual(running_mean, cpu_running_mean) |
| self.assertEqual(running_var, cpu_running_var) |
| else: |
| self.assertEqual(mps_batchnorm_op.running_mean, batchnorm_op.running_mean) |
| self.assertEqual(mps_batchnorm_op.running_var, batchnorm_op.running_var) |
| |
| cpu_grad = torch.randn(ref_y.shape) |
| grad = cpu_grad.to('mps') |
| ref_y.backward(gradient=cpu_grad) |
| y.backward(gradient=grad) |
| |
| self.assertEqual(x.grad, cpu_x.grad) |
| if (wts): |
| if (not test_module): |
| self.assertEqual(weight.grad, cpu_weight.grad) |
| self.assertEqual(bias.grad, cpu_bias.grad) |
| else: |
| self.assertEqual(mps_batchnorm_op.weight.grad, batchnorm_op.weight.grad) |
| self.assertEqual(mps_batchnorm_op.bias.grad, batchnorm_op.bias.grad) |
| |
| for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]: |
| for test_module in [False, True]: |
| for track_running_stats in [True, False]: |
| for channels_last in [False]: |
| if (channels_last and len(shape) != 4): |
| continue |
| # Running stats must be tracked in eval mode |
| if (track_running_stats): |
| helper(shape, eps=0, momentum=1, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1e-05, momentum=0.1, wts=False, training=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=0, momentum=1.0, wts=False, training=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1, momentum=1, wts=True, training=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=3, momentum=0.67, wts=True, training=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1e-05, momentum=0.1, wts=False, training=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=0, momentum=1.0, wts=False, training=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1, momentum=1, wts=True, training=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=3, momentum=0.67, wts=True, training=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| |
| def test_batch_norm_backward(self): |
| inputs = torch.rand(1, 8, 4, 4, device="mps", requires_grad=True) |
| x = torch.nn.BatchNorm2d(8).to("mps") |
| y = torch.nn.BatchNorm2d(8).to("mps") |
| y.weight.requires_grad = False |
| y.bias.requires_grad = False |
| outputs = y(x(inputs)) |
| # This used to crash, see https://github.com/pytorch/pytorch/issues/98602 |
| outputs.sum().backward() |
| |
| # Regression test for https://github.com/pytorch/pytorch/issues/133520 |
| def test_batch_norm_slices(self): |
| bn_cpu = nn.BatchNorm2d(100, affine=False, device='cpu') |
| bn_mps = nn.BatchNorm2d(100, affine=False, device='mps') |
| |
| x_cpu = torch.randn(100, 100, 35, 45).to('cpu') |
| x_mps = x_cpu.to('mps') |
| |
| res_cpu = bn_cpu(x_cpu[5:]) |
| res_mps = bn_mps(x_mps[5:]) |
| |
| self.assertEqual(res_cpu, res_mps) |
| |
| def test_layer_norm_backward(self): |
| inputs = torch.rand(4, 4, device="mps", requires_grad=True) |
| x = torch.nn.LayerNorm(4).to("mps") |
| y = torch.nn.LayerNorm(4).to("mps") |
| y.weight.requires_grad = False |
| y.bias.requires_grad = False |
| outputs = y(x(inputs)) |
| # This used to crash, see https://github.com/pytorch/pytorch/issues/98602 |
| outputs.sum().backward() |
| |
| def test_norm(self): |
| a = torch.arange(9, dtype=torch.float, device="mps") - 4 |
| b = a.reshape((3, 3)) |
| |
| a_cpu = torch.arange(9, dtype=torch.float, device="cpu") - 4 |
| b_cpu = a_cpu.reshape((3, 3)) |
| |
| res = torch.norm(a) |
| res_cpu = torch.norm(a_cpu) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(b) |
| res_cpu = torch.norm(b_cpu) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(a, float('inf')) |
| res_cpu = torch.norm(a_cpu, float('inf')) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(b, float('inf')) |
| res_cpu = torch.norm(b_cpu, float('inf')) |
| self.assertEqual(res, res_cpu) |
| |
| c = torch.tensor([[1, 2, 3], [-1, 1, 4]], dtype=torch.float, device="mps") |
| c_cpu = torch.tensor([[1, 2, 3], [-1, 1, 4]] , dtype=torch.float, device="cpu") |
| |
| res = torch.norm(c, dim=0) |
| res_cpu = torch.norm(c_cpu, dim=0) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(c, dim=1) |
| res_cpu = torch.norm(c_cpu, dim=1) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(c, p=1, dim=1) |
| res_cpu = torch.norm(c_cpu, p=1, dim=1) |
| self.assertEqual(res, res_cpu) |
| |
| d = torch.arange(8, dtype=torch.float, device="mps").reshape(2, 2, 2) |
| d_cpu = torch.arange(8, dtype=torch.float, device="cpu").reshape(2, 2, 2) |
| |
| res = torch.norm(d, dim=(1, 2)) |
| res_cpu = torch.norm(d_cpu, dim=(1, 2)) |
| self.assertEqual(res, res_cpu) |
| |
| res = torch.norm(d[0, :, :]), torch.norm(d[1, :, :]) |
| res_cpu = torch.norm(d_cpu[0, :, :]), torch.norm(d_cpu[1, :, :]) |
| self.assertEqual(res, res_cpu) |
| |
| def test_linalg_vector_norm(self): |
| x_mps = torch.tensor([0, 0, 0, 2, 3], dtype=torch.float, device="mps") |
| x_cpu = x_mps.detach().clone().cpu() |
| |
| res_mps = torch.linalg.vector_norm(x_mps, ord=0) |
| res_cpu = torch.linalg.vector_norm(x_cpu, ord=0) |
| self.assertEqual(res_mps, res_cpu) |
| |
| a_mps = torch.arange(27, dtype=torch.float, device="mps") - 4 |
| a_cpu = torch.arange(27, dtype=torch.float, device="cpu") - 4 |
| |
| B_mps = a_mps.reshape(3, 3, 3) |
| B_cpu = a_cpu.reshape(3, 3, 3) |
| |
| res_mps = torch.linalg.vector_norm(a_mps, ord=3.5) |
| res_cpu = torch.linalg.vector_norm(a_cpu, ord=3.5) |
| self.assertEqual(res_mps, res_cpu) |
| |
| res_mps = torch.linalg.vector_norm(B_mps, ord=3.5) |
| res_cpu = torch.linalg.vector_norm(B_cpu, ord=3.5) |
| self.assertEqual(res_mps, res_cpu) |
| |
| for dim in range(0, B_mps.dim()): |
| res_mps = torch.linalg.vector_norm(B_mps, ord=3.5, dim=dim) |
| res_cpu = torch.linalg.vector_norm(B_cpu, ord=3.5, dim=dim) |
| self.assertEqual(res_mps, res_cpu) |
| |
| |
| def test_layer_norm(self): |
| # TODO: Test non-contiguous |
| def helper(input_shape, normalized_shape, eps=1e-05, elementwise_affine=True, dtype=torch.float32): |
| cpu_x = torch.randn(input_shape, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_op = torch.nn.LayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device='cpu', dtype=dtype) |
| mps_op = torch.nn.LayerNorm(normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device='mps', dtype=dtype) |
| cpu_wt = torch.randn(normalized_shape, device='cpu', dtype=dtype, requires_grad=True) |
| wt = cpu_wt.detach().clone().to('mps').requires_grad_() |
| cpu_bias = torch.randn(normalized_shape, device='cpu', dtype=dtype, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| if (elementwise_affine): |
| cpu_op.weight = torch.nn.Parameter(cpu_wt) |
| mps_op.weight = torch.nn.Parameter(wt) |
| cpu_op.bias = torch.nn.Parameter(cpu_bias) |
| mps_op.bias = torch.nn.Parameter(bias) |
| |
| cpu_result = cpu_op(cpu_x) |
| result = mps_op(x) |
| |
| cpu_grad = torch.randn(cpu_result.shape) |
| grad = cpu_grad.to('mps') |
| |
| cpu_result.backward(cpu_grad) |
| result.backward(grad) |
| |
| self.assertEqual(result, cpu_result) |
| self.assertEqual(x.grad, cpu_x.grad) |
| if (elementwise_affine): |
| self.assertEqual(mps_op.weight.grad, cpu_op.weight.grad) |
| self.assertEqual(mps_op.bias.grad, cpu_op.bias.grad) |
| |
| for elementwise_affine in [True, False]: |
| helper((2, 2, 2, 2), (2, 2), elementwise_affine=elementwise_affine) |
| helper((2, 3, 4, 5), (4, 5), elementwise_affine=elementwise_affine) |
| helper((2, 3, 4, 5, 6), (4, 5, 6), elementwise_affine=elementwise_affine) |
| |
| # Regression test for https://github.com/pytorch/pytorch/issues/96113 |
| torch.nn.LayerNorm((16,), elementwise_affine=True).to("mps")(torch.randn(1, 2, 16).to("mps", dtype=torch.float16)) |
| |
| @xfailIf(product_version < 14.0) |
| def test_ifft(self): |
| # See: https://github.com/pytorch/pytorch/issues/124096 |
| device = torch.device("mps") |
| |
| N = 64 |
| signal = torch.rand(N, device=device) |
| fft_result = torch.fft.rfft(signal) |
| ifft_result = torch.fft.irfft(fft_result, n=signal.shape[0]) |
| |
| # Expecting the inverted to yield the original signal |
| self.assertEqual(ifft_result, signal) |
| |
| # Regression test for https://github.com/pytorch/pytorch/issues/135223 |
| def test_fftfreq(self): |
| freq_cpu = torch.fft.fftfreq(10**4, device='cpu') |
| freq_mps = torch.fft.fftfreq(10**4, device='mps') |
| self.assertEqual(freq_cpu, freq_mps) |
| |
| def test_instance_norm(self): |
| def helper(shape, eps=1, momentum=0.1, wts=False, channels_last=False, track_running_stats=True, test_module=False): |
| |
| import numpy as np |
| np.random.seed(332) |
| arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| mean_shape = [shape[1]] |
| cpu_running_mean = None |
| cpu_running_var = None |
| running_mean = None |
| running_var = None |
| if (track_running_stats): |
| mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140 |
| cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float) |
| var_arr = 32 * np.random.random_sample(size=mean_shape) |
| cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float) |
| running_mean = cpu_running_mean.detach().clone().to('mps') |
| running_var = cpu_running_var.detach().clone().to('mps') |
| |
| weight = None |
| cpu_weight = None |
| bias = None |
| cpu_bias = None |
| if (wts): |
| cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| weight = cpu_weight.detach().clone().to('mps').requires_grad_() |
| cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| y = None |
| ref_y = None |
| |
| if (not test_module): |
| ref_y = torch.nn.functional.instance_norm(cpu_x, cpu_running_mean, cpu_running_var, |
| weight=cpu_weight, |
| bias=cpu_bias, |
| momentum=momentum, eps=eps) |
| y = torch.nn.functional.instance_norm(x, running_mean, running_var, |
| weight=weight, |
| bias=bias, |
| momentum=momentum, eps=eps) |
| |
| else: |
| |
| instancenorm_op = None |
| mps_instancenorm_op = None |
| |
| if (len(shape) == 3): |
| instancenorm_op = torch.nn.InstanceNorm1d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_instancenorm_op = torch.nn.InstanceNorm1d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| elif (len(shape) == 4): |
| instancenorm_op = torch.nn.InstanceNorm2d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_instancenorm_op = torch.nn.InstanceNorm2d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| elif (len(shape) == 5): |
| instancenorm_op = torch.nn.InstanceNorm3d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='cpu') |
| mps_instancenorm_op = torch.nn.InstanceNorm3d(shape[1], |
| eps=eps, |
| momentum=momentum, |
| affine=wts, |
| track_running_stats=track_running_stats, |
| device='mps') |
| |
| if (track_running_stats): |
| instancenorm_op.running_mean = cpu_running_mean |
| instancenorm_op.running_var = cpu_running_var |
| mps_instancenorm_op.running_mean = running_mean |
| mps_instancenorm_op.running_var = running_var |
| if (wts): |
| instancenorm_op.weight = torch.nn.Parameter(cpu_weight) |
| instancenorm_op.bias = torch.nn.Parameter(cpu_bias) |
| mps_instancenorm_op.weight = torch.nn.Parameter(weight) |
| mps_instancenorm_op.bias = torch.nn.Parameter(bias) |
| |
| ref_y = instancenorm_op(cpu_x) |
| y = mps_instancenorm_op(x) |
| |
| self.assertEqual(y, ref_y) |
| if (not test_module): |
| self.assertEqual(running_mean, cpu_running_mean) |
| self.assertEqual(running_var, cpu_running_var) |
| else: |
| self.assertEqual(mps_instancenorm_op.running_mean, instancenorm_op.running_mean) |
| self.assertEqual(mps_instancenorm_op.running_var, instancenorm_op.running_var) |
| |
| cpu_grad = torch.randn(ref_y.shape) |
| grad = cpu_grad.to('mps') |
| ref_y.backward(gradient=cpu_grad) |
| y.backward(gradient=grad) |
| |
| self.assertEqual(x.grad, cpu_x.grad) |
| if (wts): |
| if (not test_module): |
| self.assertEqual(weight.grad, cpu_weight.grad) |
| self.assertEqual(bias.grad, cpu_bias.grad) |
| else: |
| self.assertEqual(mps_instancenorm_op.weight.grad, instancenorm_op.weight.grad) |
| self.assertEqual(mps_instancenorm_op.bias.grad, instancenorm_op.bias.grad) |
| |
| for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]: |
| for test_module in [False, True]: |
| for track_running_stats in [True, False]: |
| for channels_last in [False]: |
| if (channels_last and len(shape) != 4): |
| continue |
| # Running stats must be tracked in eval mode |
| if (track_running_stats): |
| helper(shape, eps=0, momentum=1, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last, |
| track_running_stats=track_running_stats, test_module=test_module) |
| |
| def test_weight_norm(self): |
| def validate_weight_norm_equality(model, cpu_model, x, cpu_x, dim): |
| cpu_norm = torch.nn.utils.parametrizations.weight_norm(cpu_model, dim=dim) |
| norm = torch.nn.utils.parametrizations.weight_norm(model, dim=dim) |
| |
| cpu_out = cpu_norm(cpu_x) |
| out = norm(x) |
| |
| self.assertEqual(cpu_out, out) |
| |
| cpu_grad = torch.randn(cpu_out.shape) |
| grad = cpu_grad.to('mps') |
| cpu_out.backward(gradient=cpu_grad) |
| out.backward(gradient=grad) |
| |
| self.assertEqual(cpu_model.parametrizations.weight.original0.grad, model.parametrizations.weight.original0.grad) |
| self.assertEqual(cpu_model.parametrizations.weight.original1.grad, model.parametrizations.weight.original1.grad) |
| |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| def helper(dim, layer='linear', dtype=torch.float32): |
| # linear layer |
| if layer == 'linear': |
| cpu_x = torch.randn((2, 5), device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_weight = torch.randn(10, 5, device='cpu', dtype=dtype, requires_grad=True) |
| weight = cpu_weight.detach().clone().to('mps').requires_grad_() |
| |
| cpu_bias = torch.randn(10, device='cpu', dtype=dtype, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| cpu_linear = torch.nn.Linear(5, 10, device='cpu') |
| linear = torch.nn.Linear(5, 10, device='mps') |
| |
| with torch.no_grad(): |
| cpu_linear.weight.copy_(cpu_weight) |
| cpu_linear.bias.copy_(cpu_bias) |
| linear.weight.copy_(weight) |
| linear.bias.copy_(bias) |
| validate_weight_norm_equality(linear, cpu_linear, x, cpu_x, dim) |
| |
| # conv layer |
| if layer == 'conv': |
| cpu_x = torch.randn((3, 5, 5), device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_conv = torch.nn.Conv2d(3, 3, 3, device='cpu') |
| conv = torch.nn.Conv2d(3, 3, 3, device='mps') |
| |
| with torch.no_grad(): |
| conv.weight.copy_(cpu_conv.weight) |
| conv.bias.copy_(cpu_conv.bias) |
| |
| validate_weight_norm_equality(conv, cpu_conv, x, cpu_x, dim) |
| |
| # conv3d layer |
| if layer == 'conv3d': |
| cpu_x = torch.randn((3, 5, 5, 4), device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_conv = torch.nn.Conv3d(3, 3, 3, device='cpu') |
| conv = torch.nn.Conv3d(3, 3, 3, device='mps') |
| |
| with torch.no_grad(): |
| conv.weight.copy_(cpu_conv.weight) |
| conv.bias.copy_(cpu_conv.bias) |
| |
| validate_weight_norm_equality(conv, cpu_conv, x, cpu_x, dim) |
| |
| helper(0, layer='linear') |
| helper(1, layer='linear') |
| helper(-1, layer='linear') |
| |
| helper(0, layer='conv') |
| helper(1, layer='conv') |
| helper(2, layer='conv') |
| helper(3, layer='conv') |
| helper(-1, layer='conv') |
| |
| if product_version >= 13.2: |
| # Conv3d is only available from MacOS 13 onwards |
| helper(0, layer='conv3d') |
| helper(1, layer='conv3d') |
| helper(2, layer='conv3d') |
| helper(3, layer='conv3d') |
| helper(4, layer='conv3d') |
| helper(-1, layer='conv3d') |
| |
| # Test conv2d |
| def test_conv2d_unit(self): |
| def helper(input_shape, wt_shape, |
| stride=1, padding=0, |
| dilation=1, groups=1, |
| bias_shape=None): |
| |
| cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| wt = cpu_wt.detach().clone().to('mps').requires_grad_() |
| |
| cpu_bias = None |
| bias = None |
| |
| if (bias_shape is not None): |
| cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| y = torch.nn.functional.conv2d(x, wt, bias=bias, stride=stride, |
| padding=padding, dilation=dilation, groups=groups) |
| ref_y = torch.nn.functional.conv2d(cpu_x, cpu_wt, bias=cpu_bias, stride=stride, |
| padding=padding, dilation=dilation, groups=groups) |
| |
| cpu_grad = torch.ones_like(ref_y) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04) |
| self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05) |
| self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05) |
| if (bias_shape is not None): |
| self.assertEqual(bias.grad, cpu_bias.grad, atol=8e-04, rtol=10.4e-05) |
| |
| N = 1 |
| C_in = 3 |
| C_out = 64 |
| H = 64 |
| W = 64 |
| kH = 4 |
| kW = 4 |
| stride = 2 |
| padding = 1 |
| |
| helper((N, C_in, H, W), (C_out, C_in, kH, kW), stride=stride, padding=padding) |
| |
| N = 4 |
| C_in = 16 |
| H = 32 |
| W = 32 |
| |
| C_out = 8 |
| kH = 3 |
| kW = 3 |
| |
| for groups in [1, 2, 4]: |
| helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups) |
| helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups) |
| |
| helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups) |
| helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups) |
| |
| helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups) |
| helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups) |
| |
| helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, |
| kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups) |
| helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, |
| kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups) |
| |
| # Test conv transpose 2d |
| def test_conv_transpose2d(self): |
| def helper(input_shape, wt_shape, |
| stride=1, padding=0, |
| output_padding=0, |
| dilation=1, groups=1, |
| bias_shape=None): |
| |
| cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| wt = cpu_wt.detach().clone().to('mps').requires_grad_() |
| |
| cpu_bias = None |
| bias = None |
| |
| if (bias_shape is not None): |
| cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| |
| y = torch.nn.functional.conv_transpose2d( |
| x, wt, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation) |
| ref_y = torch.nn.functional.conv_transpose2d( |
| cpu_x, cpu_wt, bias=cpu_bias, stride=stride, padding=padding, |
| output_padding=output_padding, groups=groups, dilation=dilation) |
| |
| cpu_grad = torch.randn(ref_y.shape) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04) |
| self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05) |
| self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05) |
| |
| # if (bias_shape is not None): |
| # print(cpu_bias.grad) |
| # print(bias.grad.to('cpu')) |
| # self.assertEqual(bias.grad, cpu_bias.grad) |
| |
| N = 4 |
| C_in = 2 |
| H = 32 |
| W = 32 |
| |
| C_out = 8 |
| groups = 1 |
| kH = 3 |
| kW = 3 |
| |
| for stride in [1, 2, 3]: |
| for padding in [0, 1, 2]: |
| for output_padding in [0, 1, 2]: |
| for dilation in [1, 2]: |
| if (output_padding >= stride or output_padding >= dilation): |
| continue |
| helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride, |
| padding=padding, output_padding=output_padding, dilation=dilation) |
| helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride, |
| padding=padding, output_padding=output_padding, dilation=dilation) |
| |
| helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride, |
| padding=padding, output_padding=output_padding, dilation=dilation) |
| helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride, |
| padding=padding, output_padding=output_padding, dilation=dilation) |
| |
| # Test sigmoid |
| def test_sigmoid(self): |
| def helper(shape): |
| |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| sigmoid_op = torch.nn.Sigmoid() |
| |
| y = sigmoid_op(x) |
| ref_y = sigmoid_op(cpu_x) |
| |
| cpu_grad = torch.ones_like(ref_y) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 3, 4, 5)) |
| helper((2, 3, 4)) |
| helper((2, 8, 4, 5)) |
| |
| # Test tanh |
| def test_tanh(self): |
| def helper(shape): |
| |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| tanh_op = torch.nn.Tanh() |
| |
| y = tanh_op(x) |
| ref_y = tanh_op(cpu_x) |
| |
| cpu_grad = torch.ones_like(ref_y) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 3, 4, 5)) |
| helper((2, 3, 4)) |
| helper((2, 8, 4, 5)) |
| |
| def test_threshold(self): |
| def helper(threshold, value, num_elems, inplace=False, requires_grad=True): |
| m = nn.Threshold(threshold=threshold, value=value, inplace=inplace) |
| |
| input_cpu = torch.randn(num_elems, requires_grad=requires_grad, dtype=torch.float) |
| input_mps = input_cpu.detach().clone().to('mps').requires_grad_(requires_grad) |
| |
| output_cpu = m(input_cpu) |
| output_mps = m(input_mps) |
| |
| cpu_grad = torch.ones_like(output_cpu) |
| mps_grad = cpu_grad.to('mps') |
| |
| self.assertEqual(output_cpu, output_mps) |
| |
| if requires_grad: |
| output_cpu.backward(gradient=cpu_grad) |
| output_mps.backward(gradient=mps_grad) |
| |
| self.assertEqual(input_cpu.grad, input_mps.grad) |
| |
| helper(threshold=0.1, value=20, num_elems=2) |
| helper(threshold=-0.1, value=10, num_elems=10) |
| helper(threshold=0.5, value=-15, num_elems=100) |
| helper(threshold=1, value=10, num_elems=100, inplace=True, requires_grad=False) |
| |
| # Test pow |
| def test_pow(self): |
| def helper(shape): |
| # aten::pow.Tensor_Tensor |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| z = torch.pow(x, y) |
| ref_z = torch.pow(cpu_x, cpu_y) |
| |
| self.assertEqual(z, ref_z) |
| |
| # aten::pow.Tensor_Scalar |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| exp = random.random() |
| z = torch.pow(x, exp) |
| ref_z = torch.pow(cpu_x, exp) |
| |
| self.assertEqual(z, ref_z) |
| |
| # aten::pow.Scalar |
| x = random.random() |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| z = torch.pow(x, y) |
| ref_z = torch.pow(x, cpu_y) |
| |
| self.assertEqual(z, ref_z) |
| |
| helper((2, 8, 4, 5)) |
| |
| # Test addcmul |
| def test_addcmul(self): |
| def helper(shape, value, xtype=torch.float32, ytype=None, ztype=None): |
| def rand_helper(dtype): |
| if dtype.is_floating_point: |
| return torch.randn(shape, device='cpu', dtype=dtype, requires_grad=False) |
| return torch.randint(10, shape, dtype=dtype, device='cpu', requires_grad=False) |
| |
| cpu_x = rand_helper(xtype) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = rand_helper(ytype if ytype is not None else xtype) |
| y = cpu_y.detach().clone().to('mps') |
| |
| cpu_z = rand_helper(ztype if ztype is not None else xtype) |
| z = cpu_z.detach().clone().to('mps') |
| |
| y = torch.addcmul(x, y, z, value=value) |
| ref_y = torch.addcmul(cpu_x, cpu_y, cpu_z, value=value) |
| |
| self.assertEqual(y, ref_y) |
| |
| helper((2, 3, 4, 5), 0.1) |
| helper((2, 8, 4, 5), 0.1) |
| helper((2, 3, 4, 5), 0.2) |
| helper((2, 8, 4, 5), 0.2) |
| # Integral types |
| helper((2, 2), 1.0, xtype=torch.int32) |
| helper((2, 2), 2.0, xtype=torch.int16) |
| |
| # Mixed types |
| helper((2, 2), 1.0, xtype=torch.float16, ytype=torch.float32) |
| helper((3, 2), 1.0, ytype=torch.float16) |
| helper((2, 3), 1.0, ztype=torch.float16) |
| helper((2, 2), 1.0, xtype=torch.int32, ytype=torch.int16, ztype=torch.uint8) |
| helper((2, 2), 1.0, ytype=torch.int16, ztype=torch.uint8) |
| |
| # Test addcdiv |
| def test_addcdiv(self): |
| def helper(shape, value): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| # clamp to avoid division by 0 |
| cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False).clamp_min_(0.1) |
| cpu_out = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| mps_z = cpu_z.detach().clone().to('mps') |
| mps_out = cpu_out.detach().clone().to('mps') |
| |
| result_div_mps = torch.addcdiv(mps_x, mps_y, mps_z, value=value) |
| result_div_cpu = torch.addcdiv(cpu_x, cpu_y, cpu_z, value=value) |
| self.assertEqual(result_div_mps, result_div_cpu) |
| # test .out variant |
| self.assertEqual(torch.addcdiv(mps_x, mps_y, mps_z, out=mps_out, value=value), result_div_cpu) |
| |
| helper((2, 3, 4, 5), 0.1) |
| helper((2, 8, 4, 5), 0.2) |
| helper((2, 3, 4, 5), 1.0) # value of 1 should be ignored internally |
| |
| def test_addcdiv_transpose(self): |
| # Regression test for issue https://github.com/pytorch/pytorch/issues/118115 |
| # Testing continuity of all input tensors |
| |
| def helper(shape, value): |
| shape_t = shape[::-1] |
| for i in range(2): |
| for j in range(2): |
| for k in range(2): |
| x = torch.rand(shape, device="cpu") if i == 0 else torch.rand(shape_t, device="cpu").t() |
| y = torch.rand(shape, device="cpu") if j == 0 else torch.rand(shape_t, device="cpu").t() |
| z = torch.rand(shape, device="cpu") if k == 0 else torch.rand(shape_t, device="cpu").t() |
| |
| x_mps = x.detach().clone().to(device="mps") |
| y_mps = y.detach().clone().to(device="mps") |
| z_mps = z.detach().clone().to(device="mps") |
| |
| result_cpu = x.addcdiv_(y, z, value=value) |
| result_mps = x_mps.addcdiv(y_mps, z_mps, value=value) |
| result_mps_out = result_cpu.detach().clone().to('mps') |
| torch.addcdiv(x_mps, y_mps, z_mps, out=result_mps_out, value=value) |
| |
| self.assertEqual(result_cpu, result_mps) |
| self.assertEqual(result_cpu, result_mps_out) |
| |
| helper((2, 3), 1.0) |
| helper((2, 3), 0.2) |
| helper((100, 300), 1.0) |
| helper((100, 300), 0.2) |
| |
| def test_buffer_size_match(self): |
| # this test shouldn't cause any crash |
| size = 16 |
| cpu_A = torch.rand(size, device='cpu') |
| cpu_F = torch.rand(size, size, size, device='cpu') |
| |
| mps_A = cpu_A.to('mps') |
| mps_F = cpu_F.to('mps') |
| self.assertEqual(cpu_A @ cpu_F, mps_A @ mps_F) |
| |
| def test_transpose_inplace(self): |
| values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| |
| cpu_x.transpose_(0, 1) |
| mps_x.transpose_(0, 1) |
| self.assertEqual(cpu_x, mps_x.to('cpu')) |
| |
| def test_expand_cpu_to_mps_copy(self): |
| # https://github.com/pytorch/pytorch/issues/78642 |
| |
| x = torch.tensor(1).expand([10]).to("mps") |
| x_cpu = torch.tensor(1).expand([10]) |
| |
| self.assertEqual(x_cpu, x.cpu()) |
| |
| def test_cpu_to_strided_mps_copy(self): |
| # https://github.com/pytorch/pytorch/issues/86975 |
| |
| a1 = torch.Tensor([[1, 2], [3, 4], [5, 6]]).to(torch.device("mps")) |
| b1 = torch.Tensor([-1, -1]) |
| a1[1:, 1] = b1 |
| |
| a2 = torch.Tensor([[1, 2], [3, 4], [5, 6]]).to(torch.device("mps")) |
| b2 = torch.Tensor([-1, -1]).to(torch.device("mps")) |
| a2[1:, 1] = b2 |
| |
| self.assertEqual(a1, a2) |
| |
| def test_view_slice_reshape(self): |
| x = torch.randn([1, 4, 4], device="mps") |
| y = x[0, :1, 1:] |
| |
| x_cpu = x.to("cpu") |
| y_cpu = x_cpu[0, :1, 1:] |
| |
| r = y + 1 |
| r_cpu = y_cpu + 1 |
| self.assertEqual(r, r_cpu) |
| |
| def test_slice_reshape(self): |
| x = torch.randn([1, 6, 4, 2], dtype=torch.float, device="mps") |
| x_cpu = x.detach().clone().to("cpu") |
| |
| x = x[:, 3:].view(2, 3, 4, 1) |
| x_cpu = x_cpu[:, 3:].view(2, 3, 4, 1) |
| self.assertEqual(x, x_cpu) |
| |
| x = x + 2 |
| x_cpu = x_cpu + 2 |
| self.assertEqual(x, x_cpu) |
| |
| def test_reshape_storage_offset(self): |
| # https://github.com/pytorch/pytorch/issues/95883 |
| B = 4 |
| T = 1 |
| |
| lin_cpu = nn.Linear(10, 256) |
| lin_mps = nn.Linear(10, 256, device="mps") |
| |
| # Use the same weights and bias as the ones from the cpu |
| lin_mps.weight.data = lin_cpu.weight.data.detach().clone().to("mps").requires_grad_() |
| lin_mps.bias.data = lin_cpu.bias.data.detach().clone().to("mps").requires_grad_() |
| |
| x_mps = torch.rand([B, T, 10], device="mps", requires_grad=True) |
| x_cpu = x_mps.detach().clone().cpu().requires_grad_() |
| x_mps = lin_mps(x_mps) |
| x_cpu = lin_cpu(x_cpu) |
| |
| self.assertEqual(x_mps.shape, (B, T, 256)) |
| self.assertEqual(x_cpu.shape, (B, T, 256)) |
| |
| cls_token_mps = torch.rand([1, 256], device="mps", requires_grad=True).repeat(B, 1, 1) |
| cls_token_cpu = cls_token_mps.detach().clone().cpu() |
| x_mps = torch.cat([cls_token_mps, x_mps], dim=1) |
| x_cpu = torch.cat([cls_token_cpu, x_cpu], dim=1) |
| |
| x_mps = x_mps.transpose(0, 1) |
| x_cpu = x_cpu.transpose(0, 1) |
| |
| target_mps = torch.rand_like(x_mps) |
| target_cpu = target_mps.detach().clone().cpu() |
| loss_mps = F.mse_loss(x_mps, target_mps) |
| loss_cpu = F.mse_loss(x_cpu, target_cpu) |
| self.assertEqual(loss_mps, loss_cpu) |
| |
| loss_mps.backward() |
| loss_cpu.backward() |
| self.assertEqual(x_mps.grad, x_cpu.grad) |
| |
| def test_stack_storage_offset(self): |
| # https://github.com/pytorch/pytorch/issues/87856 |
| x_cpu = torch.tensor([[1, 2]]) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| y_cpu = torch.stack((x_cpu[:, :1], x_cpu[:, -1:]), dim=-1) |
| y_mps = torch.stack((x_mps[:, :1], x_mps[:, -1:]), dim=-1) |
| |
| self.assertEqual(y_cpu, y_mps) |
| |
| t_mps = torch.tensor([1, 2, 3, 4], device="mps") |
| t_cpu = t_mps.detach().cpu().detach() |
| |
| x_mps = t_mps[2:] |
| y_mps = t_mps[:2] |
| |
| x_cpu = t_cpu[2:] |
| y_cpu = t_cpu[:2] |
| |
| res_mps = torch.stack((y_mps, x_mps), dim=-1) |
| res_cpu = torch.stack((y_cpu, x_cpu), dim=-1) |
| |
| self.assertEqual(res_mps, res_cpu) |
| |
| def test_unsafe_chunk(self): |
| # https://github.com/pytorch/pytorch/issues/91065 |
| a = torch.rand(5, dtype=torch.float32, device="cpu") |
| ret = a.unsafe_chunk(4, 0) |
| y = ret[0] * ret[2] |
| a_mps = a.to("mps") |
| ret_mps = a_mps.unsafe_chunk(4, 0) |
| y_mps = ret_mps[0] * ret_mps[2] |
| self.assertEqual(y, y_mps) |
| |
| def test_slice_casting(self): |
| # generate random binary numbers |
| cpu_in = torch.bernoulli(torch.empty(1, 1, 128, 128).uniform_(0, 1)).to(torch.uint8) |
| mps_in = cpu_in.detach().clone().to("mps") |
| # check copy_cast(unit8 -> bool) on tensors with storage offset |
| cpu_out = cpu_in[:, :, 11 : 12, :12].to(torch.bool) |
| mps_out = mps_in[:, :, 11 : 12, :12].to(torch.bool) |
| self.assertEqual(cpu_out, mps_out) |
| |
| def test_slice_reshape_contg_view(self): |
| import torch |
| |
| x_mps = torch.randn(1, 4800, 2, device="mps") |
| x_cpu = x_mps.detach().clone().cpu() |
| |
| r_mps = x_mps + 2 |
| r_cpu = x_cpu + 2 |
| |
| self.assertEqual(r_mps, r_cpu) |
| |
| def test_contiguous_slice_2d(self): |
| def helper(shape): |
| for i in range(0, shape[0]): |
| for j in range(0, shape[1]): |
| t_mps = torch.randn(shape, device="mps") |
| t_cpu = t_mps.detach().clone().cpu() |
| |
| y_mps = t_mps[i:, :j] |
| y_cpu = t_cpu[i:, :j] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| y_mps = t_mps[i:, j] |
| y_cpu = t_cpu[i:, j] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| y_mps = t_mps[i, :j] |
| y_cpu = t_cpu[i, :j] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| y_mps = t_mps[:i, :j] |
| y_cpu = t_cpu[:i, :j] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| y_mps = t_mps[:i, j] |
| y_cpu = t_cpu[:i, j] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| y_mps = t_mps[:i, j:] |
| y_cpu = t_cpu[:i, j:] |
| self.assertEqual(y_mps + 1, y_cpu + 1) |
| |
| l = [] |
| for N in range(1, 3): |
| l.append(N) |
| for C in range(1, 3): |
| l.append(C) |
| helper(l) |
| for D in range(1, 3): |
| l.append(D) |
| helper(l) |
| for H in range(1, 3): |
| l.append(H) |
| helper(l) |
| for W in range(1, 3): |
| l.append(W) |
| helper(l) |
| l.pop() |
| l.pop() |
| l.pop() |
| l.pop() |
| l.pop() |
| |
| helper([9, 15, 4]) |
| helper([9, 3, 2]) |
| helper([3, 4, 18, 22]) |
| helper([3, 4, 18, 22, 150]) |
| |
| def test_contiguous_slice_3d(self): |
| x = torch.randn(2, 3, 3, device="mps") |
| x_cpu = x.detach().clone().cpu() |
| x = x[:1] |
| x_cpu = x_cpu[:1] |
| out = x[:, 0:1, 0:1] * x[:, 1:2, 1:2] |
| out_cpu = x_cpu[:, 0:1, 0:1] * x_cpu[:, 1:2, 1:2] |
| self.assertEqual(out, out_cpu) |
| |
| def test_view_slice(self): |
| # https://github.com/pytorch/pytorch/issues/83995 |
| NUM_SAMPLES = 60 |
| s = (0, 1) |
| |
| X = torch.rand(8000, 3, dtype=torch.float32, device='cpu') |
| X_mps = X.detach().clone().to("cpu") |
| |
| idx = torch.randint(0, X.shape[0], (1,)).repeat(len(s)) |
| pts = torch.randint(0, X.shape[0], (NUM_SAMPLES, X.shape[1])) |
| idx_mps = idx.to("mps") |
| pts_mps = pts.to("mps") |
| pts[:, s] = idx |
| pts_mps[:, s] = idx_mps |
| |
| actual_pts = torch.zeros(NUM_SAMPLES, X.shape[1], dtype=torch.float) |
| actual_pts_mps = torch.zeros(NUM_SAMPLES, X.shape[1], dtype=torch.float, device="mps") |
| |
| for i in range(NUM_SAMPLES): |
| for j in range(X.shape[1]): |
| actual_pts_mps[i, j] = X_mps[pts_mps[i, j], j] |
| actual_pts[i, j] = X[pts[i, j], j] |
| self.assertEqual(actual_pts[i, j], actual_pts_mps[i, j]) |
| |
| def test_slice_scatter(self): |
| shape = (4, 4) |
| tensor = torch.randint(10, shape, device="mps") |
| tensor_before = tensor.clone() |
| torch.empty(shape[0], shape[1] * 2, device="mps")[:, ::2].copy_(tensor) |
| torch.testing.assert_close(tensor, tensor_before) |
| |
| def test_slice(self): |
| values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = (torch.tensor(values, device='mps', dtype=torch.float)) |
| |
| cpu_slice1 = cpu_x[:2, :] |
| mps_slice1 = mps_x[:2, :] |
| self.assertEqual(cpu_slice1, mps_slice1) |
| |
| cpu_slice2 = cpu_x[:, :1] |
| mps_slice2 = mps_x[:, :1] |
| self.assertEqual(cpu_slice2, mps_slice2) |
| |
| cpu_slice3 = cpu_x[1:2, :] |
| mps_slice3 = mps_x[1:2, :] |
| self.assertEqual(cpu_slice3, mps_slice3.to('cpu')) |
| |
| cpu_slice4 = cpu_x[1, :] |
| mps_slice4 = mps_x[1, :].to('cpu') |
| self.assertEqual(cpu_slice4, mps_slice4) |
| |
| @parametrize("torch_type", arg_values=[torch.float16, torch.float32, torch.bfloat16]) |
| def test_slice_view_api(self, torch_type: torch.dtype): |
| |
| def helper(x_tensor, y_func, z_func, r_func=None): |
| x_mps = x_tensor.detach().clone().to("mps") |
| |
| y = y_func(x_tensor) |
| y_mps = y_func(x_mps) |
| self.assertEqual(y, y_mps) |
| |
| z = z_func(y) |
| z_mps = z_func(y_mps) |
| self.assertEqual(z, z_mps) |
| self.assertEqual(z.storage_offset(), z_mps.storage_offset()) |
| |
| if r_func: |
| r = r_func(z) |
| r_mps = r_func(z_mps) |
| self.assertEqual(r, r_mps) |
| |
| # Skip bfloat16 before MacOS15 |
| if not (product_version < 15.0 and torch_type == torch.bfloat16): |
| # Tests for previously encountered MPS bugs |
| helper( |
| torch.randn(4, 4, dtype=torch_type), |
| lambda x: x[1], |
| lambda y: y.reshape(2, 2), |
| lambda z: z + 1 |
| ) |
| helper( |
| torch.randn(2, 4, dtype=torch_type), |
| lambda x: x[1], |
| lambda y: y + torch.ones(4, device=y.device) |
| ) |
| helper( |
| torch.randn(4, 6, dtype=torch_type), |
| lambda x: x[1], |
| lambda y: y.reshape(3, 2).t(), |
| lambda z: z + 1 |
| ) |
| helper( |
| torch.arange(4, dtype=torch_type).resize(1, 2, 2), |
| lambda x: x.permute(2, 0, 1), |
| lambda y: y + 1 |
| ) |
| helper( |
| torch.randn(4, 8, dtype=torch_type), |
| lambda x: x.transpose(0, 1).reshape(-1), |
| lambda y: y[:2], |
| lambda z: z + 1 |
| ) |
| helper( |
| torch.randn(1, dtype=torch_type), |
| lambda x: x.expand(2, 3), |
| lambda y: y + torch.ones(2, 3, device=y.device) |
| ) |
| |
| def test_slice_reshape_contiguous(self): |
| x = torch.randn(4, 4) |
| x_mps = x.detach().clone().to("mps") |
| |
| y = x[1] |
| y_mps = x_mps[1] |
| self.assertEqual(y, y_mps) |
| |
| z = y.reshape(2, 2) |
| z_mps = y_mps.reshape(2, 2) |
| self.assertEqual(z, z_mps) |
| self.assertEqual(z.storage_offset(), z_mps.storage_offset()) |
| |
| def test_scalar_from_slice_unary(self): |
| # https://github.com/pytorch/pytorch/issues/82543 |
| tensor_list = torch.tensor([1.0, 1.2], device="mps") |
| |
| for scalar in tensor_list: |
| r_mps = torch.ceil(scalar) |
| r_cpu = torch.ceil(scalar.to("cpu")) |
| self.assertEqual(r_mps.cpu(), r_cpu) |
| |
| def test_scalar_from_slice_binary(self): |
| # https://github.com/pytorch/pytorch/issues/82543 |
| def helper(binary_op): |
| tensor_list = torch.tensor([1.0, 1.2, 2.5, 1.0], device="mps") |
| |
| for scalar in tensor_list: |
| r_mps = binary_op(scalar, 1.0) |
| r_cpu = binary_op(scalar.cpu(), 1.0) |
| self.assertEqual(r_mps.cpu(), r_cpu) |
| helper(torch.sub) |
| helper(torch.add) |
| helper(torch.not_equal) |
| helper(torch.eq) |
| |
| def test_slice_contiguous_view(self): |
| # https://github.com/pytorch/pytorch/issues/77750 |
| |
| def helper(operator): |
| t_mps = torch.tensor([1, 2, 3, 4], device="mps") |
| t_cpu = torch.tensor([1, 2, 3, 4], device="cpu") |
| |
| # contiguous view |
| x_mps = t_mps[2:] # 3, 4 |
| y_mps = t_mps[:2] # 1, 2 |
| |
| x_cpu = t_cpu[2:] |
| y_cpu = t_cpu[:2] |
| |
| res_mps = res_cpu = None |
| if operator == "<=": |
| res_mps = x_mps <= y_mps |
| res_cpu = x_cpu <= y_cpu |
| elif operator == "<": |
| res_mps = x_mps < y_mps |
| res_cpu = x_cpu < y_cpu |
| elif operator == ">=": |
| res_mps = x_mps >= y_mps |
| res_cpu = x_cpu >= y_cpu |
| elif operator == ">": |
| res_mps = x_mps >= y_mps |
| res_cpu = x_cpu >= y_cpu |
| elif operator == "==": |
| res_mps = x_mps == y_mps |
| res_cpu = x_cpu == y_cpu |
| elif operator == "!=": |
| res_mps = x_mps != y_mps |
| res_cpu = x_cpu != y_cpu |
| elif operator == "stack": |
| res_mps = torch.stack((y_mps, x_mps), dim=-1) |
| res_cpu = torch.stack((y_cpu, x_cpu), dim=-1) |
| |
| self.assertEqual(res_mps, res_cpu) |
| |
| for op in ["<=", "<", ">=", ">", "==", "!=", "stack"]: |
| helper(op) |
| |
| def test_slice_of_slice(self): |
| x = torch.tensor([0.5, 0.5], device="cpu") |
| x_mps = torch.tensor([0.5, 0.5], device="mps") |
| |
| tensor = x[1][None] |
| tensor_mps = x_mps[1][None] |
| |
| res = tensor.ne(0) |
| res_mps = tensor_mps.ne(0) |
| |
| self.assertEqual(res, res_mps) |
| |
| def test_index_storage_offset(self): |
| # https://github.com/pytorch/pytorch/issues/78107 |
| |
| a = torch.tensor([8.2670e-01, -1.0293e+00]) |
| b_cpu = a[0] |
| c_cpu = a[1] |
| |
| # both 'b' and 'c' are views of 'a' |
| # 'b' has a storage offset of 0, while 'c' has a storage offset of 1 |
| # when copying from 'cpu' to 'mps', c will have a storage_offset of 1 which needs to be taking into account, |
| # otherwise it ends with same value as 'b' |
| b = b_cpu.to('mps') |
| c = c_cpu.to('mps') |
| |
| res_mps = b > c |
| res_cpu = b_cpu > c_cpu |
| self.assertEqual(res_mps, res_cpu) |
| |
| res_mps = c > b |
| res_cpu = c_cpu > b_cpu |
| self.assertEqual(res_mps, res_cpu) |
| |
| def test_flatten(self): |
| values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| |
| cpu_flatten1 = cpu_x.flatten() |
| mps_flatten1 = mps_x.flatten().to('cpu') |
| self.assertEqual(cpu_flatten1, mps_flatten1) |
| |
| cpu_flatten2 = cpu_x.flatten(start_dim=1) |
| mps_flatten2 = mps_x.flatten(start_dim=1).to('cpu') |
| self.assertEqual(cpu_flatten2, mps_flatten2) |
| |
| cpu_flatten3 = cpu_x.flatten(end_dim=1) |
| mps_flatten3 = mps_x.flatten(end_dim=1).to('cpu') |
| self.assertEqual(cpu_flatten3, mps_flatten3) |
| |
| # Test repeat |
| def test_repeat(self): |
| def helper(shape, repeats): |
| |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| y = x.repeat(repeats) |
| ref_y = cpu_x.repeat(repeats) |
| |
| cpu_grad = torch.randn(ref_y.shape) |
| grad = cpu_grad.to('mps') |
| |
| y.backward(gradient=grad) |
| ref_y.backward(gradient=cpu_grad) |
| |
| self.assertEqual(y, ref_y) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 3, 4, 5), (2, 3, 4, 5)) |
| helper((2, 3, 4), (4, 3, 2, 5, 7, 2)) |
| helper((3, 4, 5), (2, 3, 4, 5)) |
| helper((3, 4, 5), (2, 2, 2)) |
| |
| def test_torch_repeat_interleave(self, device="mps"): |
| y = torch.tensor([[1, 2], [3, 4]], device=device) |
| # exercise single argument function signature |
| temp = y.repeat_interleave(2) |
| self.assertEqual(torch.Size([8]), temp.size()) |
| |
| for dtype in [torch.int, torch.long]: |
| lengths = torch.tensor([1, 2], dtype=dtype, device="mps") |
| output_size = torch.sum(lengths) |
| a = torch.repeat_interleave( |
| y, |
| lengths, |
| dim=0, |
| ) |
| self.assertEqual(a.dtype, y.dtype) |
| self.assertEqual(a.size(), torch.Size([3, 2])) |
| |
| a_with_output = torch.repeat_interleave( |
| y, |
| lengths, |
| dim=0, |
| output_size=output_size, |
| ) |
| self.assertEqual(a_with_output.dtype, y.dtype) |
| self.assertEqual(a_with_output.size(), torch.Size([3, 2])) |
| |
| def test_repeat_interleave(self, device="mps"): |
| x = torch.tensor([0, 1, 2, 3], device=device) |
| expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device) |
| # Prior to macos 13.3, input of dtype=torch.int64 returns dtype=torch.int32 |
| self.assertEqual(torch.repeat_interleave(x), expected, exact_dtype=product_version >= 13.3) |
| |
| with self.assertRaises(RuntimeError): |
| torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2)) |
| |
| with self.assertRaises(RuntimeError): |
| torch.repeat_interleave(torch.arange(4.0, device=device)) |
| |
| with self.assertRaises(RuntimeError): |
| torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device)) |
| |
| y = torch.tensor([[1, 2], [3, 4]], device=device) |
| |
| y1_v1 = torch.repeat_interleave(y, 2) |
| y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device)) |
| y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device)) |
| y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device) |
| self.assertEqual(y1_v1, y1_expect) |
| self.assertEqual(y1_v2, y1_expect) |
| self.assertEqual(y1_v3, y1_expect) |
| |
| y2 = torch.repeat_interleave(y, 3, dim=1) |
| y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2], |
| [3, 3, 3, 4, 4, 4]], device=device) |
| self.assertEqual(y2, y2_expect) |
| |
| y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0) |
| y3_expect = torch.tensor([[1, 2], |
| [3, 4], |
| [3, 4]], device=device) |
| self.assertEqual(y3, y3_expect) |
| |
| with self.assertRaises(RuntimeError): |
| torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0) |
| |
| with self.assertRaises(RuntimeError): |
| torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0) |
| |
| # test zero sized dimension |
| x = torch.zeros((5, 0), device=device) |
| y = torch.repeat_interleave(x, repeats=3, dim=1) |
| self.assertEqual(y, x.new_zeros(5, 0, device=device)) |
| |
| x = torch.tensor([], dtype=torch.int64, device=device) |
| y = torch.repeat_interleave(x, x) |
| self.assertEqual(y, x) |
| |
| def test_repeat_interleave_simple(self): |
| def helper(shape, dtype=torch.float32, num_repeats=torch.Tensor(), dim=None): |
| x = torch.randn(shape, dtype=dtype, device="mps") |
| x_cpu = x.detach().clone().cpu() |
| |
| num_repeats_cpu = num_repeats.detach().clone().cpu() |
| |
| repeats = torch.repeat_interleave(x, num_repeats, dim) |
| repeats_cpu = torch.repeat_interleave(x_cpu, num_repeats_cpu, dim) |
| |
| self.assertEqual(repeats, repeats_cpu) |
| helper(shape=3, num_repeats=torch.tensor([100], device="mps")) |
| helper(shape=(2, 2), num_repeats=torch.tensor([3, 3], device="mps"), dim=0) |
| helper(shape=(10, 15, 8), num_repeats=torch.arange(10, device="mps"), dim=0) |
| helper(shape=(10, 15, 8), num_repeats=torch.randint(0, 100, (15, ), device="mps"), dim=1) |
| helper(shape=(10, 15, 30), num_repeats=torch.randint(0, 100, (30, ), device="mps"), dim=2) |
| |
| def test_count_nonzero(self): |
| def helper(dtype): |
| n = [ |
| [[1, 0, 2], [3, 0, 2], [7, 9, -4]], |
| [[0, 2, 3], [3, 2, 1], [2, 0, 0]], |
| ] |
| cpu_x = torch.tensor(n, dtype=dtype) |
| mps_x = torch.tensor(n, dtype=dtype).to('mps') |
| |
| # All non-zeros |
| self.assertEqual( |
| torch.count_nonzero(cpu_x), |
| torch.count_nonzero(mps_x) |
| ) |
| |
| # dim=1 |
| self.assertEqual( |
| torch.count_nonzero(cpu_x, dim=1), |
| torch.count_nonzero(mps_x, dim=1) |
| ) |
| |
| # dim=(0, 1) |
| self.assertEqual( |
| torch.count_nonzero(cpu_x, dim=(0, 1)), |
| torch.count_nonzero(mps_x, dim=(0, 1)) |
| ) |
| helper(torch.int32) |
| helper(torch.int64) |
| helper(torch.float16) |
| helper(torch.float32) |
| |
| def _test_module_empty_input(self, module, inp, check_size=True): |
| inp.requires_grad_(True) |
| out = module(inp) |
| gO = torch.rand_like(out) |
| out.backward(gO) |
| if check_size: |
| self.assertEqual(out.size(), inp.size()) |
| for p in module.parameters(): |
| if p.requires_grad: |
| self.assertEqual(p.grad, torch.zeros_like(p.grad)) |
| self.assertEqual(inp.grad, torch.zeros_like(inp)) |
| |
| # Test dtype casting, with and without simultaneous device change |
| def test_to(self): |
| values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| |
| self.assertEqual(cpu_x.int(), mps_x.int().cpu()) |
