blob: 49cb422f8720ccf346adc1187f13ce68b2390358 [file] [log] [blame] [edit]
# Owner(s): ["module: nestedtensor"]
import io
import itertools
import math
import sys
import unittest
from functools import partial
from typing import Optional, Tuple
import numpy as np
import torch
import torch._dynamo
import torch._dynamo.testing
import torch.nn
import torch.nn.functional as F
from torch.nested._internal.nested_tensor import (
buffer_from_jagged,
jagged_from_list,
nested_view_from_values_offsets,
NestedTensor,
ViewNestedFromBuffer,
)
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FUSED_ATTENTION,
SM70OrLater,
SM80OrLater,
)
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
onlyCPU,
onlyCUDA,
ops,
PYTORCH_CUDA_MEMCHECK,
skipCPUIf,
skipCUDAIf,
skipCUDAIfRocm,
skipMeta,
)
from torch.testing._internal.common_dtype import floating_types_and_half
from torch.testing._internal.common_utils import (
decorateIf,
freeze_rng_state,
gradcheck,
instantiate_parametrized_tests,
IS_FBCODE,
IS_WINDOWS,
markDynamoStrictTest,
NestedTensorTestCase,
parametrize,
run_tests,
skipIfSlowGradcheckEnv,
skipIfTorchDynamo,
subtest,
TEST_WITH_ROCM,
xfailIfTorchDynamo,
)
from torch.testing._internal.opinfo.definitions.nested import njt_op_db
from torch.utils._pytree import tree_flatten
from torch.utils.checkpoint import checkpoint, create_selective_checkpoint_contexts
# Tests are ported from pytorch/nestedtensor.
# This makes porting as_nested_tensor easier in the future.
def _iter_constructors():
# yield as_nested_tensor
yield torch.nested.nested_tensor
# Returns True if the function recompiles between inputs1 and inputs2 with the
# specified dynamic setting.
def _recompiles_for_inputs(fn, inputs1, inputs2, dynamic=True):
compile_count = [0]
def counter(gm, example_inputs):
compile_count[0] += 1
return gm
compiled_f = torch.compile(fn, fullgraph=True, backend=counter, dynamic=dynamic)
compiled_f(*inputs1)
compiled_f(*inputs2)
return compile_count[0] > 1
# Helper function to generate a pair of random nested tensors
# one is contiguous, the other is not, but they appear to have same entries
# an output nested tensor consists of
# * `len(ragged_sizes)` matrices
# * matrices[i].shape == (20, ragged_sizes[i])
def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16):
xs = []
for size in ragged_sizes:
xs.append(torch.randn((size, 20), device=device, dtype=dtype))
# contiguous nested tensor
ys = []
for x in xs:
ys.append(x.transpose(-1, -2))
nt_contiguous = torch.nested.nested_tensor(ys)
# noncontiguous nested tensor
n = len(ragged_sizes)
nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2)
return nt_contiguous, nt_noncontiguous
# Helper functions to pad a noncontiguous nested tensor
# can be replaced once to_padded_tensor supports noncontiguous memory
def noncontiguous_to_padded_tensor(input, shape=None):
tensors = input.unbind()
ntensors = len(tensors)
assert ntensors > 0
if shape is None:
shape = []
for size in tensors[0].shape:
shape.append(size)
for i in range(1, ntensors):
new_shape = tensors[i].shape
for j in range(len(shape)):
shape[j] = max(shape[j], new_shape[j])
shape = [ntensors] + shape
result = tensors[0].new_zeros(shape)
for itensor in range(ntensors):
tensor = tensors[itensor]
view = result[itensor]
for idim in range(tensor.dim()):
view = view.narrow(idim, 0, tensor.size(idim))
view.copy_(tensor)
return result
# Helper function to generate a random nested tensor
def random_nt(
device,
dtype,
num_tensors,
max_dims,
min_dims=None,
layout=torch.strided,
require_non_empty=True,
):
if min_dims is None:
min_dims = tuple([0] * len(max_dims))
assert len(max_dims) == len(min_dims)
for min_dim, max_dim in zip(min_dims, max_dims):
assert max_dim > min_dim, "random_nt: max_dim must be greater than min_dim"
assert min_dim >= 0, "random_nt: min_dim must be non-negative"
if require_non_empty:
assert not (
min_dim == 0 and max_dim == 1
), "random_nt: zero cannot be the only possible value if require_non_empty is True"
if require_non_empty:
# Select a random idx that will be required to be non-empty
non_zero_idx = torch.randint(low=0, high=num_tensors, size=(1,)).item()
ts1 = []
for i, _ in enumerate(range(num_tensors)):
tensor_dims = []
for min_dim, max_dim in zip(min_dims, max_dims):
new_min_dim = min_dim
if require_non_empty and i == non_zero_idx and min_dim == 0:
new_min_dim = 1
tensor_dims.append(
torch.randint(low=new_min_dim, high=max_dim, size=(1,)).item()
)
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
return torch.nested.nested_tensor(ts1, device=device, dtype=dtype, layout=layout)