| self.assertEqual(cpu_x.bool(), mps_x.bool().cpu()) |
| self.assertEqual(cpu_x.float(), mps_x.float().cpu()) |
| |
| self.assertEqual(torch.tensor(1.3, device='mps').int().cpu(), |
| torch.tensor(1, dtype=torch.int32)) |
| self.assertEqual(torch.tensor(0.0, device='mps').bool().cpu(), torch.tensor(False)) |
| self.assertEqual(torch.tensor(0.1, device='mps').bool().cpu(), torch.tensor(True)) |
| self.assertEqual(torch.tensor(0.1, device='mps').bool().int().cpu(), |
| torch.tensor(1, dtype=torch.int32)) |
| self.assertEqual(torch.tensor(0.1, device='mps').bool().int().float().cpu(), |
| torch.tensor(1.0)) |
| self.assertEqual(torch.tensor(4.25, device='mps').to('cpu', torch.int), |
| torch.tensor(4, dtype=torch.int32)) |
| self.assertEqual(torch.tensor(4.25, device='cpu').to('mps', torch.int).cpu(), |
| torch.tensor(4, dtype=torch.int32)) |
| self.assertEqual(torch.tensor(-8.34, device='cpu').to('mps', torch.int), |
| torch.tensor(-8.34, device='cpu').to('mps').to(torch.int)) |
| # Cast int8 and uint8 to float and compare results |
| # See https://github.com/pytorch/pytorch/issues/80009 for more details |
| cpu_byte = torch.tensor([60, 160, 20, 220], dtype=torch.uint8) |
| cpu_char = torch.tensor([60, -60, 20, -120], dtype=torch.uint8) |
| for x_cpu in [cpu_byte, cpu_char]: |
| x_mps = x_cpu.to('mps') |
| self.assertEqual(x_mps.to(torch.float32), x_cpu.to(torch.float32)) |
| |
| |
| def test_setitem_scalar(self) -> None: |
| device = 'mps' |
| for dtype in [torch.int32, torch.float32, torch.int64]: |
| for i in range(3, 6): |
| for j in range(3, 6): |
| t = torch.zeros(i, j, dtype=dtype, device=device) |
| self.assertEqual(t.sum(), 0) |
| t[1, 1] = 1 |
| t[2, 1] = j |
| t[1, 2] = i |
| self.assertEqual(t[1, 1], 1) |
| self.assertEqual(t[1, 2], i) |
| self.assertEqual(t[2, 1], j) |
| self.assertEqual(t.sum(), 1 + i + j) |
| |
| def test_stride_of_strides(self) -> None: |
| x = torch.rand(32, 1, device='mps') |
| y = x.as_strided(size=(32, 2), stride=(1, 0)) |
| # Casting stride of strided tensor to CPU use to crash with "buffer is not large enough." assert |
| # See https://github.com/pytorch/pytorch/issues/79181#issuecomment-1154683435 |
| z = y.as_strided(size=(32, 3), stride=(1, 0)).to("cpu") |
| self.assertEqual(x.to("cpu").as_strided(size=(32, 3), stride=(1, 0)), z) |
| |
| def test_type_casting(self): |
| # https://github.com/pytorch/pytorch/issues/81567 |
| def helper(data, to_dtype): |
| a_cpu = torch.tensor(data) |
| a_mps = a_cpu.to(torch.device('mps')) |
| |
| res_cpu = a_cpu.type(to_dtype) |
| res_mps = a_mps.type(to_dtype) |
| self.assertEqual(res_cpu, res_mps) |
| |
| helper([9.0, 3.0, 5.0, 4.0], torch.LongTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.FloatTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.IntTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.ShortTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.HalfTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.CharTensor) |
| helper([9.0, 3.0, 5.0, 4.0], torch.ByteTensor) |
| |
| def test_to_casting(self): |
| # https://github.com/pytorch/pytorch/issues/81567 |
| def helper(data, to_dtype): |
| a_cpu = torch.tensor(data) |
| a_mps = a_cpu.to(torch.device('mps')) |
| |
| res_cpu = a_cpu.to(to_dtype) |
| res_mps = a_mps.to(to_dtype) |
| self.assertEqual(res_cpu, res_mps) |
| |
| helper([9.0, 3.0, 5.0, 4.0], torch.int64) |
| helper([9.0, 3.0, 5.0, 4.0], torch.float) |
| helper([9.0, 3.0, 5.0, 4.0], torch.int32) |
| helper([9.0, 3.0, 5.0, 4.0], torch.short) |
| helper([9.0, 3.0, 5.0, 4.0], torch.half) |
| helper([9.0, 3.0, 5.0, 4.0], torch.int8) |
| helper([9.0, 3.0, 5.0, 4.0], torch.uint8) |
| |
| def test_storage_offset_greater_than_src_nbytes(self): |
| # https://github.com/pytorch/pytorch/issues/80844 |
| n_tensors = 100 |
| n_tensor_elems = 784 |
| elems = torch.arange(n_tensors * n_tensor_elems, dtype=torch.float32) |
| |
| tensor_list = [] |
| for i in range(0, n_tensors - 1): |
| # create a list of contiguous view tensors (view tensor created by the slice op) |
| t = elems[n_tensor_elems * i : n_tensor_elems * (i + 1)] |
| tensor_list.append(t) |
| |
| for i in range(0, n_tensors - 1): |
| t = tensor_list[i].view(1, n_tensor_elems) |
| t_mps = t.to("mps") |
| self.assertEqual(t, t_mps.cpu(), f"i={i}") |
| |
| # See https://github.com/pytorch/pytorch/issues/82427 |
| # and https://github.com/pytorch/pytorch/issues/83692 |
| def test_full_bugs(self): |
| # Test should not crash |
| x = torch.full((3, 3), True, device='mps') |
| # torch.full should work for uint8 |
| y_mps = torch.full((2, 2), 247, device='mps', dtype=torch.uint8) |
| y_cpu = torch.full((2, 2), 247, device='cpu', dtype=torch.uint8) |
| self.assertEqual(y_mps, y_cpu) |
| |
| @unittest.skipIf(product_version < 13.0, "Skipped on macOS 12") |
| # See https://github.com/pytorch/pytorch/issues/84995 |
| def test_div_bugs(self): |
| for (dtype, mode) in itertools.product(integral_types(), ['trunc', 'floor']): |
| if dtype != torch.int64: |
| x = torch.tensor(list(range(1, 11)), device='mps', dtype=dtype) |
| y = torch.div(x, 101, rounding_mode=mode) |
| self.assertEqual(y.sum(), 0) |
| |
| # See https://github.com/pytorch/pytorch/issues/82663 |
| def test_bool_expand(self): |
| x = torch.tensor([[1], [0]], dtype=torch.bool, device='mps') |
| y = torch.tensor([0, 1], dtype=torch.bool, device='mps') |
| self.assertFalse(torch.equal(x.expand(2, 2), y.expand(2, 2))) |
| |
| def test_int_expand(self): |
| x = torch.tensor([[1], [0]], dtype=torch.int8, device='mps') |
| y = torch.tensor([0, 1], dtype=torch.int8, device='mps') |
| self.assertFalse(torch.equal(x.expand(2, 2), y.expand(2, 2))) |
| |
| # Empty unary op should return tensor of the same size |
| def test_empty_neg(self): |
| x = torch.tensor([[]], device='mps') |
| y = -x |
| self.assertEqual(x, y) |
| |
| def _test_unique_scalar_empty(self, dtype, device, f): |
| # test scalar |
| x = torch.tensor(0, dtype=dtype, device=device) |
| unique, inverse, counts = f(x, return_inverse=True, return_counts=True) |
| expected_unique = torch.tensor([0], dtype=dtype, device=device) |
| expected_inverse = torch.tensor(0, device=device) |
| expected_counts = torch.tensor([1], device=device) |
| self.assertEqual(unique, expected_unique) |
| self.assertEqual(inverse, expected_inverse) |
| self.assertEqual(counts, expected_counts) |
| |
| # test zero sized tensor |
| x = torch.zeros((0, 0, 3), dtype=dtype, device=device) |
| unique, inverse, counts = f(x, return_inverse=True, return_counts=True) |
| expected_unique = torch.tensor([], dtype=dtype, device=device) |
| expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device) |
| expected_counts = torch.tensor([], dtype=torch.long, device=device) |
| self.assertEqual(unique, expected_unique) |
| self.assertEqual(inverse, expected_inverse) |
| self.assertEqual(counts, expected_counts) |
| |
| def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape): |
| def ensure_tuple(x): |
| if isinstance(x, torch.Tensor): |
| return (x,) |
| return x |
| |
| for return_inverse in [True, False]: |
| for return_counts in [True, False]: |
| # test with expected |
| ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts)) |
| self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) |
| self.assertEqual(expected_unique, ret[0]) |
| if return_inverse: |
| self.assertEqual(expected_inverse, ret[1]) |
| if return_counts: |
| count_index = 1 + int(return_inverse) |
| self.assertEqual(expected_counts, ret[count_index]) |
| |
| # tests per-element unique on a higher rank tensor. |
| y = x.view(additional_shape) |
| y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True) |
| self.assertEqual(expected_unique, y_unique) |
| self.assertEqual(expected_inverse.view(additional_shape), y_inverse) |
| self.assertEqual(expected_counts, y_counts) |
| |
| def test_unique_all_dtypes(self, device="mps"): |
| def helper(dtype): |
| def ensure_tuple(x): |
| if isinstance(x, torch.Tensor): |
| return (x,) |
| return x |
| |
| if dtype is torch.bool: |
| x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device) |
| expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device) |
| expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device) |
| expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device) |
| else: |
| x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device) |
| expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device) |
| expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device) |
| expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device) |
| |
| # test sorted unique |
| fs = ( |
| lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs), |
| lambda x, **kwargs: x.unique(sorted=True, **kwargs), |
| ) |
| x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x) |
| xs = (x, x_sliced) |
| for f, x in product(fs, xs): |
| self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2)) |
| self._test_unique_scalar_empty(dtype, device, f) |
| |
| # test unsorted unique |
| fs = ( |
| lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs), |
| lambda x, **kwargs: x.unique(sorted=False, **kwargs) |
| ) |
| for f, x in product(fs, xs): |
| self._test_unique_scalar_empty(dtype, device, f) |
| for return_inverse, return_counts in product((True, False), repeat=2): |
| ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts)) |
| self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts)) |
| x_list = x.tolist() |
| x_unique_list = ret[0].tolist() |
| self.assertEqual(expected_unique.tolist(), sorted(x_unique_list)) |
| if return_inverse: |
| x_inverse_list = ret[1].tolist() |
| for i, j in enumerate(x_inverse_list): |
| self.assertEqual(x_list[i], x_unique_list[j]) |
| if return_counts: |
| count_index = 1 + int(return_inverse) |
| x_counts_list = ret[count_index].tolist() |
| for i, j in zip(x_unique_list, x_counts_list): |
| count = 0 |
| for k in x_list: |
| if k == i: |
| count += 1 |
| self.assertEqual(j, count) |
| [helper(dtype) for dtype in [torch.float32, torch.int64, torch.int32, torch.int16, torch.uint8]] |
| |
| def test_unique(self): |
| def helper(x, return_inverse, return_counts): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| result = torch.unique(x, return_inverse=return_inverse, return_counts=return_counts) |
| result_cpu = torch.unique(cpu_x, return_inverse=return_inverse, return_counts=return_counts) |
| |
| self.assertEqual(result, result_cpu) |
| helper(torch.tensor([1, 2, 4, 2, 1]), False, False) |
| helper(torch.randint(3, (10, )), False, False) |
| helper(torch.randint(3, (10, )), True, False) |
| helper(torch.randint(3, (10, )), False, True) |
| helper(torch.randint(3, (10, )), True, True) |
| helper(torch.randint(3, (1, )), True, True) |
| helper(torch.randint(3, (0, )), True, True) |
| # Regression test for https://github.com/pytorch/pytorch/issues/104879 |
| x = torch.arange(2, device="mps") |
| self.assertEqual(x.reshape(1, 1, 2).unique(), x) |
| |
| def test_unique_consecutive(self): |
| def helper(x, dim, return_inverse, return_counts): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| result = torch.unique_consecutive(x, dim=dim, return_inverse=return_inverse, return_counts=return_counts) |
| result_cpu = torch.unique_consecutive(cpu_x, dim=dim, return_inverse=return_inverse, return_counts=return_counts) |
| |
| self.assertEqual(result, result_cpu) |
| helper(torch.tensor([1, 2, 4, 2, 1]), 0, False, False) |
| helper(torch.randint(3, (10, )), 0, False, False) |
| helper(torch.randint(3, (10, )), 0, True, False) |
| helper(torch.randint(3, (10, )), 0, False, True) |
| helper(torch.randint(3, (10, )), 0, True, True) |
| helper(torch.randint(3, (10, )), 0, True, True) |
| helper(torch.randint(3, (1, )), 0, True, True) |
| helper(torch.randint(3, (0, )), 0, True, True) |
| |
| helper(torch.tensor([[1, 1, 2, 3, 3, 2], [1, 1, 1, 2, 2, 1]]), 0, False, False) |
| helper(torch.tensor([[1, 1, 2, 3, 3, 2], [1, 1, 1, 2, 2, 1]]), 0, True, True) |
| helper(torch.randint(2, (20, 2)), 0, True, True) |
| helper(torch.randint(2, (1, 2)), 0, True, True) |
| helper(torch.randint(2, (0, 2)), 0, True, True) |
| |
| helper(torch.tensor([[1, 1, 2, 3, 3, 2], [1, 1, 1, 2, 2, 1]]), 1, False, False) |
| helper(torch.tensor([[1, 1, 2, 3, 3, 2], [1, 1, 1, 2, 2, 1]]), 1, True, True) |
| helper(torch.randint(2, (2, 20)), 1, True, True) |
| helper(torch.randint(2, (2, 1)), 1, True, True) |
| helper(torch.randint(2, (2, 0)), 1, True, True) |
| |
| # See https://github.com/pytorch/pytorch/issues/85675 |
| def test_cat_non_contiguous(self): |
| def rotate_subset(data, dim): |
| x1 = data[:, :, :2, :] |
| x2 = data[:, :, 2:, :] |
| self.assertFalse(x1.is_contiguous()) |
| self.assertFalse(x2.is_contiguous()) |
| return torch.concat((x1, x2), dim=dim) |
| for dtype in MPS_DTYPES: |
| if dtype == torch.bool: |
| continue |
| data = torch.arange(48, dtype=dtype).reshape(1, 2, 4, 6) |
| data = data.to(memory_format=torch.channels_last) |
| mps_data = data.to("mps") |
| self.assertEqual(data, mps_data) |
| for dim in range(data.dim()): |
| cpu_result = rotate_subset(data, dim) |
| mps_result = rotate_subset(mps_data, dim) |
| self.assertEqual(cpu_result, mps_result.to("cpu")) |
| # TODO: enable memory format test |
| # self.assertEqual(cpu_result.is_contiguous(), mps_result.is_contiguous()) |
| |
| # See https://github.com/pytorch/pytorch/issues/85967 |
| def test_from_numpy_non_contiguous(self): |
| a = np.arange(9).reshape(3, 3)[:, :2] |
| t_cpu = torch.tensor(a, device="cpu") |
| t_mps = torch.tensor(a, device="mps") |
| self.assertEqual(t_cpu, t_mps.to("cpu")) |
| |
| # See https://github.com/pytorch/pytorch/issues/86954 |
| def test_copy_non_contiguous(self): |
| x = torch.arange(27).reshape(3, 3, 3).permute(2, 0, 1) |
| self.assertFalse(x.is_contiguous()) |
| y = x.to('mps') |
| self.assertFalse(y.is_contiguous()) |
| self.assertEqual(x, y.to('cpu')) |
| |
| x = torch.arange(4**3).reshape(4, 4, 4).permute((2, 0, 1))[1:, ::2] |
| y = x.to('mps') |
| self.assertEqual(x, y.to('cpu')) |
| |
| x = torch.full((4, 4, 4, 4), 13, device="cpu") |
| y = torch.full((4, 4, 4, 4), 13, device="mps") |
| z = torch.arange(4**4).reshape(4, 4, 4, 4).permute(3, 2, 0, 1)[1::, ::2] |
| x.permute(3, 2, 1, 0)[1::, ::2] = z |
| # As y is on MPS and z on CPU, this dispatches to a copy operator |
| y.permute(3, 2, 1, 0)[1::, ::2] = z |
| self.assertEqual(x, y.to('cpu')) |
| |
| # See https://github.com/pytorch/pytorch/issues/95417 |
| def test_copy_storage_offset(self): |
| x_cpu = torch.zeros(5, device="cpu", dtype=torch.float32) |
| x_mps = torch.zeros(5, device="mps", dtype=torch.float32) |
| update_cpu = torch.tensor([1, 1], device="cpu", dtype=torch.int64) |
| update_mps = torch.tensor([1, 1], device="mps", dtype=torch.int64) |
| x_cpu[2:4] = update_cpu |
| x_mps[2:4] = update_mps # implicit type casting and copy |
| self.assertEqual(x_cpu, x_mps) |
| |
| x_cpu[2:4] = update_mps # implicit device moving and copy |
| self.assertEqual(x_cpu, x_mps) |
| |
| def test_copy_broadcasting(self): |
| def helper(src_shape, dst_shape, src_dtype, dst_dtype): |
| cpu_src = torch.randint(0, 127, src_shape).to(src_dtype) |
| cpu_dst = torch.randint(0, 127, dst_shape).to(dst_dtype) |
| cpu_result = cpu_dst.copy_(cpu_src) |
| mps_src = cpu_src.to("mps") |
| mps_dst = cpu_dst.to("mps") |
| mps_result = mps_dst.copy_(mps_src) |
| self.assertEqual(cpu_result, mps_result) |
| |
| test_dtypes = [torch.float32, torch.int32, torch.int16, torch.int8] |
| |
| for (src_dtype, dst_dtype) in itertools.product(test_dtypes, test_dtypes): |
| helper((2, 1), (2, 3), src_dtype, dst_dtype) |
| helper((2, 1), (2, 2), src_dtype, dst_dtype) |
| helper((3, 1, 4, 1), (3, 4, 4, 5), src_dtype, dst_dtype) |
| helper((3,), (2, 3), src_dtype, dst_dtype) |
| helper((2,), (2, 2), src_dtype, dst_dtype) |
| helper((4, 1, 5), (3, 4, 4, 5), src_dtype, dst_dtype) |
| helper((4, 1, 5), (4, 0, 5), src_dtype, dst_dtype) |
| helper((1, 5), (4, 0, 5), src_dtype, dst_dtype) |
| helper((3, 1, 0), (3, 5, 0), src_dtype, dst_dtype) |
| helper((0, 1, 0), (0, 5, 0), src_dtype, dst_dtype) |
| # Regression test for https://github.com/pytorch/pytorch/issues/107867 |
| self.assertEqual(torch.tensor([[1]], device='mps').item(), 1.0) |
| |
| # See https://github.com/pytorch/pytorch/pull/84742 |
| # and https://github.com/pytorch/pytorch/pull/78319 |
| def test_binops_dtype_precedence(self): |
| # Test dtype precedence (casting order) in binary operations by comparing to CPU result |
| # Example values for all dtypes supported on the MPS backend |
| sample_vals = { |
| torch.bool: [False, True], |
| torch.int16: [-15, 0, 1, 10], |
| torch.int32: [-376, 0, 1, 13], |
| torch.int64: [-8, 0, 1, 77], |
| torch.float16: [-234.5, 0.0, 1.0, 2.0], |
| torch.float32: [-1.0, 0.0, 0.1, 111.99], |
| } |
| # Test all combinations of dtypes, operations, dimensionality |
| for dtype1, dtype2, binop in itertools.product( |
| sample_vals.keys(), sample_vals.keys(), ['add', 'sub', 'mul', 'div']): |
| # bool minus bool is generally unsupported, so skip |
| if binop == 'sub' and (dtype1 == torch.bool or dtype2 == torch.bool): |
| continue |
| full_shape = (10,) |
| for val1, val2 in itertools.product(sample_vals[dtype1], sample_vals[dtype2]): |
| # print(f'{dtype1},{dtype2}: ({val1}).{binop}({val2})') |
| # print(getattr(torch.tensor(val1, dtype=dtype1, device='mps'), binop) |
| # (torch.tensor(val2, dtype=dtype2, device='mps'))) |
| # print(getattr(torch.tensor(val1, dtype=dtype1, device='cpu'), binop) |
| # (torch.tensor(val2, dtype=dtype2, device='cpu'))) |
| self.assertEqual( |
| getattr(torch.tensor(val1, dtype=dtype1, device='mps'), binop) |
| (torch.tensor(val2, dtype=dtype2, device='mps')), |
| getattr(torch.tensor(val1, dtype=dtype1, device='cpu'), binop) |
| (torch.tensor(val2, dtype=dtype2, device='cpu'))) |
| self.assertEqual( |
| getattr(torch.tensor([val1], dtype=dtype1, device='mps'), binop) |
| (torch.tensor([val2], dtype=dtype2, device='mps')), |
| getattr(torch.tensor([val1], dtype=dtype1, device='cpu'), binop) |
| (torch.tensor([val2], dtype=dtype2, device='cpu'))) |
| self.assertEqual( |
| getattr(torch.tensor(val1, dtype=dtype1, device='mps'), binop) |
| (torch.tensor([val2], dtype=dtype2, device='mps')), |
| getattr(torch.tensor(val1, dtype=dtype1, device='cpu'), binop) |
| (torch.tensor([val2], dtype=dtype2, device='cpu'))) |
| self.assertEqual( |
| getattr(torch.tensor([val1], dtype=dtype1, device='mps'), binop) |
| (torch.tensor(val2, dtype=dtype2, device='mps')), |
| getattr(torch.tensor([val1], dtype=dtype1, device='cpu'), binop) |
| (torch.tensor(val2, dtype=dtype2, device='cpu'))) |
| # Test tensors created with torch.full |
| x1 = torch.full(full_shape, val1, dtype=dtype1, device='mps') |
| y1 = torch.tensor(val2, dtype=dtype2, device='mps') |
| x2 = torch.full(full_shape, val1, dtype=dtype1, device='cpu') |
| y2 = torch.tensor(val2, dtype=dtype2, device='cpu') |
| self.assertEqual(getattr(x1, binop)(y1), getattr(x2, binop)(y2)) |
| x3 = torch.tensor(val1, dtype=dtype1, device='mps') |
| y3 = torch.full(full_shape, val2, dtype=dtype2, device='mps') |
| x4 = torch.tensor(val1, dtype=dtype1, device='cpu') |
| y4 = torch.full(full_shape, val2, dtype=dtype2, device='cpu') |
| self.assertEqual(getattr(x3, binop)(y3), getattr(x4, binop)(y4)) |
| self.assertEqual( |
| getattr(torch.tensor(val1, dtype=dtype1, device='mps'), binop) |
| (torch.full(full_shape, val2, dtype=dtype2, device='mps')), |
| getattr(torch.tensor(val1, dtype=dtype1, device='cpu'), binop) |
| (torch.full(full_shape, val2, dtype=dtype2, device='cpu'))) |
| |
| def test_nansum(self): |
| def helper(dtype, noncontiguous, dim): |
| zero_cpu = torch.zeros((), dtype=dtype) |
| |
| # Randomly scale the values |
| scale = random.randint(10, 100) |
| x_cpu: torch.Tensor = make_tensor( |
| (5, 5), dtype=dtype, device='cpu', |
| low=-scale, high=scale, noncontiguous=noncontiguous) |
| |
| if dtype.is_floating_point: |
| nan_mask_cpu = x_cpu < (0.2 * scale) |
| x_no_nan_cpu = torch.where(nan_mask_cpu, zero_cpu, x_cpu) |
| x_cpu[nan_mask_cpu] = np.nan |
| else: |
| x_no_nan_cpu = x_cpu |
| |
| x_mps = x_cpu.to('mps') |
| actual_out_mps = torch.empty(0, dtype=dtype, device='mps') |
| expect_out_cpu = torch.empty(0, dtype=dtype) |
| dim_kwargs = {"dim": dim} if dim is not None else {} |
| expect = torch.sum(x_no_nan_cpu, **dim_kwargs) |
| |
| actual_cpu = torch.nansum(x_cpu, **dim_kwargs) |
| # Sanity check on CPU |
| self.assertEqual(expect, actual_cpu) |
| |
| # Test MPS |
| actual_mps = torch.nansum(x_mps, **dim_kwargs) |
| # Test out= variant |
| torch.nansum(x_mps, out=actual_out_mps, **dim_kwargs) |
| torch.nansum(x_cpu, out=expect_out_cpu, **dim_kwargs) |
| self.assertEqual(expect, actual_mps) |
| self.assertEqual(expect_out_cpu, actual_out_mps) |
| |
| args = itertools.product( |
| (torch.float16, torch.float32, torch.int32, torch.int64), # dtype |
| (True, False), # noncontiguous |
| (0, 1, None), # dim |
| ) |
| |
| for dtype, noncontiguous, dim in args: |
| with self.subTest(dtype=dtype, noncontiguous=noncontiguous, dim=dim): |
| helper(dtype, noncontiguous, dim) |
| |
| def test_cumsum_all_dtypes(self): |
| def helper(dtype): |
| t = torch.tensor([1, 1, 1, 1], device="mps", dtype=dtype) |
| t_cpu = torch.tensor([1, 1, 1, 1], device="cpu") |
| |
| a = t.cumsum(0, dtype=dtype) |
| a_cpu = t_cpu.cumsum(0, dtype=dtype) |
| |
| self.assertEqual(a.cpu(), a_cpu) |
| [helper(dtype) for dtype in [torch.int8, torch.int16, torch.int32, torch.float32]] |
| |
| try: |
| helper(torch.int64) |
| except Exception as e: |
| e_string = str(e) |
| self.assertEqual(e_string, "MPS does not support cumsum_out_mps op with int64 input." + |
| " Support has been added in macOS 13.3") |
| |
| def test_cumsum_bool(self): |
| a = torch.ones(2**16, dtype=torch.bool) |
| t_cpu = a.cumsum(0) |
| t_mps = a.to("mps").cumsum(0) |
| |
| self.assertEqual(t_cpu, t_mps) |
| |
| def test_cumsum_minus_one_axis(self): |
| def helper(dtype): |
| # Test with axis -1 |
| cpu_x = None |
| if dtype == torch.float32: |
| cpu_x = torch.randn(10, 3, device='cpu', dtype=torch.float32) |
| else: |
| cpu_x = torch.randint(0, 20, (10, 3), device='cpu', dtype=torch.float32) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = cpu_x.cumsum(-1) |
| y = x.cumsum(-1) |
| |
| self.assertEqual(y, cpu_y) |
| |
| [helper(dtype) for dtype in [torch.float32, torch.int16, torch.int32, torch.uint8]] |
| |
| def test_cumprod_all_dtypes(self): |
| def helper(dtype): |
| t = torch.tensor([1, 1, 1, 1], device="mps", dtype=dtype) |
| t_cpu = torch.tensor([1, 1, 1, 1], device="cpu") |
| |
| a = t.cumprod(0, dtype=dtype) |
| a_cpu = t_cpu.cumprod(0, dtype=dtype) |
| |
| self.assertEqual(a.cpu(), a_cpu) |
| [helper(dtype) for dtype in [torch.int8, torch.int16, torch.int32, torch.float32]] |
| |
| try: |
| helper(torch.int64) |
| except Exception as e: |
| e_string = str(e) |
| self.assertEqual(e_string, "MPS does not support cumprod_out_mps op with int64 input." |
| + " Support has been added in macOS 13.3") |
| |
| def test_cumprod_minus_one_axis(self): |
| def helper(dtype): |
| # Test with axis -1 |
| cpu_x = None |
| if dtype == torch.float32: |
| cpu_x = torch.randn(10, 3, device='cpu', dtype=torch.float32) |
| else: |
| cpu_x = torch.randint(0, 20, (10, 3), device='cpu', dtype=torch.float32) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = cpu_x.cumprod(-1) |
| y = x.cumprod(-1) |
| |
| self.assertEqual(y, cpu_y) |
| |
| [helper(dtype) for dtype in [torch.float32, torch.int16, torch.int32, torch.uint8]] |
| |
| def test_median_int16(self): |
| def helper(shape, dtype): |
| cpu_x = torch.randint(-9999, 9999, shape, device='cpu', dtype=dtype) |
| x = cpu_x.detach().clone().to('mps') |
| |
| median_result = torch.median(x) |
| median_result_cpu = torch.median(cpu_x) |
| self.assertEqual(median_result, median_result_cpu) |
| |
| helper((2, 8, 4, 5), torch.int16) |
| |
| def test_activation_checkpoint_does_not_error(self): |
| from torch.utils.checkpoint import checkpoint |
| |
| for use_reentrant in (True, False): |
| a = torch.tensor(1., device="mps", requires_grad=True) |
| |
| def fn(x): |
| return x.sin().cos().exp() |
| |
| out = checkpoint(fn, a, use_reentrant=use_reentrant) |
| out.backward() |
| |
| def test_as_strided(self): |
| values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| values_1 = [[1.0, 1.0], [1.0, 1.0]] |
| cpu_x = torch.tensor(values, device='cpu') |
| ones1 = torch.tensor(values_1, device='mps') |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| strided_cpu = torch.as_strided(cpu_x, (2, 2), (1, 2)) |
| strided_mps = torch.as_strided(x, (2, 2), (1, 2)) |
| self.assertEqual(strided_mps, strided_cpu) |
| strided_cpu_out = strided_cpu + ones1.to('cpu') |
| strided_mps_out = strided_mps + ones1 |
| self.assertEqual(strided_cpu_out, strided_mps_out) |
| |
| # test with storage offsets |
| cpu_x = torch.rand(3, 3, device='cpu') |
| mps_x = cpu_x.to('mps') |
| strided_cpu1 = torch.as_strided(cpu_x, (2, 2), (1, 2), 0) |
| strided_mps1 = torch.as_strided(mps_x, (2, 2), (1, 2), 0) |
| strided_cpu2 = torch.as_strided(cpu_x, (2, 2), (1, 2), 1) |
| strided_mps2 = torch.as_strided(mps_x, (2, 2), (1, 2), 1) |
| strided_cpu_out = strided_cpu1 - strided_cpu2 |
| strided_mps_out = strided_mps1 - strided_mps2 |
| self.assertEqual(strided_cpu_out, strided_mps_out) |
| |
| def test_unfold(self): |
| x = torch.arange(1., 8) |
| x_mps = torch.arange(1., 8, device="mps") |
| |
| y = x.unfold(0, 2, 1) |
| y_mps = x_mps.unfold(0, 2, 1) |
| |
| self.assertEqual(y, y_mps) |
| |
| def test_unfold_all_devices_and_dtypes(self): |
| supported_dtypes = [torch.float32, torch.float16, torch.int64, torch.int32, torch.int16, torch.uint8] |
| for dt in supported_dtypes: |
| x = torch.empty((0, 1, 3, 0), dtype=dt, device="mps") |
| self.assertEqual((0, 1, 1, 0, 3), x.unfold(2, 3, 2).shape) |
| |
| def test_unfold_scalars(self): |
| x = torch.tensor(0.5, device="mps") |
| # unfold on a 0-dimensional tensor should always return a 1-d dimensional |
| # tensor of shape [size] (i.e., the second parameter to unfold) |
| |
| self.assertEqual(torch.empty(0, device="mps"), x.unfold(0, 0, 1)) |
| self.assertEqual(torch.empty(0, device="mps"), x.unfold(0, 0, 2)) |
| self.assertEqual(torch.tensor([0.5], device="mps"), x.unfold(0, 1, 1)) |
| |
| def test_bincount_simple(self): |
| input = torch.randint(0, 8, (5,), dtype=torch.int32, device="mps") |
| input_cpu = input.to("cpu") |
| weights = torch.linspace(0, 1, steps=5, device="mps", dtype=torch.float32) |
| weights_cpu = weights.to("cpu") |
| |
| x = torch.bincount(input) |
| x_cpu = torch.bincount(input_cpu) |
| self.assertEqual(x, x_cpu) |
| |
| y = input.bincount(weights) |
| y_cpu = input_cpu.bincount(weights_cpu) |
| self.assertEqual(y, y_cpu) |
| |
| def test_bincount_reduction(self): |
| device = "mps" |
| # negative input throws |
| with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): |
| torch.bincount(torch.tensor([1, -1], device=device, dtype=torch.int32)) |
| # n-d input, with n > 1 throws |
| with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'): |
| torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device)) |
| # minlength < 0 throws |
| with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'): |
| torch.bincount(torch.tensor([1, 3], device=device), |
| torch.tensor([.2, .2], device=device), |
| minlength=-1) |
| # n-d weights, with n > 1 throws |
| with self.assertRaisesRegex(RuntimeError, '1-d'): |
| torch.bincount(torch.tensor([1, 0], device=device, dtype=torch.int32), |
| torch.tensor([[1., 0.3], [1., 0.3]], device=device, dtype=torch.float)) |
| # input and weights dim mismatch |
| with self.assertRaisesRegex(RuntimeError, 'same length'): |
| torch.bincount(torch.tensor([1, 0], device=device, dtype=torch.int32), |
| torch.tensor([1., 0.3, 0.5], device=device, dtype=torch.float)) |
| # 1-d input with no elements and default minlength |
| self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)), |
| torch.zeros(0, dtype=torch.long, device=device)) |
| # 1-d input with no elements and specified minlength |
| self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10), |
| torch.zeros(10, dtype=torch.long, device=device)) |
| |
| # test tensor method without weights |
| long_counts = torch.tensor( |
| [0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount() |
| self.assertEqual( |
| torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device), |
| long_counts) |
| # test avoiding overflow for uint8 (#76979) |
| count_uint8 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.uint8, device=device).bincount() |
| count_int16 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.int16, device=device).bincount() |
| self.assertEqual(count_uint8, count_int16) |
| # test minlength functionality |
| int_counts = torch.bincount( |
| torch.tensor([1, 1, 1, 1], device=device, dtype=torch.int32), minlength=5) |
| self.assertEqual( |
| torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device), |
| int_counts) |
| # test weights |
| byte_counts = torch.bincount( |
| torch.tensor([0, 1, 1, 1, 4], device=device, dtype=torch.int32), |
| torch.tensor([.1, .2, .3, .4, .5], device=device)) |
| self.assertEqual( |
| torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts) |
| byte_counts = torch.bincount( |
| torch.tensor([0, 1, 1, 1, 4], device=device, dtype=torch.int32), |
| torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device)) |
| self.assertEqual( |
| torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.int32), byte_counts) |
| # test non-contiguous inputs and weights |
| inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device, dtype=torch.int32) |
| weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device) |
| for i in [0, 1]: |
| assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous" |
| assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous" |
| # inputs are non-contiguous but weights are contiguous |
| self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2])) |
| # inputs and weights are non-contiguous |
| self.assertEqual( |
| inputs[:, 1].bincount(weights[:, 1]), |
| torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32)) |
| # weights are non-contiguous but inputs are contiguous |
| self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]), |
| torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32)) |
| |
| # test bincount on non-contiguous slices |
| all0s = torch.zeros((32, 2), dtype=torch.int32, device=device) |
| self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32])) |
| |
| all1s = torch.ones((32, 2), dtype=torch.int32, device=device) |
| self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32])) |
| |
| # test large number of bins - global memory use |
| big_exp = torch.zeros(100, device=device) |
| big_exp[-1] = 50.0 |
| big_w = torch.tensor([.5] * 100, device=device) |
| big_out = torch.tensor([99] * 100, device=device, dtype=torch.int32).bincount(big_w) |
| self.assertEqual(big_exp, big_out) |
| # test large input size |
| big_exp = torch.zeros(2, device=device, dtype=torch.int64) |
| big_exp[1] = 10 |
| big_out = torch.ones(10, dtype=torch.int8, device=device).bincount() |
| self.assertEqual(big_exp, big_out) |
| |
| def test_bincount(self): |
| device = "mps" |
| input_size = (5000,) |
| w = torch.randn(input_size, dtype=torch.float, device=device) |
| w_cpu = w.cpu() |
| |
| t = torch.randint(50, input_size, dtype=torch.int8, device=device) |
| self.assertEqual(t.cpu().bincount(), t.bincount()) |
| self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) |
| |
| t = torch.randint(500, input_size, dtype=torch.int32, device=device) |
| self.assertEqual(t.cpu().bincount(), t.bincount()) |
| self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) |
| |
| t = torch.randint(2000, input_size, dtype=torch.int32, device=device) |
| self.assertEqual(t.cpu().bincount(), t.bincount()) |
| self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w)) |
| |
| t = torch.zeros([10], dtype=torch.int32, device=device) |
| t[0] = 35488 |
| counted = t.bincount(minlength=65536) |
| self.assertEqual(torch.sum(counted), 10) |
| |
| def test_sum_backward(self): |
| def helper(n, c): |
| values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| cpu_x = torch.tensor(values, device='cpu', requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| all_sum = torch.sum(x) |
| all_sum_cpu = torch.sum(cpu_x) |
| |
| all_sum.backward() |
| all_sum_cpu.backward() |
| self.assertEqual(all_sum, all_sum_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper(3, 3) |
| |
| # L1 loss |
| def test_l1_loss(self): |
| def helper(shape, reduction): |
| # create the criterion |
| loss = torch.nn.L1Loss(reduction=reduction) |
| |
| inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| targetCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| targetMPS = targetCPU.detach().clone().to('mps') |
| |
| # forward pass |
| outputCPU = loss(inputCPU, targetCPU) |
| outputMPS = loss(inputMPS, targetMPS) |
| self.assertEqual(outputCPU, outputMPS) |
| |
| # backward pass |
| if reduction != 'none': |
| # chose 2 just to make the grad_output > 1 in backward pass |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 2)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 2)) |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| helper([8, 5, 4], 'none') |
| helper([7, 5, 2, 4], 'sum') |
| # verify if changes in shape would cause cached graph lookup problems |
| helper([7, 5, 2, 4, 6], 'sum') |
| helper([8, 4, 5, 7, 6], 'mean') |
| |
| # Mean Squared Error |
| def test_mse_loss(self): |
| def helper(shape, reduction): |
| # create the criterion |
| loss = torch.nn.MSELoss(reduction=reduction) |
| |
| inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| targetCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| targetMPS = targetCPU.detach().clone().to('mps') |
| |
| # forward pass |
| outputCPU = loss(inputCPU, targetCPU) |
| outputMPS = loss(inputMPS, targetMPS) |
| self.assertEqual(outputCPU, outputMPS) |
| |
| # backward pass |
| if reduction != 'none': |
| # chose 2 just to make the grad_output > 1 in backward pass |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 2)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 2)) |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| helper([8, 5, 4], 'none') |
| helper([7, 5, 2, 4], 'sum') |
| # verify if changes in shape would cause cached graph lookup problems |
| helper([7, 5, 2, 4, 6], 'sum') |
| helper([8, 4, 5, 7, 6], 'mean') |
| |
| def test_mse_loss_strided_output(self): |
| # https://github.com/pytorch/pytorch/issues/124621 |
| lf = nn.MSELoss(reduction='none') |
| model_cpu = nn.Sequential( |
| nn.Conv1d(3, 3, 1), |
| ) |
| model_mps = copy.deepcopy(model_cpu).to("mps") |
| |
| x = torch.randn(128, 10, 3) |
| x = x.permute(0, 2, 1) |
| |
| x_mps = x.detach().clone().to("mps").permute(0, 2, 1) |
| x_mps = x_mps.permute(0, 2, 1) |
| |
| y = model_cpu(x) |
| y_mps = model_mps(x_mps) |
| |
| y = y.permute(0, 2, 1)[:, :5, :] |
| y_mps = y_mps.permute(0, 2, 1)[:, :5, :] |
| |
| y_hat = torch.randn(128, 5, 3) |
| y_hat_mps = y_hat.detach().clone().to("mps") |
| |
| loss = lf(y, y_hat) |
| loss_mps = lf(y_mps, y_hat_mps) |
| self.assertEqual(loss, loss_mps) |
| |
| # Binary Cross Enropy |
| def test_bce_loss_simple(self): |
| def helper(shape, reduction): |
| # create the criterion |
| loss = torch.nn.BCELoss(reduction=reduction) |
| |
| # input and target must be within [0..1] |
| input_t = np.random.random_sample(size=shape).astype(np.float32) |
| target_t = np.random.random_sample(size=shape).astype(np.float32) |
| inputCPU = torch.tensor(input_t, device='cpu', dtype=torch.float, requires_grad=True) |
| targetCPU = torch.tensor(target_t, device='cpu', dtype=torch.float, requires_grad=False) |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| targetMPS = targetCPU.detach().clone().to('mps') |
| |
| # forward pass |
| outputCPU = loss(inputCPU, targetCPU) |
| outputMPS = loss(inputMPS, targetMPS) |
| self.assertEqual(outputCPU, outputMPS) |
| |
| # backward pass |
| if reduction != 'none': |
| # chose 0.6 just to have the grad_output != 1 |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6)) |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| helper([8, 5, 4], 'none') |
| helper([7, 5, 2, 4], 'sum') |
| # verify if changes in shape would cause cached graph lookup problems |
| helper([7, 5, 2, 4, 6], 'sum') |
| helper([8, 4, 5, 7, 6], 'mean') |
| helper([1, 1, 32, 32], 'mean') |
| |
| def test_bce_loss_always_nonnegative(self): |
| target = torch.ones(5, device='mps') |
| input = torch.ones(5, device='mps') |
| self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) |
| |
| target = torch.zeros(5, device='mps') |
| input = torch.zeros(5, device='mps') |
| self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) |
| |
| def test_bce_loss_size_mismatch(self): |
| bceloss = nn.BCELoss() |
| a = torch.rand(25, device='mps') |
| b = torch.rand(25, 1, device='mps') |
| with self.assertRaisesRegex(ValueError, r'Using a target size \('): |
| bceloss(a, b) |
| |
| def test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss_large_tensors_with_grad(self): |
| x_size = 1024 |
| y_size = 256 |
| target = torch.rand(x_size, y_size, device='mps') |
| |
| for reduction in ['none', 'mean', 'sum']: |
| output_sig = torch.rand(x_size, y_size, device='mps') - 0.5 |
| output_logits = output_sig.clone().detach() |
| |
| output_sig.requires_grad = True |
| output_logits.requires_grad = True |
| weight = torch.rand(y_size, device='mps') |
| |
| loss_sig = nn.BCELoss(weight, reduction=reduction)( |
| torch.sigmoid(output_sig), target |
| ) |
| loss_logits = nn.BCEWithLogitsLoss(weight, reduction=reduction)( |
| output_logits, target |
| ) |
| |
| self.assertEqual(loss_logits, loss_sig) |
| |
| if reduction == 'none': |
| grad = torch.rand(x_size, y_size, device='mps') |
| loss_sig.backward(grad) |
| loss_logits.backward(grad) |
| else: |
| loss_sig.backward() |
| loss_logits.backward() |
| |
| self.assertEqual(output_sig.grad, output_logits.grad) |
| |
| def test_bce_with_logits_has_correct_grad_at_zero(self): |
| output = torch.zeros(3, 1, requires_grad=True, device='mps') |
| target = torch.zeros(3, 1, device='mps') |
| nn.BCEWithLogitsLoss(reduction='sum')(output, target).backward() |
| expected_grad = torch.empty(3, 1, device='mps').fill_(0.5) |
| self.assertEqual(output.grad, expected_grad) |
| |
| def test_bce_with_logits_broadcasts_weights(self): |
| target = torch.rand(16, 4, device='mps') |
| output = torch.rand(16, 4, device='mps') - 0.5 |
| |
| weight = torch.rand(4, device='mps') |
| out1 = nn.BCEWithLogitsLoss(weight)(output, target) |
| |
| weight = weight.expand(16, 4).contiguous() |
| out2 = nn.BCEWithLogitsLoss(weight)(output, target) |
| |
| self.assertEqual(out1, out2) |
| |
| weight = torch.rand(16, 1, device='mps') |
| out1 = nn.BCEWithLogitsLoss(weight)(output, target) |
| |
| weight = weight.expand(16, 4).contiguous() |
| out2 = nn.BCEWithLogitsLoss(weight)(output, target) |
| |
| self.assertEqual(out1, out2) |
| |
| def test_bce_with_logits_ones_in_pos_weights_are_the_same_as_none(self): |
| target = torch.rand(64, 4, device='mps') |
| output = torch.rand(64, 4, device='mps') - 0.5 |
| pos_weight = torch.ones(64, 4, device='mps') |
| |
| self.assertEqual(nn.BCEWithLogitsLoss()(output, target), |
| nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target)) |
| |
| def test_bce_with_logits_broadcasts_pos_weights(self): |
| target = torch.rand(64, 4, device='mps') |
| output = torch.rand(64, 4, device='mps') - 0.5 |
| pos_weight = torch.rand(4, device='mps') |
| out1 = nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target) |
| |
| pos_weight1 = pos_weight.expand(1, 4) |
| out2 = nn.BCEWithLogitsLoss(pos_weight=pos_weight1)(output, target) |
| |
| pos_weight2 = pos_weight.expand(64, 4) |
| out3 = nn.BCEWithLogitsLoss(pos_weight=pos_weight2)(output, target) |
| |
| self.assertEqual(out1, out2) |
| self.assertEqual(out1, out3) |
| |
| def test_bce_with_logits_with_pos_weight_has_correct_grad_at_zero(self): |
| output = torch.zeros(3, 1, requires_grad=True, device='mps') |
| target = torch.zeros(3, 1, device='mps') |
| pos_weight = torch.ones(3, 1, device='mps') |
| nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction='sum')(output, target).backward() |
| expected_grad = torch.empty(3, 1, device='mps').fill_(0.5) |
| grad = output.grad |
| self.assertEqual(grad, expected_grad) |
| |
| def test_bce_with_logits_stability(self): |
| output = torch.tensor([0., -120.], device='mps') |
| target = torch.tensor([0., 1.], device='mps') |
| pos_weight = torch.tensor([1., 1.], device='mps') |
| |
| out1 = nn.BCEWithLogitsLoss()(output, target) |
| self.assertTrue(torch.isfinite(out1).all().item()) |
| |
| out2 = nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target) |
| self.assertTrue(torch.isfinite(out2).all().item()) |
| |
| def test_bce_loss_broadcasts_weights(self): |
| sigmoid = nn.Sigmoid() |
| target = torch.rand(16, 4, device='mps') |
| output = torch.rand(16, 4, device='mps') - 0.5 |
| |
| weight = torch.rand(4, device='mps') |
| out1 = nn.BCELoss(weight)(sigmoid(output), target) |
| |
| weight = weight.expand(16, 4).contiguous() |
| out2 = nn.BCELoss(weight)(sigmoid(output), target) |
| |
| self.assertEqual(out1, out2) |
| |
| weight = torch.rand(16, 1, device='mps') |
| out1 = nn.BCELoss(weight)(sigmoid(output), target) |
| |
| weight = weight.expand(16, 4).contiguous() |
| out2 = nn.BCELoss(weight)(sigmoid(output), target) |
| |
| self.assertEqual(out1, out2) |
| |
| def test_cross_entropy_loss(self): |
| # Regression test for https://github.com/pytorch/pytorch/issues/116095 |
| loss = nn.CrossEntropyLoss() |
| pred = torch.randn(3, 5, requires_grad=True, dtype=torch.float16, device='mps') |
| target = torch.ones(3, dtype=torch.long, device='mps') |
| output = loss(pred, target) |
| output.backward() |
| |
| def test_log_softmax(self): |
| values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| cpu_x = torch.tensor(values, device='cpu', requires_grad=True) |
| mps_x = torch.tensor(values, device='mps', requires_grad=True) |
| |
| cpu_log_softmax = F.log_softmax(cpu_x, dim=0) |
| mps_log_softmax = F.log_softmax(mps_x, dim=0) |
| self.assertEqual(cpu_log_softmax, mps_log_softmax.to('cpu')) |
| |
| cpu_grad = torch.ones_like(cpu_log_softmax) |
| mps_grad = torch.ones_like(cpu_log_softmax).to('mps') |
| |
| cpu_log_softmax.backward(gradient=cpu_grad) |
| mps_log_softmax.backward(gradient=mps_grad) |
| |
| self.assertEqual(cpu_x.grad, mps_x.grad.to('cpu')) |
| |
| def test_log_softmax_large_numbers(self): |
| values = [ |
| [10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0], |
| [-10.0, -100.0, -1000.0, -10000.0, -100000.0, -1000000.0] |
| ] |
| cpu_x = torch.tensor(values, device='cpu', requires_grad=True) |
| mps_x = torch.tensor(values, device='mps', requires_grad=True) |
| |
| cpu_log_softmax = F.log_softmax(cpu_x, dim=-1) |
| mps_log_softmax = F.log_softmax(mps_x, dim=-1) |
| self.assertEqual(cpu_log_softmax, mps_log_softmax.to('cpu')) |
| |
| cpu_grad = torch.ones_like(cpu_log_softmax) |
| mps_grad = torch.ones_like(cpu_log_softmax).to('mps') |
| |
| cpu_log_softmax.backward(gradient=cpu_grad) |
| mps_log_softmax.backward(gradient=mps_grad) |
| |
| self.assertEqual(cpu_x.grad, mps_x.grad.to('cpu')) |
| |
| def test_eq(self): |
| values1 = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| values2 = [[[1.0, 2.0, 15.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [0.0, 11.0, 12.0]]] |
| mps_x = torch.tensor(values1, device='mps') |
| mps_y = torch.tensor(values2, device='mps') |
| cpu_x = torch.tensor(values1, device='cpu') |
| cpu_y = torch.tensor(values2, device='cpu') |
| result_mps = torch.eq(mps_x, mps_y) |
| result_cpu = torch.eq(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| @unittest.skipIf(product_version < 13.0, "Skipped on macOS 12") |
| def test_signed_vs_unsigned_comparison(self): |
| cpu_x = torch.tensor((-1, 2, 3), device='cpu', dtype=torch.uint8) |
| mps_x = torch.tensor((-1, 2, 3), device='mps', dtype=torch.uint8) |
| # in the comparison of signed vs. unsigned we should always cast to unsigned |
| self.assertEqual(cpu_x == -1, mps_x == -1) |
| self.assertEqual(cpu_x > -1, mps_x > -1) |
| self.assertEqual(cpu_x < -1, mps_x < -1) |
| |
| def test_eq_int64(self): |
| values1 = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] |
| values2 = [[[1, 2, 15], [4, 5, 6]], [[7, 8, 9], [0, 11, 12]]] |
| mps_x = torch.tensor(values1, device='mps') |
| mps_y = torch.tensor(values2, device='mps') |
| cpu_x = torch.tensor(values1, device='cpu') |
| cpu_y = torch.tensor(values2, device='cpu') |
| result_mps = torch.eq(mps_x, mps_y) |
| result_cpu = torch.eq(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| def test_ne(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| result_mps = torch.ne(mps_x, mps_y) |
| result_cpu = torch.ne(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_ne_scalar(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| result_mps = torch.ne(mps_x, 0.0) |
| result_cpu = torch.ne(cpu_x, 0.0) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_lt(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| result_mps = torch.lt(mps_x, mps_y) |
| result_cpu = torch.lt(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_lt_scalar(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| result_mps = torch.lt(mps_x, 0.0) |
| result_cpu = torch.lt(cpu_x, 0.0) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_le(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| result_mps = torch.le(mps_x, mps_y) |
| result_cpu = torch.le(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_le_scalar(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| result_mps = torch.le(mps_x, 0.0) |
| result_cpu = torch.le(cpu_x, 0.0) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_ge(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| result_mps = torch.ge(mps_x, mps_y) |
| result_cpu = torch.ge(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_ge_scalar(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| result_mps = torch.ge(mps_x, 0.0) |
| result_cpu = torch.ge(cpu_x, 0.0) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_gt(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| result_mps = torch.gt(mps_x, mps_y) |
| result_cpu = torch.gt(cpu_x, cpu_y) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_gt_scalar(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| mps_x = cpu_x.detach().clone().to('mps') |
| result_mps = torch.gt(mps_x, 0.0) |
| result_cpu = torch.gt(cpu_x, 0.0) |
| |
| self.assertEqual(result_cpu, result_mps.to('cpu')) |
| |
| helper((2, 3, 4, 5)) |
| |
| def test_argmax(self): |
| # https://github.com/pytorch/pytorch/issues/98191 |
| cpu_tensor = torch.tensor([[0, 1], [2, 1], [1, 0]]) |
| res_cpu = torch.argmax(cpu_tensor, dim=1) |
| |
| mps_tensor = cpu_tensor.to(torch.device('mps')) |
| res_mps = torch.argmax(mps_tensor, dim=1) |
| self.assertEqual(res_cpu, res_mps) |
| |
| # https://github.com/pytorch/pytorch/issues/92311 |
| mps_tensor = torch.randn(10, 2, device='mps', dtype=torch.float32) |
| cpu_tensor = mps_tensor.detach().clone().cpu() |
| |
| res_mps = torch.argmax(mps_tensor, dim=1) |
| res_cpu = torch.argmax(cpu_tensor, dim=1) |
| self.assertEqual(res_cpu, res_mps) |
| |
| # Test forward argmin argmax |
| def test_argmin_argmax(self): |
| def helper(n, c, h, w, reduction_type, dtype=torch.float32): |
| if reduction_type == "max": |
| arg_reduction_fn = torch.argmax |
| else: |
| arg_reduction_fn = torch.argmin |
| |
| cpu_x = None |
| x = None |
| if (dtype not in [torch.float32, torch.bool]): |
| cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| elif (dtype == torch.bool): |
| cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| else: |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| y = arg_reduction_fn(x) |
| ref_y = arg_reduction_fn(cpu_x) |
| self.assertEqual(y, ref_y) |
| |
| y_0 = arg_reduction_fn(x, dim=0) |
| refy_0 = arg_reduction_fn(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| |
| y_0dim = arg_reduction_fn(x, dim=0, keepdim=True) |
| refy_0dim = arg_reduction_fn(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| |
| y_1 = arg_reduction_fn(x, dim=1) |
| refy_1 = arg_reduction_fn(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| |
| y_1dim = arg_reduction_fn(x, dim=1, keepdim=True) |
| refy_1dim = arg_reduction_fn(cpu_x, dim=1, keepdim=True) |
| self.assertEqual(y_1dim, refy_1dim) |
| |
| y_2 = arg_reduction_fn(x, dim=2) |
| refy_2 = arg_reduction_fn(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| |
| y_2dim = arg_reduction_fn(x, dim=2, keepdim=True) |
| refy_2dim = arg_reduction_fn(cpu_x, dim=2, keepdim=True) |
| self.assertEqual(y_2dim, refy_2dim) |
| |
| y_3 = arg_reduction_fn(x, dim=3) |
| refy_3 = arg_reduction_fn(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| |
| y_3dim = arg_reduction_fn(x, dim=3, keepdim=True) |
| refy_3dim = arg_reduction_fn(cpu_x, dim=3, keepdim=True) |
| self.assertEqual(y_3dim, refy_3dim) |
| |
| helper(2, 8, 4, 4, "max", torch.float32) |
| helper(2, 8, 4, 4, "max", torch.int32) |
| helper(2, 8, 4, 4, "max", torch.float16) |
| helper(2, 8, 4, 4, "max", torch.int64) |
| helper(2, 8, 4, 4, "min", torch.float32) |
| helper(2, 8, 4, 4, "min", torch.int32) |
| helper(2, 8, 4, 4, "min", torch.float16) |
| helper(2, 8, 4, 4, "min", torch.int64) |
| |
| @unittest.skipIf(product_version < 13.3, "Long data type supported from macOS 13.3 and above") |
| def test_reduction_sum_max_long_val(self): |
| x_mps = torch.tensor([sys.maxsize, sys.maxsize - 10, sys.maxsize - 5, sys.maxsize - 18], device="mps") |
| x_cpu = x_mps.detach().clone().cpu() |
| |
| res_mps = torch.sum(x_mps) |
| res_cpu = torch.sum(x_cpu) |
| self.assertEqual(res_mps, res_cpu) |
| |
| # Test forward max |
| # Note - don't test grad now |
| def test_max_el(self): |
| def helper(n, c, h, w, dtype=torch.float32): |
| |
| if (dtype not in [torch.float32, torch.bool]): |
| cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| elif (dtype == torch.bool): |
| cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| else: |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps') |
| |
| ref_y = torch.max(cpu_x) |
| y = torch.max(x) |
| self.assertEqual(y, ref_y) |
| |
| for dim in [0, 1, 2, 3]: |
| for keepdim in [True, False]: |
| y, idx = torch.max(x, dim=dim, keepdim=keepdim) |
| refy, refidx = torch.max(cpu_x, dim=dim, keepdim=keepdim) |
| self.assertEqual(y, refy) |
| self.assertEqual(idx, refidx) |
| |
| y_0 = torch.ones(c, h, w, device='mps', dtype=dtype) |
| idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=0, out=(y_0, idx_0)) |
| refy_0, refidx_0 = torch.max(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| self.assertEqual(idx_0, refidx_0) |
| |
| y_0dim = torch.ones(1, c, h, w, device='mps', dtype=dtype) |
| idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim)) |
| refy_0dim, refidx_0dim = torch.max(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| self.assertEqual(idx_0dim, refidx_0dim) |
| |
| y_1 = torch.ones(n, h, w, device='mps', dtype=dtype) |
| idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=1, out=(y_1, idx_1)) |
| refy_1, refidx_1 = torch.max(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| self.assertEqual(idx_1, refidx_1) |
| |
| y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=dtype) |
| idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim)) |
| refy_1dim, refidx_1dim = torch.max(cpu_x, keepdim=True, dim=1) |
| self.assertEqual(y_1dim, refy_1dim) |
| self.assertEqual(idx_1dim, refidx_1dim) |
| |
| y_2 = torch.ones(n, c, w, device='mps', dtype=dtype) |
| idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=2, out=(y_2, idx_2)) |
| refy_2, refidx_2 = torch.max(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| self.assertEqual(idx_2, refidx_2) |
| |
| y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=dtype) |
| idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64) |
| torch.max(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim)) |
| refy_2dim, refidx_2dim = torch.max(cpu_x, dim=2, keepdim=True,) |
| self.assertEqual(y_2dim, refy_2dim) |
| self.assertEqual(idx_2dim, refidx_2dim) |
| |
| y_3 = torch.ones(n, c, h, device='mps', dtype=dtype) |
| idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64) |
| torch.max(x, dim=3, out=(y_3, idx_3)) |
| refy_3, refidx_3 = torch.max(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| self.assertEqual(idx_3, refidx_3) |
| |
| y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=dtype) |
| idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64) |
| torch.max(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim)) |
| refy_3dim, refidx_3dim = torch.max(cpu_x, dim=3, keepdim=True,) |
| self.assertEqual(y_3dim, refy_3dim) |
| self.assertEqual(idx_3dim, refidx_3dim) |
| |
| helper(2, 8, 4, 5, torch.float32) |
| helper(2, 8, 4, 5, torch.int32) |
| # helper(2, 8, 4, 5, torch.int64) |
| |
| def test_median(self): |
| def helper_dtype_int32(n1, n2, n3): |
| cpu_x = torch.randint(50, (n1, n2, n3), device='cpu', dtype=torch.int32) |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| result_cpu = torch.median(cpu_x) |
| result_mps = torch.median(mps_x) |
| |
| self.assertEqual(result_cpu, result_mps) |
| |
| for dim in [0, 1, 2]: |
| for keepdim in [True, False]: |
| y, idx = torch.median(cpu_x, dim=dim, keepdim=keepdim) |
| refy, refidx = torch.median(mps_x, dim=dim, keepdim=keepdim) |
| self.assertEqual(y, refy) |
| self.assertEqual(idx, refidx) |
| |
| def helper_dtype_float32(n1, n2, n3): |
| cpu_x = torch.randn(n1, n2, n3, device='cpu', dtype=torch.float32) |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| result_cpu = torch.median(cpu_x) |
| result_mps = torch.median(mps_x) |
| |
| self.assertEqual(result_cpu, result_mps) |
| |
| for dim in [0, 1, 2]: |
| for keepdim in [True, False]: |
| y, idx = torch.median(cpu_x, dim=dim, keepdim=keepdim) |
| refy, refidx = torch.median(mps_x, dim=dim, keepdim=keepdim) |
| self.assertEqual(y, refy) |
| self.assertEqual(idx, refidx) |
| |
| helper_dtype_int32(10, 10, 10) # median at even place |
| helper_dtype_int32(3, 3, 3) # median at odd place |
| helper_dtype_int32(1, 1, 1) |
| helper_dtype_int32(1, 2, 3) |
| helper_dtype_float32(10, 10, 10) |
| helper_dtype_float32(3, 3, 3) |
| helper_dtype_float32(1, 1, 1) |
| |
| def test_any(self): |
| def helper(shape): |
| input_xs = [] |
| prod = 1 |
| |
| for i in range(len(shape)): |
| prod *= shape[i] |
| input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool()) |
| input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool()) |
| input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool()) |
| |
| for i, cpu_x in enumerate(input_xs): |
| x = cpu_x.detach().clone().to('mps') |
| y = torch.any(x) |
| ref_y = torch.any(cpu_x) |
| self.assertEqual(y, ref_y) |
| |
| y_0 = torch.any(x, dim=0) |
| refy_0 = torch.any(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| |
| y_0dim = torch.any(x, dim=0, keepdim=True) |
| refy_0dim = torch.any(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| |
| y_0dim = torch.any(x, dim=0, keepdim=True) |
| refy_0dim = torch.any(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| |
| y_1 = torch.any(x, dim=1) |
| refy_1 = torch.any(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| |
| y_1dim = torch.any(x, dim=1, keepdim=True) |
| refy_1dim = torch.any(cpu_x, dim=1, keepdim=True) |
| self.assertEqual(y_1dim, refy_1dim) |
| |
| if (len(shape) > 2): |
| y_2 = torch.any(x, dim=2) |
| refy_2 = torch.any(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| |
| y_2dim = torch.any(x, dim=2, keepdim=True) |
| refy_2dim = torch.any(cpu_x, dim=2, keepdim=True) |
| self.assertEqual(y_2dim, refy_2dim) |
| |
| y_3 = torch.any(x, dim=3) |
| refy_3 = torch.any(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| |
| y_3dim = torch.any(x, dim=3, keepdim=True) |
| refy_3dim = torch.any(cpu_x, dim=3, keepdim=True) |
| self.assertEqual(y_3dim, refy_3dim) |
| helper((1, 1, 1, 1)) |
| helper((1, 1, 3, 3)) |
| helper((7, 13)) |
| helper((2, 8, 4, 5)) |
| |
| def test_reduction_ops_5D(self): |
| def helper(fn, dim): |
| shape = (1, 1, 2, 1, 1) |
| x_cpu = fn(torch.zeros(shape), dim=dim) |
| x_mps = fn(torch.zeros(shape, device="mps"), dim=dim) |
| self.assertEqual(x_cpu, x_mps.cpu()) |
| for fn in [torch.any, torch.all]: |
| for dim in range(0, 4): |
| helper(fn, dim) |
| |
| # 6D tensor reductions |
| # Regression test for https://github.com/pytorch/pytorch/issues/95538 |
| x = (torch.rand(2, 3, 4, 3, 4, 2, device="mps") - .5).relu() |
| self.assertEqual(x.all(), x.cpu().all()) |
| for i in range(-5, 6): |
| self.assertEqual(x.all(dim=i), x.cpu().all(dim=i)) |
| |
| def test_all(self): |
| def helper(shape): |
| input_xs = [] |
| prod = 1 |
| |
| for i in range(len(shape)): |
| prod *= shape[i] |
| input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape)) |
| input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool()) |
| input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool()) |
| input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool()) |
| |
| for i, cpu_x in enumerate(input_xs): |
| x = cpu_x.detach().clone().to('mps') |
| y = torch.all(x) |
| ref_y = torch.all(cpu_x) |
| self.assertEqual(y, ref_y) |
| |
| y_0 = torch.all(x, dim=0) |
| refy_0 = torch.all(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| |
| y_0dim = torch.all(x, dim=0, keepdim=True) |
| refy_0dim = torch.all(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| |
| y_0dim = torch.all(x, dim=0, keepdim=True) |
| refy_0dim = torch.all(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| |
| y_1 = torch.all(x, dim=1) |
| refy_1 = torch.all(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| |
| y_1dim = torch.all(x, dim=1, keepdim=True) |
| refy_1dim = torch.all(cpu_x, dim=1, keepdim=True) |
| self.assertEqual(y_1dim, refy_1dim) |
| if (len(shape) > 2): |
| y_2 = torch.all(x, dim=2) |
| refy_2 = torch.all(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| |
| y_2dim = torch.all(x, dim=2, keepdim=True) |
| refy_2dim = torch.all(cpu_x, dim=2, keepdim=True) |
| self.assertEqual(y_2dim, refy_2dim) |
| |
| y_3 = torch.all(x, dim=3) |
| refy_3 = torch.all(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| |
| y_3dim = torch.all(x, dim=3, keepdim=True) |
| refy_3dim = torch.all(cpu_x, dim=3, keepdim=True) |
| self.assertEqual(y_3dim, refy_3dim) |
| |
| helper((1, 1, 1, 1)) |
| helper((1, 1, 3, 3)) |
| helper((7, 13)) |
| helper((2, 8, 4, 5)) |
| # Empty tensor |
| x_cpu = torch.tensor([], dtype=torch.bool) |
| x_mps = x_cpu.to("mps") |
| self.assertEqual(x_cpu.all(), x_mps.all().cpu()) |
| |
| # Test forward min |
| def test_min_el(self): |
| def helper(n, c, h, w): |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| y = torch.min(x) |
| ref_y = torch.min(cpu_x) |
| self.assertEqual(y, ref_y) |
| |
| y_0, idx_0 = torch.min(x, dim=0) |
| refy_0, refidx_0 = torch.min(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| self.assertEqual(idx_0, refidx_0) |
| |
| y_0 = torch.ones(c, h, w, device='mps', dtype=torch.float) |
| idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=0, out=(y_0, idx_0)) |
| refy_0, refidx_0 = torch.min(cpu_x, dim=0) |
| self.assertEqual(y_0, refy_0) |
| self.assertEqual(idx_0, refidx_0) |
| |
| y_0dim, idx_0dim = torch.min(x, dim=0, keepdim=True) |
| refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| self.assertEqual(idx_0dim, refidx_0dim) |
| |
| y_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.float) |
| idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim)) |
| refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True) |
| self.assertEqual(y_0dim, refy_0dim) |
| self.assertEqual(idx_0dim, refidx_0dim) |
| |
| y_1, idx_1 = torch.min(x, dim=1) |
| refy_1, refidx_1 = torch.min(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| self.assertEqual(idx_1, refidx_1) |
| |
| y_1 = torch.ones(n, h, w, device='mps', dtype=torch.float) |
| idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=1, out=(y_1, idx_1)) |
| refy_1, refidx_1 = torch.min(cpu_x, dim=1) |
| self.assertEqual(y_1, refy_1) |
| self.assertEqual(idx_1, refidx_1) |
| |
| y_1dim, idx_1dim = torch.min(x, dim=1, keepdim=True) |
| refy_1dim, refidx_1dim = torch.min(cpu_x, dim=1, keepdim=True) |
| self.assertEqual(y_1dim, refy_1dim) |
| self.assertEqual(idx_1dim, refidx_1dim) |
| |
| y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.float) |
| idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim)) |
| refy_1dim, refidx_1dim = torch.min(cpu_x, keepdim=True, dim=1) |
| self.assertEqual(y_1dim, refy_1dim) |
| self.assertEqual(idx_1dim, refidx_1dim) |
| |
| y_2, idx_2 = torch.min(x, dim=2) |
| refy_2, refidx_2 = torch.min(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| self.assertEqual(idx_2, refidx_2) |
| |
| y_2 = torch.ones(n, c, w, device='mps', dtype=torch.float) |
| idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=2, out=(y_2, idx_2)) |
| refy_2, refidx_2 = torch.min(cpu_x, dim=2) |
| self.assertEqual(y_2, refy_2) |
| self.assertEqual(idx_2, refidx_2) |
| |
| y_2dim, idx_2dim = torch.min(x, dim=2, keepdim=True) |
| refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True) |
| self.assertEqual(y_2dim, refy_2dim) |
| self.assertEqual(idx_2dim, refidx_2dim) |
| |
| y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.float) |
| idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64) |
| torch.min(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim)) |
| refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True,) |
| self.assertEqual(y_2dim, refy_2dim) |
| self.assertEqual(idx_2dim, refidx_2dim) |
| |
| y_3, idx_3 = torch.min(x, dim=3) |
| refy_3, refidx_3 = torch.min(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| self.assertEqual(idx_3, refidx_3) |
| |
| y_3 = torch.ones(n, c, h, device='mps', dtype=torch.float) |
| idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64) |
| torch.min(x, dim=3, out=(y_3, idx_3)) |
| refy_3, refidx_3 = torch.min(cpu_x, dim=3) |
| self.assertEqual(y_3, refy_3) |
| self.assertEqual(idx_3, refidx_3) |
| |
| y_3dim, idx_3dim = torch.min(x, dim=3, keepdim=True) |
| refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True) |
| self.assertEqual(y_3dim, refy_3dim) |
| self.assertEqual(idx_3dim, refidx_3dim) |
| |
| y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.float) |
| idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64) |
| torch.min(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim)) |
| refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True,) |
| self.assertEqual(y_3dim, refy_3dim) |
| self.assertEqual(idx_3dim, refidx_3dim) |
| |
| helper(2, 8, 4, 5) |
| |
| # Test forward sum |
| def test_sum(self): |
| def helper(n, c, h, w, dtype=torch.float32): |
| cpu_x = None |
| x = None |
| if (dtype not in [torch.float32, torch.bool]): |
| cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| elif (dtype == torch.bool): |
| cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| else: |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| all_sum = torch.sum(x) |
| all_sum_cpu = torch.sum(cpu_x) |
| |
| self.assertEqual(all_sum, all_sum_cpu) |
| |
| nil_dim_sum = torch.sum(x, dim=[]) |
| nil_dim_sum_cpu = torch.sum(cpu_x, dim=[]) |
| |
| self.assertEqual(nil_dim_sum, nil_dim_sum_cpu) |
| |
| nil_dim_sum_keepdim = torch.sum(x, dim=[], keepdim=True) |
| nil_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[], keepdim=True) |
| |
| self.assertEqual(nil_dim_sum_keepdim, nil_dim_sum_cpu_keepdim) |
| |
| zero_dim_sum = torch.sum(x, dim=[0]) |
| zero_dim_sum_cpu = torch.sum(cpu_x, dim=[0]) |
| |
| self.assertEqual(zero_dim_sum, zero_dim_sum_cpu) |
| |
| zero_dim_sum_keepdim = torch.sum(x, dim=[0], keepdim=True) |
| zero_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0], keepdim=True) |
| |
| self.assertEqual(zero_dim_sum_keepdim, zero_dim_sum_cpu_keepdim) |
| |
| zero_one_dim_sum = torch.sum(x, dim=[0, 1]) |
| zero_one_dim_sum_cpu = torch.sum(cpu_x, dim=[0, 1]) |
| |
| self.assertEqual(zero_one_dim_sum, zero_one_dim_sum_cpu) |
| |
| zero_one_dim_sum_keepdim = torch.sum(x, dim=[0, 1], keepdim=True) |
| zero_one_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0, 1], keepdim=True) |
| |
| self.assertEqual(zero_one_dim_sum_keepdim, zero_one_dim_sum_cpu_keepdim) |
| |
| two_three_dim_sum = torch.sum(x, dim=[2, 3]) |
| two_three_dim_sum_cpu = torch.sum(cpu_x, dim=[2, 3]) |
| |
| self.assertEqual(two_three_dim_sum, two_three_dim_sum_cpu) |
| |
| two_three_keepdim_sum = torch.sum(x, dim=[2, 3], keepdim=True) |
| two_three_dim_keepsum_cpu = torch.sum(cpu_x, dim=[2, 3], keepdim=True) |
| |
| self.assertEqual(two_three_keepdim_sum, two_three_dim_keepsum_cpu) |
| |
| helper(2, 8, 4, 5) |
| helper(2, 8, 4, 5, dtype=torch.int32) |
| helper(2, 8, 4, 5, dtype=torch.int64) |
| helper(2, 8, 4, 5, dtype=torch.bool) |
| # Regression test for https://github.com/pytorch/pytorch/issues/136132 |
| x = torch.ones(2, 4, 1, 30, 1, device='mps').sum(dim=-2) |
| self.assertEqual(x.numel(), 8) |
| self.assertEqual(x.max().item(), 30.0) |
| |
| # Test forward prod |
| def test_prod(self): |
| def helper(shape, dtype=torch.float32): |
| cpu_x = None |
| x = None |
| if (dtype not in [torch.float32, torch.bool]): |
| cpu_x = torch.randint(1, 6, shape, device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| elif (dtype == torch.bool): |
| cpu_x = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| else: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| all_prod = torch.prod(x) |
| all_prod_cpu = torch.prod(cpu_x) |
| |
| self.assertEqual(all_prod, all_prod_cpu) |
| |
| for dim in range(len(shape)): |
| dim_prod = torch.prod(x, dim=dim) |
| dim_prod_cpu = torch.prod(cpu_x, dim=dim) |
| |
| self.assertEqual(dim_prod, dim_prod_cpu) |
| |
| dim_prod_keepdim = torch.prod(x, dim=dim, keepdim=True) |
| dim_prod_cpu_keepdim = torch.prod(cpu_x, dim=dim, keepdim=True) |
| |
| self.assertEqual(dim_prod_keepdim, dim_prod_cpu_keepdim) |
| |
| for dtype in [torch.float32, torch.int32, torch.int64, torch.bool]: |
| helper((2, 3), dtype) |
| |
| # Test forward mean |
| def test_mean(self): |
| def helper(n, c, h, w): |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| all_mean = torch.mean(x) |
| all_mean_cpu = torch.mean(cpu_x) |
| |
| self.assertEqual(all_mean, all_mean_cpu) |
| |
| nil_dim_mean = torch.mean(x, dim=[]) |
| nil_dim_mean_cpu = torch.mean(cpu_x, dim=[]) |
| |
| self.assertEqual(nil_dim_mean, nil_dim_mean_cpu) |
| |
| nil_dim_mean_keepdim = torch.mean(x, dim=[], keepdim=True) |
| nil_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[], keepdim=True) |
| |
| self.assertEqual(nil_dim_mean_keepdim, nil_dim_mean_cpu_keepdim) |
| |
| zero_dim_mean = torch.mean(x, dim=[0]) |
| zero_dim_mean_cpu = torch.mean(cpu_x, dim=[0]) |
| |
| self.assertEqual(zero_dim_mean, zero_dim_mean_cpu) |
| |
| zero_dim_mean_keepdim = torch.mean(x, dim=[0], keepdim=True) |
| zero_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0], keepdim=True) |
| |
| self.assertEqual(zero_dim_mean_keepdim, zero_dim_mean_cpu_keepdim) |
| |
| zero_one_dim_mean = torch.mean(x, dim=[0, 1]) |
| zero_one_dim_mean_cpu = torch.mean(cpu_x, dim=[0, 1]) |
| |
| self.assertEqual(zero_one_dim_mean, zero_one_dim_mean_cpu) |
| |
| zero_one_dim_mean_keepdim = torch.mean(x, dim=[0, 1], keepdim=True) |
| zero_one_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0, 1], keepdim=True) |
| |
| self.assertEqual(zero_one_dim_mean_keepdim, zero_one_dim_mean_cpu_keepdim) |
| |
| two_three_dim_mean = torch.mean(x, dim=[2, 3]) |
| two_three_dim_mean_cpu = torch.mean(cpu_x, dim=[2, 3]) |
| |
| self.assertEqual(two_three_dim_mean, two_three_dim_mean_cpu) |
| |
| two_three_keepdim_mean = torch.mean(x, dim=[2, 3], keepdim=True) |
| two_three_dim_keepmean_cpu = torch.mean(cpu_x, dim=[2, 3], keepdim=True) |
| |
| self.assertEqual(two_three_keepdim_mean, two_three_dim_keepmean_cpu) |
| |
| helper(2, 8, 4, 5) |
| |
| # Test std |
| def test_std(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| all_std = torch.std(x, unbiased=False) |
| all_std_cpu = torch.std(cpu_x, unbiased=False) |
| |
| self.assertEqual(all_std, all_std_cpu) |
| |
| nil_dim_std = torch.std(x, dim=[], unbiased=False) |
| nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=False) |
| |
| self.assertEqual(nil_dim_std, nil_dim_std_cpu) |
| |
| nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=False) |
| nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=False) |
| |
| self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim) |
| |
| zero_dim_std = torch.std(x, dim=[0], unbiased=False) |
| zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=False) |
| |
| self.assertEqual(zero_dim_std, zero_dim_std_cpu) |
| |
| zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=False) |
| zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=False) |
| |
| self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim) |
| |
| zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=False) |
| zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=False) |
| |
| self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu) |
| |
| zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=False) |
| zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=False) |
| |
| self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim) |
| |
| two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=False) |
| two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=False) |
| |
| self.assertEqual(two_three_dim_std, two_three_dim_std_cpu) |
| |
| two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=False) |
| two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=False) |
| |
| self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu) |
| |
| all_std = torch.std(x, unbiased=True) |
| all_std_cpu = torch.std(cpu_x, unbiased=True) |
| |
| self.assertEqual(all_std, all_std_cpu) |
| |
| nil_dim_std = torch.std(x, dim=[], unbiased=True) |
| nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=True) |
| |
| self.assertEqual(nil_dim_std, nil_dim_std_cpu) |
| |
| nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=True) |
| nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=True) |
| |
| self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim) |
| |
| zero_dim_std = torch.std(x, dim=[0], unbiased=True) |
| zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=True) |
| |
| self.assertEqual(zero_dim_std, zero_dim_std_cpu) |
| |
| zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=True) |
| zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=True) |
| |
| self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim) |
| |
| zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=True) |
| zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=True) |
| |
| self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu) |
| |
| zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=True) |
| zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=True) |
| |
| self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim) |
| |
| two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=True) |
| two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=True) |
| |
| self.assertEqual(two_three_dim_std, two_three_dim_std_cpu) |
| |
| two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=True) |
| two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=True) |
| |
| self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu) |
| |
| helper((4, 5, 6, 7)) |
| # verify if a change in shape of input would cause problems with graph caching |
| helper((9, 5, 6, 7)) |
| |
| # Test var |
| def test_var_simple(self): |
| def helper(): |
| |
| shape = [2, 3, 4, 5] |
| |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| for unbiased in [False, True]: |
| for keepdim in [False, True]: |
| |
| zero_dim_var = x.var(-1, keepdim=keepdim, unbiased=unbiased) |
| zero_dim_var_cpu = cpu_x.var(-1, keepdim=keepdim, unbiased=unbiased) |
| |
| self.assertEqual(zero_dim_var, zero_dim_var_cpu) |
| |
| all_var = torch.var(x, unbiased=unbiased) |
| all_var_cpu = torch.var(cpu_x, unbiased=unbiased) |
| |
| self.assertEqual(all_var, all_var_cpu) |
| |
| nil_dim_var = torch.var(x, dim=[], keepdim=keepdim, unbiased=unbiased) |
| nil_dim_var_cpu = torch.var(cpu_x, dim=[], keepdim=keepdim, unbiased=unbiased) |
| |
| self.assertEqual(nil_dim_var, nil_dim_var_cpu) |
| |
| zero_dim_var = torch.var(x, dim=[0], keepdim=keepdim, unbiased=unbiased) |
| zero_dim_var_cpu = torch.var(cpu_x, dim=[0], keepdim=keepdim, unbiased=unbiased) |
| |
| self.assertEqual(zero_dim_var, zero_dim_var_cpu) |
| |
| zero_one_dim_var = torch.var(x, dim=[0, -1], keepdim=keepdim, unbiased=unbiased) |
| zero_one_dim_var_cpu = torch.var(cpu_x, dim=[0, -1], keepdim=keepdim, unbiased=unbiased) |
| |
| self.assertEqual(zero_one_dim_var, zero_one_dim_var_cpu) |
| |
| two_three_dim_var = torch.var(x, dim=[2, 3], keepdim=keepdim, unbiased=unbiased) |
| two_three_dim_var_cpu = torch.var(cpu_x, dim=[2, 3], keepdim=keepdim, unbiased=unbiased) |
| |
| self.assertEqual(two_three_dim_var, two_three_dim_var_cpu) |
| |
| helper() |
| |
| # Test forward amax |
| def test_amax(self): |
| def helper(shape, dim, keepdim): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| result = torch.amax(x, dim=dim, keepdim=keepdim) |
| result_cpu = torch.amax(cpu_x, dim=dim, keepdim=keepdim) |
| |
| cpu_grad = torch.randn(result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| result_cpu.backward(gradient=cpu_grad) |
| result.backward(gradient=grad) |
| |
| self.assertEqual(result, result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| for dim in ([], [0], [0, 1], [2, 3]): |
| for keepdim in [False, True]: |
| helper((2, 8, 4, 5), dim, keepdim) |
| |
| # Test forward amin |
| def test_amin(self): |
| def helper(shape, dim, keepdim): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| result = torch.amin(x, dim=dim, keepdim=keepdim) |
| result_cpu = torch.amin(cpu_x, dim=dim, keepdim=keepdim) |
| |
| cpu_grad = torch.randn(result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| result_cpu.backward(gradient=cpu_grad) |
| result.backward(gradient=grad) |
| |
| self.assertEqual(result, result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| for dim in ([], [0], [0, 1], [2, 3]): |
| for keepdim in [False, True]: |
| helper((2, 8, 4, 5), dim, keepdim) |
| |
| # Test minimum and maximum |
| def test_minimum_maximum(self): |
| def helper(n, c, h, w): |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| cpu_y = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| mps_y = cpu_y.detach().clone().to('mps') |
| |
| minimum_result_cpu = torch.minimum(cpu_x, cpu_y) |
| minimum_result_mps = torch.minimum(mps_x, mps_y) |
| self.assertEqual(minimum_result_cpu, minimum_result_mps) |
| |
| maximum_result_cpu = torch.maximum(cpu_x, cpu_y) |
| maximum_result_mps = torch.maximum(mps_x, mps_y) |
| self.assertEqual(maximum_result_cpu, maximum_result_mps) |
| |
| helper(1, 1, 4, 5) |
| |
| def test_clamp_fp16_fp32(self): |
| cpu_x = torch.randn(10, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| dtype = torch.float16 |
| |
| clamp_min_vals_mps = torch.ones(10, device="mps").to(torch.float16) |
| clamp_max_vals_mps = torch.ones(10, device="mps").to(torch.float16) * 10 |
| clamp_result_mps = torch.clamp(x, clamp_min_vals_mps, clamp_max_vals_mps) |
| |
| clamp_min_vals_cpu = torch.ones(10, device="cpu").to(torch.float16) |
| clamp_max_vals_cpu = torch.ones(10, device="cpu").to(torch.float16) * 10 |
| clamp_result_cpu = torch.clamp(cpu_x, clamp_min_vals_cpu, clamp_max_vals_cpu) |
| |
| self.assertEqual(clamp_result_mps, clamp_result_cpu) |
| |
| def test_clamp_nan(self): |
| t_mps = torch.tensor([torch.nan, 1, 2], device="mps") |
| t_cpu = torch.tensor([torch.nan, 1, 2], device="cpu") |
| |
| clamp_min_max_mps = torch.clamp(t_mps, min=-100, max=100) |
| clamp_min_max_cpu = torch.clamp(t_cpu, min=-100, max=100) |
| |
| self.assertEqual(clamp_min_max_mps, clamp_min_max_cpu) |
| |
| clamp_min_mps = torch.clamp(t_mps, min=-100) |
| clamp_min_cpu = torch.clamp(t_cpu, min=-100) |
| |
| self.assertEqual(clamp_min_mps, clamp_min_cpu) |
| |
| clamp_max_mps = torch.clamp(t_mps, max=100) |
| clamp_max_cpu = torch.clamp(t_cpu, max=100) |
| |
| self.assertEqual(clamp_max_mps, clamp_max_cpu) |
| |
| # Test clamp_min |
| def test_clamp_min(self): |
| def helper(n, c, h, w): |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_min_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| min_t = cpu_min_t.detach().clone().to('mps') |
| |
| clamp_min_result = torch.clamp_min(x, min=5.0) |
| clamp_min_result_cpu = torch.clamp_min(cpu_x, min=5.0) |
| |
| self.assertEqual(clamp_min_result, clamp_min_result_cpu) |
| |
| clamp_min_t_result = torch.clamp_min(x, min=min_t) |
| clamp_min_t_result_cpu = torch.clamp_min(cpu_x, min=cpu_min_t) |
| |
| self.assertEqual(clamp_min_t_result, clamp_min_t_result_cpu) |
| |
| helper(2, 8, 4, 5) |
| |
| # Test clamp_max |
| |
| def test_clamp_max(self): |
| def helper(n, c, h, w): |
| cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_max_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| max_t = cpu_max_t.detach().clone().to('mps') |
| |
| clamp_max_result = torch.clamp_max(x, max=100.0) |
| clamp_max_result_cpu = torch.clamp_max(cpu_x, max=100.0) |
| |
| self.assertEqual(clamp_max_result, clamp_max_result_cpu) |
| |
| clamp_max_t_result = torch.clamp_max(x, max=max_t) |
| clamp_max_t_result_cpu = torch.clamp_max(cpu_x, max=cpu_max_t) |
| |
| self.assertEqual(clamp_max_t_result, clamp_max_t_result_cpu) |
| |
| helper(2, 8, 4, 5) |
| |
| # Test clamp |
| def test_clamp(self): |
| def helper(n, c, h, w): |
| import numpy as np |
| upper_bound = 1000 |
| half_upper_bound = upper_bound / 2 |
| |
| # x=[0..1000) |
| x_arr = upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32) |
| cpu_x = torch.tensor(x_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| # x=[0..500) |
| min_arr = half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32) |
| cpu_min_t = torch.tensor(min_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| min_t = cpu_min_t.detach().clone().to('mps') |
| |
| # x=[500..1000), to ensure max's are greater than mins |
| max_arr = (half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32)) + half_upper_bound |
| cpu_max_t = torch.tensor(max_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| max_t = cpu_max_t.detach().clone().to('mps') |
| |
| # [200..600]: just an arbitrary range between [0..1000] |
| clamp_result = torch.clamp(x, min=200.0, max=600.0) |
| clamp_result_cpu = torch.clamp(cpu_x, min=200.0, max=600.0) |
| self.assertEqual(clamp_result, clamp_result_cpu) |
| |
| # test optional scalar refs and cached graph keys by passing only max |
| clamp_opt_result = torch.clamp(x, max=600.0) |
| clamp_opt_result_cpu = torch.clamp(cpu_x, max=600.0) |
| self.assertEqual(clamp_opt_result, clamp_opt_result_cpu) |
| |
| clamp_t_result = torch.clamp(x, min=min_t, max=max_t) |
| clamp_t_result_cpu = torch.clamp(cpu_x, min=cpu_min_t, max=cpu_max_t) |
| self.assertEqual(clamp_t_result, clamp_t_result_cpu) |
| |
| # test optional tensor refs and cached graph keys by passing only max |
| clamp_topt_result = torch.clamp(x, max=max_t) |
| clamp_topt_result_cpu = torch.clamp(cpu_x, max=cpu_max_t) |
| self.assertEqual(clamp_topt_result, clamp_topt_result_cpu) |
| |
| # test strided x |
| clamp_result = torch.clamp(x.movedim(0, -1), min=200.0, max=600.0) |
| clamp_result_cpu = torch.clamp(cpu_x.movedim(0, -1), min=200.0, max=600.0) |
| self.assertEqual(clamp_result, clamp_result_cpu) |
| |
| # test strided x, min_t, max_t |
| clamp_result = torch.clamp(x.movedim(0, -1), min=min_t.movedim(0, -1), max=max_t.movedim(0, -1)) |
| clamp_result_cpu = torch.clamp(cpu_x.movedim(0, -1), min=cpu_min_t.movedim(0, -1), max=cpu_max_t.movedim(0, -1)) |
| self.assertEqual(clamp_result, clamp_result_cpu) |
| |
| # test strided min_t, max_t |
| clamp_result = torch.clamp( |
| x.movedim(0, -1).clone(memory_format=torch.contiguous_format), |
| min=min_t.movedim(0, -1), |
| max=max_t.movedim(0, -1) |
| ) |
| clamp_result_cpu = torch.clamp( |
| cpu_x.movedim(0, -1).clone(memory_format=torch.contiguous_format), |
| min=cpu_min_t.movedim(0, -1), |
| max=cpu_max_t.movedim(0, -1) |
| ) |
| self.assertEqual(clamp_result, clamp_result_cpu) |
| |
| # test inplace clamping |
| x.clamp_(min=200.0, max=600.0) |
| cpu_x.clamp_(min=200.0, max=600.0) |
| self.assertEqual(cpu_x, x) |
| |
| helper(2, 8, 4, 5) |
| |
| def test_divmode(self): |
| def helper(shape, rounding_mode): |
| for dtype in [torch.float32, torch.float16, torch.int32, torch.int64]: |
| if ((rounding_mode is not None and "floor" in rounding_mode and dtype == torch.int64) or |
| (rounding_mode is not None and "trunc" in rounding_mode and dtype == torch.float16)) is False: |
| cpu_x = None |
| cpu_y = None |
| if (dtype in [torch.float32, torch.float16]): |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=False) |
| cpu_y = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=False) |
| else: |
| cpu_x = torch.randint(-10, 0, shape, device='cpu', dtype=dtype, requires_grad=False) |
| cpu_y = torch.randint(-10, 0, shape, device='cpu', dtype=dtype, requires_grad=False) |
| |
| mps_x = cpu_x.detach().clone().to('mps') |
| # clamp to avoid division by 0 |
| mps_y = cpu_y.detach().clone().to('mps') |
| |
| if (rounding_mode == "floor_divide"): |
| result_div_cpu = torch.floor_divide(cpu_x, cpu_y) |
| result_div_mps = torch.floor_divide(mps_x, mps_y) |
| self.assertEqual(result_div_mps, result_div_cpu) |
| else: |
| result_div_cpu = torch.div(cpu_x, cpu_y, rounding_mode=rounding_mode) |
| result_div_mps = torch.div(mps_x, mps_y, rounding_mode=rounding_mode) |
| self.assertEqual(result_div_mps, result_div_cpu) |
| |
| helper((2, 8, 4, 5), None) |
| helper((2, 8, 4, 5), "floor") |
| helper((2, 8, 4, 5), "trunc") |
| helper((2, 8, 4, 5), "floor_divide") |
| |
| def test_rounding(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| result_floor_cpu = torch.floor(cpu_x) |
| result_floor_mps = torch.floor(mps_x) |
| self.assertEqual(result_floor_mps, result_floor_cpu) |
| |
| result_ceil_cpu = torch.ceil(cpu_x) |
| result_ceil_mps = torch.ceil(mps_x) |
| self.assertEqual(result_ceil_mps, result_ceil_cpu) |
| |
| result_trunc_cpu = torch.trunc(cpu_x) |
| result_trunc_mps = torch.trunc(mps_x) |
| self.assertEqual(result_trunc_mps, result_trunc_cpu) |
| |
| result_round_cpu = torch.round(cpu_x) |
| result_round_mps = torch.round(mps_x) |
| self.assertEqual(result_round_mps, result_round_cpu) |
| |
| helper((2, 6, 3, 5)) |
| helper((2, 8, 4, 5)) |
| |
| def test_remainder(self): |
| res_cpu = torch.remainder( |
| torch.tensor([-3, -2, -1, 1, 2, 3], dtype=torch.int32, device="cpu"), torch.tensor(2, device="cpu", dtype=torch.int32)) |
| res_mps = torch.remainder( |
| torch.tensor([-3, -2, -1, 1, 2, 3], dtype=torch.int32, device="mps"), torch.tensor(2, device="mps", dtype=torch.int32)) |
| self.assertEqual(res_cpu, res_mps) |
| |
| res_cpu = torch.remainder( |
| torch.tensor([1, 2, 3, 4, 5], dtype=torch.int32, device="cpu"), -1.5) |
| res_mps = torch.remainder( |
| torch.tensor([1, 2, 3, 4, 5], dtype=torch.int32, device="mps"), -1.5) |
| self.assertEqual(res_cpu, res_mps) |
| |
| def test_expand(self): |
| def helper(n, c): |
| values = [[1.0], [4.0], [7.0]] |
| cpu_x = torch.tensor(values, device='cpu') |
| x = cpu_x.detach().clone().to('mps') |
| |
| strided_cpu = torch.as_strided(cpu_x, (3, 4), (1, 0)) |
| strided_mps = torch.as_strided(x, (3, 4), (1, 0)) |
| |
| self.assertEqual(strided_mps, strided_cpu) |
| |
| helper(3, 1) |
| |
| def test_im2col(self): |
| def helper(x): |
| return torch.nn.functional.unfold(x, kernel_size=(10, 15), dilation=2, padding=5, stride=3) |
| x_cpu = torch.rand(1, 1, 200, 100) |
| x = x_cpu.detach().clone().to('mps') |
| self.assertEqual(helper(x_cpu), helper(x)) |
| |
| def test_select(self): |
| def helper(n, c): |
| cpu_x = torch.randn(n, c, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1)) |
| strided_mps = torch.as_strided(x, (3, 1), (3, 1)) |
| self.assertEqual(strided_mps, strided_cpu) |
| |
| strided_cpu = torch.as_strided(cpu_x, (1, 3), (3, 1)) |
| strided_mps = torch.as_strided(x, (1, 3), (3, 1)) |
| self.assertEqual(strided_mps, strided_cpu) |
| |
| strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1), storage_offset=1) |
| strided_mps = torch.as_strided(x, (3, 1), (3, 1), storage_offset=1) |
| |
| self.assertEqual(strided_mps, strided_cpu) |
| |
| helper(3, 3) |
| |
| def test_sort(self): |
| for SIZE in (4, 2049): |
| device = 'mps' |
| x = torch.rand(4, SIZE, device=device) |
| res1val, res1ind = torch.sort(x) |
| |
| res2val = torch.tensor((), device=device) |
| res2ind = torch.tensor((), device=device, dtype=torch.long) |
| torch.sort(x, out=(res2val, res2ind)) |
| self.assertEqual(res1val, res2val, atol=0, rtol=0) |
| self.assertEqual(res1ind, res2ind, atol=0, rtol=0) |
| self.assertEqual(torch.argsort(x), res1ind) |
| self.assertEqual(x.argsort(), res1ind) |
| |
| self.assertEqual( |
| torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0], |
| torch.tensor((10, 20, 30, 40, 50), device=device), |
| atol=0, rtol=0 |
| ) |
| |
| def test_upsample_nearest2d(self): |
| def helper(N, C, H, W, memory_format): |
| inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float, |
| requires_grad=True).reshape(N, C, H, W).to(memory_format=memory_format) |
| inputCPU.retain_grad() |
| inputMPS = inputCPU.detach().to('mps').requires_grad_() |
| |
| values = [1, 2, 5, 10, 40] |
| |
| for i in values: |
| for j in values: |
| upsample_nearest2d = nn.UpsamplingNearest2d(scale_factor=(i, j)) |
| |
| outputCPU = upsample_nearest2d(inputCPU) |
| outputMPS = upsample_nearest2d(inputMPS) |
| |
| self.assertEqual(outputCPU, outputMPS) |
| upsample_nearest2d = nn.UpsamplingNearest2d((i * H, j * W)) |
| |
| outputCPU = upsample_nearest2d(inputCPU) |
| outputMPS = upsample_nearest2d(inputMPS) |
| |
| self.assertEqual(outputCPU, outputMPS) |
| |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3)) |
| |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| for memory_format in [torch.channels_last, torch.contiguous_format]: |
| helper(1, 1, 4, 4, memory_format=memory_format) |
| helper(7, 5, 3, 2, memory_format=memory_format) |
| |
| def test_upsample_bilinear2d(self): |
| def helper(N, C, H, W): |
| inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float, |
| requires_grad=True).reshape(N, C, H, W) |
| inputCPU.retain_grad() |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| |
| values = [1, 2, 5, 10, 40] |
| |
| for i in values: |
| for j in values: |
| upsample_bilinear2d = nn.UpsamplingBilinear2d(scale_factor=(i, j)) |
| |
| outputCPU = upsample_bilinear2d(inputCPU) |
| outputMPS = upsample_bilinear2d(inputMPS) |
| |
| self.assertEqual(outputCPU, outputMPS) |
| |
| upsample_bilinear2d = nn.UpsamplingBilinear2d((i * H, j * W)) |
| |
| outputCPU = upsample_bilinear2d(inputCPU) |
| outputMPS = upsample_bilinear2d(inputMPS) |
| |
| self.assertEqual(outputCPU, outputMPS) |
| |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3)) |
| |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| helper(1, 1, 4, 4) |
| helper(7, 5, 3, 2) |
| |
| def test_interpolate(self): |
| def helper(shape, output_size, scales, mode, align_corners=False): |
| inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| inputCPU.retain_grad() |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| |
| # align_corners is used for 2D interpolation only |
| if (align_corners is True and len(shape) > 3 and mode == 'bilinear'): |