# Alternate approach to generating a random NT.
# dims should be something like [5, None, 10], with None indicating that a
# random ragged structure should be used
def random_nt_from_dims(
dims, device=None, dtype=None, layout=torch.strided, requires_grad=False
):
sizes = [
[
d if d is not None else torch.randint(2, 10, size=(1,)).item()
for d in dims[1:]
]
for d in range(dims[0])
]
return torch.nested.nested_tensor(
[torch.randn(*size) for size in sizes],
device=device,
dtype=dtype,
layout=layout,
requires_grad=requires_grad,
)
# Creates an NT matching another NT's number of components and
# shape / ragged structure for all dims specified to be -1.
def random_nt_from_similar(other, dims=None):
if dims is None:
return torch.randn_like(other)
assert len(dims) == other.dim()
assert dims[0] == -1 or dims[0] == other.size(0)
ret_sizes = []
for t in other.unbind():
other_size = t.shape
ret_size = []
for i, d in enumerate(dims[1:]):
if d == -1:
ret_size.append(other_size[i])
else:
ret_size.append(d)
ret_sizes.append(ret_size)
return torch.nested.nested_tensor(
[torch.randn(*size) for size in ret_sizes], device=other.device
)
# makes naming nice for tests that parametrize over layout.
def layout_name(layout):
# e.g. "torch.jagged" -> "jagged"
return layout.__repr__().split(".")[-1]
def get_op_name(layout):
# e.g. "<OpOverload(op='aten.sum', overload='dim_IntList')>" -> "sum"
return layout.__name__.split(".")[0].split("_")[-1]
# Helper function for test_dummy_mha_with_nt
@torch.fx.wrap
def convert_dense_to_nested_tensor_legacy(values):
offsets = torch.arange(
0, values.shape[0] * values.shape[1] + 1, values.shape[1], device=values.device
)
metadata_cache = {"max_seqlen": values.shape[1], "min_seqlen": 1}
nt = ViewNestedFromBuffer.apply(
values.view(-1, values.shape[-1]), offsets, metadata_cache
)
return nt
# Helper function for test_dummy_mha_with_nt
@torch.fx.wrap
def convert_jagged_to_nested_tensor_legacy(
values: torch.Tensor, offsets: torch.Tensor, max_length: int
) -> torch.Tensor:
metadata_cache = {"max_seqlen": max_length, "min_seqlen": 1}
nt = ViewNestedFromBuffer.apply(values, offsets, metadata_cache)
return nt
# Helper function for test_dummy_mha_with_nt
@torch.fx.wrap
def convert_nt_to_jagged_legacy(nt):
return buffer_from_jagged(nt)
# Helper function for test_dummy_mha_with_nt
@torch.fx.wrap
def convert_dense_to_nested_tensor(values):
nt = torch.nested.as_nested_tensor(values, layout=torch.jagged)
return nt
# Helper function for test_dummy_mha_with_nt
@torch.fx.wrap
def convert_jagged_to_nested_tensor(
values: torch.Tensor, offsets: torch.Tensor, max_length: int
) -> torch.Tensor:
nt = torch.nested.nested_tensor_from_jagged(
values, offsets, lengths=None, min_seqlen=1, max_seqlen=max_length
)
return nt
# Helper function for test_dummy_mha_with_nt
def convert_nt_to_jagged(nt):
return nt.values()
@markDynamoStrictTest
class TestNestedTensor(NestedTensorTestCase):
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_2d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
data.append(row)
nested_tensor_ref_list.append(torch.Tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64)
)
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_3d_nested_tensor(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(np.random.randint(low=0, high=vocab_size, size=(length,)))
row = [list(item * np.arange(max_seq_len)) for item in row]
data.append(row)
nested_tensor_ref_list.append(torch.Tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64)
)
@parametrize("batch_size", [2, 4])
@parametrize("max_seq_len", [3, 5])
@parametrize("vocab_size", [10, 20])
def test_3d_nested_tensor_float(self, batch_size, max_seq_len, vocab_size):
data = []
nested_tensor_ref_list = []
for _ in range(batch_size):
if max_seq_len == 0:
length = 0
else:
length = np.random.randint(low=1, high=max_seq_len)
row = list(
np.random.randint(low=0, high=vocab_size, size=(length,)).astype(float)
)
row = [list(item * np.arange(max_seq_len)) for item in row]
data.append(row)
nested_tensor_ref_list.append(torch.Tensor(row))
nested_tensor = torch.nested.nested_tensor(data, dtype=torch.float)
nested_tensor_list = nested_tensor.unbind()
for id in range(batch_size):
self.assertEqual(
nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.float)