| if scales is not None: |
| outputCPU = nn.functional.interpolate(inputCPU, scale_factor=scales, mode=mode, align_corners=align_corners) |
| outputMPS = nn.functional.interpolate(inputMPS, scale_factor=scales, mode=mode, align_corners=align_corners) |
| else: |
| outputCPU = nn.functional.interpolate(inputCPU, size=output_size, mode=mode, align_corners=align_corners) |
| outputMPS = nn.functional.interpolate(inputMPS, size=output_size, mode=mode, align_corners=align_corners) |
| elif scales is not None: |
| outputCPU = nn.functional.interpolate(inputCPU, scale_factor=scales, mode=mode) |
| outputMPS = nn.functional.interpolate(inputMPS, scale_factor=scales, mode=mode) |
| else: |
| outputCPU = nn.functional.interpolate(inputCPU, size=output_size, mode=mode) |
| outputMPS = nn.functional.interpolate(inputMPS, size=output_size, mode=mode) |
| |
| self.assertEqual(outputCPU, outputMPS) |
| |
| # backward pass (chose 0.6 just to have the grad_output != 1) |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6)) |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| # 1D interpolation |
| for mode in ['nearest', 'nearest-exact']: |
| helper([2, 3, 4], [3], None, mode) # downsample with size |
| helper([2, 3, 4], [6], None, mode) # upsample with size |
| helper([2, 3, 4], None, [0.6], mode) # downsample with scale factor |
| helper([2, 3, 4], None, [1.7], mode) # upsample with scale factor |
| # 2D interpolation |
| for mode in ['nearest', 'nearest-exact', 'bilinear']: |
| helper([2, 3, 4, 5], [3, 4], None, mode) # downsample_nearest with size |
| helper([2, 3, 4, 5], [6, 7], None, mode) # upsample_nearest with size |
| helper([2, 3, 4, 5], None, [0.6, 0.7], mode) # downsample_nearest with scale factor |
| helper([2, 3, 4, 5], None, [1.4, 1.7], mode) # upsample_nearest with scale factor |
| # align_corners=True |
| helper([2, 3, 4, 5], [3, 4], None, 'bilinear', True) |
| helper([2, 3, 4, 5], None, [1.4, 1.7], 'bilinear', True) |
| |
| # Test concat forward |
| def test_cat1(self): |
| def helper(shape_x, shape_y, shape_z): |
| cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| z = cpu_z.detach().clone().to('mps') |
| |
| cat = torch.cat([x, y, z], dim=1) |
| cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1) |
| |
| self.assertEqual(cat, cat_cpu) |
| |
| helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5]) |
| helper([2, 2, 6, 5], [2, 3, 6, 5], [2, 5, 6, 5]) |
| helper([0, 2, 4, 5], [0, 3, 4, 5], [0, 5, 4, 5]) |
| helper([2, 2, 6, 5], [0], [2, 5, 6, 5]) |
| helper([0], [2, 3, 6, 5], [2, 5, 6, 5]) |
| helper([2, 3, 4, 5], [2, 5, 4, 5], [0]) |
| helper([2, 2, 6, 5], [2, 0, 6, 5], [2, 5, 6, 5]) |
| helper([2, 0, 6, 5], [2, 3, 6, 5], [2, 5, 6, 5]) |
| helper([2, 0, 6, 5], [2, 3, 6, 5], [2, 0, 6, 5]) |
| |
| # Test stack forward |
| def test_stack(self): |
| # All shapes must be same |
| def helper(shape, dtype=torch.float32): |
| |
| x, cpu_x = None, None |
| y, cpu_y = None, None |
| z, cpu_z = None, None |
| |
| if (dtype not in [torch.float32, torch.bool]): |
| cpu_x = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| cpu_y = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| cpu_z = torch.randint(50, shape, device='cpu', dtype=dtype, requires_grad=False) |
| z = cpu_z.detach().clone().to('mps') |
| elif (dtype == torch.bool): |
| cpu_x = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| cpu_y = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| cpu_z = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) |
| z = cpu_z.detach().clone().to('mps') |
| else: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| cpu_y = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| y = cpu_y.detach().clone().to('mps').requires_grad_() |
| cpu_z = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| z = cpu_z.detach().clone().to('mps').requires_grad_() |
| |
| stack = torch.stack([x, y, z], dim=1) |
| stack_cpu = torch.stack([cpu_x, cpu_y, cpu_z], dim=1) |
| |
| self.assertEqual(stack, stack_cpu) |
| |
| helper([2, 8, 4, 5]) |
| helper([2, 8, 4, 5], dtype=torch.float16) |
| helper([2, 8, 4, 5], dtype=torch.int32) |
| helper([2, 8, 4, 5], dtype=torch.int64) |
| helper([2, 8, 4, 5], dtype=torch.bool) |
| # Empty test - Currently failing! Empty tensor not handled! |
| # helper([0, 2, 4, 5]) |
| |
| # Test abs |
| def test_abs(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| abs_result = torch.abs(x) |
| abs_result_cpu = torch.abs(cpu_x) |
| |
| self.assertEqual(abs_result, abs_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_log(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| log_result = torch.log(x) |
| log_result_cpu = torch.log(cpu_x) |
| |
| self.assertEqual(log_result, log_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_log_ten(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| log_ten_result = torch.log10(x) |
| log_ten_result_cpu = torch.log10(cpu_x) |
| |
| self.assertEqual(log_ten_result, log_ten_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_log_two(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| log_two_result = torch.log2(x) |
| log_two_result_cpu = torch.log2(cpu_x) |
| |
| self.assertEqual(log_two_result, log_two_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_log1p(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| log_result = torch.log1p(x) |
| log_result_cpu = torch.log1p(cpu_x) |
| |
| self.assertEqual(log_result, log_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_logaddexp(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| log_result = torch.logaddexp(x, y) |
| log_result_cpu = torch.logaddexp(cpu_x, cpu_y) |
| |
| self.assertEqual(log_result, log_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_logaddexp2(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| log_result = torch.logaddexp2(x, y) |
| log_result_cpu = torch.logaddexp2(cpu_x, cpu_y) |
| |
| self.assertEqual(log_result, log_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_logsumexp(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| log_result = torch.logsumexp(x, -1) |
| log_result_cpu = torch.logsumexp(cpu_x, -1) |
| |
| self.assertEqual(log_result, log_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| # Test concat forward |
| def test_cat2(self): |
| |
| def helper1(shape_x, shape_y, shape_z, shape_w): |
| cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| z = cpu_z.detach().clone().to('mps') |
| |
| cpu_w = torch.randn(shape_w, device='cpu', dtype=torch.float, requires_grad=False) |
| w = cpu_w.detach().clone().to('mps') |
| |
| cat = torch.cat([x, y, z, w], dim=1) |
| cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z, cpu_w], dim=1) |
| |
| self.assertEqual(cat, cat_cpu) |
| |
| def helper(shape_x, shape_y, shape_z): |
| cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| z = cpu_z.detach().clone().to('mps') |
| |
| cat = torch.cat([x, y, z], dim=1) |
| cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1) |
| |
| self.assertEqual(cat, cat_cpu) |
| |
| helper([2, 8, 4, 5], [2, 10, 4, 5], [2, 6, 4, 5]) |
| helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5]) |
| # Empty test - Currently failing! Empty tensor not handled! |
| # helper([0, 2, 4, 5], [2, 0, 4, 5], [2, 5, 0, 5]) |
| |
| # Test isnan |
| def test_isnan(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| nan_index = [random.randrange(0, shape[0])] |
| # make a selected row inf |
| cpu_x.index_put_(indices=[torch.tensor(nan_index)], values=torch.tensor(float('nan'))) |
| x = cpu_x.detach().clone().to('mps') |
| |
| isnan_result = torch.isnan(x) |
| isnan_result_cpu = torch.isnan(cpu_x) |
| |
| self.assertEqual(isnan_result, isnan_result_cpu) |
| |
| helper((8, 2, 4, 5)) |
| |
| # Test reciprocal |
| def test_reciprocal(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| reciprocal_result = torch.reciprocal(x) |
| reciprocal_result_cpu = torch.reciprocal(cpu_x) |
| |
| cpu_grad = torch.ones_like(reciprocal_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| reciprocal_result.backward(gradient=grad) |
| reciprocal_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(reciprocal_result, reciprocal_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 8, 4, 5)) |
| |
| # Test sqrt |
| def test_sqrt(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| sqrt_result = torch.sqrt(x) |
| sqrt_result_cpu = torch.sqrt(cpu_x) |
| |
| cpu_grad = torch.ones_like(sqrt_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| sqrt_result.backward(gradient=grad) |
| sqrt_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(sqrt_result, sqrt_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 8, 4, 5)) |
| |
| # Test selu, elu, celu |
| def test_elu(self): |
| def helper(shape, alpha=1.0, memory_format=torch.contiguous_format): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| cpu_x = cpu_x.to(memory_format=memory_format).requires_grad_() |
| |
| x = cpu_x.detach().clone().to('mps').requires_grad_(True) |
| for activation_func in [torch.nn.ELU(alpha=alpha), torch.nn.CELU(alpha=alpha), torch.nn.SELU()]: |
| elu_result = activation_func(x) |
| elu_result_cpu = activation_func(cpu_x) |
| |
| cpu_grad = torch.randn(elu_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| elu_result.backward(gradient=grad) |
| elu_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(elu_result, elu_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test empty shape too |
| for memory_fromat in [torch.channels_last, torch.contiguous_format]: |
| for shape in [(2, 8, 4, 5)]: |
| for alpha in [0.000001, 1.0, 2.3, 0.34, 23]: |
| helper(shape, alpha, memory_fromat) |
| |
| def test_elu_strided_output(self): |
| # https://github.com/pytorch/pytorch/issues/124834 |
| elu_input = torch.randn(1, 1024, 500) |
| alpha = float(1) |
| inplace = False |
| |
| elu_input_noncontiguous = elu_input.transpose(1, 2) |
| self.assertEqual( |
| F.elu(elu_input_noncontiguous.to('cpu'), alpha, inplace), |
| F.elu(elu_input_noncontiguous.to('mps'), alpha, inplace) |
| ) |
| |
| # Test glu |
| def test_glu(self): |
| def helper(shape, dim=0): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| for activation_func in [torch.nn.GLU(dim=dim)]: |
| glu_result = activation_func(x) |
| glu_result_cpu = activation_func(cpu_x) |
| |
| cpu_grad = torch.randn(glu_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| glu_result.backward(gradient=grad) |
| glu_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(glu_result, glu_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| for shape in [[4], (2, 4), (2, 8, 4, 6)]: |
| for dim in range(len(shape)): |
| helper(shape, dim) |
| |
| # Test softplus |
| def test_softplus(self): |
| def helper(shape, beta, threshold, dtype): |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| softplus_result = torch.nn.Softplus(beta=beta, threshold=threshold)(x) |
| softplus_result_cpu = torch.nn.Softplus(beta=beta, threshold=threshold)(cpu_x) |
| |
| cpu_grad = torch.randn(softplus_result.shape) |
| grad = cpu_grad.to('mps') |
| |
| softplus_result.backward(gradient=grad) |
| softplus_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(softplus_result, softplus_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test empty shape too |
| for shape, beta, threshold, dtype in product( |
| [(), (2, 3), (10, 10), (2, 3, 4, 5)], |
| [0.5, 1, 2, 3, 4], |
| [0.5, 20, 30, 40, 50], |
| [torch.float16, torch.float32] |
| ): |
| helper(shape, beta, threshold, dtype) |
| |
| # Test silu |
| |
| def test_silu(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| silu_result = torch.nn.SiLU()(x) |
| silu_result_cpu = torch.nn.SiLU()(cpu_x) |
| |
| cpu_grad = torch.randn(silu_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| silu_result.backward(gradient=grad) |
| silu_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(silu_result, silu_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test empty shape too |
| for shape in [[], (2, 3), (2, 8, 4, 5)]: |
| helper(shape) |
| |
| def test_cast_mps_to_cpu(self): |
| def helper(src_dtype, dst_dtype): |
| input = torch.rand((1, 3, 128, 128), dtype=src_dtype) |
| input_cast_mps = input.to('mps') |
| input_cast_cpu = input_cast_mps.to('cpu', dtype=dst_dtype) |
| |
| # needs to match the initial Tensor |
| self.assertEqual(input_cast_cpu, input.to(dtype=dst_dtype)) |
| helper(torch.half, torch.float) |
| helper(torch.float, torch.half) |
| |
| def test_cast_mps_to_mps(self): |
| def helper(src_dtype, dst_dtype): |
| input_cpu = torch.rand((1, 3, 128, 128), dtype=src_dtype) |
| input_mps = input_cpu.to('mps') |
| output_mps = input_mps.to(dtype=dst_dtype) |
| output_cpu = input_cpu.to(dtype=dst_dtype) |
| self.assertEqual(output_mps.cpu(), output_cpu) |
| helper(torch.half, torch.float) |
| helper(torch.float, torch.half) |
| helper(torch.half, torch.long) |
| helper(torch.float, torch.int) |
| |
| def test_avg_pool2d_count_include_pad(self): |
| cpu_x = torch.randn((1, 3, 9, 9), device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| pool = torch.nn.AvgPool2d(kernel_size=(3, 3), padding=(1, 1), stride=(1, 1), ceil_mode=True, count_include_pad=True) |
| ref_y = pool(cpu_x) |
| y = pool(x) |
| self.assertEqual(y, ref_y) |
| cpu_grad = torch.randn(ref_y.shape) |
| grad = cpu_grad.to('mps') |
| ref_y.backward(gradient=cpu_grad) |
| y.backward(gradient=grad) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test adaptive avg pool2d - when the input size is a multiple of output size |
| # Not testing for channels last right now |
| def test_adaptive_avg_pool2d_simple(self): |
| def helper(input_shape, out_shape, channels_last): |
| cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| avg_result = torch.nn.AdaptiveAvgPool2d(out_shape)(x) |
| avg_result_cpu = torch.nn.AdaptiveAvgPool2d(out_shape)(cpu_x) |
| |
| cpu_grad = torch.randn(avg_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| avg_result.backward(gradient=grad) |
| avg_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(avg_result, avg_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 2, 4, 4), (2, 2), False) |
| helper((2, 2, 9, 9), (3, 3), False) |
| helper((2, 2, 9, 9), (9, 9), False) |
| helper((2, 2, 16, 16), (2, 2), False) |
| helper((2, 2, 16, 16), (2, 16), False) |
| |
| helper((2, 16, 16), (4, 4), False) |
| |
| # Output shape larger than input shape |
| |
| helper((2, 2, 4, 4), (8, 8), False) |
| helper((2, 2, 2, 2), (4, 4), False) |
| helper((2, 2, 3, 3), (9, 9), False) |
| helper((2, 2, 2, 2), (16, 16), False) |
| helper((2, 2, 2, 16), (16, 16), False) |
| |
| helper((2, 4, 4), (16, 16), False) |
| |
| try: |
| helper((2, 2, 3, 3), (7, 7), False) |
| except Exception as e: |
| pass |
| |
| # Test max avg pool2d - when the input size is a multiple of output size |
| # Not testing for channels last right now |
| def test_adaptive_max_pool2d_simple(self): |
| def helper(input_shape, out_shape, return_indices, dtype, channels_last=False): |
| cpu_x = None |
| if (dtype in [torch.float16, torch.float32]): |
| cpu_x = torch.randn(input_shape, device='cpu', dtype=dtype, requires_grad=True) |
| else: |
| cpu_x = torch.randint(50, input_shape, device='cpu', dtype=dtype, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| max_result, max_indices = None, None |
| max_result_cpu, max_indices_cpu = None, None |
| |
| if (return_indices): |
| max_result, max_indices = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(x) |
| max_result_cpu, max_indices_cpu = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(cpu_x) |
| else: |
| max_result = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(x) |
| max_result_cpu = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(cpu_x) |
| |
| cpu_grad = torch.randn(max_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| max_result.backward(gradient=grad) |
| max_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(max_result, max_result_cpu) |
| if (return_indices): |
| self.assertEqual(max_indices, max_indices_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| for dtype in [torch.float32]: |
| for return_indices in [False, True]: |
| helper((2, 2, 4, 4), (2, 2), return_indices, dtype) |
| helper((2, 2, 9, 9), (3, 3), return_indices, dtype) |
| helper((2, 2, 9, 9), (9, 9), return_indices, dtype) |
| helper((2, 2, 16, 16), (2, 2), return_indices, dtype) |
| helper((2, 2, 16, 16), (2, 16), return_indices, dtype) |
| helper((2, 16, 16), (4, 4), return_indices, dtype) |
| |
| def test_gelu_simple(self): |
| def helper(shape, dtype=torch.float, contiguous=True): |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype) |
| x = cpu_x.detach().clone().to('mps') |
| |
| if not contiguous and (0 not in shape and len(shape) >= 2): |
| # Tranposing will make the tensor non-contiguous |
| cpu_x = cpu_x.transpose(0, 1) |
| x = x.transpose(0, 1) |
| assert not x.is_contiguous() |
| |
| cpu_x.requires_grad_() |
| x.requires_grad_() |
| |
| gelu_result = torch.nn.GELU()(x) |
| # GELU is not supported on CPU, so cast it to float |
| gelu_result_cpu = torch.nn.GELU()(cpu_x.to(torch.float)) |
| |
| cpu_grad = torch.ones_like(gelu_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| gelu_result.backward(gradient=grad) |
| gelu_result_cpu.backward(gradient=cpu_grad) |
| |
| atol = 1e-5 if dtype == torch.float else 1e-2 |
| rtol = 1e-3 if dtype == torch.float else 1e-2 |
| self.assertEqual(gelu_result, gelu_result_cpu.to(dtype), atol=atol, rtol=rtol) |
| |
| assert x.grad is not None # Check that the grad is well-populated |
| self.assertEqual(x.grad, cpu_x.grad, atol=atol, rtol=rtol) |
| |
| # Test empty shape too |
| for dtype in [torch.float, torch.half]: |
| for shape in [[], (0,), (0, 3), (4,), (4, 3), (5, 4, 3)]: |
| for contiguous in [True, False]: |
| helper(shape, dtype, contiguous) |
| # Test that gelu would raise an assert for integral types |
| for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]: |
| self.assertRaises(RuntimeError, lambda: torch.nn.GELU()(torch.randint(100, (2,), dtype=dtype, device="mps"))) |
| |
| def test_mish_simple(self): |
| def helper(shape, dtype=torch.float, contiguous=True): |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype) |
| x = cpu_x.detach().clone().to('mps') |
| |
| if not contiguous and (0 not in shape and len(shape) >= 2): |
| # Tranposing will make the tensor non-contiguous |
| cpu_x = cpu_x.transpose(0, 1) |
| x = x.transpose(0, 1) |
| assert not x.is_contiguous() |
| |
| cpu_x.requires_grad_() |
| x.requires_grad_() |
| |
| mish_result = torch.nn.Mish()(x) |
| mish_result_cpu = torch.nn.Mish()(cpu_x) |
| |
| cpu_grad = torch.ones_like(mish_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| mish_result.backward(gradient=grad) |
| mish_result_cpu.backward(gradient=cpu_grad) |
| |
| atol = 1e-5 if dtype == torch.float else 1e-2 |
| rtol = 1e-3 if dtype == torch.float else 1e-2 |
| self.assertEqual(mish_result, mish_result_cpu.to(dtype), atol=atol, rtol=rtol) |
| |
| assert x.grad is not None # Check that the grad is well-populated |
| self.assertEqual(x.grad, cpu_x.grad, atol=atol, rtol=rtol) |
| |
| # Test empty shape too |
| for dtype in [torch.float, torch.half]: |
| for shape in [[], (0,), (0, 3), (4,), (4, 3), (5, 4, 3)]: |
| for contiguous in [True, False]: |
| helper(shape, dtype, contiguous) |
| |
| def test_gelu(self): |
| def _test_gelu(n, m, dtype, contiguous, atol=None, rtol=None): |
| numpy_dtype = { |
| torch.bfloat16: torch.float, torch.float: torch.float, torch.double: torch.double |
| }[dtype] |
| devices = ['cpu'] |
| devices += ['mps'] |
| |
| def _gelu_ref(X): |
| return X * stats.norm.cdf(X) # noqa: F821 |
| |
| for d in devices: |
| X = torch.rand(n, m, dtype=dtype, requires_grad=True, device=d)[:, ::2] |
| res = X |
| ref = (X.to(numpy_dtype).cpu().detach().numpy()) |
| self.assertEqual(res, ref, rtol=rtol, atol=atol, exact_dtype=False) |
| |
| for n in [1, 5, 10]: |
| for m in [1, 5, 10]: |
| _test_gelu(n, m, torch.float32, True) |
| _test_gelu(n, m, torch.float32, False) |
| |
| # Test multi threaded |
| num_threads = torch.get_num_threads() |
| torch.set_num_threads(4) |
| try: |
| _test_gelu(32, 32, torch.float32, False) |
| finally: |
| torch.set_num_threads(num_threads) |
| |
| def test_gelu_tanh(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| x = cpu_x.detach().clone().to('mps') |
| |
| gelu_tanh_result = torch.nn.functional.gelu(x, approximate='tanh') |
| gelu_tanh_result_cpu = torch.nn.functional.gelu(cpu_x, approximate='tanh') |
| self.assertEqual(gelu_tanh_result, gelu_tanh_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| # Test hardtanh |
| def test_hardtanh(self): |
| def helper(shape, min_val, max_val, inplace=False): |
| cpu_x = None |
| x = None |
| |
| if (not inplace): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| else: |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| hardtanh_result = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(x) |
| hardtanh_result_cpu = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(cpu_x) |
| |
| self.assertEqual(hardtanh_result, hardtanh_result_cpu) |
| |
| if (not inplace): |
| cpu_grad = torch.randn(hardtanh_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| hardtanh_result.backward(gradient=grad) |
| hardtanh_result_cpu.backward(gradient=cpu_grad) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| # Test empty shape too |
| for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]: |
| for min_val, max_val in zip([-1, -2, 3], [1, -1, 4]): |
| helper(shape, min_val, max_val) |
| helper(shape, min_val, max_val, inplace=True) |
| |
| def test_hardswish(self): |
| def helper(shape, inplace=False, requires_grad=True): |
| m = nn.Hardswish(inplace=inplace) |
| |
| input_cpu = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=requires_grad) |
| input_mps = input_cpu.detach().clone().to('mps').requires_grad_(requires_grad) |
| |
| if inplace and requires_grad: # check that both raise runtime error |
| self.assertRaises(RuntimeError, lambda: m(input_cpu)) |
| self.assertRaises(RuntimeError, lambda: m(input_mps)) |
| return |
| |
| output_cpu = m(input_cpu) |
| output_mps = m(input_mps) |
| |
| cpu_grad = torch.ones_like(output_cpu) |
| mps_grad = cpu_grad.to('mps') |
| |
| self.assertEqual(output_cpu, output_mps) |
| |
| if requires_grad: |
| output_cpu.backward(gradient=cpu_grad) |
| output_mps.backward(gradient=mps_grad) |
| |
| self.assertEqual(input_cpu.grad, input_mps.grad) |
| |
| for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]: |
| helper(shape, inplace=False, requires_grad=False) |
| helper(shape, inplace=True, requires_grad=False) |
| helper(shape, inplace=False, requires_grad=True) |
| helper(shape, inplace=True, requires_grad=True) |
| |
| def test_transpose_2D(self): |
| values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| values1 = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| mps_x1 = torch.tensor(values1, device='mps') |
| |
| cpu_transpose = torch.transpose(cpu_x, 0, 1) |
| mps_transpose = torch.transpose(mps_x, 0, 1) |
| self.assertEqual(cpu_transpose, mps_transpose.to('cpu')) |
| |
| def test_transpose_3D(self): |
| values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| |
| cpu_transpose1 = torch.transpose(cpu_x, 0, 1) |
| mps_transpose1 = torch.transpose(mps_x, 0, 1).to('cpu') |
| self.assertEqual(cpu_transpose1, mps_transpose1) |
| |
| cpu_transpose2 = torch.transpose(cpu_x, 0, 2) |
| mps_transpose2 = torch.transpose(mps_x, 0, 2).to('cpu') |
| self.assertEqual(cpu_transpose2, mps_transpose2) |
| |
| cpu_transpose3 = torch.transpose(cpu_x, 1, 2) |
| mps_transpose3 = torch.transpose(mps_x, 1, 2).to('cpu') |
| self.assertEqual(cpu_transpose3, mps_transpose3) |
| |
| |
| def test_transpose_4D(self): |
| values = [[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]], |
| [[[13.0, 14.0, 15.0], [16.0, 17.0, 18.0]], [[19.0, 20.0, 21.0], [22.0, 23.0, 24.0]]]] |
| cpu_x = torch.tensor(values, device='cpu') |
| mps_x = torch.tensor(values, device='mps') |
| |
| cpu_transpose1 = torch.transpose(cpu_x, 0, 1) |
| mps_transpose1 = torch.transpose(mps_x, 0, 1).to('cpu') |
| self.assertEqual(cpu_transpose1, mps_transpose1) |
| |
| cpu_transpose2 = torch.transpose(cpu_x, 0, 2) |
| mps_transpose2 = torch.transpose(mps_x, 0, 2).to('cpu') |
| self.assertEqual(cpu_transpose2, mps_transpose2) |
| |
| cpu_transpose3 = torch.transpose(cpu_x, 0, 3) |
| mps_transpose3 = torch.transpose(mps_x, 0, 3).to('cpu') |
| self.assertEqual(cpu_transpose3, mps_transpose3) |
| |
| cpu_transpose4 = torch.transpose(cpu_x, 3, 1) |
| mps_transpose4 = torch.transpose(mps_x, 3, 1).to('cpu') |
| self.assertEqual(cpu_transpose4, mps_transpose4) |
| |
| cpu_transpose5 = torch.transpose(cpu_x, 3, 2) |
| mps_transpose5 = torch.transpose(mps_x, 3, 2).to('cpu') |
| self.assertEqual(cpu_transpose5, mps_transpose5) |
| |
| cpu_transpose6 = torch.transpose(cpu_x, 1, 2) |
| mps_transpose6 = torch.transpose(mps_x, 1, 2).to('cpu') |
| self.assertEqual(cpu_transpose6, mps_transpose6) |
| |
| # Test sign |
| def test_sign(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| sign_result = torch.sign(x) |
| sign_result_cpu = torch.sign(cpu_x) |
| |
| cpu_grad = torch.ones_like(sign_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| sign_result.backward(gradient=grad) |
| sign_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(sign_result, sign_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_signbit(self): |
| def helper(shape, dtype): |
| cpu_x = torch.randn(shape, device='cpu').to(dtype) |
| x = cpu_x.clone().to('mps') |
| |
| signbit_result = torch.signbit(x) |
| signbit_result_cpu = torch.signbit(cpu_x) |
| |
| self.assertEqual(signbit_result, signbit_result_cpu) |
| |
| helper((2, 8, 4, 5), torch.int) |
| helper((2, 8, 4, 5), torch.float) |
| helper((2, 8, 4, 5), torch.int64) |
| |
| # Test neg |
| def test_neg(self): |
| def helper(shape): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| neg_result = torch.neg(x) |
| neg_result_cpu = torch.neg(cpu_x) |
| |
| cpu_grad = torch.ones_like(neg_result_cpu) |
| grad = cpu_grad.to('mps') |
| |
| neg_result.backward(gradient=grad) |
| neg_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(neg_result, neg_result_cpu) |
| |
| helper((2, 8, 4, 5)) |
| |
| def test_neg_strided_input(self): |
| # See https://github.com/pytorch/pytorch/issues/98074#issuecomment-1496088337 |
| x = torch.arange(18.0, device='mps').reshape(2, 3, 3) |
| y = x.permute(1, 0, 2)[..., 1] |
| z = y + y.neg() |
| self.assertEqual(z.abs().max().item(), 0.0) |
| |
| # Test index add |
| def test_index_add(self): |
| def helper(shape, dim, index, source_shape, alpha, x_dtype=torch.float32, idx_dtype=torch.int32): |
| cpu_x = torch.randn(shape, device='cpu', dtype=x_dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_idx = torch.tensor(index, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| cpu_source = torch.randn(source_shape, device='cpu', dtype=x_dtype, requires_grad=False) |
| source = cpu_source.detach().clone().to('mps') |
| |
| idx_result = torch.index_add(x, dim=dim, index=idx, source=source, alpha=alpha) |
| idx_result_cpu = torch.index_add(cpu_x, dim=dim, index=cpu_idx, source=cpu_source, alpha=alpha) |
| self.assertEqual(idx_result, idx_result_cpu) |
| |
| helper((2, 8, 4, 5), 0, [0, 1, 0], (3, 8, 4, 5), 5) |
| helper((8, 8, 4, 5), 0, [7], (1, 8, 4, 5), 6.0) |
| helper((2, 8, 4, 5), 1, [0, 3, 7], (2, 3, 4, 5), 5) |
| helper((2, 8, 4, 5), 2, [3, 0], (2, 8, 2, 5), 3.0) |
| helper((2, 8, 4, 5), 3, [2, 3, 0], (2, 8, 4, 3), 4) |
| helper((2, 3, 3), -1, [1, 2], (2, 3, 2), 6.0) |
| # test result dim=1 |
| helper((2,), 0, [1], (1,), 6.0) |
| helper(2, 0, 1, 1, 6) |
| # test float16 |
| helper((2,), 0, [1], (1,), 6.0, x_dtype=torch.float16) |
| |
| def test_index_64bit(self): |
| """ Test that index operations work for 4Gb+ tensors """ |
| if product_version < 14.0: |
| raise unittest.SkipTest("Sonoma is needed for large tensors, see https://github.com/pytorch/pytorch/issues/84039") |
| # Cleanup memory |
| gc.collect() |
| torch.mps.empty_cache() |
| # Check that index operations work for 4+GB tensors |
| x = torch.rand(16000, 67120, device="mps") |
| self.assertGreater(x.element_size() * x.numel(), 2**32) |
| idx = torch.arange(0, 2, device="mps") |
| x_sampled = x[:, idx] |
| self.assertEqual(x[:, 0], x_sampled[:, 0]) |
| # Reclaim memory after running the tests |
| del x |
| gc.collect() |
| torch.mps.empty_cache() |
| |
| def test_mm_large(self): |
| """ Test that MM works for matrices with index larger than 32K """ |
| x = torch.rand(10, 1, device="mps") |
| y = torch.rand(1, 32769, device="mps") |
| # This used to crash with: |
| # error: subRange.start (24576) is not less than length of dimension[0] (16384) |
| # See https://github.com/pytorch/pytorch/issues/116769#issuecomment-1888302095 |
| self.assertNotEqual(torch.mm(x, y[:, 16384:32768]).abs().max().item(), 0.0) |
| |
| def compare_mm(m, n, k, dtype=torch.float): |
| x = torch.rand(m, n, device="mps", dtype=dtype) |
| y = torch.rand(n, k, device="mps", dtype=dtype) |
| z = torch.mm(x, y).cpu() |
| z_cpu = torch.mm(x.cpu(), y.cpu()) |
| self.assertEqual(z, z_cpu) |
| |
| # Used to produce incorrect results with MPS on M1 running MacOS 14.3, but correct with Metal |
| compare_mm(1024, 1, 32769) |
| # one more time, but with dimensions inverted |
| # see https://github.com/pytorch/pytorch/issues/116769#issuecomment-1920066984 |
| compare_mm(32769, 1, 1025) |
| |
| if product_version >= 14.0: |
| # Test bfloat16 mm |
| compare_mm(1024, 1, 32769, torch.bfloat16) |
| |
| @unittest.skipIf(total_memory < 12_000_000_000, "Needs at least 12Gb RAM to run the test") |
| @unittest.skipIf(product_version < 14.0, "Can't allocate 4Gb tensor on MacOS 13") |
| def test_copy_large(self): |
| """ Test that copy of 4Gb+ tensors works """ |
| x = torch.ones((2**30 + 11,), dtype=torch.float32) |
| y = x.to(device="mps") |
| self.assertTrue(torch.all(y == torch.tensor(1.0, device="mps"))) |
| del y |
| del x |
| |
| # Test flip |
| def test_flip(self): |
| def helper(shape, dims): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| flip_result = torch.flip(x, dims=dims) |
| flip_result_cpu = torch.flip(cpu_x, dims=dims) |
| |
| self.assertEqual(flip_result, flip_result_cpu) |
| |
| helper((2, 8, 4, 5), [0]) |
| helper((8, 8, 4, 5), [0, 1]) |
| helper((2, 8, 4, 5), (0, 1, 2, 3)) |
| helper((2, 3, 3), (-1,)) |
| # empty dims |
| helper((2, 8, 4, 5), []) |
| # input.numel() == 1 |
| helper((1,), (0,)) |
| # input.numel() == 0 |
| helper((0,), (0,)) |
| # none of dims that needs to be flipped |
| helper((1, 3), [0]) |
| |
| # Test index select |
| def test_index_select(self): |
| def helper(shape, dim, index, idx_dtype=torch.int32): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_idx = torch.tensor(index, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| idx_result = torch.index_select(x, dim=dim, index=idx) |
| idx_result_cpu = torch.index_select(cpu_x, dim=dim, index=cpu_idx) |
| |
| self.assertEqual(idx_result, idx_result_cpu) |
| |
| helper((2, 8, 4, 5), 0, [1]) |
| helper((8, 8, 4, 5), 0, [0, 3, 2, 7, 6]) |
| helper((2, 8, 4, 5), 1, [0, 3, 2, 7, 6]) |
| helper((2, 8, 4, 5), 2, [3, 0, 1]) |
| helper((2, 8, 4, 5), 3, [2, 3, 0]) |
| helper((2, 3, 3), -1, [1, 2]) |
| helper((), 0, [0]) |
| helper((5), 0, []) |
| |
| def test_index_select_scalar(self): |
| def helper(value, dim, index, idx_dtype=torch.int32): |
| cpu_x = torch.tensor(value, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_idx = torch.tensor(index, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| idx_result = torch.index_select(x, dim=dim, index=idx) |
| idx_result_cpu = torch.index_select(cpu_x, dim=dim, index=cpu_idx) |
| |
| self.assertEqual(idx_result, idx_result_cpu) |
| |
| helper(22, 0, [0]) |
| with self.assertRaisesRegex(RuntimeError, "Index to scalar can have only 1 value"): |
| helper(22, 0, []) |
| |
| def test_embedding_dense_backward(self): |
| def helper(n, d, m, idx): |
| embeddingMPS = nn.Embedding(n, d, max_norm=True, device='mps') |
| emedding_weight = embeddingMPS.weight.detach().cpu() |
| W_MPS = torch.randn((m, d), requires_grad=True, device='mps') |
| idx_MPS = torch.tensor(idx, device='mps') |
| a_MPS = embeddingMPS.weight.clone() @ W_MPS.t() # weight must be cloned for this to be differentiable |
| a_MPS.retain_grad() |
| b_MPS = embeddingMPS(idx_MPS) @ W_MPS.t() # modifies weight in-place |
| b_MPS.retain_grad() |
| out_MPS = (a_MPS.unsqueeze(0) + b_MPS) |
| loss_MPS = out_MPS.sigmoid().prod() |
| loss_MPS.backward() |
| |
| embeddingCPU = nn.Embedding(n, d, max_norm=True, _weight=emedding_weight) |
| W_CPU = W_MPS.to('cpu') |
| idx_CPU = torch.tensor(idx) |
| a_CPU = embeddingCPU.weight.clone() @ W_CPU.t() # weight must be cloned for this to be differentiable |
| a_CPU.retain_grad() |
| b_CPU = embeddingCPU(idx_CPU) @ W_CPU.t() # modifies weight in-place |
| b_CPU.retain_grad() |
| out_CPU = (a_CPU.unsqueeze(0) + b_CPU) |
| loss_CPU = out_CPU.sigmoid().prod() |
| loss_CPU.backward() |
| |
| self.assertEqual(b_CPU.grad, b_MPS.grad) |
| self.assertEqual(a_CPU.grad, a_MPS.grad) |
| |
| helper(3, 5, 7, [0, 1, 2]) |
| helper(3, 6, 7, [0, 1, 2]) # verify if changes in shape would cause cached graph lookup problems |
| helper(3, 5, 7, 2) # test scalar index |
| |
| # Test pytorch gather |
| def test_gather(self): |
| def helper(shape, dim, idx_shape, idx_dtype=torch.int64): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| # Indices should be taken from range of axis along which gathering is done |
| idx_np = np.random.randint(0, shape[dim], idx_shape) |
| |
| cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| gather_result = torch.gather(x, dim=dim, index=idx) |
| gather_result_cpu = torch.gather(cpu_x, dim=dim, index=cpu_idx) |
| |
| cpu_grad = torch.randn(idx_shape, device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| gather_result.backward(gradient=grad) |
| gather_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(gather_result, gather_result_cpu) |
| self.assertEqual(cpu_x.grad, x.grad) |
| |
| helper((6, 3, 3), 0, (3, 3, 3)) |
| helper((2, 3, 3, 3), 0, (10, 3, 3, 3)) |
| helper((2, 8, 4, 5), 0, (10, 8, 4, 5)) |
| helper((2, 8, 4, 5), 0, (10, 6, 3, 2)) |
| helper((8, 8, 4, 5), 0, (6, 8, 4, 5)) |
| helper((8, 8, 4, 5), 0, (6, 7, 2, 3)) |
| helper((2, 8, 4, 5), 1, (2, 5, 3, 4)) |
| helper((2, 8, 4, 5), 2, (1, 8, 10, 3)) |
| helper((2, 8, 4, 5), 3, (2, 5, 3, 12)) |
| |
| # Test pytorch gather |
| def test_gather_scalar(self): |
| idx_dtype = torch.int64 |
| cpu_x = torch.tensor(3, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| idx_np = [0] |
| |
| cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| gather_result = torch.gather(x, dim=0, index=idx) |
| gather_result_cpu = torch.gather(cpu_x, dim=0, index=cpu_idx) |
| |
| cpu_grad = torch.randn([1], device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| gather_result.backward(gradient=grad) |
| gather_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(gather_result, gather_result_cpu) |
| self.assertEqual(cpu_x.grad, x.grad) |
| |
| # Test pytorch scatter_add and scatter |
| def test_scatter_add(self): |
| def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, do_add=True): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| src = cpu_src.detach().clone().to('mps').requires_grad_() |
| |
| # Indices should be taken from range of axis along which gathering is done |
| idx_np = None |
| if (do_add): |
| idx_np = np.random.randint(0, shape[dim], idx_shape) |
| else: |
| idx_np = np.array([[0, 1, 2], |
| [1, 2, 3], |
| [2, 3, 4], |
| [3, 4, 5], |
| [4, 5, 6]]) |
| |
| cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| scatter_result = None |
| scatter_result_cpu = None |
| |
| if (do_add): |
| scatter_result = torch.scatter_add(x, dim=dim, index=idx, src=src) |
| scatter_result_cpu = torch.scatter_add(cpu_x, dim=dim, index=cpu_idx, src=cpu_src) |
| else: |
| scatter_result = torch.scatter(x, dim=dim, index=idx, src=src) |
| scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src) |
| |
| cpu_grad = None |
| grad = None |
| |
| if (idx_shape == src_shape): |
| cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| scatter_result.backward(gradient=grad) |
| scatter_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(scatter_result, scatter_result_cpu) |
| if (idx_shape == src_shape): |
| self.assertEqual(cpu_x.grad, x.grad) |
| self.assertEqual(cpu_src.grad, src.grad) |
| |
| helper((2, 3), 0, (5, 3), (5, 3)) |
| helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5)) |
| helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5)) |
| helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2)) |
| helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2)) |
| helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5)) |
| |
| helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5)) |
| helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2)) |
| helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3)) |
| helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3)) |
| |
| helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8)) |
| helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6)) |
| helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6)) |
| |
| # Test scatter src |
| helper((8, 3), 0, (5, 3), (5, 3), do_add=False) |
| helper((10, 3), 0, (5, 3), (5, 8), do_add=False) |
| |
| # Test pytorch scatter_add and scatter for scalar input |
| def test_scatter_add_scalar(self): |
| def helper(idx_dtype=torch.int64, do_add=True): |
| cpu_x = torch.tensor(2, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_src = torch.tensor(3, device='cpu', dtype=torch.float, requires_grad=True) |
| src = cpu_src.detach().clone().to('mps').requires_grad_() |
| |
| # Indices should be taken from range of axis along which gathering is done |
| idx_np = [0] |
| |
| cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| scatter_result = None |
| scatter_result_cpu = None |
| |
| if (do_add): |
| scatter_result = torch.scatter_add(x, dim=0, index=idx, src=src) |
| scatter_result_cpu = torch.scatter_add(cpu_x, dim=0, index=cpu_idx, src=cpu_src) |
| else: |
| scatter_result = torch.scatter(x, dim=0, index=idx, src=src) |
| scatter_result_cpu = torch.scatter(cpu_x, dim=0, index=cpu_idx, src=cpu_src) |
| |
| cpu_grad = None |
| grad = None |
| |
| cpu_grad = torch.tensor(1.2, device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| scatter_result.backward(gradient=grad) |
| scatter_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(scatter_result, scatter_result_cpu) |
| self.assertEqual(cpu_x.grad, x.grad) |
| self.assertEqual(cpu_src.grad, src.grad) |
| |
| helper() |
| helper(do_add=False) |
| |
| # Test pytorch scatter_reduce |
| def test_scatter_reduce(self): |
| def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, reduce_str="sum"): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| src = cpu_src.detach().clone().to('mps').requires_grad_() |
| |
| # Indices should be taken from range of axis along which gathering is done |
| idx_np = np.random.randint(0, shape[dim], idx_shape) |
| |
| cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| idx = cpu_idx.detach().clone().to('mps') |
| |
| scatter_result = torch.scatter(x, dim=dim, index=idx, src=src, reduce=reduce_str) |
| scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src, reduce=reduce_str) |
| |
| self.assertEqual(scatter_result, scatter_result_cpu) |
| |
| # for reduce in ["sum", "prod", "amax", "amin"]: |
| for reduce_type in ["add", "multiply"]: |
| helper((2, 3), 0, (5, 3), (5, 3), reduce_str=reduce_type) |
| helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5), reduce_str=reduce_type) |
| |
| helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5), reduce_str=reduce_type) |
| helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3), reduce_str=reduce_type) |
| helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3), reduce_str=reduce_type) |
| |
| helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8), reduce_str=reduce_type) |
| helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6), reduce_str=reduce_type) |
| helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6), reduce_str=reduce_type) |
| |
| def test_is_nonzero(self): |
| self.assertFalse(torch.is_nonzero(torch.tensor([0.]).to('mps'))) |
| self.assertTrue(torch.is_nonzero(torch.tensor([1.5]).to('mps'))) |
| self.assertFalse(torch.is_nonzero(torch.tensor([False]).to('mps'))) |
| self.assertTrue(torch.is_nonzero(torch.tensor([3]).to('mps'))) |
| |
| # Test triu |
| def test_triu(self): |
| def helper(shape, diag=0): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| triu_result = torch.triu(x, diag) |
| triu_result_cpu = torch.triu(cpu_x, diag) |
| |
| cpu_grad = torch.randn(triu_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| triu_result.backward(gradient=grad) |
| triu_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(triu_result, triu_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 8, 4, 5)) |
| helper((2, 8, 4, 5), diag=1) |
| helper((2, 8, 4, 5), diag=2) |
| helper((2, 8, 4, 5), diag=3) |
| helper((2, 8, 4, 5), diag=-1) |
| helper((2, 8, 4, 5), diag=-2) |
| helper((2, 8, 4, 5), diag=-3) |
| |
| # Test inverse |
| def test_inverse(self): |
| def helper(n): |
| cpu_input = torch.randn(n, n, device='cpu') |
| mps_input = cpu_input.to('mps') |
| |
| cpu_result = torch.linalg.inv(cpu_input) |
| mps_result = torch.linalg.inv(mps_input) |
| self.assertEqual(cpu_result, mps_result) |
| |
| helper(2) |
| helper(6) |
| helper(3) |
| helper(8) |
| |
| # Test tril |
| def test_tril(self): |
| def helper(shape, diag=0): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| tril_result = torch.tril(x, diag) |
| tril_result_cpu = torch.tril(cpu_x, diag) |
| |
| cpu_grad = torch.randn(tril_result_cpu.shape) |
| grad = cpu_grad.to('mps') |
| |
| tril_result.backward(gradient=grad) |
| tril_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(tril_result, tril_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper((2, 8, 4, 5)) |
| helper((2, 8, 4, 5), diag=1) |
| helper((2, 8, 4, 5), diag=2) |
| helper((2, 8, 4, 5), diag=3) |
| helper((2, 8, 4, 5), diag=-1) |
| helper((2, 8, 4, 5), diag=-2) |
| helper((2, 8, 4, 5), diag=-3) |
| |
| # test eye |
| def test_eye(self): |
| def helper(n, m, dtype): |
| cpu_result = None |
| result = None |
| |
| if (n == m): |
| cpu_result = torch.eye(n, dtype=dtype, device='cpu') |
| result = torch.eye(n, dtype=dtype, device='mps') |
| else: |
| cpu_result = torch.eye(n, m, device='cpu') |
| result = torch.eye(n, m, device='mps') |
| |
| self.assertEqual(result, cpu_result) |
| |
| for dtype in [torch.bool, torch.float16, torch.float32, torch.uint8, torch.int16, torch.int32, torch.int64]: |
| helper(2, 2, dtype) |
| helper(2, 3, dtype) |
| helper(0, 2, dtype) |
| helper(0, 0, dtype) |
| helper(3, 8, dtype) |
| helper(8, 3, dtype) |
| |
| # Test diag |
| def test_diag(self): |
| def helper(shape, diag=0): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| diag_result = torch.diag(x, diag) |
| diag_result_cpu = torch.diag(cpu_x, diag) |
| |
| # cpu_grad = torch.randn(diag_result_cpu.shape) |
| # grad = cpu_grad.to('mps') |
| |
| # diag_result.backward(gradient=grad) |
| # diag_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(diag_result, diag_result_cpu) |
| # self.assertEqual(x.grad, cpu_x.grad) |
| |
| for shape in [(5, 5), (5, 6), (6, 5), (5,), (6,)]: |
| for diag in [0, 1, 2, 3, 4, -1, -2, -3, -4]: |
| helper(shape, diag=diag) |
| |
| # Test linspace |
| def test_linspace(self): |
| def helper(start, end, steps, dtype=torch.float32): |
| cpu_result = torch.tensor(np.linspace(start, end, steps), dtype=dtype) |
| result = torch.linspace(start, end, steps, dtype=dtype, device='mps') |
| self.assertEqual(cpu_result, result) |
| |
| for dtype in [torch.float32, torch.int32, torch.uint8, torch.int64]: |
| helper(2, 5, 10, dtype) |
| helper(2, 2, 10, dtype) |
| helper(5, 2, 10, dtype) |
| helper(2, 2, 0, dtype) |
| |
| # Test argange |
| def test_arange(self): |
| self.assertEqual(np.arange(10), torch.arange(10, device='mps')) |
| self.assertEqual(np.arange(7, 1, -1), torch.arange(7, 1, -1, device='mps')) |
| self.assertEqual(np.arange(1, 2, .3, dtype=np.float32), torch.arange(1, 2, .3, device='mps')) |
| self.assertEqual(np.arange(6.3, dtype=np.float32), torch.arange(6.3, device='mps')) |
| |
| def test_arange_empty(self): |
| out_mps = torch.tensor([], device="mps") |
| out_cpu = torch.tensor([], device="cpu") |
| |
| y_mps = torch.arange(0, 0, 1, out=out_mps) |
| y_cpu = torch.arange(0, 0, 1, out=out_cpu) |
| self.assertEqual(y_mps, y_cpu) |
| |
| # Test rgange |
| def test_range(self): |
| self.assertEqual(np.arange(11, dtype=np.float32), torch.range(0, 10, device='mps')) |
| self.assertEqual(np.arange(7, 0, -1, dtype=np.float32), torch.range(7, 1, -1, device='mps')) |
| self.assertEqual(np.array([1.0000, 1.3000, 1.6000, 1.9000], dtype=np.float32), torch.range(1, 2, .3, device='mps')) |
| self.assertEqual(np.arange(6.3, dtype=np.float32), torch.arange(0, 6.3, device='mps')) |
| |
| # Test softmax |
| def test_softmax(self): |
| def helper(shape, dim, channels_last=False): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| if (channels_last): |
| cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| cpu_x.retain_grad() |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| softmax_result = torch.nn.functional.softmax(x, dim=dim) |
| softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim) |
| |
| # Currently NOT testing backward for channels last backward |
| cpu_grad = None |
| grad = None |
| |
| if (not channels_last): |
| cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| |
| softmax_result.backward(gradient=grad) |
| softmax_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(softmax_result, softmax_result_cpu) |
| if (not channels_last): |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| def helper2(dim): |
| cpu_x = torch.tensor(1.23, device='cpu', dtype=torch.float, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| softmax_result = torch.nn.functional.softmax(x, dim=dim) |
| softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim) |
| |
| cpu_grad = torch.tensor(2.34, device='cpu', dtype=torch.float) |
| grad = cpu_grad.to('mps') |
| |
| softmax_result.backward(gradient=grad) |
| softmax_result_cpu.backward(gradient=cpu_grad) |
| |
| self.assertEqual(softmax_result, softmax_result_cpu) |
| self.assertEqual(x.grad, cpu_x.grad) |
| |
| helper2(0) |
| |
| for channels_last in [False]: |
| for shape in [(2, 4, 8, 5), (3, 4, 6, 7, 2)]: |
| if (len(shape) != 4 and channels_last): |
| continue |
| for dim in [0, 1, 2, 3, -1, -2, -3]: |
| helper(shape, dim, channels_last) |
| |
| def test_nan_to_num(self): |
| inputCPU = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14]) |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| outputCPU = torch.nan_to_num(inputCPU, nan=2.0, posinf=1.0, neginf=-1.0) |
| outputMPS = torch.nan_to_num(inputMPS, nan=2.0, posinf=1.0, neginf=-1.0) |
| self.assertEqual(outputMPS, outputCPU) |
| |
| # Test where |
| def test_where(self): |
| def helper(shape, x_shape, y_shape, cond_dtype=torch.bool, x_dtype=torch.float): |
| |
| cpu_cond = torch.randint(2, shape, device='cpu', dtype=cond_dtype, requires_grad=False) |
| cond = cpu_cond.detach().clone().to('mps') |
| |
| cpu_x = torch.randn(x_shape, device='cpu', dtype=x_dtype, requires_grad=True) |
| x = cpu_x.detach().clone().to('mps').requires_grad_() |
| |
| cpu_y = torch.randn(y_shape, device='cpu', dtype=x_dtype, requires_grad=True) |
| y = cpu_y.detach().clone().to('mps').requires_grad_() |
| |
| cpu_out = torch.where(cpu_cond, cpu_x, cpu_y) |
| out = torch.where(cond, x, y) |
| |
| cpu_grad = torch.randn(cpu_out.shape) |
| grad = cpu_grad.to('mps') |
| |
| cpu_out.backward(gradient=cpu_grad) |
| out.backward(gradient=grad) |
| |
| self.assertEqual(out, cpu_out) |
| self.assertEqual(x.grad, cpu_x.grad) |
| self.assertEqual(y.grad, cpu_y.grad) |
| |
| for shape in ([(0, 3), [], (2, 3), (9,)]): |
| helper(shape, shape, shape) |
| |
| helper((2, 3, 1), (2, 3, 4), (2, 1, 4)) |
| helper((2, 1, 1), (2, 3, 4), (1, 3, 4)) |
| helper((1, 1, 1), (1, 1, 4), (2, 3, 1)) |
| helper([], (1, 1, 4), (2, 3, 1)) |
| helper([], (2, 3, 4), []) |
| helper((5, 2, 3), (2, 3), (2, 3)) |
| helper((2, 3), (5, 2, 3), (2, 3)) |
| helper((2, 3), (2, 3), (5, 2, 3)) |
| helper((2, 3), (5, 2, 3), (6, 5, 2, 3)) |
| # Test that output is correctly resizes |
| # TODO: Remove me when out OpInfo testing is enabled on MPS |
| output = torch.tensor(0.0, device="mps") |
| cond = torch.randint(2, (3, 3), dtype=torch.bool, device="mps") |
| inp = torch.rand(3, 3, device="mps") |
| other = torch.rand(3, 3, device="mps") |
| out = torch.where(cond, inp, other, out=output) |
| self.assertEqual(id(out), id(output)) |
| self.assertEqual(out.shape, (3, 3)) |
| |
| # Test normal |
| def test_normal(self): |
| def helper(shape, mean=0.0, std=1.0): |
| mps_out = torch.normal(mean, std, shape, device='mps') |
| |
| mean_array = np.ones(shape) |
| mean_array *= mean |
| cpu_mean_tensor = torch.tensor(mean_array, device='cpu', dtype=torch.float, requires_grad=False) |
| mean_tensor = cpu_mean_tensor.detach().clone().to('mps') |
| |
| std_array = np.ones(shape) |
| std_array *= std |
| cpu_std_tensor = torch.tensor(std_array, device='cpu', dtype=torch.float, requires_grad=False) |
| std_tensor = cpu_std_tensor.detach().clone().to('mps') |
| |
| # test out |
| mps_out = torch.zeros(shape, device='mps') |
| torch.normal(mean_tensor, std, out=mps_out) |
| |
| mps_out = torch.zeros(shape, device='mps') |
| torch.normal(mean, std_tensor, out=mps_out) |
| |
| mps_out = torch.zeros(shape, device='mps') |
| torch.normal(mean_tensor, std_tensor, out=mps_out) |
| |
| # test without out |
| mps_out = torch.normal(mean_tensor, std) |
| self.assertEqual(mps_out.size(), mean_tensor.size()) |
| |
| mps_out = torch.normal(mean, std_tensor) |
| self.assertEqual(mps_out.size(), std_tensor.size()) |
| |
| inferred_shape = torch.broadcast_shapes(mean_tensor.size(), std_tensor.size()) |
| mps_out = torch.normal(mean_tensor, std_tensor) |
| self.assertEqual(mps_out.size(), inferred_shape) |
| |
| helper((2, 3, 4, 5, 6)) |
| helper((100, 100), 2.5, 1.2) |
| |
| def test_bernoulli(self): |
| shape = (10, 10) |
| all_ones = torch.ones(shape, device='mps') |
| all_zeros = torch.zeros(shape, device='mps') |
| |
| prob_tensor = all_ones * 0.5 |
| # probability of drawing "1" is 0.5 |
| mps_out = torch.bernoulli(prob_tensor) |
| # We can't check reliably the mean and std. |
| # Just make sure we don't return constant values |
| self.assertNotEqual(mps_out.to('cpu').mean(), 0.) |
| self.assertNotEqual(mps_out.to('cpu').std() ** 2, 0.) |
| |
| # probability of drawing "1" is 0 |
| mps_out = torch.bernoulli(all_zeros) |
| self.assertEqual(mps_out, all_zeros) |
| |
| # probability of drawing "1" is 1 |
| mps_out = torch.bernoulli(all_ones) |
| self.assertEqual(mps_out, all_ones) |
| |
| # Check it works for different dtypes |
| for dtype in [torch.float16, torch.int8, torch.int16, torch.int32, torch.int64]: |
| mps_out = torch.zeros(shape, device='mps', dtype=dtype).bernoulli(0.5) |
| # Check that output is not all zeros or ones |
| if product_version > 13.0: |
| uniq = mps_out.unique() |
| self.assertEqual(uniq, torch.arange(2, device='mps', dtype=dtype)) |
| else: |
| self.assertEqual(mps_out.min().item(), 0.) |
| self.assertEqual(mps_out.max().item(), 1.) |
| |
| def test_mps_generator(self): |
| # explicit manual seeding by creating an MPS Generator |
| g_mps = torch.Generator(device='mps') |
| g_mps.manual_seed(999) |
| mps_x = torch.randn(5, device='mps', generator=g_mps) |
| g_mps.manual_seed(999) |
| # generate random numbers with offset `0` |
| mps_y = torch.randn(5, device='mps', generator=g_mps) |
| # seed values were the same, so the random tensor contents should match |
| self.assertEqual(mps_x, mps_y) |
| # save generator's state (offset = 1) to restore it later |
| g_state = g_mps.get_state() |
| |
| # generate random numbers with offset `1` |
| mps_x = torch.randn(5, device='mps', generator=g_mps) |
| # in this case, the random results must differ from the last generated random results |
| self.assertNotEqual(mps_x, mps_y) |
| |
| # mps_x was produced by g_state, we use it as our reference mps_y. |
| mps_y = mps_x |
| |
| # restore the previously saved state, and the results should match again |
| g_mps.set_state(g_state) |
| mps_x = torch.randn(5, device='mps', generator=g_mps) |
| self.assertEqual(mps_x, mps_y) |
| |
| @serialTest() |
| def test_default_mps_generator(self): |
| # manual seeding on the "default" MPS generator using |
| # the global torch.manual_seed() |
| torch.manual_seed(230) |
| mps_x = torch.randn(5, device='mps') |
| # manual seeding using torch.mps.manual_seed() |
| # which should set the "default" MPS generator |
| # like the global torch.manual_seed() |
| torch.mps.manual_seed(230) |
| # generate random numbers with offset `0` |
| mps_y = torch.randn(5, device='mps') |
| # seed values were the same, so the random tensor contents should match |
| self.assertEqual(mps_x, mps_y) |
| |
| # save the default generator's state (offset = 1) to restore it later |
| g_state = torch.mps.get_rng_state() |
| |
| # generate random numbers with offset `1` |
| mps_x = torch.randn(5, device='mps') |
| # in this case, the random results must differ from the last generated random results |
| self.assertNotEqual(mps_x, mps_y) |
| # since we called randn twice after seeding, the offset should be 2 |
| self.assertEqual(torch.mps._get_default_mps_generator().get_offset(), 2) |
| |
| # mps_x was produced by g_state, we use it as our reference mps_y. |
| mps_y = mps_x |
| |
| # restore the previously saved state to the "default" MPS generator, and the results should match again |
| torch.mps.set_rng_state(g_state) |
| mps_x = torch.randn(5, device='mps') |
| self.assertEqual(mps_x, mps_y) |
| |
| def test_device_synchronize(self): |
| # just running some ops each followed by a synchronize to wait for |
| # MPS stream to finish running each of them |
| net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ |
| .to(device='mps', dtype=torch.float) |
| |
| x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) |
| torch.mps.synchronize() |
| x = net1(x) |
| torch.mps.synchronize() |
| x.backward(torch.randn_like(x)) |
| torch.mps.synchronize() |
| |
| @serialTest() |
| def test_mps_allocator_module(self): |
| # first garbage collect and empty the cached blocks |
| gc.collect() |
| torch.mps.empty_cache() |
| # measure memory allocations from MPSAllocator |
| current_alloc_before = torch.mps.current_allocated_memory() |
| # after garbage collection and emptying the cache the |
| # current_allocated_memory must be zero |
| self.assertEqual(current_alloc_before, 0) |
| # measure total memory allocations from Metal driver |
| driver_alloc_before = torch.mps.driver_allocated_memory() |
| # allocate a new 8 MB tensor to force allocation of a new Metal Heap |
| x = torch.ones(1024 * 1024 * 8, device="mps") |
| # get memory allocations after allocating tensor x |
| current_alloc_after = torch.mps.current_allocated_memory() |
| driver_alloc_after = torch.mps.driver_allocated_memory() |
| # current and driver memory allocations must have |
| # grown at this point |
| self.assertGreater(current_alloc_after, current_alloc_before) |
| self.assertGreater(driver_alloc_after, driver_alloc_before) |
| |
| def test_mps_allocator_stats(self): |
| max_memory = torch.mps.recommended_max_memory() |
| print(f"Recommended Max Memory : {max_memory/ 1024 ** 3} GB") |
| self.assertGreater(max_memory, 0) |
| |
| # to verify this test, run XCode Instruments "Metal System Trace" or "Logging" tool, |
| # press record, then run this python test, and press stop. Next expand |
| # the os_signposts->PyTorchMPS and check if events or intervals are logged |
| # like this example: |
| # "aten::mps_convolution_backward_input:f32[1,128,6,6]:f32[128,64,3,3]:1,128,6,6 (id=G2, run=2)" |
| def test_mps_profiler_module(self): |
| with torch.mps.profiler.profile(mode="event", wait_until_completed=False) as p: |
| # just running some ops to capture the OS Signposts traces for profiling |
| net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ |
| .to(device='mps', dtype=torch.float) |
| x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) |
| x = net1(x) |
| |
| torch.mps.profiler.start(mode="interval", wait_until_completed=True) |
| # just running some ops to capture the OS Signposts traces for profiling |
| x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) |
| x = net1(x) |
| torch.mps.profiler.stop() |
| |
| def test_mps_event_module(self): |
| startEvent = torch.mps.Event(enable_timing=True) |
| startEvent.record() |
| net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ |
| .to(device='mps', dtype=torch.float) |
| x = torch.rand(1, 128, 6, 6, device='mps', dtype=torch.float, requires_grad=True) |
| x = net1(x) |
| endEvent = torch.mps.Event(enable_timing=True) |
| endEvent.record() |
| elapsedTime = startEvent.elapsed_time(endEvent) |
| self.assertGreater(elapsedTime, 0.0) |
| |
| def test_jit_save_load(self): |
| m = torch.nn.Module() |
| m.x = torch.rand(3, 3, device='mps') |
| buffer = io.BytesIO() |
| torch.jit.save(torch.jit.script(m), buffer) |
| buffer.seek(0) |
| n = torch.jit.load(buffer) |
| self.assertEqual(n.x, m.x) |
| |
| # Test random_, random_.to and random_.from |
| def test_random(self): |
| def helper(shape, low, high, dtype=torch.int32): |
| |
| mps_out = torch.randint(low, high, shape, dtype=dtype, device='mps') |
| |
| # We can't check reliably the mean and std. |
| # Just make sure we don't return constant values |
| self.assertNotEqual(mps_out.float().mean().item(), 0.) |
| self.assertNotEqual(mps_out.float().std().item(), 0.) |
| |
| helper([100, 100], 0, 10) |
| helper([100, 100], 23, 89) |
| helper([100, 100], 23, 89, dtype=torch.float32) |
| helper([100, 100], 23, 89, dtype=torch.int64) |
| helper([100, 100], 0, 2, dtype=torch.bool) |
| |
| # Test random_ |
| for dtype in [torch.bool, torch.int8, torch.uint8, torch.int32, torch.float16, torch.float32]: |
| x = torch.empty(10, 10, dtype=dtype, device='mps') |
| x.random_() |
| self.assertNotEqual(x.max().item(), 0) |
| |
| # Test exponential |
| def test_exponential(self): |
| def helper(shape, lamda, dtype=torch.float32): |
| |
| mps_out = torch.zeros(shape, device='mps', dtype=dtype) |
| mps_out.exponential_(lamda) |
| |
| print(mps_out.to('cpu').float().mean(), 1 / lamda) |
| print(mps_out.to('cpu').float().std() ** 2, 1 / (lamda**2)) |
| |
| for dtype in [torch.float32, torch.float16]: |
| helper([100, 100], 2, dtype) |
| helper([100, 100], 1, dtype) |
| helper([100, 100], 3, dtype) |
| helper([100, 100], 0.5, dtype) |
| |
| def test_exponential_1(self): |
| rate = torch.randn(5, 5).abs().requires_grad_() |
| rate_1d = torch.randn(1).abs().requires_grad_() |
| self.assertEqual(Exponential(rate).sample().size(), (5, 5)) |
| self.assertEqual(Exponential(rate).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Exponential(rate_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Exponential(rate_1d).sample().size(), (1,)) |
| self.assertEqual(Exponential(0.2).sample((1,)).size(), (1,)) |
| self.assertEqual(Exponential(50.0).sample((1,)).size(), (1,)) |
| |
| # Test add |
| def test_add_sub(self): |
| def helper(shape, alpha, op_name, inplace): |
| if op_name == "add": |
| op = torch.Tensor.add_ if inplace else torch.add |
| elif op_name == "sub": |
| op = torch.Tensor.sub_ if inplace else torch.sub |
| |
| for dtype in [torch.float16, torch.float32]: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=False) |
| mps_y = cpu_y.detach().clone().to('mps') |
| |
| cpu_out = op(cpu_x, cpu_y, alpha=alpha) |
| mps_out = op(mps_x, mps_y, alpha=alpha) |
| # fp16 isn't accurate when alpha is passed |
| # TODO: remove or fix 'tol' when we fix problems with fp16 |
| tol = 2e-3 if dtype is torch.float16 else None |
| self.assertEqual(mps_out, cpu_out, rtol=tol, atol=tol) |
| if not (cpu_y.shape != () and inplace): # in-place output cannot be broadcasted. |
| # create a scalar tensor |
| cpu_s = torch.tensor(2.3, device='cpu', dtype=dtype, requires_grad=False) |
| mps_s = cpu_s.detach().clone().to('mps') |
| # primary tensor is scalar |
| self.assertEqual(op(cpu_s, cpu_y), op(mps_s, mps_y)) |
| # create a scalar tensor |
| cpu_s = torch.tensor(2.3, device='cpu', dtype=dtype, requires_grad=False) |
| mps_s = cpu_s.detach().clone().to('mps') |
| # secondary tensor is scalar |
| self.assertEqual(op(cpu_x, cpu_s), op(mps_x, mps_s), rtol=tol, atol=tol) |
| |
| |
| for op_name, inplace in product(["add", "sub"], [True, False]): |
| helper((), 0.0, op_name, inplace) |
| helper((2, 8, 4, 5), 0.0, op_name, inplace) |
| helper((2, 8, 4, 5), 0.1, op_name, inplace) |
| helper((2, 8, 4, 5), 1.0, op_name, inplace) |
| helper((2, 8, 3, 5), 0.1, op_name, inplace) |
| helper((2, 8, 3, 5), 0.2, op_name, inplace) |
| |
| # Test add |
| def test_add_scalars(self): |
| def helper(alpha): |
| for dtype in [torch.float16, torch.float32]: |
| cpu_x = torch.tensor(2.3, device='cpu', dtype=dtype, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_y = torch.tensor(3.4, device='cpu', dtype=dtype, requires_grad=False) |
| y = cpu_y.detach().clone().to('mps') |
| |
| cpu_out = torch.add(cpu_x, cpu_y, alpha=alpha) |
| out = torch.add(x, y, alpha=alpha) |
| # fp16 isn't accurate when alpha is passed |
| tol = 1e-3 if dtype is torch.float16 else None |
| self.assertEqual(out, cpu_out, rtol=tol, atol=tol) |
| |
| helper(1.0) |
| helper(0.0) |
| helper(0.1) |
| helper(0.2) |
| |
| # Test int32 tensor + int64 scalar add |
| # see https://github.com/pytorch/pytorch/issues/79835#issuecomment-1164984534 |
| x = torch.ones(4, dtype=torch.int32, device='mps') |
| self.assertEqual(x + 1, torch.full((4,), 2, dtype=torch.int32, device='mps')) |
| self.assertTrue(torch.equal(x + 1.5, torch.full((4,), 2.5, device='mps'))) |
| |
| def test_types_binary_op(self): |
| # Float * Bool |
| cpu_x = torch.arange(5, dtype=torch.float32, device="cpu") * torch.tensor([True, False, True, False, True], device="cpu") |
| mps_x = torch.arange(5, dtype=torch.float32, device="mps") * torch.tensor([True, False, True, False, True], device="mps") |
| self.assertEqual(cpu_x, mps_x) |
| # Float * Int64 |
| cpu_y = torch.arange(5, dtype=torch.float32, device="cpu") * torch.tensor([1, 0, 1, 0, 1], device="cpu") |
| mps_y = torch.arange(5, dtype=torch.float32, device="mps") * torch.tensor([1, 0, 1, 0, 1], device="mps") |
| self.assertEqual(cpu_y, mps_y) |
| |
| def test_unary_ops(self): |
| def helper(shape, op): |
| for dtypef in [torch.float32]: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtypef, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| self.assertEqual(op(cpu_x), op(mps_x)) |
| |
| for dtypei in [torch.int32, torch.int16]: |
| cpu_x = torch.randint(0, 1000, shape, device='cpu', dtype=dtypei, requires_grad=False) |
| mps_x = cpu_x.to('mps') |
| self.assertEqual(op(cpu_x), op(mps_x), rtol=1e-4, atol=1e-4) |
| # test slice |
| for dtypef in [torch.float32]: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtypef, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| cpu_slice = cpu_x[:, ::2, :, :] |
| mps_slice = mps_x[:, ::2, :, :] |
| self.assertEqual(op(cpu_slice), op(mps_slice)) |
| # test view |
| for dtypef in [torch.float32]: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtypef, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| # create view of tensor by reducing the 3rd and 4th dimension |
| combined_dim = shape[-1] * shape[-2] |
| reshaped_dims = list(shape[:-2]) + [combined_dim] |
| cpu_view = cpu_x.view(*reshaped_dims) |
| mps_view = mps_x.view(*reshaped_dims) |
| self.assertEqual(op(cpu_view), op(mps_view)) |
| |
| helper((2, 8, 4, 5), torch.exp) |
| helper((2, 8, 3, 5), torch.exp2) |
| helper((2, 8, 3, 5), torch.expm1) |
| helper((2, 8, 3, 5), torch.log) |
| helper((2, 8, 3, 5), torch.cos) |
| helper((2, 8, 3, 5), torch.erfinv) |
| |
| |
| def test_non_dense_in_storage_unary_ops(self): |
| def helper(op): |
| for dtypef in [torch.float32]: |
| cpu_x = torch.randn(100, device='cpu', dtype=dtypef, requires_grad=False) |
| mps_x = cpu_x.detach().clone().to('mps') |
| self.assertEqual(op(cpu_x[::2]), op(mps_x[::2])) |
| |
| for dtypei in [torch.int32, torch.int16, torch.int8]: |
| cpu_x = torch.randint(127, device='cpu', size=(100,), dtype=dtypei, requires_grad=False) |
| mps_x = cpu_x.to('mps') |
| self.assertEqual(op(cpu_x[::2]), op(mps_x[::2]), rtol=1e-4, atol=1e-4) |
| |
| helper(torch.exp) |
| helper(torch.exp2) |
| helper(torch.expm1) |
| helper(torch.log) |
| helper(torch.cos) |
| |
| def test_unary_ops_storage_offset_strided(self): |
| def helper(shape, op, inplace, dtype=torch.float32): |
| # test in-place with storage_offset |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype) |
| mps_x = cpu_x.detach().clone().to('mps') |
| y = op(mps_x[1]) |
| cpu_y = op(cpu_x[1]) |
| self.assertEqual(y, cpu_y) |
| |
| |
| # See https://github.com/pytorch/pytorch/issues/100764 |
| if not inplace: |
| cpu_x = torch.randn(shape, device='cpu', dtype=dtype) |
| mps_x = cpu_x.detach().clone().to('mps') |
| cpu_y = torch.empty(shape, device='cpu', dtype=dtype).t() |
| mps_y = cpu_y.detach().clone().to('mps') |
| op(cpu_x, out=cpu_y) |
| op(mps_x, out=mps_y) |
| self.assertEqual(mps_y, cpu_y) |
| |
| |
| helper((5, 5), torch.exp, False) |
| helper((5, 5), torch.cos, False) |
| helper((5, 5), torch.neg, False) |
| helper((5, 5), torch.tanh, False) |
| helper((5, 5), torch.tanh_, True) |
| |
| def test_atan2(self): |
| def helper(shape): |
| input_cpu = torch.randn(shape) |
| input_mps = input_cpu.detach().clone().to("mps") |
| |
| other_cpu = torch.randn(shape) |
| other_mps = other_cpu.detach().clone().to("mps") |
| |
| atan2_cpu = torch.atan2(input_cpu, other_cpu) |
| atan2_mps = torch.atan2(input_mps, other_mps) |
| |
| self.assertEqual(atan2_cpu, atan2_mps.to("cpu")) |
| |
| helper(4) |
| helper(10000) |
| helper((10000, 40)) |
| |
| def test_multinomial(self): |
| # Test with num_dist = 1 |
| def helper(probs, compare_mean, compare_var, num_samples=5, replacement=True): |
| cpu_prob_tensor = torch.tensor(probs, device='cpu', dtype=torch.float, requires_grad=False) |
| prob_tensor = cpu_prob_tensor.detach().clone().to('mps') |
| |
| mps_out = torch.multinomial(prob_tensor, num_samples, replacement=replacement) |
| if (not replacement): |
| print(mps_out.to('cpu')) |
| else: |
| # Compare "real" with theoretical values |
| print(mps_out.to('cpu').float().mean(), compare_mean) |
| print(mps_out.to('cpu').float().std() ** 2, compare_var) |
| |
| # TODO: Add tests for data types |
| helper(np.array([[0., 0., 0., 0.5, 0.5]]), (3 + 4) / 2, (12.5 - 3.5 ** 2), 100000) |
| helper(np.array([[.2, .2, .2, .2, .2]]), (0 + 1 + 2 + 3 + 4) / 5, (6 - 2 * 2), 10000) |
| helper(np.array([[1, 1, 1, 1, 1]]), (0 + 1 + 2 + 3 + 4) / 5, (6 - 2 * 2), 10000) |
| helper(np.array([1, 1, 1, 1, 1]), (0 + 1 + 2 + 3 + 4) / 5, (6 - 2 * 2), 10000) |
| helper(np.array([[1, 1, 1, 1, 1, 1, 1]]), 0, 0, 7, False) |
| |
| def test_cumsum_dim_check(self): |
| x = torch.rand((3, 3), device="mps") |
| self.assertEqual(x.cumsum(1), x.cumsum(-1)) |
| self.assertEqual(x.cumsum(0), x.cumsum(-2)) |
| self.assertRaises(IndexError, lambda: x.cumsum(2)) |
| self.assertRaises(IndexError, lambda: x.cumsum(-3)) |
| |
| def test_cumprod_dim_check(self): |
| x = torch.rand((3, 3), device="mps") |
| self.assertEqual(x.cumprod(1), x.cumprod(-1)) |
| self.assertEqual(x.cumprod(0), x.cumprod(-2)) |
| self.assertRaises(IndexError, lambda: x.cumprod(2)) |
| self.assertRaises(IndexError, lambda: x.cumprod(-3)) |
| |
| class TestLogical(TestCaseMPS): |
| def _wrap_tensor(self, x, device="cpu", dtype=None, requires_grad=False): |
| return torch.tensor(x, device=device, dtype=dtype, requires_grad=requires_grad) |
| |
| def test_logical_not(self): |
| def helper(x): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| result = torch.logical_not(x) |
| result_cpu = torch.logical_not(cpu_x) |
| |
| self.assertEqual(result, result_cpu) |
| |
| helper(self._wrap_tensor([1, 1, 0, 0])) |
| helper(self._wrap_tensor([1, 1, 0, 0], dtype=torch.float, requires_grad=True)) |
| helper(self._wrap_tensor([True, True, False, False])) |
| helper(self._wrap_tensor(1)) |
| helper(self._wrap_tensor(0)) |
| helper(self._wrap_tensor(True)) |
| helper(self._wrap_tensor(False)) |
| |
| def test_logical_and(self): |
| def helper(x, other): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_other = other |
| other = cpu_other.detach().clone().to('mps') |
| |
| result = torch.logical_and(x, other) |
| result_cpu = torch.logical_and(cpu_x, cpu_other) |
| self.assertEqual(result, result_cpu) |
| |
| helper(self._wrap_tensor([1, 1, 0, 0]), self._wrap_tensor([1, 0, 0, 1])) |
| helper( |
| self._wrap_tensor([1, 1, 0, 0], dtype=torch.float, requires_grad=True), |
| self._wrap_tensor([1, 0, 0, 1], dtype=torch.float) |
| ) |
| helper(self._wrap_tensor([True, True, False, False]), self._wrap_tensor([True, False, False, True])) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(1)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(0)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(True)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(False)) |
| |
| def test_logical_or(self): |
| def helper(x, other): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_other = other |
| other = cpu_other.detach().clone().to('mps') |
| |
| result = torch.logical_or(x, other) |
| result_cpu = torch.logical_or(cpu_x, cpu_other) |
| |
| self.assertEqual(result, result_cpu) |
| |
| helper(self._wrap_tensor([1, 1, 0, 0]), self._wrap_tensor([1, 0, 0, 1])) |
| helper( |
| self._wrap_tensor([1, 1, 0, 0], dtype=torch.float, requires_grad=True), |
| self._wrap_tensor([1, 0, 0, 1], dtype=torch.float) |
| ) |
| helper(self._wrap_tensor([True, True, False, False]), self._wrap_tensor([True, False, False, True])) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(1)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(0)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(True)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(False)) |
| |
| def test_logical_xor(self): |
| def helper(x, other): |
| cpu_x = x |
| x = cpu_x.detach().clone().to('mps') |
| |
| cpu_other = other |
| other = cpu_other.detach().clone().to('mps') |
| |
| result = torch.logical_xor(x, other) |
| result_cpu = torch.logical_xor(cpu_x, cpu_other) |
| |
| self.assertEqual(result, result_cpu) |
| |
| helper(self._wrap_tensor([1, 1, 0, 0]), self._wrap_tensor([1, 0, 0, 1])) |
| helper( |
| self._wrap_tensor([1, 1, 0, 0], dtype=torch.float, requires_grad=True), |
| self._wrap_tensor([1, 0, 0, 1], dtype=torch.float) |
| ) |
| helper(self._wrap_tensor([True, True, False, False]), self._wrap_tensor([True, False, False, True])) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(1)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(0)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(True)) |
| helper(self._wrap_tensor((1, 0, 1, 0)), self._wrap_tensor(False)) |
| |
| def test_min_max(self): |
| def helper(dtype): |
| for _ in range(10): |
| if dtype == torch.float32 or dtype == torch.float16: |
| x = torch.randn((30, 15), device='mps', dtype=dtype) |
| else: |
| x = torch.randint(0, 100, (30, 15), device="mps", dtype=dtype) |
| x_cpu = x.to("cpu") |
| |
| y = x.max() |
| y_cpu = x_cpu.max() |
| self.assertEqual(y, y_cpu) |
| |
| z = x.min() |
| z_cpu = x_cpu.min() |
| self.assertEqual(z, z_cpu) |
| |
| [helper(dtype) for dtype in [torch.float32, torch.float16, torch.int32, torch.int16, torch.uint8, torch.int8, torch.bool]] |
| |
| def test_min_max_nan_propagation(self): |
| def helper(dtype): |
| cpu_x = torch.tensor([1.0, float("nan"), 3.0], device="cpu") |
| mps_x = cpu_x.detach().clone().to('mps') |
| |
| cpu_max = torch.max(cpu_x) |
| mps_max = torch.max(mps_x).to('cpu') |
| |
| cpu_amax = torch.amax(cpu_x) |
| mps_amax = torch.amax(mps_x).to('cpu') |
| |
| cpu_min = torch.min(cpu_x) |
| mps_min = torch.min(mps_x).to('cpu') |
| |
| cpu_amin = torch.amin(cpu_x) |
| mps_amin = torch.amin(mps_x).to('cpu') |
| |
| self.assertEqual(cpu_max, mps_max) |
| self.assertEqual(cpu_amax, mps_amax) |
| self.assertEqual(cpu_min, mps_min) |
| self.assertEqual(cpu_amin, mps_amin) |
| [helper(dtype) for dtype in [torch.float32, torch.float16, torch.bfloat16]] |
| |
| def test_isin(self): |
| def helper(dtype): |
| shapes = [([2, 5], [3, 5, 2]), ([10, 3, 5], [20, 1, 3]), |
| ([5], [10]), ([0], [5]), ([5], [0])] |
| for shape_tuple in shapes: |
| for inverted in [True, False]: |
| if dtype.is_floating_point: |
| # Half is not supported for CPU isin. Compute reference in FP32 |
| A = torch.randn(size=shape_tuple[0], device='cpu', dtype=torch.float32) |
| B = torch.randn(size=shape_tuple[1], device='cpu', dtype=torch.float32) |
| else: |
| A = torch.randint(0, 100, size=shape_tuple[0], device='cpu', dtype=dtype) |
| B = torch.randint(0, 100, size=shape_tuple[1], device='cpu', dtype=dtype) |
| |
| A_mps = A.clone().detach().to('mps') |
| B_mps = B.clone().detach().to('mps') |
| |
| cpu_ref = torch.isin(A, B, invert=inverted) |
| if dtype in [torch.float16, torch.bfloat16]: |
| cpu_ref.type(dtype) |
| |
| mps_out = torch.isin(A_mps, B_mps, invert=inverted) |
| self.assertEqual(mps_out, cpu_ref) |
| |
| dtypes = [torch.float32, torch.float16, torch.bfloat16, torch.int32, torch.int16, torch.uint8, torch.int8] |
| if product_version < 14.0: |
| # Int types expected to fail on MacOS < 14.0 |
| dtypes = [torch.float32, torch.float16, torch.bfloat16] |
| |
| [helper(dtype) for dtype in dtypes] |
| |
| def test_isin_asserts(self): |
| A = torch.randn(size=[1, 4], device='mps', dtype=torch.float32) |
| B = torch.randn(size=[1, 4], device='mps', dtype=torch.float16) |
| with self.assertRaisesRegex(RuntimeError, 'Expected elements.dtype()*'): |
| out = torch.isin(A, B) |
| |
| |
| C = torch.randn(size=[1, 4], device='mps', dtype=torch.float32) |
| D = torch.randn(size=[1, 4], device='cpu', dtype=torch.float32) |
| with self.assertRaisesRegex(RuntimeError, 'Expected elements.is_mps()*'): |
| out = torch.isin(C, D) |
| |
| class TestSmoothL1Loss(TestCaseMPS): |
| |
| def _smooth_l1_loss_helper(self, reduction="mean", requires_grad=False): |
| # CPU |
| input_cpu = torch.randn(4, 7, requires_grad=requires_grad) |
| target_cpu = torch.randn(4, 7) |
| |
| # MPS |
| input_mps = input_cpu.detach().clone().to('mps').requires_grad_() |
| target_mps = target_cpu.detach().clone().to('mps') |
| |
| smooth_l1_loss_cpu = F.smooth_l1_loss(input_cpu, target_cpu, beta=1.0, reduction=reduction) |
| smooth_l1_loss_mps = F.smooth_l1_loss(input_mps, target_mps, beta=1.0, reduction=reduction) |
| |
| self.assertEqual(smooth_l1_loss_cpu, smooth_l1_loss_mps) |
| |
| if requires_grad: |
| smooth_l1_loss_cpu.backward() |
| smooth_l1_loss_mps.backward() |
| self.assertEqual(input_cpu.grad, input_mps.grad.to("cpu")) |
| |
| return smooth_l1_loss_cpu, smooth_l1_loss_mps |
| |
| def test_smooth_l1_loss_reduction_none(self): |
| self._smooth_l1_loss_helper(reduction="none") |
| |
| def test_smooth_l1_loss_reduction_mean(self): |
| self._smooth_l1_loss_helper(reduction="mean") |
| |
| def test_smooth_l1_loss_reduction_sum(self): |
| self._smooth_l1_loss_helper(reduction="sum") |
| |
| def test_smooth_l1_loss_reduction_mean_backward(self): |
| self._smooth_l1_loss_helper(reduction="mean", requires_grad=True) |
| |
| def test_smooth_l1_loss_reduction_mean_sum_backward(self): |
| self._smooth_l1_loss_helper(reduction="sum", requires_grad=True) |
| |
| class TestNLLLoss(TestCaseMPS): |
| def test_nll_loss_mismatched_batch(self, device='mps'): |
| x = torch.randn((10, 3), requires_grad=True, device=device) |
| # t should have size (10,) |
| t = torch.zeros((3,), dtype=torch.int64, device=device) |
| with self.assertRaisesRegex(ValueError, 'Expected.*batch_size'): |
| F.nll_loss(x, t) |
| |
| def test_nll_loss_out_of_bounds_ignore_index(self): |
| |
| def test_nll_loss_out_of_bounds_ignore_index_helper(device): |
| output = [] |
| x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| t1 = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) |
| t2 = torch.tensor([0, 1, 1, 0, -100, 2], dtype=torch.int64, device=device) |
| for reduction in ['mean', 'none']: |
| # out of bound ignore_index |
| output.append(F.nll_loss(x, t1, ignore_index=255, reduction=reduction)) |
| # default ignore_index |
| output.append(F.nll_loss(x, t2, reduction=reduction)) |
| return output |
| |
| output_cpu = test_nll_loss_out_of_bounds_ignore_index_helper(device='cpu') |
| output_mps = test_nll_loss_out_of_bounds_ignore_index_helper(device='mps') |
| |
| for cpu, mps in zip(output_cpu, output_mps): |
| self.assertEqual(cpu, mps) |
| |
| def test_nll_loss_invalid_target_dim(self): |
| |
| def _test_nll_loss_invalid_target_dim(device): |
| output = [] |
| x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| t = torch.zeros((6, 2), dtype=torch.int64, device=device) |
| with self.assertRaisesRegex(RuntimeError, "1D target tensor expected"): |
| F.nll_loss(x, t) |
| |
| _test_nll_loss_invalid_target_dim(device='cpu') |
| _test_nll_loss_invalid_target_dim(device='mps') |
| |
| def test_nll_loss_invalid_weights(self): |
| |
| def _test_nll_loss_invalid_weights(device): |
| x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| t = torch.tensor([0, 1, 2, 1, 1, 2], dtype=torch.int64, device=device) |
| invalid_weights = [ |
| torch.zeros(4, device=device), |
| torch.zeros((1, 3), device=device), |
| ] |
| msg = "weight tensor should be defined either for all 3 classes or no classes" |
| for weight in invalid_weights: |
| with self.assertRaisesRegex(RuntimeError, msg): |
| F.nll_loss(x, t, weight=weight) |
| |
| _test_nll_loss_invalid_weights(device='cpu') |
| _test_nll_loss_invalid_weights(device='mps') |
| |
| def _nll_loss_helper(self, input_size, reduction, expected): |
| |
| # CPU |
| input = torch.rand(input_size, requires_grad=True, device='cpu') |
| num_channels = input_size[1] |
| target_size = (input_size[0], ) + tuple(input_size[2:]) |
| target = torch.randint(num_channels, target_size, device='cpu') |
| weights = torch.randn(num_channels) |
| |
| # MPS |
| input_mps = input.detach().clone().to('mps').requires_grad_() |
| target_mps = target.detach().clone().to('mps') |
| weights_mps = weights.to("mps") |
| |
| output_cpu = F.nll_loss(input, target, weight=weights, reduction=reduction) |
| output_mps = F.nll_loss(input_mps, target_mps, weight=weights_mps, reduction=reduction) |
| self.assertEqual(output_cpu, output_mps.to('cpu')) |
| |
| output_cpu.sum().backward() |
| output_mps.sum().backward() |
| self.assertEqual(input.grad, input_mps.grad.to('cpu')) |
| |
| def _nll_loss_1d_helper(self, input_size, reduction): |
| |
| # CPU |
| input = torch.rand(input_size, requires_grad=True, device='cpu') |
| num_channels = input_size[0] |
| target = torch.randint(num_channels, [], device='cpu') |
| |
| # MPS |
| input_mps = input.detach().clone().to('mps').requires_grad_() |
| target_mps = target.detach().clone().to('mps') |
| |
| output_cpu = F.nll_loss(input, target, reduction=reduction) |
| output_mps = F.nll_loss(input_mps, target_mps, reduction=reduction) |
| self.assertEqual(output_cpu, output_mps.to('cpu')) |
| |
| output_cpu.sum().backward() |
| output_mps.sum().backward() |
| self.assertEqual(input.grad, input_mps.grad.to('cpu')) |
| |
| def test_nll_loss_1d(self, device='cpu'): |
| self._nll_loss_1d_helper([10], "none") |
| self._nll_loss_1d_helper([10], "mean") |
| self._nll_loss_1d_helper([10], "sum") |
| |
| def test_nll_loss_empty_tensor_reduction_none(self, device='cpu'): |
| self._nll_loss_helper([1, 3], "none", torch.empty([0], device=device)) |
| self._nll_loss_helper([3, 5, 7], "none", torch.empty([5, 7], device=device)) |
| self._nll_loss_helper([2, 3, 1, 7], "none", torch.empty([2, 1, 7], device=device)) |
| self._nll_loss_helper([2, 3, 5, 1], "none", torch.empty([2, 5, 1], device=device)) |
| self._nll_loss_helper([2, 3, 5, 7, 1], "none", torch.empty([2, 5, 7, 1], device=device)) |
| |
| def test_nll_loss_empty_tensor_reduction_mean(self, device='cpu'): |
| nan = torch.tensor(float('nan'), device=device) |
| self._nll_loss_helper([1, 3], "mean", nan) |
| self._nll_loss_helper([1, 3, 5, 7], "mean", nan) |
| self._nll_loss_helper([2, 3, 1, 7], "mean", nan) |
| self._nll_loss_helper([2, 3, 5, 1], "mean", nan) |
| self._nll_loss_helper([2, 3, 5, 7, 1], "mean", nan) |
| |
| def test_nll_loss_empty_tensor_reduction_sum(self, device='cpu'): |
| zero = torch.tensor(0, device=device) |
| self._nll_loss_helper([1, 3], "sum", zero) |
| self._nll_loss_helper([1, 3, 5, 7], "sum", zero) |
| self._nll_loss_helper([2, 3, 1, 7], "sum", zero) |
| self._nll_loss_helper([2, 3, 5, 1], "sum", zero) |
| self._nll_loss_helper([2, 3, 5, 7, 1], "sum", zero) |
| |
| def test_nll_loss_byte_target_matches_long(self, device='cpu'): |
| N, C = 10, 4 |
| input = torch.randn(N, C, device=device, requires_grad=True) |
| target = torch.empty(N, dtype=torch.long, device=device).random_(0, C) |
| |
| def compute_result_and_gradient(reduction, target_dtype): |
| result, grad = {}, {} |
| for dev in ['cpu', 'mps']: |
| input_dev = input.to(dev) |
| input_ = input_dev.detach() |
| input_.requires_grad_() |
| |
| target_dev = target.to(dev) |
| |
| prob = F.log_softmax(input_, dim=-1) |
| loss = nn.NLLLoss(reduction=reduction) |
| result[dev] = loss(prob, target_dev.to(target_dtype)) |
| result[dev].sum().backward() |
| grad[dev] = input_.grad |
| |
| return result, grad |
| |
| for reduction in ["none", "mean", "sum"]: |
| result_long, grad_long = compute_result_and_gradient(reduction, torch.long) |
| result_byte, grad_byte = compute_result_and_gradient(reduction, torch.uint8) |
| |
| self.assertEqual(result_long['mps'].to('cpu'), result_long['cpu']) |
| self.assertEqual(grad_long['mps'].to('cpu'), grad_long['cpu']) |
| |
| class TestTopK(TestCase): |
| def _test_topk(self, shape, largest): |
| cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| x = cpu_x.detach().clone().to('mps') |
| if isinstance(shape, tuple): |
| for curr_dim, dim_size in enumerate(shape): |
| for k in range(1, dim_size + 1): |
| topk_values, topk_indices = torch.topk(x, k, dim=curr_dim, largest=largest) |
| topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=curr_dim, largest=largest) |
| self.assertEqual(topk_values, topk_values_cpu) |
| self.assertEqual(topk_indices, topk_indices_cpu) |
| else: |
| for k in range(1, shape): |
| topk_values, topk_indices = torch.topk(x, k, dim=0, largest=largest) |
| topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=0, largest=largest) |
| self.assertEqual(topk_values, topk_values_cpu) |
| self.assertEqual(topk_indices, topk_indices_cpu) |
| |
| def test_topk(self): |
| largest_vals = [True, False] |
| shapes = [ |
| # Zero Element Tensors |
| 0, |
| (1, 0), |
| (0, 1), |
| (1, 0, 1), |
| # Multiple Element Tensors |
| 1, |
| 2, |
| (5, 1), |
| (1, 5), |
| (5, 9, 7, 4), |
| ] |
| |
| for shape in shapes: |
| for largest_val in largest_vals: |
| with self.subTest(shape=shape, largest_val=largest_val): |
| self._test_topk(shape, largest_val) |
| |
| class TestNNMPS(NNTestCase): |
| |
| def _create_basic_net(self): |
| class Layer(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.layer_dummy_param = Parameter(torch.empty(3, 5)) |
| self.layer_dummy_buf = Buffer(torch.zeros(1, 3, 3, 7)) |
| |
| class Net(nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.l1 = Layer() |
| self.dummy_param = Parameter(torch.empty(3, 5)) |
| self.dummy_buf = Buffer(torch.zeros(7, 3, 3, 1)) |
| |
| l = Layer() |
| n = Net() |
| s = nn.Sequential(n, n) |
| |
| return l, n, s |
| |
| def test_requires_grad_(self): |
| m = self._create_basic_net()[-1] |
| assert len(list(m.buffers())) > 0, 'invalid test' |
| assert all(not b.requires_grad for b in m.buffers()) > 0, 'invalid test' |
| assert len(list(m.parameters())) > 0, 'invalid test' |
| assert all(p.requires_grad for p in m.parameters()) > 0, 'invalid test' |
| for requires_grad in (False, True): |
| self.assertIs(m.requires_grad_(requires_grad), m) |
| for p in m.parameters(): |
| self.assertEqual(p.requires_grad, requires_grad) |
| for b in m.buffers(): |
| self.assertFalse(b.requires_grad) |
| |
| def test_module_backcompat(self): |
| from torch.serialization import SourceChangeWarning |
| path = download_file('https://download.pytorch.org/test_data/linear.pt') |
| with warnings.catch_warnings(): |
| warnings.simplefilter('ignore', SourceChangeWarning) |
| m = torch.load(path) |
| input = torch.randn(2, 3, dtype=torch.float) |
| self.assertEqual(m(input).size(), (2, 5)) |
| |
| def test_conv_backcompat(self): |
| from torch.serialization import SourceChangeWarning |
| # This file was generated by running on PyTorch 1.0.1 on Python 2: |
| # |
| # import torch |
| # from torch import nn |
| # m = nn.Conv2d(1, 1, 1) |
| # torch.save(m, 'legacy_conv2d.pt') |
| # |
| # NB: This Pickle also contains some Unicode data! |
| path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') |
| with warnings.catch_warnings(): |
| warnings.simplefilter('ignore', SourceChangeWarning) |
| m = torch.load(path, encoding='utf-8') |
| input = torch.randn((1, 1, 1, 1), dtype=torch.float) |
| self.assertEqual(m(input).size(), (1, 1, 1, 1)) |
| |
| def test_conv_expand(self): |
| device = 'mps' |
| input_ = torch.rand(2, 3, 16, 16, device=device) |
| kernel = torch.rand(1, 1, 3, 11, device=device) |
| tmp_kernel = kernel.expand(-1, 3, -1, -1) |
| output = F.conv2d(input_, tmp_kernel, groups=1, padding=0, stride=1) |
| |
| # The test should not crash |
| def test_permute(self): |
| M_cpu = torch.randn(5, 5) |
| M_mps = M_cpu.to('mps') |
| |
| output_cpu = M_cpu.permute(1, 0) |
| output_mps = M_mps.permute(1, 0) |
| |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| # Printing of non_contiguous should not crash |
| def test_print_non_contiguous(self): |
| print(torch.ones(100, 100, device='mps').nonzero()) |
| print(torch.ones(100, 100, device='mps').nonzero().contiguous()) |
| |
| def test_zero_grad(self): |
| i = torch.randn(2, 5, requires_grad=True) |
| module = nn.Linear(5, 5) |
| for p in module.parameters(): |
| p.requires_grad = False |
| module.zero_grad() |
| |
| module.weight.requires_grad = True |
| module.zero_grad() |
| self.assertIsNone(module.weight.grad) # uninitialized grad |
| |
| module(i).sum().backward() |
| self.assertIsNotNone(module.weight.grad) |
| self.assertGreater(module.weight.grad.data.abs().sum(), 0) |
| module.zero_grad() |
| self.assertIsNone(module.weight.grad) |
| |
| module.bias.requires_grad = True |
| module.zero_grad() |
| self.assertIsNone(module.weight.grad) |
| self.assertIsNone(module.bias.grad) |
| module(i).sum().backward() |
| self.assertIsNotNone(module.weight.grad) |
| self.assertIsNotNone(module.bias.grad) |
| self.assertGreater(module.weight.grad.data.abs().sum(), 0) |
| self.assertGreater(module.bias.grad.data.abs().sum(), 0) |
| |
| # Force set to zeros. |
| module.zero_grad(set_to_none=False) |
| self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) |
| self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_()) |
| |
| module.zero_grad() |
| self.assertIsNone(module.weight.grad) |
| self.assertIsNone(module.bias.grad) |
| |
| |
| def test_no_grad(self): |
| for dtype in [torch.bfloat16, torch.float, torch.double]: |
| module = nn.Conv2d(2, 5, kernel_size=3, padding=1).to(dtype) |
| input = torch.randn(1, 2, 10, 10).to(dtype) |
| x = input |
| y = input.clone() |
| |
| output = module(x) |
| self.assertTrue(output.requires_grad) |
| output.backward(torch.ones(1, 5, 10, 10)) |
| |
| with torch.no_grad(): |
| output2 = module(y) |
| self.assertFalse(output2.requires_grad) |
| self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10))) |
| |
| def test_invalid_conv1d(self): |
| for dtype in [torch.bfloat16, torch.float, torch.double]: |
| module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype) |
| input = torch.randn(1, 3, 4).to(dtype) |
| with self.assertRaisesRegex(RuntimeError, |
| r'Calculated padded input size per channel: \(4\). ' + |
| r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'): |
| module(input) |
| |
| # Negative stride check |
| module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype) |
| input = torch.randn(1, 3, 4).to(dtype) |
| with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| module(input) |
| |
| def test_conv2d_discontiguous_weight(self): |
| # Test for https://github.com/pytorch/pytorch/issues/55781 |
| x = torch.ones(64, 16, 16, 16) |
| weight = torch.arange(0, 1.0, 1 / 2.0 ** 10).reshape(32, 16, 1, 2)[:, :, :, ::2] |
| self.assertFalse(weight.is_contiguous()) |
| y = torch.nn.functional.conv2d(x, weight, None) |
| if torch.backends.mkldnn.is_available(): |
| # Disable MKLDNN explicitly, so that either NNPACK or THCNN will be used |
| with torch.backends.mkldnn.flags(enabled=False): |
| y_ = torch.nn.functional.conv2d(x, weight, None) |
| self.assertEqual(y, y_) |
| self.assertEqual(y.sum(), 4186112.) |
| |
| def test_invalid_conv2d(self): |
| for dtype in [torch.bfloat16, torch.float, torch.double]: |
| module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) |
| input = torch.empty(1, 1, 4, 4).to(dtype) |
| self.assertRaises(RuntimeError, lambda: module(input)) |
| |
| module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True) |
| input = torch.randn(1, 3, 1, 1) |
| with self.assertRaisesRegex(RuntimeError, |
| r'Calculated padded input size per channel: \(1 x 1\). ' + |
| r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'): |
| module(input) |
| |
| # Negative stride check |
| module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype) |
| input = torch.randn(1, 3, 4, 4).to(dtype) |
| with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| module(input) |
| |
| # Zero stride check |
| module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype) |
| input = torch.randn(1, 3, 4, 4).to(dtype) |
| with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| module(input) |
| |
| # Input and weights on different devices |
| self.assertRaisesRegex(RuntimeError, |
| 'must be on the same device', |
| lambda: torch.conv2d(torch.rand(1, 3, 32, 32), torch.rand(1, 3, 3, 3, device='mps'))) |
| self.assertRaisesRegex(RuntimeError, |
| 'Input type \\(MPSFloatType\\) and weight type \\(torch\\.FloatTensor\\) should be the same', |
| lambda: torch.conv2d(torch.rand(1, 3, 32, 32, device='mps'), torch.rand(1, 3, 3, 3))) |
| |
| |
| def test_conv2d_valid_padding(self, device='mps'): |
| # Test F.conv2d padding='valid' is the same as no padding |
| x = torch.rand(1, 1, 1, 10, device=device).to(torch.float) |
| y = torch.rand(1, 1, 1, 4, device=device).to(torch.float) |
| |
| expect = F.conv2d(x, y) |
| actual = F.conv2d(x, y, padding='valid') |
| self.assertEqual(expect.to('cpu'), actual.to('cpu')) |
| |
| def test_conv2d_backward_collision(self): |
| # Test for https://github.com/pytorch/pytorch/issues/112998 |
| x = torch.rand(1, 1, 10, 10, device="mps", requires_grad=True) |
| m1 = nn.Conv2d(1, 1, 3, stride=2, padding=1).to("mps") |
| m2 = nn.Conv2d(1, 1, 4, stride=2, padding=1).to("mps") |
| y1, y2 = m1(x), m2(x) |
| self.assertEqual(y1.shape, y2.shape) |
| y1.sum().backward() |
| # This used to crash with MPSNDArrayConvolutionA14.mm:4352: failed assertion |
| y2.sum().backward() |
| |
| @unittest.skipIf(product_version < 13.2, "Skipped on macOS 12") |
| def test_conv3d_backward_collision(self): |
| # Conv3D is only available from MacOS 13.2 onwards |
| x = torch.rand(1, 1, 10, 10, 20, device="mps", requires_grad=True) |
| m1 = nn.Conv3d(1, 1, 3, stride=2, padding=1).to("mps") |
| m2 = nn.Conv3d(1, 1, 4, stride=2, padding=1).to("mps") |
| y1, y2 = m1(x), m2(x) |
| self.assertEqual(y1.shape, y2.shape) |
| y1.sum().backward() |
| # This used to crash with MPSNDArrayConvolutionA14.mm:4352: failed assertion |
| y2.sum().backward() |
| |
| def test_gemm_permute_transpose(self): |
| batch_size = 32 |
| n = 20 |
| hidden = 768 |
| num_attention_heads = 12 |
| attention_head_size = hidden // num_attention_heads |
| |
| def transpose_for_scores(x: torch.Tensor) -> torch.Tensor: |
| new_x_shape = x.size()[:-1] + (num_attention_heads, attention_head_size) |
| x = x.view(new_x_shape) |
| return x.permute(0, 2, 1, 3) |
| |
| def attention2(key, *, workaround=False, device): |
| key = transpose_for_scores(key) |
| res = key.transpose(-1, -2) |
| return res |
| |
| A = torch.randn(batch_size, n, hidden) |
| A_mps = A.detach().clone().to("mps") |
| |
| r1 = attention2(A, device="cpu") |
| r2 = attention2(A_mps, device="mps") |
| |
| r2_cpu = r2.to("cpu") |
| self.assertEqual(r1, r2_cpu) |
| |
| def test_group_norm_backward(self, device='mps'): |
| # See https://github.com/pytorch/pytorch/issues/88331 for more detail |
| shape = [1, 4, 16, 16] |
| x = torch.full(shape, 7.0, device=device) |
| |
| target = torch.ones((1, 3, 128, 128), device=device) |
| |
| conv_in = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), device=device) |
| conv_out = nn.Conv2d(128, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), device=device) |
| norm = nn.GroupNorm(32, 128, eps=1e-6, affine=True, device=device) |
| |
| with torch.enable_grad(): |
| x = x.detach().requires_grad_() |
| out = 5.5 * x |
| out = conv_in(out) |
| out = out + norm(out) |
| out = out + norm(out) |
| out = out + norm(out) |
| out = F.interpolate(out, scale_factor=8.0, mode="nearest") |
| out = norm(out) |
| out = conv_out(out) |
| |
| loss = (out - target).norm(dim=-1).sum() |
| grad = -torch.autograd.grad(loss, x)[0] |
| self.assertFalse(grad.detach().isnan().any().item(), 'NaN gradients returned by autograd') |
| |
| |
| # def test_conv2d_same_padding(self, device='mps'): |
| # x = torch.rand(1, 1, 10, 11, device=device) |
| # y = torch.rand(1, 1, 4, 5, device=device) |
| # expect = F.conv2d(x, y, padding=(2, 2))[..., 1:, :] |
| # actual = F.conv2d(x, y, padding='same') |
| # self.assertEqual(expect.to('cpu'), actual.to('cpu')) |
| |
| # # With dilation |
| # y = torch.rand(1, 1, 3, 4, device=device) |
| # expect = F.conv2d(x, y, padding=(2, 3), dilation=2) |
| # actual = F.conv2d(x, y, padding='same', dilation=2) |
| # self.assertEqual(expect, actual) |
| |
| # # Dilation with asymmetric padding |
| # y = torch.rand(1, 1, 4, 4, device=device) |
| # expect = F.conv2d(x, y, padding=5, dilation=3)[..., 1:, 1:] |
| # actual = F.conv2d(x, y, padding='same', dilation=3) |
| # self.assertEqual(expect, actual) |
| |
| |
| class TestPad(TestCaseMPS): |
| def test_constant_pad(self): |
| m = torch.nn.ConstantPad2d((-2, -2, -2, -2), 3.5) |
| input_cpu = torch.randn(1, 16, 16, 16) |
| input_mps = input_cpu.detach().clone().to("mps") |
| r_cpu = m(input_cpu) |
| r_mps = m(input_mps) |
| self.assertEqual(r_cpu, r_mps.to("cpu")) |
| |
| # Arbitrary input dimensions |
| pad = (1, 1, 0, 0, 0, 0) |
| value = 3.5 |
| input_cpu = torch.randn((1, 1, 3, 3, 3, 3, 3, 3, 3, 3)) |
| input_mps = input_cpu.detach().clone().to("mps") |
| r_cpu = F.pad(input_cpu, pad=pad, value=value) |
| r_mps = F.pad(input_mps, pad=pad, value=value) |
| self.assertEqual(r_cpu, r_mps.to("cpu")) |
| |
| def test_circular_pad(self): |
| # https://github.com/pytorch/pytorch/issues/80856 |
| k_cpu = torch.ones(3, 3, 9, 9) |
| k_mps = k_cpu.detach().clone().to("mps") |
| |
| x_cpu = torch.rand(1, 3, 32, 32) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| x_pad_cpu = F.pad(x_cpu, (2, 2, 2, 2), mode='circular') |
| x_pad_mps = F.pad(x_mps, (2, 2, 2, 2), mode='circular') |
| |
| y_cpu = F.conv2d(x_pad_cpu, k_cpu) |
| y_mps = F.conv2d(x_pad_mps, k_mps) |
| |
| self.assertEqual(y_cpu, y_mps.cpu()) |
| |
| def test_constant_pad_4d_warning(self): |
| inputCPU = torch.rand((1, 2, 2, 2, 1, 1)) |
| inputMPS = inputCPU.detach().clone().to('mps') |
| outputCPU = F.pad(inputCPU, [0, 0, 0, 0, 0, 0, 1, 0]) |
| outputMPS = F.pad(inputMPS, [0, 0, 0, 0, 0, 0, 1, 0]) |
| self.assertEqual(outputCPU, outputMPS) |
| |
| def test_pad(self): |
| def helper(shape, padding, op, value=0): |
| inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| inputCPU.retain_grad() |
| inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| |
| if (op in [nn.ConstantPad1d, nn.ConstantPad2d, nn.ConstantPad3d]): |
| padCriteria = op(padding, value) |
| else: |
| padCriteria = op(padding) |
| outputCPU = padCriteria(inputCPU) |
| outputMPS = padCriteria(inputMPS) |
| self.assertEqual(outputCPU, outputMPS) |
| |
| # backward pass (chose 0.6 just to have the grad_output != 1) |
| outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6)) |
| outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6)) |
| self.assertEqual(inputCPU.grad, inputMPS.grad) |
| |
| # 1D Padding |
| helper((2, 4, 3), 2, nn.ReflectionPad1d) |
| # verify if a change in shape of input would cause problems with graph caching |
| helper((2, 4, 4), (1, 3), nn.ReflectionPad1d) |
| # Replication 1D |
| helper((2, 1, 6), 3, nn.ReplicationPad1d) |
| # Constant Pad 1D |
| helper((2, 3, 4), 2, nn.ConstantPad1d) |
| # Constant Pad 1D with single dimension input |
| helper((16), (1, 2), nn.ConstantPad1d) |
| |
| # 2D Padding |
| helper((1, 2, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d) |
| # verify if a change in shape of input would cause problems with graph caching |
| helper((2, 4, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d) |
| # this should make the padding (2, 2, 2, 2) |
| helper((2, 1, 6, 8), 2, nn.ReplicationPad2d) |
| # verify if a change in shape of padding would cause problems with graph caching |
| helper((2, 1, 6, 8), (2, 4, 3, 5), nn.ReplicationPad2d) |
| # Constant Pad 2D |
| helper((2, 1, 6, 8), (2, 4, 3, 5), nn.ConstantPad2d) |
| # input size < pad size |
| helper((1, 2, 3), (0, 0, 0, 1), nn.ConstantPad2d) |
| # pad dims < input dims |
| helper((50, 9, 300), (0, 0, 0, 31), nn.ConstantPad2d) |
| # pad dims == input dims |
| helper((1, 3), (0, 2, 0, 1), nn.ConstantPad2d) |
| # input.numel() == 0 but output.numel() > 0 |
| helper((0, 3, 3), (1, 1, 1, 1, 1, 1), nn.ConstantPad2d) |
| # pad dims < input dims - 2 |
| helper((1, 2, 3, 4), (1, 2), nn.ConstantPad2d) |
| |
| # 3D Padding |
| helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReflectionPad3d) |
| # verify if a change in shape of padding would cause problems with graph caching |
| helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReplicationPad3d) |
| # case where input_d == pad_front/back for ReplicationPad3d |
| helper((3, 4, 5, 6, 7), (1, 2, 3, 4, 5, 6), nn.ReplicationPad3d) |
| # Constant Pad 3D |
| helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ConstantPad3d) |
| # input size < pad size |
| helper((2, 4, 6), (1, 3, 3, 5, 3, 4), nn.ConstantPad3d) |
| # check the workaround for the right padding bug in Monterey |
| helper((1, 2, 2, 2, 2), (0, 1), nn.ConstantPad3d) |
| |
| def test_constant_pad_nd_preserves_memory_format(self): |
| nchw_tensor = torch.rand((1, 2, 5, 3)) |
| nchw_padded = torch.constant_pad_nd(nchw_tensor, [1, 2], 0.5) |
| self.assertTrue(nchw_padded.is_contiguous(memory_format=torch.contiguous_format)) |
| |
| nhwc_tensor = nchw_tensor.contiguous(memory_format=torch.channels_last) |
| nhwc_padded = torch.constant_pad_nd(nhwc_tensor, [1, 2], 0.5) |
| self.assertTrue(nhwc_padded.is_contiguous(memory_format=torch.channels_last)) |
| |
| |
| class TestLinalgMPS(TestCaseMPS): |
| def _test_addmm_addmv(self, f, t, m, v, *, alpha=None, beta=None, transpose_out=False): |
| dtype = t.dtype |
| numpy_dtype = dtype |
| alpha = 1.2 if alpha is None else alpha |
| beta = 0.8 if beta is None else beta |
| res1 = f(t, m, v, alpha=alpha, beta=beta) |
| res2 = torch.full_like(res1, math.nan) |
| if transpose_out: |
| res2 = res2.t().clone(memory_format=torch.contiguous_format).t() |
| f(t, m, v, alpha=alpha, beta=beta, out=res2) |
| res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy()) |
| if beta != 0: |
| res3 += (torch.mul(t, beta)).to(numpy_dtype).cpu().numpy() |
| res3 = torch.from_numpy(res3).to(dtype) |
| self.assertEqual(res1, res2) |
| self.assertEqual(res1, res3) |
| |
| def test_addmm(self, device="mps", dtype=torch.float32): |
| M = torch.randn(10, 25, device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| self._test_addmm_addmv(torch.addmm, M, m1, m2) |
| |
| # Test beta=0, M=nan |
| M = torch.full((10, 25), math.nan, device=device).to(dtype) |
| m1 = torch.randn(10, 50, device=device).to(dtype) |
| m2 = torch.randn(50, 25, device=device).to(dtype) |
| self._test_addmm_addmv(torch.addmm, M, m1, m2, beta=0) |
| |
| # Test transpose |
| for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): |
| def maybe_transpose(cond, m): |
| if not cond: |
| return m |
| return m.t().clone(memory_format=torch.contiguous_format).t() |
| |
| M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) |
| m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) |
| m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) |
| self._test_addmm_addmv(torch.addmm, M, m1, m2, transpose_out=t4) |
| |
| def _test_addr(self, f, t, m, v, alpha=None, beta=None): |
| dtype = t.dtype |
| numpy_dtype = dtype |
| alpha = 1.2 if alpha is None else alpha |
| beta = 0.8 if beta is None else beta |
| res1 = f(t, m, v, alpha=alpha, beta=beta) |
| res2 = alpha * np.outer(m.to(numpy_dtype).cpu().numpy(), v.to(numpy_dtype).cpu().numpy()) |
| if beta != 0: |
| res2 += (torch.mul(t, beta)).to(numpy_dtype).cpu().numpy() |
| res2 = torch.from_numpy(res2).to(dtype) |
| self.assertEqual(res1, res2) |
| |
| def test_addr(self, device="mps", dtype=torch.float32): |
| M = torch.randn(10, 25, device=device).to(dtype) |
| m1 = torch.randn(10, device=device).to(dtype) |
| m2 = torch.randn(25, device=device).to(dtype) |
| self._test_addr(torch.addr, M, m1, m2) |
| |
| # Test beta=0, M=nan |
| M = torch.full((10, 25), math.nan, device=device).to(dtype) |
| m1 = torch.randn(10, device=device).to(dtype) |
| m2 = torch.randn(25, device=device).to(dtype) |
| self._test_addr(torch.addr, M, m1, m2, beta=0) |
| |
| def test_matrix_rank(self, device="mps", dtype=torch.float32): |
| matrix_rank = torch.linalg.matrix_rank |
| |
| def run_test(shape0, shape1, batch): |
| a = torch.randn(*batch, shape0, shape1, dtype=dtype, device=device) |
| rank_a = matrix_rank(a) |
| |
| self.assertEqual(rank_a, matrix_rank(a.mH)) |
| aaH = torch.matmul(a, a.mH) |
| rank_aaH = matrix_rank(aaH) |
| rank_aaH_hermitian = matrix_rank(aaH, hermitian=True) |
| self.assertEqual(rank_aaH, rank_aaH_hermitian) |
| aHa = torch.matmul(a.mH, a) |
| self.assertEqual(matrix_rank(aHa), matrix_rank(aHa, hermitian=True)) |
| |
| # check against NumPy |
| self.assertEqual(rank_a, np.linalg.matrix_rank(a.cpu().numpy())) |
| self.assertEqual(matrix_rank(a, 0.01), np.linalg.matrix_rank(a.cpu().numpy(), 0.01)) |
| |
| self.assertEqual(rank_aaH, np.linalg.matrix_rank(aaH.cpu().numpy())) |
| self.assertEqual(matrix_rank(aaH, 0.01), np.linalg.matrix_rank(aaH.cpu().numpy(), 0.01)) |
| |
| # hermitian flag for NumPy was added in 1.14.0 |
| if np.lib.NumpyVersion(np.__version__) >= '1.14.0': |
| self.assertEqual(rank_aaH_hermitian, |
| np.linalg.matrix_rank(aaH.cpu().numpy(), hermitian=True)) |
| self.assertEqual(matrix_rank(aaH, 0.01, True), |
| np.linalg.matrix_rank(aaH.cpu().numpy(), 0.01, True)) |
| |
| # check out= variant |
| out = torch.empty(a.shape[:-2], dtype=torch.int64, device=device) |
| ans = matrix_rank(a, out=out) |
| self.assertEqual(ans, out) |
| self.assertEqual(ans, rank_a) |
| |
| shapes = (3, 13) |
| batches = ((), (0, ), (4, ), (3, 5, )) |
| for (shape0, shape1), batch in zip(itertools.product(shapes, reversed(shapes)), batches): |
| # escape only when NotImplementedError of downstream function is raised |
| # TODO: remove this once the required function is implemented |
| try: |
| run_test(shape0, shape1, batch) |
| except NotImplementedError as e: |
| with self.assertRaisesRegex( |
| NotImplementedError, |
| "The operator 'aten::_linalg_svd.U' is not currently implemented for the MPS device."): |
| raise e |
| |
| def test_pinv(self, device="mps", dtype=torch.float32, precision=1e-4): |
| from torch.testing._internal.common_utils import random_hermitian_pd_matrix |
| |
| def run_test_main(A, hermitian): |
| # Testing against definition for pseudo-inverses |
| A_pinv = torch.linalg.pinv(A, hermitian=hermitian) |
| np_A = A.cpu().numpy() |
| np_A_pinv = A_pinv.cpu().numpy() |
| if A.numel() > 0: |
| self.assertEqual(A, np_A @ np_A_pinv @ np_A, atol=precision, rtol=precision) |
| self.assertEqual(A_pinv, np_A_pinv @ np_A @ np_A_pinv, atol=precision, rtol=precision) |
| self.assertEqual(np_A @ np_A_pinv, (np_A @ np_A_pinv).conj().swapaxes(-2, -1), atol=precision, rtol=precision) |
| self.assertEqual(np_A_pinv @ np_A, (np_A_pinv @ np_A).conj().swapaxes(-2, -1), atol=precision, rtol=precision) |
| else: |
| self.assertEqual(A.shape, A_pinv.shape[:-2] + (A_pinv.shape[-1], A_pinv.shape[-2])) |
| |
| # Check out= variant |
| out = torch.empty_like(A_pinv) |
| ans = torch.linalg.pinv(A, hermitian=hermitian, out=out) |
| self.assertEqual(ans, out) |
| self.assertEqual(ans, A_pinv) |
| |
| def run_test_numpy(A, hermitian): |
| # Check against NumPy output |
| # Test float rcond, and specific value for each matrix |
| rconds = [float(torch.rand(1)), ] |
| # Test different types of rcond tensor |
| for rcond_type in MPS_DTYPES: |
| rconds.append(torch.rand(A.shape[:-2], dtype=torch.float32, device=device).to(rcond_type)) |
| # Test broadcasting of rcond |
| if A.ndim > 2: |
| rconds.append(torch.rand(A.shape[-3], device=device)) |
| for rcond in rconds: |
| actual = torch.linalg.pinv(A, rcond=rcond, hermitian=hermitian) |
| torch_rtol = torch.linalg.pinv(A, rtol=rcond, hermitian=hermitian) |
| self.assertEqual(actual, torch_rtol, atol=precision, rtol=precision) |
| numpy_rcond = rcond if isinstance(rcond, float) else rcond.cpu().numpy() |
| expected = np.linalg.pinv(A.cpu().numpy(), rcond=numpy_rcond, hermitian=hermitian) |
| self.assertEqual(actual, expected, atol=precision, rtol=precision) |
| |
| for sizes in [(5, 5), (3, 5, 5), (3, 2, 5, 5), # square matrices |
| (3, 2), (5, 3, 2), (2, 5, 3, 2), # fat matrices |
| (2, 3), (5, 2, 3), (2, 5, 2, 3), # thin matrices |
| (0, 0), (0, 2), (2, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3)]: # zero numel matrices |
| A = torch.randn(*sizes, dtype=dtype, device=device) |
| hermitian = False |
| run_test_main(A, hermitian) |
| run_test_numpy(A, hermitian) |
| |
| # Check hermitian = True |
| for sizes in [(5, 5), (3, 5, 5), (3, 2, 5, 5), # square matrices |
| (0, 0), (3, 0, 0), ]: # zero numel square matrices |
| A = random_hermitian_pd_matrix(sizes[-1], *sizes[:-2], dtype=dtype, device=device) |
| hermitian = True |
| # escape only when NotImplementedError of downstream function is raised |
| # TODO: remove this once the required function is implemented |
| try: |
| run_test_main(A, hermitian) |
| except NotImplementedError as e: |
| with self.assertRaisesRegex( |
| NotImplementedError, |
| "The operator 'aten::_linalg_eigh.eigenvalues' is not currently implemented for the MPS device."): |
| raise e |
| try: |
| run_test_numpy(A, hermitian) |
| except NotImplementedError as e: |
| with self.assertRaisesRegex( |
| NotImplementedError, |
| "The operator 'aten::_linalg_eigh.eigenvalues' is not currently implemented for the MPS device."): |
| raise e |
| |
| @parametrize("m", [1, 32, 64]) |
| @parametrize("n", [48, 64]) |
| @parametrize("q_group", [32, 64, 128, 256]) |
| @parametrize("num_groups", [1, 2]) |
| def test__int4_mm(self, m, n, q_group, num_groups): |
| k = q_group * num_groups |
| inner_k_tiles = 2 |
| |
| torch.manual_seed(1) |
| a_f32 = torch.rand((m, k), device="mps") |
| b_f32 = torch.rand((k, n), device="mps") |
| |
| def convert_weight_to_int4pack(b): |
| b_int32, b_scales_and_zeros = _group_quantize_tensor( |
| b.to("cpu"), n_bit=4, q_group_size=q_group |
| ) |
| b_int32 = b_int32.to("mps") |
| b_scales_and_zeros = b_scales_and_zeros.to("mps") |
| b_int4pack = torch._convert_weight_to_int4pack( |
| b_int32, inner_k_tiles |
| ) |
| |
| return b_int4pack, b_scales_and_zeros |
| |
| def weight_int4pack_mm(a, b_int4pack, b_scales_and_zeros): |
| return torch._weight_int4pack_mm( |
| a, b_int4pack, q_group, b_scales_and_zeros |
| ) |
| |
| b_int4pack, b_scales_and_zeros_f32 = convert_weight_to_int4pack(b_f32) |
| |
| for dtype in [torch.float16, torch.float32] + ([torch.bfloat16] if product_version > 14.0 else []): |
| a = a_f32.to(dtype=dtype) |
| b = b_f32.to(dtype=dtype) |
| b_scales_and_zeros = b_scales_and_zeros_f32.to(dtype=dtype) |
| ref = torch.mm(a, b) |
| res = weight_int4pack_mm(a, b_int4pack, b_scales_and_zeros) |
| |
| mean_err = ((res - ref).abs() / ref).mean() |
| self.assertLess(mean_err, 0.05) |
| |
| @parametrize("m", [1, 32, 64]) |
| @parametrize("k", [32, 64]) |
| @parametrize("n", [32, 64]) |
| def test__int8_mm(self, m, k, n): |
| torch.manual_seed(1) |
| a_f32 = torch.rand((m, k), device="mps") |
| b_f32 = torch.rand((n, k), device="mps") |
| |
| def convert_weight_to_int8pack(b): |
| b_int8pack, b_scales, _ = _dynamically_quantize_per_channel( |
| b, -128, 127, torch.int8 |
| ) |
| return b_int8pack, b_scales |
| |
| def weight_int8pack_mm(a, b_int8pack, b_scales): |
| return torch._weight_int8pack_mm(a, b_int8pack, b_scales) |
| |
| b_int8pack, b_scales_f32 = convert_weight_to_int8pack(b_f32) |
| for dtype in [torch.float16, torch.float32] + ([torch.bfloat16] if product_version > 14.0 else []): |
| a = a_f32.to(dtype=dtype) |
| b = b_f32.to(dtype=dtype) |
| b_scales = b_scales_f32.to(dtype=dtype) |
| res = weight_int8pack_mm(a, b_int8pack, b_scales) |
| ref = torch.mm(a, b.transpose(0, 1)) |
| |
| mean_err = ((res - ref).abs() / ref).mean() |
| self.assertLess(mean_err, 0.05) |
| |
| |
| class TestSDPA(TestCaseMPS): |
| def _compare_tensors(self, y, ref): |
| denom = torch.maximum(ref.abs(), torch.tensor([1e-6], device=ref.device, dtype=ref.dtype)) |
| err = ((y - ref).abs() / denom).mean().item() |
| self.assertLess(err, 0.01) |
| |
| def _test_sdpa_no_mask( |
| self, |
| is_causal: bool, |
| dtype: torch.dtype, |
| L: int = 1, |
| S: int = 72, |
| NH: int = 32, |
| HS: int = 128, |
| requires_grad: bool = False |
| ): |
| |
| torch.manual_seed(1729) |
| with torch.nn.attention.sdpa_kernel([torch.nn.attention.SDPBackend.MATH]): |
| q = torch.randn([1, NH, L, HS], dtype=dtype, device="mps", requires_grad=requires_grad) |
| k = torch.randn([1, NH, S, HS], dtype=q.dtype, device="mps") |
| v = torch.randn([1, NH, S, HS], dtype=q.dtype, device="mps") |
| q_cpu = q.cpu().detach().cpu().requires_grad_(requires_grad) |
| k_cpu = k.cpu() |
| v_cpu = v.cpu() |
| |
| y = F.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=is_causal) |
| y_ref = F.scaled_dot_product_attention(q_cpu, k_cpu, v_cpu, dropout_p=0.0, is_causal=is_causal) |
| |
| self._compare_tensors(y.cpu(), y_ref) |
| |
| if requires_grad and torch.is_grad_enabled(): |
| y.sum().backward() |
| y_ref.sum().backward() |
| |
| self._compare_tensors(q.grad.cpu(), q_cpu.grad) |
| |
| def test_sdpa_no_mask_no_causal_fp32(self): |
| self._test_sdpa_no_mask(False, torch.float32) |
| |
| def test_sdpa_no_mask_no_causal_fp16(self): |
| self._test_sdpa_no_mask(False, torch.float16) |
| |
| def test_sdpa_no_mask_causal_fp32(self): |
| self._test_sdpa_no_mask(True, torch.float32) |
| |
| def test_sdpa_no_mask_causal_fp16(self): |
| self._test_sdpa_no_mask(True, torch.float16) |
| |
| def test_sdpa_no_mask_causal_fp16_L7(self): |
| self._test_sdpa_no_mask(True, torch.float16, 7) |
| |
| def test_sdpa_no_mask_causal_fp16_L7_S17(self): |
| self._test_sdpa_no_mask(True, torch.float16, 7, 17) |
| |
| def test_sdpa_no_mask_causal_fp16_L7_S17_NH23_HS121(self): |
| self._test_sdpa_no_mask(True, torch.float16, 7, 17, 23, 121) |
| |
| def test_sdpa_no_mask_no_causal_fp32_grad(self): |
| self._test_sdpa_no_mask(False, torch.float32, requires_grad=True) |
| |
| with torch.no_grad(): |
| self._test_sdpa_no_mask(False, torch.float32, requires_grad=True) |
| |
| def _test_sdpa_mask(self, dtype: torch.dtype, L: int = 1, S: int = 72, NH: int = 32, HS: int = 128): |
| torch.manual_seed(1729) |
| causal_mask = torch.tril(torch.ones(S, S, dtype=torch.bool, device='mps')) |
| with torch.nn.attention.sdpa_kernel([torch.nn.attention.SDPBackend.MATH]): |
| i = 42 |
| |
| q = torch.randn([1, NH, L, HS], dtype=dtype, device="mps") |
| k = torch.randn([1, NH, S, HS], dtype=q.dtype, device="mps") |
| v = torch.randn([1, NH, S, HS], dtype=q.dtype, device="mps") |
| |
| input_pos = torch.tensor([i], dtype=torch.int32, device='mps') |
| mask = causal_mask[None, None, input_pos] |
| |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) |
| y_ref = F.scaled_dot_product_attention(q.cpu(), k.cpu(), v.cpu(), attn_mask=mask.cpu(), dropout_p=0.0, is_causal=False) |
| |
| self._compare_tensors(y.cpu(), y_ref) |
| |
| def test_sdpa_mask_fp32(self): |
| self._test_sdpa_mask(torch.float32) |
| |
| def test_sdpa_mask_fp16(self): |
| self._test_sdpa_mask(torch.float16) |
| |
| def test_sdpa_mask_fp16_L6(self): |
| self._test_sdpa_mask(torch.float16, 6) |
| |
| def test_sdpa_mask_fp16_L6_S17_NH23_HS121(self): |
| self._test_sdpa_mask(torch.float16, 7, 17, 23, 121) |
| |
| |
| class TestGatherScatter(TestCaseMPS): |
| def test_slicing_with_step(self): |
| # Slicing with step |
| # https://github.com/pytorch/pytorch/issues/78886 |
| x_mps = torch.zeros(10, dtype=torch.float32, device="mps") |
| x_mps[::2] = 1.0 |
| |
| x_cpu = torch.zeros(10, dtype=torch.float32, device="cpu") |
| x_cpu[::2] = 1.0 |
| |
| self.assertEqual(x_cpu, x_mps) |
| |
| def test_cast_gather_scatter(self): |
| for _ in range(0, 50): |
| input = np.random.randint(0, 255, size=(5, 5, 4), dtype=np.uint8) |
| with torch.no_grad(): |
| s = torch.tensor(input, dtype=torch.uint8, device="mps").unsqueeze(0) |
| s_cpu = torch.tensor(input, dtype=torch.uint8, device="cpu").unsqueeze(0) |
| s = s.long() |
| s_cpu = s_cpu.long() |
| self.assertEqual(s.cpu(), s_cpu) |
| |
| s = s.float() |
| s_cpu = s_cpu.float() |
| self.assertEqual(s.cpu(), s_cpu) |
| |
| s /= 255 |
| s_cpu /= 255 |
| self.assertEqual(s.cpu(), s_cpu) |
| |
| def test_slicing_replace_column(self): |
| # https://github.com/pytorch/pytorch/issues/78074 |
| def _helper(tensor_data): |
| x_cpu = torch.tensor(tensor_data) |
| x_mps = x_cpu.to('mps') |
| |
| x_cpu[:, 0] = 7 |
| x_mps[:, 0] = 7 |
| |
| self.assertEqual(x_cpu, x_mps) |
| |
| _helper([[1, 2, 3], [4, 5, 6]]) |
| _helper([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| _helper([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) |
| |
| def test_inplace_scatter(self): |
| # https://github.com/pytorch/pytorch/issues/79672 |
| a_mps = torch.ones((2, 2),).to(torch.device("mps")) |
| b_mps = torch.ones((2, 2),).to(torch.device("mps")) |
| |
| a_cpu = torch.ones((2, 2),).to(torch.device("cpu")) |
| b_cpu = torch.ones((2, 2),).to(torch.device("cpu")) |
| |
| a_mps[:, 0] += b_mps[:, 0] |
| a_cpu[:, 0] += b_cpu[:, 0] |
| self.assertEqual(a_cpu, a_mps) |
| |
| a_mps[:, 0] = a_mps[:, 0] + b_mps[:, 0] |
| a_cpu[:, 0] = a_cpu[:, 0] + b_cpu[:, 0] |
| self.assertEqual(a_cpu, a_mps) |
| |
| # These tests were taken from test/test_view_ops.py |
| # They are subset of those tests as currently only this subset is working. |
| # This whole `class` will be removed when we add generic device testing. There |
| # are no additional tests added apart from what is part of test_view_ops.py |
| class TestViewOpsMPS(TestCaseMPS): |
| exact_dtype = True |
| |
| def test_permute_slicing(self): |
| # test the fix for crash reported in |
| # https://github.com/pytorch/pytorch/issues/94190 |
| cpu_x = (torch.randn([3, 2, 2]).float()) |
| mps_x = cpu_x.detach().clone().to('mps') |
| cpu_out = cpu_x.permute((2, 0, 1)) * 2.0 |
| mps_out = mps_x.permute((2, 0, 1)) * 2.0 |
| # this print caused a crash prior to fix PR#94259 |
| print(torch.zeros_like(mps_out)) |
| # test the fix for fill_scalar_mps() mentioned in issue #94190 |
| self.assertEqual(torch.zeros_like(cpu_out), torch.zeros_like(mps_out)) |
| self.assertEqual(cpu_x[:, 1, :].fill_(1), mps_x[:, 1, :].fill_(1)) |
| |
| def is_view_of(self, base, other): |
| if (not other._is_view() or |
| other is base or |
| other._base is not base or |
| base.device != other.device): |
| return False |
| # Note: only validates storage on native device types |
| # because some accelerators, like XLA, do not expose storage |
| if base.device.type == 'mps': |
| if base.untyped_storage().data_ptr() != other.untyped_storage().data_ptr(): |
| return False |
| |
| return True |
| |
| # Returns true if v1 and v2 are views of the same base |
| def is_view_of_same_base(self, v1, v2): |
| if (not v1._is_view() or v1 is v2): |
| return False |
| return self.is_view_of(v1._base, v2) |
| |
| # Performs transpose if contiguous=True, else returns the input tensor as is |
| def _do_transpose(self, x, contiguous=False, dim0=0, dim1=1): |
| if contiguous: |
| return x |
| else: |
| return x.transpose(dim0, dim1) |
| |
| def test_diagonal_view(self, device="mps"): |
| t = torch.ones((5, 5), device=device) |
| v = torch.diagonal(t) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0] = 0 |
| self.assertEqual(t[0, 0], v[0]) |
| |
| t = torch.ones((3, 3, 3), device="mps") |
| v = torch.diagonal(t, offset=1, dim1=1, dim2=2) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = 0 |
| self.assertEqual(t[0, 0, 1], v[0, 0]) |
| |
| def test_select_view(self, device="mps") -> None: |
| t = torch.ones((5, 5), device=device) |
| v = t.select(0, 2) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0] = 0 |
| self.assertEqual(t[2, 0], v[0]) |
| |
| def test_unbind_view(self, device="mps") -> None: |
| t = torch.zeros((5, 5), device=device) |
| tup = torch.unbind(t) |
| |
| for idx, v in enumerate(tup): |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0] = idx + 1 |
| self.assertEqual(t[idx, 0], v[0]) |
| |
| def test_expand_view(self, device="mps") -> None: |
| t = torch.ones((5, 1), device=device) |
| v = t.expand(5, 5) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[2, 2] = 0 |
| self.assertEqual(t[2, 0], v[2, 2]) |
| |
| def test_expand_as_view(self, device="mps"): |
| t = torch.ones((5, 1), device=device) |
| e = torch.empty((5, 5), device=device) |
| v = t.expand_as(e) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[2, 2] = 0 |
| self.assertEqual(t[2, 0], v[2, 2]) |
| |
| def test_narrow_view(self, device="mps"): |
| t = torch.ones((5, 5), device=device) |
| v = torch.narrow(t, 1, 2, 2) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = 0 |
| self.assertEqual(t[0, 2], v[0, 0]) |
| |
| def test_permute_view(self, device="mps") -> None: |
| t = torch.ones((5, 5), device=device) |
| v = t.permute(1, 0) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_transpose_view(self, device="mps"): |
| for fn in (torch.swapdims, torch.swapaxes, torch.transpose): |
| t = torch.ones((5, 5), device=device) |
| v = fn(t, 0, 1) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_transpose_inplace_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.swapdims_(0, 1) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.swapaxes_(0, 1) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.transpose_(0, 1) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_t_view(self, device="mps"): |
| t = torch.ones((5, 5), device=device) |
| v = t.t() |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_inplace_view_add(self): |
| # https://github.com/pytorch/pytorch/issues/96153 |
| t_mps = torch.ones((2, 6,), device='mps')[1].reshape(2, 3) |
| t_cpu = torch.ones((2, 6,), device='cpu')[1].reshape(2, 3) |
| t_mps = t_mps + 1 |
| t_cpu = t_cpu + 1 |
| self.assertEqual(t_mps, t_cpu) |
| |
| def test_t_inplace_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.t_() |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_T_view(self, device="mps"): |
| for op in ("T", "H", "mT", "mH"): |
| t = torch.ones((5, 5), device=device) |
| v = getattr(t, op) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 1] = 0 |
| self.assertEqual(t[1, 0], v[0, 1]) |
| |
| def test_unfold_view(self, device="mps"): |
| t = torch.ones(10, device=device) |
| v = t.unfold(0, 3, 2) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[1, 0] = 0 |
| self.assertEqual(t[2], v[1, 0]) |
| |
| def test_squeeze_view(self, device="mps"): |
| t = torch.ones(5, 1, 5, device=device) |
| v = torch.squeeze(t) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertIs(t, v._base) |
| |
| def test_squeeze_inplace_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.squeeze_() |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 1] = 0 |
| self.assertIs(t, v._base) |
| |
| def test_unsqueeze_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = torch.unsqueeze(t, 1) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0, 1] = 0 |
| self.assertEqual(t[0, 1], v[0, 0, 1]) |
| |
| def test_unsqueeze_inplace_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.unsqueeze_(1) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[0, 0, 1] = 0 |
| self.assertEqual(t[0, 1], v[0, 0, 1]) |
| |
| def test_as_strided_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = torch.as_strided(t, (25,), (1,)) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_as_strided_inplace_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view_as(t) |
| v = v.as_strided_((25,), (1,)) |
| self.assertTrue(self.is_view_of(t, v)) |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_view_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t.view(25) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_view_as_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| e = torch.empty((25,)) |
| v = t.view_as(e) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_contiguous_self(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| s = t.contiguous() |
| self.assertIs(s, t) |
| |
| def test_contiguous_nonview(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| nv = t.t().contiguous() |
| self.assertFalse(self.is_view_of(t, nv)) |
| |
| nv[0, 0] = 0 |
| self.assertNotEqual(t[0, 0], nv[0, 0]) |
| |
| def test_reshape_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = torch.reshape(t, (25,)) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_reshape_as_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| e = torch.empty((25,), device=device) |
| v = t.reshape_as(e) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[6] = 0 |
| self.assertEqual(t[1, 1], v[6]) |
| |
| def test_reshape_nonview(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| nv = torch.reshape(t.t(), (25,)) |
| self.assertFalse(self.is_view_of(t, nv)) |
| |
| nv[6] = 0 |
| self.assertNotEqual(t[1, 1], nv[6]) |
| |
| def test_flatten_view(self, device="mps"): |
| def test_writes_propagate(t, v): |
| idx_t = (0,) * t.ndim |
| idx_v = (0,) * v.ndim |
| v[idx_v] = 0 |
| self.assertEqual(t[idx_t], v[idx_v]) |
| |
| t = torch.ones(1, 2, 3, 4, device=device) |
| v = t.flatten() |
| self.assertTrue(self.is_view_of(t, v)) |
| test_writes_propagate(t, v) |
| |
| # zero-dimensional tensor |
| t = torch.tensor(1, device=device) |
| v = t.flatten() |
| test_writes_propagate(t, v) |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| t = torch.ones(1, 2, 3, 4, device=device).transpose(2, 3) |
| v = t.flatten(0, 1) |
| test_writes_propagate(t, v) |
| self.assertTrue(self.is_view_of_same_base(t, v)) |
| |
| # stride[i] = stride[i + 1] * size[i + 1] is satisfied for 3 groups: |
| t = torch.ones(720, device=device) \ |
| .as_strided((2, 3, 2, 3, 5, 4), (6, 2, 15, 5, 1, 0)) |
| # [--1--|---2---|-3-] [--1--|----2---|-3-] |
| v1 = t.flatten(0, 1) |
| v2 = v1.flatten(1, 3) |
| v3 = v2.flatten(2, 2) |
| test_writes_propagate(t, v1) |
| self.assertTrue(self.is_view_of_same_base(t, v1)) |
| test_writes_propagate(t, v2) |
| self.assertTrue(self.is_view_of_same_base(t, v2)) |
| test_writes_propagate(t, v3) |
| self.assertTrue(self.is_view_of_same_base(t, v3)) |
| |
| def test_flatten_nonview(self, device="mps"): |
| def assert_is_nonview(t, nv): |
| idx_t = (0,) * t.ndim |
| idx_nv = (0,) * nv.ndim |
| self.assertFalse(nv._is_view()) |
| nv[idx_nv] = 0 |
| self.assertNotEqual(t[idx_t], nv[idx_nv]) |
| t = torch.ones(2, 3, 2, 3, device=device).transpose(2, 3) |
| nv = t.flatten(1, 3) |
| assert_is_nonview(t, nv) |
| |
| t = torch.ones(2, 2, device=device).T |
| nv = t.flatten() |
| assert_is_nonview(t, nv) |
| |
| # flatten returns the original object if start_dim=end_dim |
| t = t = torch.ones(2, 2, device=device) |
| nv = t.flatten(1, 1) |
| self.assertIs(t, nv) |
| |
| def test_basic_indexing_slice_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t[:2, :3] |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = 0 |
| self.assertEqual(t[0, 0], v[0, 0]) |
| |
| def test_basic_indexing_ellipses_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t[..., :2] |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = 0 |
| self.assertEqual(t[0, 0], v[0, 0]) |
| |
| def test_basic_indexing_newaxis_view(self, device="mps"): |
| t = torch.ones(5, 5, device=device) |
| v = t[None, :2, 3] |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = 0 |
| self.assertEqual(t[0, 3], v[0, 0]) |
| |
| def test_chunk_view(self, device="mps"): |
| t = torch.zeros(3, 3, device=device) |
| l = torch.chunk(t, 3) |
| |
| for idx, v in enumerate(l): |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = idx + 1 |
| self.assertEqual(t[idx, 0], v[0, 0]) |
| |
| def test_split_view(self, device="mps"): |
| t = torch.zeros(3, 3, device=device) |
| l = torch.split(t, [1, 1, 1]) |
| |
| for idx, v in enumerate(l): |
| self.assertTrue(self.is_view_of(t, v)) |
| |
| v[0, 0] = idx + 1 |
| self.assertEqual(t[idx, 0], v[0, 0]) |
| |
| def test_movedim_view(self, device="mps"): |
| def run_test(device, op): |
| t = torch.zeros(3, 3, device=device) |
| out = op(t) |
| |
| self.assertTrue(self.is_view_of(t, out)) |
| |
| # Randomly change values in output |
| # and verify that original is changed |
| # as well. |
| for _ in range(3): |
| idx_1, idx_2 = random.randint(0, 2), random.randint(0, 2) |
| out[idx_1, idx_2] = random.random() |
| self.assertEqual(t[idx_2, idx_1], out[idx_1, idx_2]) |
| |
| for fn in [torch.movedim, torch.moveaxis]: |
| op = partial(fn, source=(0, 1), destination=(1, 0)) |
| run_test(device, op) |
| |
| op = partial(fn, source=0, destination=1) |
| run_test(device, op) |
| |
| # Testing that the generated view_copy kernel and its derivative are implemented correctly |
| def test_view_copy(self, device="mps"): |
| a = torch.randn(4, device=device, requires_grad=True) |
| a_ref = a.clone().detach().requires_grad_() |
| a_view = a_ref.view(2, 2) |
| a_view_copy = torch.view_copy(a, (2, 2)) |
| |
| # view_copy ops don't preserve view relationship |
| self.assertTrue(self.is_view_of(a_ref, a_view)) |
| self.assertFalse(self.is_view_of(a, a_view_copy)) |
| |
| a_view_copy.sum().backward() |
| a_view.sum().backward() |
| |
| # forward and backward give the same shape + result |
| self.assertEqual(a_view_copy, a_view) |
| self.assertEqual(a.grad, a_ref.grad) |
| |
| def test_view_copy_out(self, device="mps"): |
| a = torch.randn(2, 2, device=device) |
| out = torch.empty(2, device=device) |
| |
| torch.diagonal_copy(a, out=out) |
| expected = torch.diagonal_copy(a) |
| |
| self.assertEqual(expected, out) |
| |
| a = torch.randn(4, device=device) |
| out1 = torch.empty(2, device=device) |
| out2 = torch.empty(2, device=device) |
| |
| torch.split_copy(a, 2, out=(out1, out2)) |
| expected1, expected2 = torch.split_copy(a, 2) |
| |
| self.assertEqual(expected1, out1) |
| self.assertEqual(expected2, out2) |
| |
| def test_detached_view_copy(self, device="mps"): |
| # https://github.com/pytorch/pytorch/issues/86052 |
| x = torch.arange(2) |
| # .detach() makes y not a view, but contig tensor |
| # with non-zero offset |
| y = x[1].detach() |
| z = y.to(device) |
| self.assertEqual(y, z.cpu()) |
| |
| def test_empty_reshape(self, device="mps"): |
| x = torch.randn(0, 6, device=device) |
| self.assertEqual((1, 0, 6, 1, 1), x.reshape(1, 0, 6, 1, 1).shape) |
| # should be viewable -- i.e. data_ptr is the same. |
| self.assertEqual(x.data_ptr(), x.reshape(1, 0, 6, 1, 1).data_ptr()) |
| |
| # match NumPy semantics -- don't infer the size of dimension with a degree of freedom |
| self.assertRaises(RuntimeError, lambda: x.reshape(0, -1)) |
| |
| def test_expand(self, device="mps"): |
| tensor = torch.rand(1, 8, 1, device=device) |
| tensor2 = torch.rand(5, device=device) |
| template = torch.rand(4, 8, 5, device=device) |
| target = template.size() |
| self.assertEqual(tensor.expand_as(template).size(), target) |
| self.assertEqual(tensor.expand(4, 8, 5).size(), target) |
| self.assertEqual(tensor.expand(target).size(), target) |
| self.assertEqual(tensor2.expand_as(template).size(), target) |
| self.assertEqual(tensor2.expand(4, 8, 5).size(), target) |
| self.assertEqual(tensor2.expand(target).size(), target) |
| |
| # test double expand |
| self.assertEqual(tensor2.expand(1, 5).expand(2, 2, 5), tensor2.repeat(2, 2, 1)) |
| |
| # test non-contiguous |
| noncontig = torch.randn(5, 2, 1, 3, device=device)[:, 0] |
| self.assertFalse(noncontig.is_contiguous()) |
| self.assertEqual(noncontig.expand(2, 5, 4, 3), noncontig.contiguous().repeat(2, 1, 4, 1)) |
| |
| # make sure it's compatible with unsqueeze |
| expanded = tensor2.expand(1, 1, 5) |
| unsqueezed = tensor2.unsqueeze(0).unsqueeze(1) |
| self.assertEqual(expanded, unsqueezed) |
| self.assertEqual(expanded.stride(), unsqueezed.stride()) |
| |
| # test -1 as target size |
| self.assertEqual(tensor.expand(4, -1, 5), tensor.expand(4, 8, 5)) |
| self.assertRaises(RuntimeError, lambda: tensor2.expand(-1, -1)) |
| |
| # test expanding empty to empty |
| self.assertEqual(torch.zeros(0, device=device).expand((0,)), torch.zeros(0, device=device)) |
| |
| def test_view_empty(self, device="mps"): |
| x = torch.randn(0, 6, device=device) |
| self.assertEqual((1, 0, 6, 1, 1), x.view(1, 0, 6, 1, 1).shape) |
| |
| def test_reshape(self, device="mps"): |
| x = torch.randn(3, 3, device=device) |
| self.assertEqual(x.data_ptr(), x.reshape(-1).data_ptr()) |
| self.assertEqual(x.data_ptr(), x.reshape(1, 9, 1).data_ptr()) |
| self.assertEqual(torch.reshape(x, (9,)), x.reshape(9)) |
| self.assertRaises(RuntimeError, lambda: x.reshape(-1, -1)) |
| |
| y = torch.randn(4, 4, 4, device=device)[:, 0, :] |
| # .data_ptr() on meta tensors is always 0 so they are equal regardless of the reshape |
| if device != "meta": |
| self.assertNotEqual(y.data_ptr(), y.reshape(-1).data_ptr()) |
| self.assertEqual(y.contiguous().view(-1), y.reshape(-1)) |
| self.assertEqual(y.reshape(2, 2, 4).data_ptr(), y.data_ptr()) |
| |
| s = torch.randn((), device=device) |
| self.assertEqual(s.data_ptr(), s.reshape(()).data_ptr()) |
| self.assertEqual(s.reshape(-1).shape, (1,)) |
| self.assertRaises(RuntimeError, lambda: s.reshape(2)) |
| |
| empty = torch.tensor([], device=device) |
| self.assertEqual(empty, empty.reshape(-1)) |
| self.assertEqual(empty, empty.reshape([0])) |
| # TODO: fix these once we have multi-dimensional empty tensors |
| self.assertEqual(empty.reshape([0, 1]).shape, (0, 1)) |
| self.assertEqual(empty.reshape([1, -1]).shape, (1, 0)) |
| self.assertRaises(RuntimeError, lambda: empty.reshape(1)) |
| |
| x = torch.randn(3, 3, device=device) |
| self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(9)).data_ptr()) |
| self.assertEqual(x.data_ptr(), x.reshape_as(torch.rand(1, 9, 1)).data_ptr()) |
| self.assertRaises(RuntimeError, lambda: x.reshape_as(torch.rand(10, device=device))) |
| |
| def test_narrow(self, device="mps"): |
| x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) |
| self.assertEqual(x.narrow(0, 0, 1), torch.tensor([[0, 1, 2]])) |
| self.assertEqual(x.narrow(0, 0, 2), torch.tensor([[0, 1, 2], [3, 4, 5]])) |
| self.assertEqual(x.narrow(0, 1, 1), torch.tensor([[3, 4, 5]])) |
| self.assertEqual(x.narrow(0, -1, 1), torch.tensor([[6, 7, 8]])) |
| self.assertEqual(x.narrow(0, -2, 2), torch.tensor([[3, 4, 5], [6, 7, 8]])) |
| self.assertEqual(x.narrow(0, -3, 3), torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])) |
| self.assertEqual(x.narrow(-1, -1, 1), torch.tensor([[2], [5], [8]])) |
| self.assertEqual(x.narrow(-2, -1, 1), torch.tensor([[6, 7, 8]])) |
| |
| def test_narrow_tensor(self, device="mps"): |
| x = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) |
| self.assertEqual(x.narrow(0, torch.tensor(0), 1), torch.tensor([[0, 1, 2]])) |
| with self.assertRaises(Exception): |
| x.narrow(0, torch.tensor(0.), 1) |
| with self.assertRaises(Exception): |
| x.narrow(0, torch.tensor([0]), 1) |
| with self.assertRaises(Exception): |
| x.narrow(0, torch.tensor([0, 1]), 1) |
| |
| def test_t(self, device="mps"): |
| # Test 0D tensors |
| x = torch.randn(()) |
| self.assertEqual(x, x.t()) |
| x = x.to_sparse() |
| self.assertEqual(x, x.t()) |
| |
| # Test 1D tensors |
| x = torch.arange(4) |
| self.assertEqual(x, x.t()) |
| x = x.to_sparse() |
| self.assertEqual(x, x.t()) |
| |
| # Test 2D tensors |
| x = torch.rand((2, 2)) |
| self.assertEqual(x.t(), x.transpose(0, 1)) |
| x = x.to_sparse() |
| self.assertEqual(x.t(), x.transpose(0, 1)) |
| |
| # Test 3D tensor |
| x = torch.rand((2, 2, 2)) |
| with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 dimensions, but self is 3D'): |
| x.t() |
| x = x.to_sparse() |
| with self.assertRaisesRegex(RuntimeError, 'expects a tensor with <= 2 sparse and 0 dense dimensions'): |
| x.t() |
| |
| def test_split(self, device="mps"): |
| tensor = torch.rand(7, 4) |
| split_size = 3 |
| dim = 0 |
| target_sizes = ([3, 4], [3, 4], [1, 4]) |
| splits = tensor.split(split_size, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0) |
| start = start + target_size[dim] |
| |
| # Variable sections split |
| tensor = torch.randn(20, 10) |
| dim = 0 |
| split_sizes = [5, 5, 10] |
| target_sizes = ([[5, 10], [5, 10], [10, 10]]) |
| splits = tensor.split(split_sizes, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0) |
| start = start + target_size[dim] |
| |
| split_sizes = [2, 2, 6] |
| target_sizes = ([20, 2], [20, 2], [20, 6]) |
| dim = 1 |
| splits = tensor.split(split_sizes, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, atol=0, rtol=0) |
| start = start + target_size[dim] |
| |
| def test_chunk(self, device="mps"): |
| tensor = torch.rand(4, 7) |
| num_chunks = 3 |
| dim = 1 |
| target_sizes = ([4, 3], [4, 3], [4, 1]) |
| splits = tensor.chunk(num_chunks, dim) |
| start = 0 |
| for target_size, split in zip(target_sizes, splits): |
| self.assertEqual(split.size(), target_size) |
| self.assertEqual(tensor.narrow(dim, start, target_size[dim]), split, |
| atol=0, rtol=0) |
| start = start + target_size[dim] |
| |
| # Invalid chunk sizes |
| error_regex = 'chunk expects.*greater than 0' |
| with self.assertRaisesRegex(RuntimeError, error_regex): |
| tensor.chunk(0) |
| with self.assertRaisesRegex(RuntimeError, error_regex): |
| tensor.chunk(-2) |
| |
| def test_unsqueeze(self, device="mps") -> None: |
| x = torch.randn(2, 3, 4) |
| y = x.unsqueeze(1) |
| self.assertEqual(y, x.view(2, 1, 3, 4)) |
| y = x.clone().unsqueeze_(2) |
| self.assertEqual(y, x.view(2, 3, 1, 4)) |
| |
| x = x[:, 1] |
| self.assertFalse(x.is_contiguous()) |
| y = x.unsqueeze(1) |
| self.assertEqual(y, x.contiguous().view(2, 1, 4)) |
| y = x.clone().unsqueeze_(2) |
| self.assertEqual(y, x.contiguous().view(2, 4, 1)) |
| |
| # unit test for special case transposed copy (see ATen/native/Copy.cpp for details) |
| def test_big_transpose(self, device="mps"): |
| t = torch.rand(456, 789, device=device) |
| t1 = t.t().contiguous() |
| t2 = torch.from_numpy(t.cpu().numpy().transpose()) |
| self.assertEqual(t1, t2) |
| |
| def test_T(self, device="mps"): |
| a = torch.randn(2, 3, 4, device=device) |
| t1 = a.T |
| t2 = a.permute(2, 1, 0) |
| self.assertEqual(t2, t1) |
| b = torch.randn(10, device=device) |
| self.assertEqual(b, b.T) |
| |
| def test_transposes(self, device="mps", dtype=torch.float32): |
| for op in ("T", "H", "mT", "mH", "adjoint"): |
| shapes = ((2, 3), (2, 3, 4)) if op[0] == "m" or op == "adjoint" else ((2, 3),) |
| for shape in shapes: |
| a = make_tensor(shape, device=device, dtype=dtype) |
| t1 = getattr(a, op) |
| if op == "adjoint": |
| t1 = t1() |
| t2 = a |
| if a.ndim != 0: |
| t2 = t2.transpose(-2, -1) |
| if op[-1] == "H" or op == "adjoint": |
| t2 = t2.conj() |
| self.assertEqual(t2, t1) |
| |
| def test_transposes_errors(self, device="mps", dtype=torch.float32): |
| for op in ("H", "mT", "mH", "adjoint"): |
| shapes = ((2,), (2, 3, 4)) if op == "H" else ((2,),) |
| for shape in shapes: |
| a = make_tensor(shape, device=device, dtype=dtype) |
| with self.assertRaisesRegex(RuntimeError, "only supported on matrices"): |
| t1 = getattr(a, op) |
| if op == "adjoint": |
| t1 = t1() |
| |
| def test_python_types(self, device="mps"): |
| a1 = torch.randn((1, 2), device=device, dtype=torch.float32) |
| a2 = torch.randn((1, 2), device=device, dtype=torch.float32) |
| self.assertEqual(a1.dtype, a2.dtype) |
| |
| b1 = torch.arange(10, 20, dtype=torch.int64, device=device) |
| b2 = torch.arange(10, 20, dtype=int, device=device) |
| self.assertEqual(b1.dtype, b2.dtype) |
| |
| c1 = torch.tensor([True, False], dtype=torch.bool, device=device) |
| c2 = torch.tensor([True, False], dtype=bool, device=device) |
| self.assertEqual(c1.dtype, c2.dtype) |
| |
| # TODO: is resize best put in test_view_ops? |
| def test_resize_as_preserves_strides(self, device="mps"): |
| x = torch.empty(2, 3).t() |
| old_strides = x.stride() |
| x.resize_as_(x) |
| self.assertEqual(x.stride(), old_strides) |
| |
| def test_memory_format_resize_as(self, device="mps"): |
| def test_helper(shape, memory_format, device="mps"): |
| xc = torch.randn(shape, device=device).contiguous(memory_format=memory_format) |
| flat = torch.randn(xc.numel(), device=device) |
| flat.resize_as_(xc, memory_format=torch.preserve_format) |
| self.assertTrue(flat.is_contiguous(memory_format=memory_format)) |
| |
| test_helper((10, 3, 32, 32), torch.channels_last, device="mps") |
| test_helper((3, 10, 3, 32, 32), torch.channels_last_3d, device="mps") |
| |
| def test_memory_format_resize_(self, device="mps"): |
| def test_helper(shape, numel, memory_format, device="mps"): |
| flat = torch.randn(numel, device=device) |
| flat.resize_(shape, memory_format=memory_format) |
| self.assertTrue(flat.is_contiguous(memory_format=memory_format)) |
| |
| test_helper((10, 3, 32, 32), 10 * 3 * 32 * 32, torch.channels_last, device="mps") |
| test_helper((3, 10, 3, 32, 32), 3 * 10 * 3 * 32 * 32, torch.channels_last_3d, device="mps") |
| |
| # TODO: OpInfo this |
| def _test_atleast(self, device, torch_fn): |
| # 0-dim |
| s = torch.tensor(0.5, dtype=torch.double, requires_grad=True) |
| |
| gradcheck(lambda x: torch_fn(x), s) |
| gradgradcheck(lambda x: torch_fn(x), s) |
| |
| # 1-dim |
| a = torch.rand(4, dtype=torch.double, requires_grad=True) |
| |
| gradcheck(lambda x: torch_fn(x), a) |
| gradgradcheck(lambda x: torch_fn(x), a) |
| |
| # 2,3,4-dim |
| b = torch.rand(4, 3, dtype=torch.double, requires_grad=True) |
| c = torch.rand(4, 3, 2, dtype=torch.double, requires_grad=True) |
| d = torch.rand(4, 3, 2, 1, dtype=torch.double, requires_grad=True) |
| |
| input_tuple = (s, a, b, c, d) |
| gradcheck(lambda s, w, x, y, z: torch_fn(s, w, x, y, z), input_tuple) |
| gradgradcheck(lambda s, w, x, y, z: torch_fn(s, w, x, y, z), input_tuple) |
| |
| def test_atleast_gradient(self, device="mps"): |
| self._test_atleast(device, torch.atleast_1d) |
| self._test_atleast(device, torch.atleast_2d) |
| self._test_atleast(device, torch.atleast_3d) |
| |
| def test_view(self, device="mps"): |
| tensor = torch.rand(15, device=device) |
| template = torch.rand(3, 5, device=device) |
| empty = torch.empty(0, device=device) |
| target = template.size() |
| self.assertEqual(tensor.view_as(template).size(), target) |
| self.assertEqual(tensor.view(3, 5).size(), target) |
| self.assertEqual(tensor.view(torch.Size([3, 5])).size(), target) |
| self.assertEqual(tensor.view(-1, 5).size(), target) |
| self.assertEqual(tensor.view(3, -1).size(), target) |
| tensor_view = tensor.view(5, 3) |
| tensor_view.fill_(random.uniform(0, 1)) |
| self.assertEqual(empty.view_as(empty), empty) |
| self.assertEqual(empty.view(0), empty) |
| self.assertEqual(empty.view(0, 3, 0, 1).size(), torch.Size([0, 3, 0, 1])) |
| self.assertEqual(empty.view(0, 3, 0, 1).view(0), empty) |
| |
| # test size inference with empty tensors |
| self.assertEqual(empty.view(-1).size(), torch.Size([0])) |
| self.assertEqual(empty.view(10, 3, -1).size(), torch.Size([10, 3, 0])) |
| |
| with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"): |
| empty.view(-1, 0) |
| |
| with self.assertRaisesRegex(RuntimeError, r"because the unspecified dimension size -1 can be any value"): |
| empty.view(3, 0, -1, 0) |
| |
| self.assertRaises(RuntimeError, lambda: tensor.view(15, 0)) |
| self.assertRaises(RuntimeError, lambda: tensor.view(7, -1)) |
| self.assertRaises(RuntimeError, lambda: tensor.view(15, -1, -1)) |
| |
| def test_contiguous(self, device="mps"): |
| x = torch.randn(1, 16, 5, 5, device=device) |
| self.assertTrue(x.is_contiguous()) |
| stride = list(x.stride()) |
| stride[0] = 20 |
| # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 |
| x.set_(x.storage(), 0, x.size(), stride) |
| self.assertTrue(x.is_contiguous()) |
| |
| def test_resize_mps_dtypes(self, device="mps"): |
| shape = (2, 2) |
| for dt in MPS_DTYPES: |
| x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) |
| x.resize_(shape) |
| self.assertEqual(shape, x.shape) |
| |
| def test_resize_as_mps_dtypes(self, device="mps"): |
| for dt in MPS_DTYPES: |
| x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) |
| y = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=dt, device=device) |
| x.resize_as_(y) |
| self.assertEqual(y.shape, x.shape) |
| |
| def test_resize_overflow(self, device="mps"): |
| x = torch.empty((), dtype=torch.float64) |
| with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'): |
| x.resize_([2, 4, 2**29, 2**29]) |
| with self.assertRaisesRegex(RuntimeError, 'overflow'): |
| x.resize_([8, 8, 2**29, 2**29]) |
| |
| def test_view_all_dtypes_and_devices(self, device="mps"): |
| for dt in (torch.float, torch.bool): |
| x = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dt, device=device) |
| self.assertEqual(x.view(6).shape, [6]) |
| |
| class TestConvolutionMPS(TestCaseMPS): |
| def test_conv1d_all_strides_paddings(self): |
| # https://github.com/pytorch/pytorch/issues/82921 |
| def helper(stride, padding): |
| y_cpu = torch.randn(1, 57, 40) |
| conv_cpu = nn.Conv1d(57, 20, stride=stride, padding=padding, kernel_size=3, bias=False) |
| conv_gpu = copy.deepcopy(conv_cpu).to(device='mps') |
| x_cpu = conv_cpu(y_cpu) |
| |
| y_gpu = y_cpu.to(device='mps') |
| x_gpu = conv_gpu(y_gpu) |
| self.assertEqual(x_cpu, x_gpu.cpu()) |
| for stride in range(1, 4): |
| for padding in range(1, 4): |
| helper(stride, padding) |
| |
| |
| def test_conv1d_channels_last(self): |
| # https://github.com/pytorch/pytorch/issues/81557 |
| model_cpu = torch.nn.Conv1d(1, 128, 3) |
| a_cpu = torch.arange((128 * 176), dtype=torch.float32) |
| a_cpu = a_cpu.view(128, 176, 1).permute(0, 2, 1) |
| out_cpu = model_cpu(a_cpu) |
| |
| a_mps = a_cpu.detach().clone().to("mps") |
| model_mps = model_cpu.to("mps") |
| out_mps = model_mps(a_mps) |
| |
| self.assertEqual(out_cpu, out_mps.cpu(), rtol=2.6e-05, atol=2e-04) |
| |
| def test_conv_transpose_1d_all_strides(self): |
| # https://github.com/pytorch/pytorch/issues/82711 |
| def helper(stride): |
| y_cpu = torch.ones(1, 1, 2) |
| deconv_cpu = nn.ConvTranspose1d(in_channels=1, out_channels=1, kernel_size=1, stride=stride, bias=False, padding=1) |
| deconv_cpu.weight.data = torch.ones(1, 1, 2) |
| deconv_gpu = copy.deepcopy(deconv_cpu).to(device='mps') |
| x_cpu = deconv_cpu(y_cpu) |
| |
| y_gpu = y_cpu.to(device='mps') |
| x_gpu = deconv_gpu(y_gpu) |
| self.assertEqual(x_cpu, x_gpu.cpu()) |
| [helper(stride) for stride in [1, 2, 3]] |
| |
| def test_conv_transpose_1d_nn_functional(self): |
| # https://github.com/pytorch/pytorch/issues/82563 |
| tin = torch.rand((1, 512, 1245), dtype=torch.float32) |
| tparams = torch.rand((512, 256, 16), dtype=torch.float32) |
| tbias = torch.rand((256), dtype=torch.float32) |
| |
| device = 'cpu' |
| tcpu = torch.nn.functional.conv_transpose1d(tin.to(device), tparams.to(device), tbias.to(device), stride=8, padding=4) |
| |
| device = 'mps' |
| tgpu = torch.nn.functional.conv_transpose1d(tin.to(device), tparams.to(device), tbias.to(device), stride=8, padding=4) |
| |
| self.assertEqual(tcpu, tgpu.cpu(), rtol=2.6e-05, atol=2e-04) |
| |
| def test_conv_backward_1d_channels_last(self): |
| def helper(shape, in_channels=1, out_channels=1, kernel_size=3, groups=1): |
| # https://github.com/pytorch/pytorch/issues/84511 |
| conv_cpu = torch.nn.Conv1d( |
| in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, groups=groups).requires_grad_() |
| conv_mps = torch.nn.Conv1d( |
| in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, groups=groups).to("mps") |
| conv_mps.weight.data = conv_cpu.weight.data.detach().clone().to("mps").requires_grad_(True) |
| conv_mps.bias.data = conv_cpu.bias.data.detach().clone().to("mps").requires_grad_(True) |
| |
| |
| data = torch.rand(shape, dtype=torch.float32) |
| x_cpu = data.permute(0, 2, 1).contiguous().requires_grad_(True) |
| x_mps = data.permute(0, 2, 1).detach().clone().to("mps").contiguous().requires_grad_(True) |
| res_cpu = conv_cpu(x_cpu) |
| res_mps = conv_mps(x_mps) |
| self.assertEqual(res_cpu, res_mps) |
| res_cpu = res_cpu.sum().backward() |
| res_mps = res_mps.sum().backward() |
| |
| self.assertEqual(conv_cpu.weight.grad, conv_mps.weight.grad, rtol=2.6e-05, atol=2e-04) |
| self.assertEqual(x_cpu.grad, x_mps.grad) |
| |
| helper(shape=(1, 176, 1)) |
| helper(shape=(2, 12, 1)) |
| helper(shape=(3, 176, 1)) |
| helper(shape=(4, 376, 1)) |
| helper(shape=(1024, 376, 9), in_channels=9, out_channels=1, groups=1) |
| helper(shape=(1024, 376, 9), in_channels=9, out_channels=9, groups=3) |
| |
| def test_conv1d_contiguous(self): |
| model_cpu = torch.nn.Conv1d(1, 128, 3) |
| a_cpu = torch.ones(128, 1, 176) |
| out_cpu = model_cpu(a_cpu) |
| |
| a_mps = a_cpu.detach().clone().to("mps") |
| model_mps = model_cpu.to("mps") |
| out_mps = model_mps(a_mps) |
| |
| self.assertEqual(out_cpu.shape, out_mps.shape) |
| self.assertEqual(out_cpu, out_mps.cpu()) |
| |
| def test_conv2d_all_strides_paddings(self): |
| # https://github.com/pytorch/pytorch/issues/83180 |
| def helper(N, C, H, W, groups, input_mem_format, weight_mem_format, permute_data): |
| x_cpu = torch.randn(N, C, H, W).to(memory_format=input_mem_format).requires_grad_() |
| x_mps = x_cpu.detach().clone().to(device='mps').requires_grad_() |
| |
| if permute_data: |
| x_cpu.permute(0, 2, 3, 1) |
| x_mps.permute(0, 2, 3, 1) |
| |
| for strideX in range(1, 4): |
| for strideY in range(1, 4): |
| conv_cpu = torch.nn.Conv2d( |
| in_channels=N, out_channels=C, kernel_size=H, groups=groups, stride=(strideX, strideY)).requires_grad_() |
| conv_cpu.weight.data = conv_cpu.weight.to(memory_format=weight_mem_format).requires_grad_() |
| |
| conv_mps = torch.nn.Conv2d( |
| in_channels=N, out_channels=C, kernel_size=H, groups=groups, stride=(strideX, strideY), device="mps") |
| conv_mps.weight.data = conv_cpu.weight.data.detach().clone().to("mps").requires_grad_() |
| conv_mps.bias.data = conv_cpu.bias.data.detach().clone().to("mps").requires_grad_() |
| |
| res_cpu = conv_cpu(x_cpu) |
| res_mps = conv_mps(x_mps) |
| self.assertEqual(res_cpu, res_mps.cpu(), rtol=1e-03, atol=1e-05) |
| res_cpu = res_cpu.sum().backward() |
| res_mps = res_mps.sum().backward() |
| self.assertEqual(res_cpu, res_mps, rtol=2.6e-05, atol=2e-04) |
| |
| self.assertEqual(conv_cpu.weight.grad, conv_mps.weight.grad, rtol=2.6e-05, atol=2e-04) |
| self.assertEqual(conv_cpu.bias.grad, conv_mps.bias.grad) |
| self.assertEqual(x_cpu.grad, x_mps.grad) |
| |
| for mem_format_input in [torch.contiguous_format, torch.channels_last]: |
| for mem_format_weight in [torch.contiguous_format, torch.channels_last]: |
| for permute_data in [True, False]: |
| helper(2, 2, 3, 6, 1, mem_format_input, mem_format_weight, permute_data) |
| helper(10, 10, 4, 6, 2, mem_format_input, mem_format_weight, permute_data) |
| helper(32, 32, 4, 6, 2, mem_format_input, mem_format_weight, permute_data) |
| |
| def test_conv_transpose_2d_strided(self): |
| def helper(m_cpu, memory_format): |
| m_mps = copy.deepcopy(m_cpu).requires_grad_() |
| m_mps.weight.data = m_cpu.weight.data.detach().clone().to("mps").requires_grad_() |
| m_mps.bias.data = m_cpu.bias.data.detach().clone().to("mps").requires_grad_() |
| |
| input_cpu = torch.randn(20, 16, 50, 100).to(memory_format=memory_format).requires_grad_() |
| input_mps = input_cpu.detach().clone().to("mps") |
| |
| output_cpu = m_cpu(input_cpu) |
| output_mps = m_mps(input_mps) |
| self.assertEqual(output_cpu, output_mps) |
| |
| for mem_format_input in [torch.contiguous_format, torch.channels_last]: |
| # With square kernels and equal stride |
| helper(nn.ConvTranspose2d(16, 33, 3, stride=2).requires_grad_(), mem_format_input) |
| |
| # non-square kernels and unequal stride and with padding |
| helper(nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)).requires_grad_(), mem_format_input) |
| |
| def test_conv_transpose_2d_specified_output(self): |
| input_cpu = torch.randn(1, 16, 12, 12) |
| input_mps = input_cpu.detach().clone().to("mps") |
| |
| downsample_cpu = nn.Conv2d(16, 16, 3, stride=2, padding=1) |
| downsample_mps = nn.Conv2d(16, 16, 3, stride=2, padding=1, device="mps") |
| downsample_mps.weight.data = downsample_cpu.weight.data.detach().clone().to("mps").requires_grad_() |
| downsample_mps.bias.data = downsample_cpu.bias.data.detach().clone().to("mps").requires_grad_() |
| |
| upsample_cpu = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1) |
| upsample_mps = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1, device="mps") |
| upsample_mps.weight.data = upsample_cpu.weight.data.detach().clone().to("mps").requires_grad_() |
| upsample_mps.bias.data = upsample_cpu.bias.data.detach().clone().to("mps").requires_grad_() |
| |
| h_cpu = downsample_cpu(input_cpu) |
| h_mps = downsample_mps(input_mps) |
| self.assertEqual(h_cpu, h_mps) |
| |
| size_cpu = h_cpu.size() |
| size_mps = h_mps.size() |
| self.assertEqual(size_cpu, size_mps) |
| |
| output_cpu = upsample_cpu(h_cpu, output_size=input_cpu.size()) |
| output_mps = upsample_mps(h_mps, output_size=input_mps.size()) |
| self.assertEqual(output_cpu, output_mps) |
| self.assertEqual(output_cpu.size(), output_mps.size()) |
| |
| def test_conv2d_single_stride(self): |
| y_cpu = torch.randn(2, 2, 3, 6) |
| y_gpu = y_cpu.to(device='mps') |
| for stride in range(1, 4): |
| conv_cpu = torch.nn.Conv2d(in_channels=2, out_channels=2, kernel_size=3, stride=stride) |
| conv_gpu = copy.deepcopy(conv_cpu).to(device='mps') |
| x_cpu = conv_cpu(y_cpu) |
| x_gpu = conv_gpu(y_gpu) |
| self.assertEqual(x_cpu, x_gpu.cpu(), rtol=1e-03, atol=1e-05) |
| |
| @unittest.skipIf(product_version < 13.2, "Skipped on macOS 12") |
| def test_conv3d_single_stride(self): |
| # Conv3d is only available from MacOS 13.2 onwards |
| y_cpu = torch.randn(2, 2, 3, 6) |
| y_gpu = y_cpu.to(device='mps') |
| for stride in range(1, 4): |
| conv_cpu = torch.nn.Conv3d(in_channels=2, out_channels=2, kernel_size=2, stride=stride) |
| conv_gpu = copy.deepcopy(conv_cpu).to(device='mps') |
| x_cpu = conv_cpu(y_cpu) |
| x_gpu = conv_gpu(y_gpu) |
| self.assertEqual(x_cpu, x_gpu.cpu(), rtol=1e-03, atol=1e-05) |
| |
| def test_grid_sample(self): |
| def test(N, C, H, W, mode, padding_mode, align_corners, input_requires_grad): |
| def test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners): |
| for grid_dim_contig_order in [(0, 1, 2, 3), (0, 3, 1, 2), (3, 0, 1, 2), (0, 2, 1, 3)]: |
| # grid_dim_contig_order specifies the dimension order that can |
| # make grid to be contiguous. |
| # i.e., grid.permute(grid_dim_contig_order) is contiguous. |
| # e.g., with grid_dim_contig_order=[0, 3, 1, 2], grid should be |
| # initialized with contiguous tensor of shape [N, 2, H, W] |
| # and permuted to [N, H, W, 2] afterwards. |
| grid_shape = [N, H, W, 2] |
| grid_init_shape = [grid_shape[d] for d in grid_dim_contig_order] |
| grid_fwd_permute = [None, None, None, None] |
| for i, d in enumerate(grid_dim_contig_order): |
| grid_fwd_permute[d] = i |
| |
| def get_grid(device='cpu', data=None): |
| if data is not None: |
| assert list(data.shape) == grid_shape |
| data = data.permute(grid_dim_contig_order).to(device) |
| else: |
| data = torch.randn(grid_init_shape, device=device) |
| grid = data.permute(grid_fwd_permute) |
| assert grid.permute(grid_dim_contig_order).is_contiguous() |
| return grid |
| |
| input_cpu = torch.randn(C, N, IH, IW).transpose(0, 1).requires_grad_(input_requires_grad) |
| grid_cpu = get_grid().requires_grad_() |
| out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, |
| align_corners=align_corners) |
| self.assertEqual(out_cpu.size(), torch.Size([N, C, H, W])) |
| |
| gradients = torch.randn_like(out_cpu) |
| out_cpu.backward(gradients) |
| |
| |
| # Compare against unvectorized CPU fallback |
| |
| # NOTE [ grid_sample CPU fallback ] |
| # grid_sample uses AVX for 2d images, but that requires 32-bit indexing for |
| # 32-bit floats. So we also have a fallback that is used only for float tensors |
| # requiring 64-bit indexing. That requires too much memory to run on CI, so we |
| # also export the fallback and test it here to ensure feature parity with |
| # the vectorized version. |
| input_fallback = input_cpu.float().detach_().requires_grad_() |
| grid_fallback = grid_cpu.float().detach_().requires_grad_() |
| out_fallback = torch._grid_sampler_2d_cpu_fallback( |
| input_fallback, grid_fallback, |
| F.GRID_SAMPLE_INTERPOLATION_MODES[mode], |
| F.GRID_SAMPLE_PADDING_MODES[padding_mode], |
| align_corners) |
| self.assertEqual(out_fallback, out_cpu.float(), atol=1e-5, rtol=5e-5) |
| |
| out_fallback.backward(gradients.float()) |
| if input_requires_grad: |
| self.assertEqual(input_fallback.grad, input_cpu.grad.float(), atol=1e-4, rtol=5e-5) |
| self.assertEqual(grid_fallback.grad, grid_cpu.grad.float(), atol=1e-4, rtol=5e-5) |
| |
| input_mps = input_cpu.detach().transpose(0, 1).to("mps").transpose(0, 1).requires_grad_(input_requires_grad) |
| grid_mps = get_grid('mps', grid_cpu.detach()).requires_grad_() |
| out_mps = F.grid_sample(input_mps, grid_mps, mode=mode, padding_mode=padding_mode, align_corners=align_corners) |
| self.assertEqual(out_cpu, out_mps) |
| out_mps.backward(gradients.to("mps")) |
| if input_requires_grad: |
| self.assertEqual(input_cpu.grad, input_mps.grad) |
| self.assertEqual(grid_cpu.grad, grid_mps.grad, atol=5e-5, rtol=0) |
| |
| # check that zero-dimensional input strides don't error out |
| base_input = torch.randn(N, C, 1, IW) |
| input_cpu = base_input.expand_as(input_mps).requires_grad_(input_requires_grad) |
| out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, |
| align_corners=align_corners) |
| |
| input_mps = base_input.to("mps").expand_as(input_mps).requires_grad_(input_requires_grad) |
| out_mps = F.grid_sample(input_mps, grid_mps, mode=mode, padding_mode=padding_mode, align_corners=align_corners) |
| self.assertEqual(out_cpu, out_mps) |
| |
| # test same size output |
| test_shape(N, C, H, W, H, W, mode, padding_mode, align_corners) |
| |
| # test larger output |
| N = random.randint(2, 8) |
| C = random.randint(2, 8) |
| IH = random.randint(2, 8) |
| IW = random.randint(2, 8) |
| H = random.randint(IH + 1, 12) |
| W = random.randint(IW + 1, 12) |
| test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) |
| |
| # test smaller output |
| N = random.randint(2, 8) |
| C = random.randint(2, 8) |
| IH = random.randint(2, 8) |
| IW = random.randint(2, 8) |
| H = random.randint(2, IH) |
| W = random.randint(2, IW) |
| test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) |
| |
| # test 1x1 inpput |
| N = random.randint(2, 8) |
| C = random.randint(2, 8) |
| IH = 1 |
| IW = 1 |
| H = random.randint(2, 5) |
| W = random.randint(2, 5) |
| test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) |
| |
| # testing empty grid |
| N = random.randint(2, 8) |
| C = random.randint(2, 8) |
| IH = random.randint(2, 8) |
| IW = random.randint(2, 8) |
| W = random.randint(3, IW + 2) |
| test_shape(N, C, IH, IW, 0, W, mode, padding_mode, align_corners) |
| |
| # testing empty channel |
| N = random.randint(2, 8) |
| IH = random.randint(2, 8) |
| IW = random.randint(2, 8) |
| H = random.randint(3, IH + 2) |
| W = random.randint(3, IW + 2) |
| test_shape(N, 0, IH, IW, H, W, mode, padding_mode, align_corners) |
| |
| # testing empty batch |
| C = random.randint(2, 8) |
| IH = random.randint(2, 8) |
| IW = random.randint(2, 8) |
| H = random.randint(3, IH + 2) |
| W = random.randint(3, IW + 2) |
| test_shape(0, C, IH, IW, H, W, mode, padding_mode, align_corners) |
| |
| for mode in ('bilinear', 'nearest'): |
| for padding_mode in ('zeros', 'reflection'): |
| for align_corners in (True, False): |
| # test known input |
| input = torch.arange(1., 11, device="mps").view(1, 1, 2, 5) |
| grid = torch.tensor( |
| [[[-0.9, -4.1], [0, 0.2000], [1, -1], [-0.333, 1e-6], [0.5, 1.0]], |
| [[-1.0, -0.5], [0, 0.3333], [1, -1], [-0.200, 1e-6], [1.5, 0.5]]], device="mps").view(1, 2, 5, 2) |
| if mode == 'bilinear': |
| if padding_mode == 'zeros': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[0.0000, 6.0000000000, 5.0000, 4.8340, 9.0000], |
| [2.2500, 6.3332500450, 5.0000, 5.1000, 0.0000]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[0.0000, 6.5000000000, 1.2500, 4.6675000191, 4.6250], |
| [0.5000, 7.1665000916, 1.2500, 5.0000000000, 0.0000]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'border': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000], |
| [2.2500, 6.3332500450, 5.0000, 5.1000, 8.7500]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[1.0000, 6.5000000000, 5.0000, 4.6675000191, 9.2500], |
| [1.0000, 7.1665000916, 5.0000, 5.0000000000, 10.0000]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'reflection': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[3.4500, 6.0000000000, 5.0000, 4.8340, 9.0000], |
| [2.2500, 6.3332500450, 5.0000, 5.1000, 7.7500]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[3.0000004768, 6.5000000000, 5.0000, 4.6675000191, 9.2500], |
| [1.0000000000, 7.1665000916, 5.0000, 5.0000000000, 9.2500]], device="mps").view(1, 1, 2, 5) |
| else: |
| raise AssertionError(f"missing groundtruth test for padding mode '{padding_mode}'") |
| elif mode == 'nearest': |
| if padding_mode == 'zeros': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[0., 8., 5., 7., 9.], |
| [1., 8., 5., 8., 0.]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[0., 8., 5., 7., 0.], |
| [1., 8., 5., 8., 0.]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'border': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[1., 8., 5., 7., 9.], |
| [1., 8., 5., 8., 10.]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[1., 8., 5., 7., 9.], |
| [1., 8., 5., 8., 10.]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'reflection': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[1., 8., 5., 7., 9.], |
| [1., 8., 5., 8., 9.]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[1., 8., 5., 7., 9.], |
| [1., 8., 5., 8., 9.]], device="mps").view(1, 1, 2, 5) |
| else: |
| raise AssertionError(f"missing groundtruth test for padding mode '{padding_mode}'") |
| elif mode == 'bicubic': |
| if padding_mode == 'zeros': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[-0.10424726, 7.1400003, 5.0000, 5.7842274, 9.0000], |
| [2.4492188, 7.4814040, 5.0000, 6.0277520, 0.0000]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[0.00000, 7.6287503, 1.0625, 5.5977230, 5.3270264], |
| [0.40625, 8.0288770, 1.0625, 5.9375067, -0.3515625]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'border': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[1.1520010, 6.0599990, 5.0000, 4.870930, 9.0000000], |
| [2.1328125, 6.4258375, 5.0000, 5.076003, 8.8671875]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[0.894531, 6.6050020, 4.625, 4.7138715, 9.800781], |
| [0.906250, 7.2822485, 4.625, 5.0000052, 10.00000]], device="mps").view(1, 1, 2, 5) |
| elif padding_mode == 'reflection': |
| if align_corners: |
| groundtruth = torch.tensor( |
| [[3.1822524, 6.239998, 5.0000, 4.8709273, 9.00000], |
| [1.7812500, 6.703594, 5.0000, 5.0760007, 8.21875]], device="mps").view(1, 1, 2, 5) |
| else: |
| groundtruth = torch.tensor( |
| [[2.7993753, 6.6050020, 4.25, 4.7138715, 10.269531], |
| [0.8125000, 7.2822485, 4.25, 5.0000052, 9.332031]], device="mps").view(1, 1, 2, 5) |
| else: |
| raise AssertionError(f"missing groundtruth test for padding mode '{padding_mode}'") |
| |
| else: |
| raise AssertionError(f"missing groundtruth test for interpolation mode '{mode}'") |
| output = F.grid_sample(input, grid, mode=mode, padding_mode=padding_mode, |
| align_corners=align_corners) |
| self.assertEqual(output, groundtruth, atol=1e-5, rtol=0, |
| msg=f"groundtruth comparison failed for mode={mode}, " |
| f"padding_mode={padding_mode}") |
| |
| class TestAdvancedIndexing(TestCaseMPS): |
| supported_dtypes = [torch.float32, torch.float16, torch.int64, torch.int32, torch.int16, torch.uint8] |
| supported_np_dtypes = [np.float32, np.float16, np.int64, np.int32, np.int16, np.uint8] |
| |
| @unittest.skipIf(product_version < 14.0, "Skipped on macOS < 14") |
| def test_nonzero_no_warning(self): |
| device = "mps" |
| t = torch.randn((2, 2), device=device) |
| with warnings.catch_warnings(record=True) as w: |
| warnings.simplefilter("always") |
| torch.nonzero(t) |
| t.nonzero() |
| self.assertEqual(len(w), 0) |
| |
| def test_nonzero(self): |
| def helper(dtype): |
| device = "mps" |
| shapes = [ |
| torch.Size((12,)), |
| torch.Size((12, 1)), |
| torch.Size((1, 12)), |
| torch.Size((6, 2)), |
| torch.Size((3, 2, 2)), |
| torch.Size((5, 5, 5)), |
| ] |
| |
| def gen_nontrivial_input(shape, dtype, device): |
| if dtype != torch.bfloat16: |
| return torch.randint(2, shape, device=device, dtype=dtype) |
| else: |
| # windows does not work for bfloat16 randing |
| return torch.randint(2, shape, device=device, dtype=torch.float).to(dtype) |
| |
| for shape in shapes: |
| tensor = gen_nontrivial_input(shape, dtype, device) |
| dst1 = torch.nonzero(tensor, as_tuple=False) |
| dst2 = tensor.nonzero(as_tuple=False) |
| dst3 = torch.empty([], dtype=torch.long, device=device) |
| dst3 = dst3.resize_(0) |
| torch.nonzero(tensor, out=dst3) |
| np_array = tensor.cpu().numpy() if dtype != torch.bfloat16 else tensor.float().cpu().numpy() |
| np_result = torch.from_numpy(np.stack(np_array.nonzero())).t() |
| self.assertEqual(dst1.cpu(), np_result, atol=0, rtol=0) |
| self.assertEqual(dst2.cpu(), np_result, atol=0, rtol=0) |
| self.assertEqual(dst3.cpu(), np_result, atol=0, rtol=0) |
| tup1 = torch.nonzero(tensor, as_tuple=True) |
| tup2 = tensor.nonzero(as_tuple=True) |
| tup1 = torch.stack(tup1).t().cpu() |
| tup2 = torch.stack(tup2).t().cpu() |
| self.assertEqual(tup1, np_result, atol=0, rtol=0) |
| self.assertEqual(tup2, np_result, atol=0, rtol=0) |
| [helper(dtype) for dtype in self.supported_dtypes] |
| |
| def test_nonzero_astuple_out(self): |
| device = "mps" |
| t = torch.randn((3, 3, 3), device=device) |
| out = torch.empty([], dtype=torch.long, device=device) |
| out = out.resize_(0) |
| |
| with self.assertRaises(RuntimeError): |
| torch.nonzero(t, as_tuple=True, out=out) |
| |
| self.assertEqual(torch.nonzero(t, as_tuple=False, out=out), torch.nonzero(t, out=out)) |
| |
| # Verifies that JIT script cannot handle the as_tuple kwarg |
| # See Issue https://github.com/pytorch/pytorch/issues/45499. |
| def _foo(t): |
| tuple_result = torch.nonzero(t, as_tuple=True) |
| nontuple_result = torch.nonzero(t, as_tuple=False) |
| out = torch.empty_like(nontuple_result) |
| torch.nonzero(t, as_tuple=False, out=out) |
| return tuple_result, nontuple_result, out |
| |
| with self.assertRaises(RuntimeError): |
| scripted_foo = torch.jit.script(_foo) |
| |
| # Verifies that JIT tracing works fine |
| traced_foo = torch.jit.trace(_foo, t) |
| traced_tuple, traced_nontuple, traced_out = traced_foo(t) |
| expected_tuple = torch.nonzero(t, as_tuple=True) |
| expected_nontuple = torch.nonzero(t) |
| |
| self.assertEqual(traced_tuple, expected_tuple) |
| self.assertEqual(traced_nontuple, expected_nontuple) |
| self.assertEqual(traced_out, expected_nontuple) |
| |
| def test_nonzero_discontiguous(self): |
| device = "mps" |
| shape = (4, 4) |
| tensor = torch.randint(2, shape, device=device) |
| tensor_nc = torch.empty(shape[0], shape[1] * 2, device=device)[:, ::2].copy_(tensor) |
| dst1 = tensor.nonzero(as_tuple=False) |
| dst2 = tensor_nc.nonzero(as_tuple=False) |
| self.assertEqual(dst1, dst2, atol=0, rtol=0) |
| dst3 = torch.empty_like(dst1) |
| data_ptr = dst3.data_ptr() |
| # expect dst3 storage to be reused |
| torch.nonzero(tensor, out=dst3) |
| self.assertEqual(data_ptr, dst3.data_ptr()) |
| self.assertEqual(dst1, dst3, atol=0, rtol=0) |
| # discontiguous out |
| dst4 = torch.empty(dst1.size(0), dst1.size(1) * 2, dtype=torch.long, device=device)[:, ::2] |
| data_ptr = dst4.data_ptr() |
| strides = dst4.stride() |
| torch.nonzero(tensor, out=dst4) |
| self.assertEqual(data_ptr, dst4.data_ptr()) |
| self.assertEqual(dst1, dst4, atol=0, rtol=0) |
| self.assertEqual(strides, dst4.stride()) |
| |
| def test_nonzero_non_diff(self): |
| device = "mps" |
| x = torch.randn(10, requires_grad=True, device=device) |
| nz = x.nonzero() |
| self.assertFalse(nz.requires_grad) |
| |
| def test_nonzero_multi_threading(self): |
| # Test that MPS doesn't crash if nonzero called concurrently |
| # See https://github.com/pytorch/pytorch/issues/100285 |
| x = torch.rand(3, 3, device="mps") |
| t1 = threading.Thread(target=torch.nonzero, args=(x,)) |
| t2 = threading.Thread(target=torch.nonzero, args=(x,)) |
| t1.start() |
| t2.start() |
| |
| def test_sliced_view_cast(self): |
| # This used to crash on MacOS Sequoia |
| # See https://github.com/pytorch/pytorch/issues/137800 |
| x = torch.rand(16, 16, device='mps', dtype=torch.float16) |
| y = x[:, 0:2].view(torch.float32) + 1 |
| |
| def test_masked_select(self): |
| x = torch.randn(3, 4) |
| x_mps = x.to("mps") |
| mask = x.ge(0.5) |
| mask_mps = x_mps.ge(0.5) |
| |
| res = torch.masked_select(x, mask) |
| res_mps = torch.masked_select(x_mps, mask_mps) |
| |
| self.assertEqual(res, res_mps) |
| |
| # examples from https://www.tutorialspoint.com/numpy/numpy_advanced_indexing.htm |
| def test_indexing_get(self): |
| def helper(dtype): |
| x_cpu = torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=dtype) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| y_cpu = x_cpu[[0, 1, 2], [0, 1, 0]] |
| y_mps = x_mps[[0, 1, 2], [0, 1, 0]] |
| self.assertEqual(y_cpu, y_mps, str(dtype)) |
| [helper(dtype) for dtype in self.supported_dtypes] |
| |
| def test_indexing_select_corners(self): |
| def helper(dtype): |
| x_cpu = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=dtype) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| rows_cpu = torch.tensor([[0, 0], [3, 3]]) |
| rows_mps = rows_cpu.detach().clone().to("mps") |
| |
| cols_cpu = torch.tensor([[0, 2], [0, 2]]) |
| cols_mps = cols_cpu.detach().clone().to("mps") |
| |
| res_cpu = x_cpu[rows_cpu, cols_cpu] |
| res_mps = x_mps[rows_mps, cols_mps] |
| |
| self.assertEqual(res_cpu, res_mps, str(dtype)) |
| [helper(dtype) for dtype in self.supported_dtypes] |
| |
| # FIXME: uint8 fails for this testcase, needs further debugging |
| def test_slicing_using_advanced_index_for_column(self): |
| def helper(dtype): |
| x_cpu = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=dtype) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| z_cpu = x_cpu[1:4, 1:3] |
| z_mps = x_mps[1:4, 1:3] |
| self.assertEqual(z_cpu, z_mps, str(dtype)) |
| |
| # using advanced index for column |
| y_cpu = x_cpu[1:4, [1, 2]] |
| y_mps = x_mps[1:4, [1, 2]] |
| self.assertEqual(y_cpu, y_mps, str(dtype)) |
| # FIXME: use supported_dtypes once uint8 is fixed |
| [helper(dtype) for dtype in [torch.float32, torch.float16, torch.int64, torch.int32, torch.int16]] |
| |
| def test_boolean_array_indexing(self): |
| def helper(dtype): |
| x_cpu = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]], dtype=dtype) |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| res_cpu = x_cpu[x_cpu > 5] |
| res_mps = x_mps[x_mps > 5] |
| |
| self.assertEqual(res_cpu, res_mps, str(dtype)) |
| for dtype in self.supported_dtypes: |
| # MPS support binary op with uint8 natively starting from macOS 13.0 |
| if product_version < 13.0 and dtype == torch.uint8: |
| continue |
| helper(dtype) |
| |
| def test_advanced_indexing_3D_get(self): |
| def helper(x_cpu): |
| x_mps = x_cpu.detach().clone().to("mps") |
| self.assertEqual(x_cpu[[1, 2], 3, :], x_mps[[1, 2], 3, :]) |
| self.assertEqual(x_cpu[[0, 2], :, :], x_mps[[0, 2], :, :]) |
| self.assertEqual(x_cpu[:, [1, 0], [1]], x_mps[:, [1, 0], [1]]) |
| |
| x_cpu = torch.tensor([[[0.1, 0.2, 0.3, 0.4], |
| [0.5, 0.6, 0.7, 0.8], |
| [0.9, 1.0, 1.1, 1.2], |
| [1.3, 1.4, 1.5, 1.6]], |
| |
| [[2.0, 2.1, 2.2, 2.3], |
| [2.4, 2.5, 2.6, 2.7], |
| [2.8, 2.9, 3.0, 3.1], |
| [3.2, 3.3, 3.4, 3.5]], |
| |
| [[4.0, 4.1, 4.2, 4.3], |
| [4.4, 4.5, 4.6, 4.7], |
| [4.8, 4.9, 5.0, 5.1], |
| [5.1, 5.2, 5.3, 5.4]]], device="cpu", dtype=torch.float32) |
| helper(x_cpu) |
| for idx in range(len(self.supported_np_dtypes)): |
| # torch.randn / torch.rand don't work with all dtypes |
| # Generate input data for all dtypes on Numpy them move to torch |
| input_t = np.random.random_sample(size=[3, 4, 4]).astype(self.supported_np_dtypes[idx]) |
| inputCPU = torch.tensor(input_t, device='cpu', dtype=self.supported_dtypes[idx]) |
| |
| helper(inputCPU) |
| |
| def test_advanced_indexing_3D_put(self): |
| def helper(x_cpu): |
| dtype = x_cpu.dtype |
| x_mps = x_cpu.detach().clone().to("mps") |
| |
| out_tensor_cpu = torch.tensor([88, 99], dtype=dtype, device="cpu") |
| out_tensor_cpu_view = out_tensor_cpu[1:] |
| |
| out_tensor_mps = torch.tensor([88, 99], dtype=dtype, device="mps") |
| out_tensor_mps_view = out_tensor_mps[1:] |
| |
| x_cpu[[1, 2], 3, :] = out_tensor_cpu_view |
| x_mps[[1, 2], 3, :] = out_tensor_mps_view |
| self.assertEqual(x_cpu, x_mps) |
| |
| x_cpu[[0, 2], :, :] = out_tensor_cpu_view |
| x_mps[[0, 2], :, :] = out_tensor_mps_view |
| self.assertEqual(x_cpu, x_mps) |
| |
| x_cpu[:, [1, 0], [1]] = out_tensor_cpu_view |
| x_mps[:, [1, 0], [1]] = out_tensor_mps_view |
| self.assertEqual(x_cpu, x_mps) |
| |
| x_cpu = torch.tensor([[[0.1, 0.2, 0.3, 0.4], |
| [0.5, 0.6, 0.7, 0.8], |
| [0.9, 1.0, 1.1, 1.2], |
| [1.3, 1.4, 1.5, 1.6]], |
| |
| [[2.0, 2.1, 2.2, 2.3], |
| [2.4, 2.5, 2.6, 2.7], |
| [2.8, 2.9, 3.0, 3.1], |
| [3.2, 3.3, 3.4, 3.5]], |
| |
| [[4.0, 4.1, 4.2, 4.3], |
| [4.4, 4.5, 4.6, 4.7], |
| [4.8, 4.9, 5.0, 5.1], |
| [5.1, 5.2, 5.3, 5.4]]], device="cpu", dtype=torch.float32) |
| helper(x_cpu) |
| for idx in range(len(self.supported_np_dtypes)): |
| # torch.randn / torch.rand don't work with all dtypes |
| # Generate input data for all dtypes on Numpy them move to torch |
| input_t = np.random.random_sample(size=[3, 4, 4]).astype(self.supported_np_dtypes[idx]) |
| inputCPU = torch.tensor(input_t, device='cpu', dtype=self.supported_dtypes[idx]) |
| |
| helper(inputCPU) |
| |
| def test_index_put_with_view_indices(self): |
| def helper(dtype): |
| target_cpu = torch.zeros([5, 3], device="cpu", dtype=dtype) |
| target_mps = torch.zeros([5, 3], device="mps", dtype=dtype) |
| |
| indices_cpu = torch.tensor([[0, 1], [0, 1]], dtype=torch.int64, device="cpu") |
| indices_mps = torch.tensor([[0, 1], [0, 1]], dtype=torch.int64, device="mps") |
| |
| value_cpu = torch.ones(indices_cpu.shape[0], device="cpu", dtype=dtype) |
| value_mps = torch.ones(indices_mps.shape[0], device="mps", dtype=dtype) |
| |
| target_cpu.index_put_(tuple(indices_cpu.t()), value_cpu, accumulate=True) |
| target_mps.index_put_(tuple(indices_mps.t()), value_mps, accumulate=True) |
| |
| self.assertEqual(target_cpu, target_mps) |
| |
| [helper(dtype) for dtype in [torch.int32, torch.float]] |
| |
| # tests from 'test_indexing.py' |
| def test_advancedindex_big(self, device="mps"): |
| reference = torch.arange(0, 123344, dtype=torch.int, device=device) |
| |
| self.assertEqual(reference[[0, 123, 44488, 68807, 123343], ], |
| torch.tensor([0, 123, 44488, 68807, 123343], dtype=torch.int)) |
| |
| def test_set_item_to_scalar_tensor(self, device="mps"): |
| m = random.randint(1, 10) |
| n = random.randint(1, 10) |
| z = torch.randn([m, n], device=device) |
| a = 1.0 |
| w = torch.tensor(a, requires_grad=True, device=device) |
| z[:, 0] = w |
| z.sum().backward() |
| self.assertEqual(w.grad, m * a) |
| |
| def test_single_int(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| self.assertEqual(v[4].shape, (7, 3)) |
| |
| def test_multiple_int(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| self.assertEqual(v[4].shape, (7, 3)) |
| self.assertEqual(v[4, :, 1].shape, (7,)) |
| |
| def test_none(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| self.assertEqual(v[None].shape, (1, 5, 7, 3)) |
| self.assertEqual(v[:, None].shape, (5, 1, 7, 3)) |
| self.assertEqual(v[:, None, None].shape, (5, 1, 1, 7, 3)) |
| self.assertEqual(v[..., None].shape, (5, 7, 3, 1)) |
| |
| def test_step(self, device="mps"): |
| v = torch.arange(10, device=device) |
| self.assertEqual(v[::1], v) |
| self.assertEqual(v[::2].tolist(), [0, 2, 4, 6, 8]) |
| self.assertEqual(v[::3].tolist(), [0, 3, 6, 9]) |
| self.assertEqual(v[::11].tolist(), [0]) |
| self.assertEqual(v[1:6:2].tolist(), [1, 3, 5]) |
| |
| def test_step_assignment(self, device="mps"): |
| v = torch.zeros(4, 4, device=device) |
| v[0, 1::2] = torch.tensor([3., 4.], device=device) |
| self.assertEqual(v[0].tolist(), [0, 3, 0, 4]) |
| self.assertEqual(v[1:].sum(), 0) |
| |
| def test_bool_indices(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| boolIndices = torch.tensor([True, False, True, True, False], dtype=torch.bool, device=device) |
| self.assertEqual(v[boolIndices].shape, (3, 7, 3)) |
| self.assertEqual(v[boolIndices], torch.stack([v[0], v[2], v[3]])) |
| |
| v = torch.tensor([True, False, True], dtype=torch.bool, device=device) |
| boolIndices = torch.tensor([True, False, False], dtype=torch.bool, device=device) |
| uint8Indices = torch.tensor([1, 0, 0], dtype=torch.uint8, device=device) |
| with warnings.catch_warnings(record=True) as w: |
| self.assertEqual(v[boolIndices].shape, v[uint8Indices].shape) |
| self.assertEqual(v[boolIndices], v[uint8Indices]) |
| self.assertEqual(v[boolIndices], torch.tensor([True], dtype=torch.bool, device=device)) |
| self.assertEqual(len(w), 2) |
| |
| @unittest.skipIf(product_version < 13.0, "Skipped on macOS 12") |
| def test_bool_indices_accumulate(self, device="mps"): |
| mask = torch.zeros(size=(10, ), dtype=torch.uint8, device=device) |
| mask = mask > 0 |
| y = torch.ones(size=(10, 10), device=device) |
| y.index_put_((mask, ), y[mask], accumulate=True) |
| self.assertEqual(y, torch.ones(size=(10, 10), device=device)) |
| |
| def test_multiple_bool_indices(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| # note: these broadcast together and are transposed to the first dim |
| mask1 = torch.tensor([1, 0, 1, 1, 0], dtype=torch.bool, device=device) |
| mask2 = torch.tensor([1, 1, 1], dtype=torch.bool, device=device) |
| self.assertEqual(v[mask1, :, mask2].shape, (3, 7)) |
| |
| def test_byte_mask(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| mask = torch.ByteTensor([1, 0, 1, 1, 0]).to(device) |
| with warnings.catch_warnings(record=True) as w: |
| self.assertEqual(v[mask].shape, (3, 7, 3)) |
| self.assertEqual(v[mask], torch.stack([v[0], v[2], v[3]])) |
| self.assertEqual(len(w), 2) |
| |
| v = torch.tensor([1.], device=device) |
| self.assertEqual(v[v == 0], torch.tensor([], device=device)) |
| |
| def test_byte_mask_accumulate(self, device="mps"): |
| mask = torch.zeros(size=(10, ), dtype=torch.uint8, device=device) |
| y = torch.ones(size=(10, 10), device=device) |
| with warnings.catch_warnings(record=True) as w: |
| warnings.simplefilter("always") |
| y.index_put_((mask, ), y[mask], accumulate=True) |
| self.assertEqual(y, torch.ones(size=(10, 10), device=device)) |
| self.assertEqual(len(w), 2) |
| |
| def test_index_put_accumulate_expanded_values(self, device="mps"): |
| t = torch.zeros((5, 2)) |
| t_dev = t.to(device) |
| indices = [ |
| torch.tensor([0, 1, 2, 3]), |
| torch.tensor([1, ]), |
| ] |
| indices_dev = [i.to(device) for i in indices] |
| values0d = torch.tensor(1.0) |
| values1d = torch.tensor([1.0, ]) |
| |
| out_mps = t_dev.index_put_(indices_dev, values0d.to(device), accumulate=True) |
| out_cpu = t.index_put_(indices, values0d, accumulate=True) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| out_mps = t_dev.index_put_(indices_dev, values1d.to(device), accumulate=True) |
| out_cpu = t.index_put_(indices, values1d, accumulate=True) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| t = torch.zeros(4, 3, 2) |
| t_dev = t.to(device) |
| |
| indices = [ |
| torch.tensor([0, ]), |
| torch.arange(3)[:, None], |
| torch.arange(2)[None, :], |
| ] |
| indices_dev = [i.to(device) for i in indices] |
| values1d = torch.tensor([-1.0, -2.0]) |
| values2d = torch.tensor([[-1.0, -2.0], ]) |
| |
| out_mps = t_dev.index_put_(indices_dev, values1d.to(device), accumulate=True) |
| out_cpu = t.index_put_(indices, values1d, accumulate=True) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| out_mps = t_dev.index_put_(indices_dev, values2d.to(device), accumulate=True) |
| out_cpu = t.index_put_(indices, values2d, accumulate=True) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| def test_index_put_accumulate_non_contiguous(self, device="mps"): |
| t = torch.zeros((5, 2, 2)) |
| t_dev = t.to(device) |
| t1 = t_dev[:, 0, :] |
| t2 = t[:, 0, :] |
| self.assertFalse(t1.is_contiguous()) |
| self.assertFalse(t2.is_contiguous()) |
| |
| indices = [torch.tensor([0, 1]), ] |
| indices_dev = [i.to(device) for i in indices] |
| value = torch.randn(2, 2) |
| out_mps = t1.index_put_(indices_dev, value.to(device), accumulate=True) |
| out_cpu = t2.index_put_(indices, value, accumulate=True) |
| self.assertFalse(t1.is_contiguous()) |
| self.assertFalse(t2.is_contiguous()) |
| |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| def test_index_put_accumulate_with_optional_tensors(self, device="mps"): |
| # TODO: replace with a better solution. |
| # Currently, here using torchscript to put None into indices. |
| # on C++ it gives indices as a list of 2 optional tensors: first is null and |
| # the second is a valid tensor. |
| @torch.jit.script |
| def func(x, i, v): |
| idx = [None, i] |
| x.index_put_(idx, v, accumulate=True) |
| return x |
| |
| n = 4 |
| t = torch.arange(n * 2, dtype=torch.float32).reshape(n, 2) |
| t_dev = t.to(device) |
| indices = torch.tensor([1, 0]) |
| indices_dev = indices.to(device) |
| value0d = torch.tensor(10.0) |
| value1d = torch.tensor([1.0, 2.0]) |
| |
| out_mps = func(t_dev, indices_dev, value0d.to("mps")) |
| out_cpu = func(t, indices, value0d) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| out_mps = func(t_dev, indices_dev, value1d.to("mps")) |
| out_cpu = func(t, indices, value1d) |
| self.assertEqual(out_mps.cpu(), out_cpu) |
| |
| def test_index_put_accumulate_duplicate_indices(self, device="mps"): |
| for i in range(1, 128): |
| # generate indices by random walk, this will create indices with |
| # lots of duplicates interleaved with each other |
| delta = torch.empty(i, dtype=torch.float32, device=device).uniform_(-1, 1) |
| |
| indices = delta.cumsum(0).long().to("mps") |
| |
| # abs for int64 is not supported on mps, fallback on 'cpu' to calculate it |
| input = torch.randn(indices.cpu().abs().max().to("mps") + 1, device=device) |
| values = torch.randn(indices.size(0), device=device) |
| output = input.index_put((indices,), values, accumulate=True) |
| |
| input_list = input.tolist() |
| indices_list = indices.tolist() |
| values_list = values.tolist() |
| for i, v in zip(indices_list, values_list): |
| input_list[i] += v |
| |
| self.assertEqual(output, input_list) |
| |
| def test_index_put_deterministic(self, device="mps"): |
| def helper(dtype, accumulate, deterministic, num_tests=128): |
| acc_expected = torch.tensor([233, 187, 360], device=device, dtype=dtype) |
| non_acc_expected = torch.tensor([38, 37, 39], device=device, dtype=dtype) |
| t_idx = torch.tensor( |
| [0, 0, 0, 0, 2, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 2, 2, 2, 2, 2, |
| 0, 0, 2, 1, 2, 1, 0, 0, 2, 0, 2, 1, 1, 2, 2, 0, 2, 1, 0, 2] |
| ) |
| for _ in range(num_tests): |
| try: |
| torch.use_deterministic_algorithms(deterministic) |
| t = torch.zeros(3, dtype=dtype, device=device) |
| t.index_put_((t_idx,), torch.arange(len(t_idx), device=device, dtype=dtype), accumulate=accumulate) |
| if accumulate: |
| self.assertEqual(t, acc_expected) |
| else: |
| self.assertEqual(t, non_acc_expected) |
| finally: |
| torch.use_deterministic_algorithms(False) |
| |
| for accumulate, deterministic in product((False, True), (False, True)): |
| dtype = torch.float if accumulate else torch.long |
| if not accumulate and not deterministic: |
| with self.assertRaisesRegex(AssertionError, "Tensor-likes are not equal!"): |
| helper(dtype, accumulate, deterministic) |
| else: |
| helper(dtype, accumulate, deterministic) |
| |
| def test_multiple_byte_mask(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| # note: these broadcast together and are transposed to the first dim |
| mask1 = torch.ByteTensor([1, 0, 1, 1, 0]).to(device) |
| mask2 = torch.ByteTensor([1, 1, 1]).to(device) |
| with warnings.catch_warnings(record=True) as w: |
| warnings.simplefilter("always") |
| self.assertEqual(v[mask1, :, mask2].shape, (3, 7)) |
| self.assertEqual(len(w), 2) |
| |
| def test_byte_mask2d(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| c = torch.randn(5, 7, device=device) |
| num_ones = (c > 0).sum() |
| r = v[c > 0] |
| self.assertEqual(r.shape, (num_ones, 3)) |
| |
| def test_jit_indexing(self, device="mps"): |
| def fn1(x): |
| x[x < 50] = 1.0 |
| return x |
| |
| def fn2(x): |
| x[0:50] = 1.0 |
| return x |
| |
| scripted_fn1 = torch.jit.script(fn1) |
| scripted_fn2 = torch.jit.script(fn2) |
| data = torch.arange(100, device=device, dtype=torch.float) |
| out = scripted_fn1(data.detach().clone()) |
| ref = torch.tensor(np.concatenate((np.ones(50), np.arange(50, 100))), device=device, dtype=torch.float) |
| self.assertEqual(out, ref) |
| out = scripted_fn2(data.detach().clone()) |
| self.assertEqual(out, ref) |
| |
| def test_int_indices(self, device="mps"): |
| v = torch.randn(5, 7, 3, device=device) |
| self.assertEqual(v[[0, 4, 2]].shape, (3, 7, 3)) |
| self.assertEqual(v[:, [0, 4, 2]].shape, (5, 3, 3)) |
| self.assertEqual(v[:, [[0, 1], [4, 3]]].shape, (5, 2, 2, 3)) |
| |
| def test_index_put_src_datatype(self): |
| def helper(device, dtype): |
| src = torch.ones(3, 2, 4, device=device, dtype=dtype) |
| vals = torch.ones(3, 2, 4, device=device, dtype=dtype) |
| indices = (torch.tensor([0, 2, 1]),) |
| res = src.index_put_(indices, vals, accumulate=True) |
| self.assertEqual(res.shape, src.shape) |
| [helper(device="mps", dtype=dtype) for dtype in [torch.float, torch.int32]] |
| |
| @unittest.skipIf(product_version < 13.0, "Skipped on macOS 12") |
| def test_index_src_datatype(self): |
| def helper(device, dtype): |
| orig_dtype = dtype |
| if dtype is torch.bool: |
| dtype = torch.uint8 |
| |
| src = torch.ones(3, 2, 4, device=device, dtype=dtype) |
| if orig_dtype is torch.bool: |
| src = src == 1 |
| # test index |
| res = src[[0, 2, 1], :, :] |
| self.assertEqual(res.shape, src.shape) |
| # test index_put, no accum |
| src[[0, 2, 1], :, :] = res |
| self.assertEqual(res.shape, src.shape) |
| [helper(device="mps", dtype=dtype) for dtype in [torch.float, torch.float16, torch.long, torch.bool]] |
| |
| def test_int_indices2d(self, device="mps"): |
| # From the NumPy indexing example |
| x = torch.arange(0, 12, device=device).view(4, 3) |
| rows = torch.tensor([[0, 0], [3, 3]], device=device) |
| columns = torch.tensor([[0, 2], [0, 2]], device=device) |
| self.assertEqual(x[rows, columns].tolist(), [[0, 2], [9, 11]]) |
| |
| def test_int_indices_broadcast(self, device="mps"): |
| # From the NumPy indexing example |
| x = torch.arange(0, 12, device=device).view(4, 3) |
| rows = torch.tensor([0, 3], device=device) |
| columns = torch.tensor([0, 2], device=device) |
| result = x[rows[:, None], columns] |
| self.assertEqual(result.tolist(), [[0, 2], [9, 11]]) |
| |
| def test_empty_index(self, device="mps"): |
| x = torch.arange(0, 12, device=device).view(4, 3) |
| idx = torch.tensor([], dtype=torch.long, device=device) |
| self.assertEqual(x[idx].numel(), 0) |
| |
| # empty assignment should have no effect but not throw an exception |
| y = x.clone() |
| y[idx] = -1 |
| self.assertEqual(x, y) |
| |
| mask = torch.zeros(4, 3, device=device).bool() |
| y[mask] = -1 |
| self.assertEqual(x, y) |
| |
| def test_empty_ndim_index(self, device="mps"): |
| x = torch.randn(5, device=device) |
| self.assertEqual(torch.empty(0, 2, device=device), x[torch.empty(0, 2, dtype=torch.int64, device=device)]) |
| |
| x = torch.randn(2, 3, 4, 5, device=device) |
| self.assertEqual(torch.empty(2, 0, 6, 4, 5, device=device), |
| x[:, torch.empty(0, 6, dtype=torch.int64, device=device)]) |
| |
| x = torch.empty(10, 0, device=device) |
| self.assertEqual(x[[1, 2]].shape, (2, 0)) |
| self.assertEqual(x[[], []].shape, (0,)) |
| with self.assertRaisesRegex(IndexError, 'for dimension with size 0'): |
| x[:, [0, 1]] |
| |
| def test_empty_ndim_index_bool(self, device="mps"): |
| x = torch.randn(5, device=device) |
| self.assertRaises(IndexError, lambda: x[torch.empty(0, 2, dtype=torch.uint8, device=device)]) |
| |
| def test_empty_slice(self, device="mps"): |
| x = torch.randn(2, 3, 4, 5, device=device) |
| y = x[:, :, :, 1] |
| z = y[:, 1:1, :] |
| self.assertEqual((2, 0, 4), z.shape) |
| # this isn't technically necessary, but matches NumPy stride calculations. |
| self.assertEqual((60, 20, 5), z.stride()) |
| self.assertTrue(z.is_contiguous()) |
| |
| def test_index_getitem_copy_bools_slices(self, device="mps"): |
| true = torch.tensor(1, dtype=torch.uint8, device=device) |
| false = torch.tensor(0, dtype=torch.uint8, device=device) |
| |
| tensors = [torch.randn(2, 3, device=device), torch.tensor(3., device=device)] |
| |
| for a in tensors: |
| self.assertNotEqual(a.data_ptr(), a[True].data_ptr()) |
| self.assertEqual(torch.empty(0, *a.shape), a[False]) |
| self.assertNotEqual(a.data_ptr(), a[true].data_ptr()) |
| self.assertEqual(torch.empty(0, *a.shape), a[false]) |
| self.assertEqual(a.data_ptr(), a[None].data_ptr()) |
| self.assertEqual(a.data_ptr(), a[...].data_ptr()) |
| |
| def test_index_setitem_bools_slices(self, device="mps"): |
| true = torch.tensor(1, dtype=torch.uint8, device=device) |
| false = torch.tensor(0, dtype=torch.uint8, device=device) |
| |
| tensors = [torch.randn(2, 3, device=device), torch.tensor(3, device=device)] |
| |
| for a in tensors: |
| # prefix with a 1,1, to ensure we are compatible with numpy which cuts off prefix 1s |
| # (some of these ops already prefix a 1 to the size) |
| neg_ones = torch.ones_like(a) * -1 |
| neg_ones_expanded = neg_ones.unsqueeze(0).unsqueeze(0) |
| a[True] = neg_ones_expanded |
| self.assertEqual(a, neg_ones) |
| a[False] = 5 |
| self.assertEqual(a, neg_ones) |
| a[true] = neg_ones_expanded * 2 |
| self.assertEqual(a, neg_ones * 2) |
| a[false] = 5 |
| self.assertEqual(a, neg_ones * 2) |
| a[None] = neg_ones_expanded * 3 |
| self.assertEqual(a, neg_ones * 3) |
| a[...] = neg_ones_expanded * 4 |
| self.assertEqual(a, neg_ones * 4) |
| if a.dim() == 0: |
| with self.assertRaises(IndexError): |
| a[:] = neg_ones_expanded * 5 |
| |
| def test_index_scalar_with_bool_mask(self, device="mps"): |
| a = torch.tensor(1, device=device) |
| uintMask = torch.tensor(True, dtype=torch.uint8, device=device) |
| boolMask = torch.tensor(True, dtype=torch.bool, device=device) |
| self.assertEqual(a[uintMask], a[boolMask]) |
| self.assertEqual(a[uintMask].dtype, a[boolMask].dtype) |
| |
| a = torch.tensor(True, dtype=torch.bool, device=device) |
| self.assertEqual(a[uintMask], a[boolMask]) |
| self.assertEqual(a[uintMask].dtype, a[boolMask].dtype) |
| |
| def test_setitem_expansion_error(self, device="mps"): |
| true = torch.tensor(True, device=device) |
| a = torch.randn(2, 3, device=device) |
| # check prefix with non-1s doesn't work |
| a_expanded = a.expand(torch.Size([5, 1]) + a.size()) |
| # NumPy: ValueError |
| with self.assertRaises(RuntimeError): |
| a[True] = a_expanded |
| with self.assertRaises(RuntimeError): |
| a[true] = a_expanded |
| |
| def test_getitem_scalars(self, device="mps"): |
| zero = torch.tensor(0, dtype=torch.int64, device=device) |
| one = torch.tensor(1, dtype=torch.int64, device=device) |
| |
| # non-scalar indexed with scalars |
| a = torch.randn(2, 3, device=device) |
| self.assertEqual(a[0], a[zero]) |
| self.assertEqual(a[0][1], a[zero][one]) |
| self.assertEqual(a[0, 1], a[zero, one]) |
| self.assertEqual(a[0, one], a[zero, 1]) |
| |
| # indexing by a scalar should slice (not copy) |
| self.assertEqual(a[0, 1].data_ptr(), a[zero, one].data_ptr()) |
| self.assertEqual(a[1].data_ptr(), a[one.int()].data_ptr()) |
| self.assertEqual(a[1].data_ptr(), a[one.short()].data_ptr()) |
| |
| # scalar indexed with scalar |
| r = torch.randn((), device=device) |
| with self.assertRaises(IndexError): |
| r[:] |
| with self.assertRaises(IndexError): |
| r[zero] |
| self.assertEqual(r, r[...]) |
| |
| def test_setitem_scalars(self, device="mps"): |
| zero = torch.tensor(0, dtype=torch.int64) |
| |
| # non-scalar indexed with scalars |
| a = torch.randn(2, 3, device=device) |
| a_set_with_number = a.clone() |
| a_set_with_scalar = a.clone() |
| b = torch.randn(3, device=device) |
| |
| a_set_with_number[0] = b |
| a_set_with_scalar[zero] = b |
| self.assertEqual(a_set_with_number, a_set_with_scalar) |
| a[1, zero] = 7.7 |
| self.assertEqual(7.7, a[1, 0]) |
| |
| # scalar indexed with scalars |
| r = torch.randn((), device=device) |
| with self.assertRaises(IndexError): |
| r[:] = 8.8 |
| with self.assertRaises(IndexError): |
| r[zero] = 8.8 |
| r[...] = 9.9 |
| self.assertEqual(9.9, r) |
| |
| def test_basic_advanced_combined(self, device="mps"): |
| # From the NumPy indexing example |
| x = torch.arange(0, 12, device=device).view(4, 3) |
| self.assertEqual(x[1:2, 1:3], x[1:2, [1, 2]]) |
| self.assertEqual(x[1:2, 1:3].tolist(), [[4, 5]]) |
| |
| # Check that it is a copy |
| unmodified = x.clone() |
| x[1:2, [1, 2]].zero_() |
| self.assertEqual(x, unmodified) |
| |
| # But assignment should modify the original |
| unmodified = x.clone() |
| x[1:2, [1, 2]] = 0 |
| self.assertNotEqual(x, unmodified) |
| |
| def test_int_assignment(self, device="mps"): |
| x = torch.arange(0, 4, device=device).view(2, 2) |
| x[1] = 5 |
| self.assertEqual(x.tolist(), [[0, 1], [5, 5]]) |
| |
| x = torch.arange(0, 4, device=device).view(2, 2) |
| x[1] = torch.arange(5, 7, device=device) |
| self.assertEqual(x.tolist(), [[0, 1], [5, 6]]) |
| |
| def test_byte_tensor_assignment(self, device="mps"): |
| x = torch.arange(0., 16, device=device).view(4, 4) |
| b = torch.ByteTensor([True, False, True, False]).to(device) |
| value = torch.tensor([3., 4., 5., 6.], device=device) |
| |
| with warnings.catch_warnings(record=True) as w: |
| x[b] = value |
| self.assertEqual(len(w), 1) |
| |
| self.assertEqual(x[0], value) |
| self.assertEqual(x[1], torch.arange(4., 8, device=device)) |
| self.assertEqual(x[2], value) |
| self.assertEqual(x[3], torch.arange(12., 16, device=device)) |
| |
| def test_variable_slicing(self, device="mps"): |
| x = torch.arange(0, 16, device=device).view(4, 4) |
| indices = torch.IntTensor([0, 1]).to(device) |
| i, j = indices |
| self.assertEqual(x[i:j], x[0:1]) |
| |
| def test_ellipsis_tensor(self, device="mps"): |
| x = torch.arange(0, 9, device=device).view(3, 3) |
| idx = torch.tensor([0, 2], device=device) |
| self.assertEqual(x[..., idx].tolist(), [[0, 2], |
| [3, 5], |
| [6, 8]]) |
| self.assertEqual(x[idx, ...].tolist(), [[0, 1, 2], |
| [6, 7, 8]]) |
| |
| def test_invalid_index(self, device="mps"): |
| x = torch.arange(0, 16, device=device).view(4, 4) |
| self.assertRaisesRegex(TypeError, 'slice indices', lambda: x["0":"1"]) |
| |
| def test_out_of_bound_index(self, device="mps"): |
| x = torch.arange(0, 100, device=device).view(2, 5, 10) |
| self.assertRaisesRegex(IndexError, 'index 5 is out of bounds for dimension 1 with size 5', lambda: x[0, 5]) |
| self.assertRaisesRegex(IndexError, 'index 4 is out of bounds for dimension 0 with size 2', lambda: x[4, 5]) |
| self.assertRaisesRegex(IndexError, 'index 15 is out of bounds for dimension 2 with size 10', |
| lambda: x[0, 1, 15]) |
| self.assertRaisesRegex(IndexError, 'index 12 is out of bounds for dimension 2 with size 10', |
| lambda: x[:, :, 12]) |
| |
| def test_zero_dim_index(self, device="mps"): |
| x = torch.tensor(10, device=device) |
| self.assertEqual(x, x.item()) |
| |
| def runner(): |
| print(x[0]) |
| return x[0] |
| |
| self.assertRaisesRegex(IndexError, 'invalid index', runner) |
| |
| def test_cpu_indices(self, device="mps"): |
| idx = torch.tensor([0, 1]) |
| b = torch.zeros(2, device=device) |
| x = torch.ones(10, device=device) |
| x[idx] = b # index_put_ |
| ref = torch.ones(10, device=device) |
| ref[:2] = 0 |
| self.assertEqual(x, ref, atol=0, rtol=0) |
| out = x[idx] # index |
| self.assertEqual(out, torch.zeros(2, device=device), atol=0, rtol=0) |
| |
| def test_nextafter(self, device="mps"): |
| for dtype in [torch.float16, torch.float32]: |
| x = torch.tensor([1, -1, 0, 0, 2, -2], device=device, dtype=dtype) |
| y = torch.tensor([2, -2, -1, 1, -3, 3], device=device, dtype=dtype) |
| na = torch.nextafter(x, y) |
| na_cpu = torch.nextafter(x.cpu(), y.cpu()) |
| na_ge_x_mps = na.cpu() > x.cpu() |
| # greater is broken on MPS, see https://github.com/pytorch/pytorch/issues/125051 |
| na_ge_x_cpu = na_cpu > x.cpu() |
| self.assertEqual(na_ge_x_mps, na_ge_x_cpu) |
| |
| |
| class TestRNNMPS(TestCaseMPS): |
| def _lstm_helper(self, num_layers, dtype, device, bidirectional=False, bias=True, batch_first=False, |
| seq_len=3, batch_size=5, hidden_size=7, input_size=11, backward=False): |
| rnn = nn.LSTM( |
| input_size=input_size, |
| hidden_size=hidden_size, |
| num_layers=num_layers, |
| bias=bias, |
| bidirectional=bidirectional, |
| batch_first=batch_first, |
| device="cpu" |
| ) |
| bidirectional_mul = 2 if bidirectional else 1 |
| |
| if batch_first: |
| input = torch.randn(batch_size, seq_len, input_size, device="cpu", dtype=dtype, requires_grad=backward) |
| hx = torch.randn(num_layers * bidirectional_mul, batch_size, hidden_size, device="cpu", dtype=dtype, |
| requires_grad=backward) |
| cx = torch.randn(num_layers * bidirectional_mul, batch_size, hidden_size, device="cpu", dtype=dtype, |
| requires_grad=backward) |
| else: |
| input = torch.randn(seq_len, batch_size, input_size, device="cpu", dtype=dtype, requires_grad=backward) |
| hx = torch.randn(num_layers * bidirectional_mul, batch_size, hidden_size, device="cpu", dtype=dtype, |
| requires_grad=backward) |
| cx = torch.randn(num_layers * bidirectional_mul, batch_size, hidden_size, device="cpu", dtype=dtype, |
| requires_grad=backward) |
| |
| cpu_output, (cpu_hn, cpu_cn) = rnn(input, (hx, cx)) |
| |
| rnn = rnn.to(device) |
| input = input.to(device) |
| hx = hx.to(device) |
| cx = cx.to(device) |
| output, (hn, cn) = rnn(input, (hx, cx)) |
| |
| self.assertEqual(cpu_output, output) |
| self.assertEqual(cpu_hn, hn) |
| self.assertEqual(cpu_cn, cn) |
| |
| def get_backward_results(rnn, device, inp, hx, cx, output_grad_presented=True, states_grad_presented=True): |
| rnn = rnn.to(device) |
| inp, hx, cx = inp.to(device), hx.to(device), cx.to(device) |
| |
| output, (hx_out, cx_out) = rnn(inp, (hx, cx)) |
| assert output_grad_presented or states_grad_presented, "At least some outputs must be used" |
| |
| f = 0 |
| if output_grad_presented: |
| f = f + 3 * output.sum() |
| if states_grad_presented: |
| f = f + (hx_out * cx_out).sum() |
| |
| param_names, params = zip(*rnn.named_parameters()) |
| param_grads = zip(param_names, torch.autograd.grad(f, params, retain_graph=True)) |
| |
| input_grad, hx_grad, cx_grad = torch.autograd.grad(f, [inp, hx, cx]) |
| return output, param_grads, input_grad, hx_grad, cx_grad |
| |
| if backward: |
| grad_cases = [ |
| dict(output_grad_presented=True, states_grad_presented=True), |
| dict(output_grad_presented=False, states_grad_presented=True), |
| dict(output_grad_presented=True, states_grad_presented=False), |
| ] |
| |
| for grad_case in grad_cases: |
| cpu_output, cpu_weights_grad, cpu_input_grad, cpu_hx_grad, cpu_cx_grad =\ |
| get_backward_results(rnn, "cpu", input, hx, cx, **grad_case) |
| mps_output, mps_weights_grad, mps_input_grad, mps_hx_grad, mps_cx_grad =\ |
| get_backward_results(rnn, device, input, hx, cx, **grad_case) |
| |
| self.assertEqual(cpu_hx_grad, mps_hx_grad) |
| self.assertEqual(cpu_cx_grad, mps_cx_grad) |
| self.assertEqual(cpu_output, mps_output) |
| self.assertEqual(cpu_input_grad, mps_input_grad) |
| for (cpu_name, cpu_weight_grad), (mps_name, mps_weight_grad) in zip(cpu_weights_grad, mps_weights_grad): |
| self.assertEqual(cpu_weight_grad, mps_weight_grad, |
| f"mismatch in cpu:{cpu_name} vs mps:{mps_name}, layers: {num_layers}") |
| |
| LSTM_TEST_CASES = [ |
| {}, # default |
| dict(batch_first=True), |
| dict(bias=False), |
| dict(bidirectional=True), |
| dict(batch_first=True, bias=False), |
| dict(bidirectional=True, bias=False), |
| dict(bidirectional=True, batch_first=True), |
| dict(bidirectional=True, batch_first=True, bias=False) |
| ] |
| |
| def test_lstm_forward(self, device="mps", dtype=torch.float32): |
| for num_layers in [1, 2, 5]: |
| for test_options in self.LSTM_TEST_CASES: |
| self._lstm_helper(num_layers=num_layers, dtype=dtype, device=device, **test_options) |
| |
| def test_lstm_backward(self, device="mps", dtype=torch.float32): |
| for num_layers in [1, 2, 5]: |
| for test_options in self.LSTM_TEST_CASES: |
| self._lstm_helper(num_layers=num_layers, dtype=dtype, device=device, backward=True, **test_options) |
| |
| def test_RNN_cell_no_broadcasting(self): |
| def test(cell_module, input, hx, input_size, hidden_size): |
| cell = cell_module(input_size, hidden_size, device='mps') |
| self.assertRaises(RuntimeError, lambda: cell(input, hx)) |
| |
| def test_all(hidden_size, bad_hx, good_hx, input_size, input): |
| test(nn.RNNCell, input, bad_hx, input_size, hidden_size) |
| test(nn.GRUCell, input, bad_hx, input_size, hidden_size) |
| test(nn.LSTMCell, input, (bad_hx, good_hx), input_size, hidden_size) |
| test(nn.LSTMCell, input, (good_hx, bad_hx), input_size, hidden_size) |
| |
| hidden_size = 20 |
| input_size = 10 |
| input = torch.randn(3, input_size, device='mps') |
| bad_hx = torch.randn(1, hidden_size, device='mps') |
| good_hx = torch.randn(3, hidden_size, device='mps') |
| |
| # Test hidden/input batch size broadcasting |
| test_all(hidden_size, bad_hx, good_hx, input_size, input) |
| |
| # Test hx's hidden_size vs module's hidden_size broadcasting |
| bad_hx = torch.randn(3, 1) |
| test_all(hidden_size, bad_hx, good_hx, input_size, input) |
| |
| # Test input's input_size vs module's input_size broadcasting |
| bad_input = torch.randn(3, 1) |
| test_all(hidden_size, good_hx, good_hx, input_size, bad_input) |
| |
| def test_LSTM_cell(self): |
| # this is just a smoke test; these modules are implemented through |
| # autograd so no Jacobian test is needed |
| for bias in (True, False): |
| input = torch.randn(3, 10, device='mps') |
| hx = torch.randn(3, 20, device='mps') |
| cx = torch.randn(3, 20, device='mps') |
| lstm = nn.LSTMCell(10, 20, bias=bias, device='mps') |
| for _ in range(6): |
| hx, cx = lstm(input, (hx, cx)) |
| |
| (hx + cx).sum().backward() |
| |
| def test_LSTM_cell_forward_input_size(self): |
| input = torch.randn(3, 11, device='mps') |
| hx = torch.randn(3, 20, device='mps') |
| cx = torch.randn(3, 20, device='mps') |
| lstm = nn.LSTMCell(10, 20, device='mps') |
| self.assertRaises(Exception, lambda: lstm(input, (hx, cx))) |
| |
| def test_LSTM_cell_forward_hidden_size(self): |
| input = torch.randn(3, 10, device='mps') |
| hx = torch.randn(3, 21, device='mps') |
| cx = torch.randn(3, 20, device='mps') |
| lstm = nn.LSTMCell(10, 20, device='mps') |
| self.assertRaises(Exception, lambda: lstm(input, (hx, cx))) |
| self.assertRaises(Exception, lambda: lstm(input, (cx, hx))) |
| |
| |
| class TestFallbackWarning(TestCase): |
| # TODO: Remove once test_testing.py is running on MPS devices |
| def test_no_warning_on_import(self): |
| out = subprocess.check_output( |
| [sys.executable, "-W", "always", "-c", "import torch"], |
| stderr=subprocess.STDOUT, |
| # On Windows, opening the subprocess with the default CWD makes `import torch` |
| # fail, so just set CWD to this script's directory |
| cwd=os.path.dirname(os.path.realpath(__file__)),).decode("utf-8") |
| self.assertEqual(out, "") |
| |
| def _get_not_implemented_op(self): |
| # This can be changed once we actually implement 'lcm' |
| # Should return fn, args, kwargs, string_version |
| return (torch.lcm, |
| [torch.tensor([1], device='mps'), torch.tensor([2], device='mps')], {}, |
| "torch.lcm(torch.tensor([1], device='mps'), torch.tensor([2], device='mps'))") |
| |
| def test_error_on_not_implemented(self): |
| fn, args, kwargs, _ = self._get_not_implemented_op() |
| |
| with self.assertRaisesRegex(NotImplementedError, "not currently implemented for the MPS device"): |
| fn(*args, **kwargs) |
| |
| def test_warn_on_not_implemented_with_fallback(self): |
| _, _, _, op = self._get_not_implemented_op() |
| script = f""" |
| import os |
| # MUST happen before pytorch's import |
| os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
| import warnings |
| |
| with warnings.catch_warnings(record=True) as w: |
| import torch |
| |
| if len(w) > 0: |
| print(w) |
| exit(1) |
| |
| # This should run just fine and raise warning about perf |
| with warnings.catch_warnings(record=True) as w: |
| {op} |
| |
| if len(w) != 1: |
| print(w) |
| exit(2) |
| """ |
| try: |
| subprocess.check_output( |
| [sys.executable, '-W', 'always', '-c', script], |
| stderr=subprocess.STDOUT, |
| # On Windows, opening the subprocess with the default CWD makes `import torch` |
| # fail, so just set CWD to this script's directory |
| cwd=os.path.dirname(os.path.realpath(__file__)),) |
| except subprocess.CalledProcessError as e: |
| if e.returncode == 1: |
| self.assertTrue(False, "There was a warning when importing torch when PYTORCH_ENABLE_MPS_FALLBACK is set." + |
| e.output.decode("utf-8")) |
| elif e.returncode == 2: |
| self.assertTrue(False, "There wasn't exactly one warning when running not implemented op with " |
| f"PYTORCH_ENABLE_MPS_FALLBACK set. {e.output}") |
| else: |
| self.assertTrue(False, "Running a not implemented op failed even though PYTORCH_ENABLE_MPS_FALLBACK is set. " + |
| e.output.decode("utf-8")) |
| |
| class TestNoRegression(TestCase): |
| def test_assert_close(self): |
| a = torch.ones(1, device="mps") |
| b = torch.zeros(1, device="mps") |
| inf = a / b |
| nan = b / b |
| |
| with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"): |
| torch.testing.assert_close(a, inf) |
| |
| # TODO: The NaN test is failing when all the tests in test_mps are run |
| # together but passes when run separately. There seems to be memory |
| # corruption which needs to be fixed for this test to be enabled. |
| # with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"): |
| # torch.testing.assert_close(a, nan) |
| |
| def test_double_error(self): |
| with self.assertRaisesRegex(TypeError, "the MPS framework doesn't support float64"): |
| a = torch.ones(2, dtype=torch.float64, device="mps") |
| |
| a = torch.ones(2, device="mps") |
| with self.assertRaisesRegex(TypeError, "the MPS framework doesn't support float64"): |
| a = a.double() |
| |
| def test_legacy_constructor(self): |
| a = torch.ones(2, device="mps") |
| |
| b = a.new(1) |
| |
| def test_serialization_map_location(self): |
| |
| # Ensures that cpu Tensor can be loaded on mps |
| with tempfile.NamedTemporaryFile() as f: |
| x = torch.rand(2) |
| torch.save(x, f) |
| |
| f.seek(0) |
| x2 = torch.load(f, map_location="mps") |
| |
| self.assertEqual(x, x2) |
| self.assertEqual(x2.device.type, "mps") |
| |
| # Ensures that mps Tensors can be loaded on mps |
| with tempfile.NamedTemporaryFile() as f: |
| x = torch.rand(2, device="mps") |
| torch.save(x, f) |
| |
| f.seek(0) |
| x2 = torch.load(f) |
| |
| self.assertEqual(x, x2) |
| self.assertEqual(x2.device.type, "mps") |
| |
| # Ensures that mps Tensors can be loaded on cpu |
| with tempfile.NamedTemporaryFile() as f: |
| x = torch.rand(2, device="mps") |
| torch.save(x, f) |
| |
| f.seek(0) |
| x2 = torch.load(f, map_location="cpu") |
| |
| self.assertEqual(x, x2) |
| self.assertEqual(x2.device.type, "cpu") |
| |
| # Ensures that `mps:0` Tensors can be loaded on mps |
| with tempfile.NamedTemporaryFile() as f: |
| x = torch.rand(2, device="mps:0") |
| torch.save(x, f) |
| |
| f.seek(0) |
| x2 = torch.load(f, map_location="mps:0") |
| |
| self.assertEqual(x, x2) |
| self.assertEqual(x2.device.type, "mps") |
| |
| |
| MPS_DTYPES = get_all_dtypes() |
| for t in [torch.double, torch.cdouble, torch.cfloat, torch.bfloat16]: |
| del MPS_DTYPES[MPS_DTYPES.index(t)] |
| |
| MPS_GRAD_DTYPES = [torch.float32, torch.float16] |
| |
| |
| class TestConsistency(TestCaseMPS): |
| # TODO: This is only used while some ops are being added. |
| # This list should contain all ops and dtypes eventually |
| # This can be generated automatically in the `new_mps_allowlist.txt` file |
| # by doing `EXPECTTEST_ACCEPT=1 python test_mps.py TestConsistencyCPU` |
| # You most likely do NOT want to modify this manually |
| |
| FP16_LOW_PRECISION_LIST = { |
| 'add', 'sub', 'div', 'addcdiv', |
| '__rdiv__', '__rmul__', |
| 'nn.functional.huber_loss', |
| 'true_divide', 'kron', |
| 'gradient', 'var', 'std', 'std_mean', 'ldexp', |
| 'linalg.vector_norm', 'lerp', |
| 'addr', 'var_mean', |
| 'var_mean_unbiased', |
| 'acosh', 'asinh', 'asin', |
| 'masked.std', |
| 'nn.functional.normalize', |
| 'nn.functional.triplet_margin_loss', |
| 'nn.functional.triplet_margin_with_distance_loss', |
| 'nn.functional.batch_norm', |
| 'nn.functional.instance_norm', |
| 'round', 'xlogy', 'addcmul', |
| 'nn.functional.cross_entropy', |
| 'nn.functional.binary_cross_entropy', |
| 'nn.functional.nll_loss', |
| 'nn.functional.max_pool2d', |
| 'nn.functional.gelu', |
| 'nn.functional.glu', |
| '_native_batch_norm_legit', |
| '_batch_norm_with_update', |
| 'native_batch_norm', |
| 'softmax', |
| '_softmax_backward_data', |
| 'log_softmax', |
| 'masked.softmax', |
| 'masked.log_softmax', |
| 'masked.softmin', |
| 'nn.functional.kl_div', |
| 'nn.functional.softmin', |
| 'cross', 'linalg.cross', |
| 'prod', 'masked.prod', |
| 'nextafter', |
| 'native_layer_norm', |
| 'nn.functional.layer_norm', |
| 'nn.functional.interpolate', |
| 'nn.functional.upsample_bilinear', |
| 'nn.functional.upsample_nearest', |
| |
| # for macOS 12 |
| 'masked.normalize', 'masked.sum', 'masked.var', |
| 'outer', |
| 'sum_to_size', 'sum', |
| 'mul', |
| 'nansum', 'nanmean', |
| 'norm', |
| } |
| |
| FP32_LOW_PRECISION_LIST = { |
| # conv2d and conv_transpose2d results have a very small |
| # difference compared to CPU/CUDA, so we use lower precision on FP32 |
| 'nn.functional.conv2d', |
| 'nn.functional.conv_transpose2d', |
| 'matmul', '__rmatmul__', |
| 'linalg.multi_dot', |
| 'addbmm', |
| } |
| |
| def _compute_tolerances(self, op, dtype): |
| if (op.name in self.FP32_LOW_PRECISION_LIST) and dtype in [torch.float32, torch.complex64]: |
| return (1e-4, 3e-5) |
| |
| if op.name in self.FP16_LOW_PRECISION_LIST and dtype == torch.float16: |
| return (1e-2, 1e-2) |
| |
| if op.name in ['nn.functional.conv_transpose1d', |
| 'nn.functional.conv_transpose2d', |
| 'nn.functional.conv_transpose3d', |
| '__rmatmul__', 'addbmm', 'addmv', |
| 'baddbmm', 'cov', 'matmul', 'mv'] and dtype == torch.float16: |
| return (5e-2, 5e-2) |
| if op.name == "masked.mean": |
| return (7e-4, 2e-3) |
| if op.name == "native_layer_norm": |
| return (1e-4, 1.3e-5) |
| if op.name in ["pow", "__rpow__"] and product_version < 13.3: |
| # The result of pow(9 , 8) is showing 43046716, whereas it should've been 43046721. |
| # fixed in macOS 13.3+ |
| return (1e-6, 2e-3 if dtype == torch.float16 else 4e-6) |
| if op.name == "nn.functional.interpolate": |
| return (1e-3, 1e-4) |
| if op.name in ['fft.rfftn', 'fft.hfftn', 'fft.hfft2', 'fft.fft', 'fft.fftn', 'fft.rfft']: |
| # TODO: Investigate why this is needed |
| # See https://github.com/pytorch/pytorch/issues/120237 |
| return (3e-5, 3e-5) |
| return (None, None) |
| |
| # Used for accept mode only |
| NEW_ALLOW_LIST = defaultdict(list) |
| NEW_ALLOW_LIST_GRAD = defaultdict(list) |
| |
| @ops(mps_ops_modifier(test_consistency_op_db), allowed_dtypes=MPS_DTYPES + [torch.complex64]) |
| def test_output_match(self, device, dtype, op): |
| self.assertEqual(device, "cpu") |
| |
| def get_samples(): |
| return op.sample_inputs( |
| device, |
| dtype, |
| requires_grad=(dtype.is_floating_point or dtype.is_complex), |
| # TODO: Enable per-sample seed setting and tweak tolerances / fix xfails |
| set_seed=False, |
| ) |
| cpu_samples = get_samples() |
| |
| for cpu_sample in cpu_samples: |
| # |
| # Forward check |
| # |
| mps_sample = cpu_sample.transform( |
| lambda x: x.detach().to("mps").requires_grad_(x.requires_grad) if isinstance(x, torch.Tensor) else x) |
| |
| cpu_args = [cpu_sample.input] + list(cpu_sample.args) |
| cpu_kwargs = cpu_sample.kwargs |
| mps_args = [mps_sample.input] + list(mps_sample.args) |
| mps_kwargs = mps_sample.kwargs |
| |
| # for tensor_split(), the second tensor arg ("tensor_indices_or_sections") must be on CPU only |
| if op.name == "tensor_split" and isinstance(mps_args[1], torch.Tensor): |
| mps_args[1] = cpu_args[1] |
| |
| cpu_out = op(*cpu_args, **cpu_kwargs) |
| mps_out = op(*mps_args, **mps_kwargs) |
| |
| atol, rtol = self._compute_tolerances(op, dtype) |
| if op.name == "nn.functional.upsample_bilinear" and dtype == torch.uint8: |
| atol = 1.0 |
| rtol = 0.0 |
| |
| self.assertEqual(cpu_out, mps_out, atol=atol, rtol=rtol) |
| |
| |
| @ops(mps_ops_grad_modifier(copy.deepcopy(test_consistency_op_db)), allowed_dtypes=MPS_GRAD_DTYPES) |
| def test_output_grad_match(self, device, dtype, op): |
| self.assertEqual(device, "cpu") |
| |
| def get_samples(): |
| return op.sample_inputs( |
| device, |
| dtype, |
| requires_grad=(dtype.is_floating_point or dtype.is_complex), |
| # TODO: Enable per-sample seed setting and tweak tolerances / fix xfails |
| set_seed=False, |
| ) |
| cpu_samples = get_samples() |
| |
| for cpu_sample in cpu_samples: |
| # |
| # Forward check |
| # |
| forward_failed = False |
| mps_sample = cpu_sample.transform( |
| lambda x: x.detach().to("mps").requires_grad_(x.requires_grad) if isinstance(x, torch.Tensor) else x) |
| |
| cpu_args = [cpu_sample.input] + list(cpu_sample.args) |
| cpu_kwargs = cpu_sample.kwargs |
| mps_args = [mps_sample.input] + list(mps_sample.args) |
| mps_kwargs = mps_sample.kwargs |
| |
| # for tensor_split(), the second tensor arg ("tensor_indices_or_sections") must be on CPU only |
| if op.name == "tensor_split" and isinstance(mps_args[1], torch.Tensor): |
| mps_args[1] = cpu_args[1] |
| |
| cpu_out = op(*cpu_args, **cpu_kwargs) |
| mps_out = op(*mps_args, **mps_kwargs) |
| |
| if op.name == "unique" and cpu_kwargs["sorted"] is False: |
| continue |
| |
| atol, rtol = self._compute_tolerances(op, dtype) |
| if op.name in ["renorm", "norm", "linalg.norm"] and dtype == torch.float16: |
| atol = 7e-4 |
| rtol = 1.5e-3 |
| |
| self.assertEqual(cpu_out, mps_out, atol=atol, rtol=rtol) |
| |
| # |
| # Backward check |
| # |
| if forward_failed: |
| # We would've failed immediately anyway, but this error is clearer |
| # We error instead of continuing so that all_backward_pass would not be True |
| raise RuntimeError("Forward pass already failed") |
| |
| cpu_out = (cpu_out,) if isinstance(cpu_out, torch.Tensor) else tuple(cpu_out) |
| mps_out = (mps_out,) if isinstance(mps_out, torch.Tensor) else tuple(mps_out) |
| |
| def req_grad(t): |
| return isinstance(t, torch.Tensor) and t.requires_grad |
| |
| diff_cpu_out = tuple(t for t in cpu_out if req_grad(t)) |
| diff_mps_out = tuple(t for t in mps_out if req_grad(t)) |
| diff_cpu_arg = tuple(t for t in pytree.tree_leaves((cpu_args, cpu_kwargs)) if req_grad(t)) |
| diff_mps_arg = tuple(t for t in pytree.tree_leaves((mps_args, mps_kwargs)) if req_grad(t)) |
| self.assertEqual(len(diff_cpu_out), len(diff_mps_out)) |
| self.assertEqual(len(diff_cpu_arg), len(diff_mps_arg)) |
| |
| if len(diff_cpu_out) == 0: |
| continue |
| # rand_like does not work with certain dtypes, so cast to double and cast back |
| cpu_grad_outputs = tuple(torch.rand_like(t, dtype=torch.double).to(dtype=t.dtype) for t in diff_cpu_out) |
| mps_grad_outputs = tuple(t.to("mps") for t in cpu_grad_outputs) |
| |
| # Compare computed gradients with cpu given random grad_output vector |
| # Sometimes when the derivative is 0, we just don't bother creating the graph |
| # allow_unused is needed in those cases. |
| cpu_grad_inputs = torch.autograd.grad(diff_cpu_out, diff_cpu_arg, grad_outputs=cpu_grad_outputs, allow_unused=True) |
| mps_grad_inputs = torch.autograd.grad(diff_mps_out, diff_mps_arg, grad_outputs=mps_grad_outputs, allow_unused=True) |
| |
| self.assertEqual(cpu_grad_inputs, mps_grad_inputs, atol=atol, rtol=rtol) |
| |
| |
| class TestErrorInputs(TestCase): |
| _ignore_not_implemented_error = True |
| |
| @ops(mps_ops_error_inputs_modifier(test_error_inputs_op_db), dtypes=OpDTypes.none) |
| def test_error_inputs(self, device, op): |
| self.assertEqual(device, "mps:0") |
| |
| # TODO: Enable per-sample seed setting and tweak tolerances / fix xfails |
| mps_samples = op.error_inputs(device, set_seed=False) |
| |
| for mps_sample in mps_samples: |
| mps_sample_input = mps_sample.sample_input |
| error_type = mps_sample.error_type |
| error_regex = mps_sample.error_regex |
| |
| mps_args = [mps_sample_input.input] + list(mps_sample_input.args) |
| mps_kwargs = mps_sample_input.kwargs |
| |
| # for tensor_split(), the second tensor arg ("tensor_indices_or_sections") must be on CPU only |
| if (op.name == "tensor_split" and isinstance(mps_args[1], torch.Tensor)): |
| mps_args[1] = mps_args[1].cpu() |
| |
| with self.assertRaisesRegex(error_type, error_regex): |
| op(*mps_args, **mps_kwargs) |
| |
| class TestComplex(TestCase): |
| def test_tensor_scalar_binops(self): |
| # Regression test for https://github.com/pytorch/pytorch/issues/119088 |
| def to_cpu(x): |
| return x.cpu() if isinstance(x, torch.Tensor) else x |
| |
| # Allocate tensors on mps |
| with torch.device("mps"): |
| inputs = [torch.rand(2, dtype=dtype) for dtype in [torch.float, torch.half, torch.cfloat]] |
| self.assertTrue(all(x.device.type == "mps" for x in inputs)) |
| # Add scalars |
| inputs.extend([7, 3.14, 2 + 3j, torch.tensor(4 + 5j, dtype=torch.chalf)]) |
| |
| # Iterate over all permutations of types(int, float, complex, half) and ops (excluding div) |
| for x, y in itertools.product(inputs, inputs): |
| for op_name in ["__add__", "__sub__", "__mul__"]: |
| x_cpu, y_cpu = map(to_cpu, (x, y)) |
| res = getattr(x, op_name)(y) |
| res_cpu = getattr(x_cpu, op_name)(y_cpu) |
| self.assertEqual(to_cpu(res), res_cpu, f"{op_name}({x}, {y}) produces different results {res} vs {res_cpu}") |
| |
| |
| # Copied from `TestCommon` in `test_ops.py`, just enough to duplicate the `test_numpy_ref` for MPS |
| @skipIfSlowGradcheckEnv |
| class TestCommon(TestCase): |
| exact_dtype = True |
| |
| # Verifies, on teardown, that no OpInfo is still using dynamic dtypes in CI |
| @classmethod |
| def tearDownClass(cls): |
| super().tearDownClass() |
| |
| if IS_CI: |
| err_msg = ( |
| "The operator(s) below is(are) using dynamic_dtypes in the OpInfo entries." |
| "This is OK for testing, but be sure to set the dtypes manually before landing your PR!" |
| ) |
| # Assure no opinfo entry has dynamic_dtypes |
| filtered_ops = list(filter(opinfo.utils.is_dynamic_dtype_set, op_db)) |
| for op in filtered_ops: |
| fmt_str = opinfo.utils.str_format_dynamic_dtype(op) |
| err_msg += "\n" + fmt_str |
| |
| assert len(filtered_ops) == 0, err_msg |
| |
| # This is the MPS equivalent of `test_numpy_ref` from `test_ops.py`. It lives over here while |
| # MPS still requires some fairly heavy special casing in the test framework. |
| # When MPS becomes more consistent, this can probably be merged with that test using |
| # `@dtypesIfMPS(torch.float32)`, but for now, the assertions themselves need to be loosened |
| @suppress_warnings |
| # MPS only supports float32 |
| @ops(_ref_test_ops, allowed_dtypes=(torch.float32,)) |
| def test_numpy_ref_mps(self, device, dtype, op): |
| # Unlike `test_numpy_ref`, this test compares in `float32` since at the time of this test's creation MPS |
| # does not support float64 Tensors. |
| # A few ops are currently broken on their reference inputs, but not their sample inputs. These should |
| # get patched up and this workaround removed. |
| broken_on_ref_inputs = op.name in ('where',) |
| |
| # TODO: Enable per-sample seed setting and tweak tolerances / fix xfails |
| inputs = ( |
| op.reference_inputs(device, dtype, set_seed=False) if not broken_on_ref_inputs |
| else op.sample_inputs(device, dtype, set_seed=False) |
| ) |
| for sample_input in inputs: |
| self.compare_with_reference(op, op.ref, sample_input) |
| |
| @dtypes(*get_all_dtypes()) |
| def test_tensor_creation(self, device, dtype): |
| def ones(device): |
| return torch.ones((2, 2), dtype=dtype, device=device) |
| if dtype not in MPS_DTYPES + ([torch.bfloat16, torch.complex64] if product_version > 14.0 else [torch.complex64]): |
| with self.assertRaises(TypeError): |
| ones(device) |
| else: |
| mps_tensor = ones(device) |
| cpu_tensor = ones("cpu") |
| self.assertEqual(mps_tensor.cpu(), cpu_tensor) |
| |
| |
| # TODO: Actually instantiate that test for the "mps" device to better reflect what it is doing. |
| # This requires mps to be properly registered in the device generic test framework which is not the |
| # case right now. We can probably use `allow_mps` introduced in https://github.com/pytorch/pytorch/pull/87342 |
| # to achieve this. |
| instantiate_device_type_tests(TestConsistency, globals(), only_for="cpu") |
| instantiate_device_type_tests(TestErrorInputs, globals(), allow_mps=True, only_for="mps") |
| instantiate_device_type_tests(TestCommon, globals(), allow_mps=True, only_for="mps") |
| instantiate_device_type_tests(TestLinalgMPS, globals(), allow_mps=True, only_for="mps") |
| instantiate_parametrized_tests(TestMPS) |
| |
| if __name__ == "__main__": |
| run_tests() |