)
@torch.inference_mode()
def _test_unbind_case(self, a, b):
nt = torch.nested.nested_tensor([a, b])
a1, b1 = nt.unbind()
self.assertTrue(a is not a1)
self.assertTrue(b is not b1)
nt = torch.nested.nested_tensor([a, b], dtype=a.dtype)
a1, b1 = nt.unbind(0)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
a = torch.randn((2, 3)).add_(1)
nt = torch.nested.nested_tensor([a])
self.assertEqual(a, nt.unbind(0)[0])
@torch.inference_mode()
def test_unbind_0(self):
self._test_unbind_case(torch.tensor([1, 2]), torch.tensor([7, 8]))
@torch.inference_mode()
def test_unbind_1(self):
self._test_unbind_case(torch.tensor([1]), torch.tensor([7]))
@torch.inference_mode()
def test_unbind_3(self):
self._test_unbind_case(torch.tensor([1.0]), torch.tensor([]))
@torch.inference_mode()
def test_unbind_4(self):
self._test_unbind_case(torch.tensor([]), torch.tensor([]))
@torch.inference_mode()
def test_unbind_dim(self):
def _test_fn(unbind_fn):
a = torch.rand(3, 2)
b = torch.rand(2, 3)
nt = torch.nested.nested_tensor([a, b])
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
# Both of these tests are necessary, because we're using
# torch_function.
_test_fn(lambda x, dim: x.unbind(dim))
# TODO: Re-enable this once using torch_dispatch
# _test_fn(lambda x, dim: torch.unbind(x, dim))
@torch.inference_mode()
def test_nested_tensor(self):
self.assertRaises(
TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0]))
)
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0))
@torch.inference_mode()
def test_nested_tensor_matching_dim(self):
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]),
)
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
lambda: torch.nested.nested_tensor(
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
),
)
@torch.inference_mode()
def test_default_nested_tensor(self):
self.assertRaises(TypeError, lambda: torch.nested.nested_tensor())
default_nested_tensor = torch.nested.nested_tensor([])
default_tensor = torch.tensor([])
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
# self.assertEqual(default_nested_tensor.nested_size(), ())
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
self.assertEqual(default_nested_tensor.device, default_tensor.device)
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
self.assertEqual(
default_nested_tensor.requires_grad, default_tensor.requires_grad
)
self.assertIsNone(default_tensor.grad)
# TODO: Re-enable once we have a performance driven
# use case and implementation.
# self.assertEqual(default_nested_tensor.is_pinned(),
# default_tensor.is_pinned())
@torch.inference_mode()
def test_dim(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor(3.0)])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor([1, 2, 3, 4])])
self.assertEqual(a1.dim(), 2)
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
@torch.inference_mode()
def test_numel(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.numel(), 0)
a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)])
self.assertEqual(a1.numel(), 2)
a1 = constructor([torch.randn(2, 2, 2)])
self.assertEqual(a1.numel(), 8)
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)])
self.assertEqual(a1.numel(), 12)
a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)])
self.assertEqual(a1.numel(), 27)
a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)])
self.assertEqual(a1.numel(), 341)
# Interesting edge case
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)])
self.assertEqual(a1.numel(), 6)
@torch.inference_mode()
def test_size(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support sizes",
lambda: a1.size(),
)
def test_size_dim(self):
a = torch.nested.nested_tensor([])
self.assertEqual(a.size(0), 0)
a = torch.nested.nested_tensor([torch.tensor(1)])
self.assertEqual(a.size(0), 1)
a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)])
self.assertEqual(a.size(0), 2)
a = torch.nested.nested_tensor([torch.rand(1, 2), torch.rand(1, 8)])
self.assertEqual(a.size(0), 2)
self.assertEqual(a.size(1), 1)
self.assertRaisesRegex(
RuntimeError,
"Given dimension 2 is irregular and does not have a size",
lambda: a.size(2),
)
a = torch.nested.nested_tensor([torch.rand(3, 4), torch.rand(5, 4)])
self.assertEqual(a.size(0), 2)
self.assertRaisesRegex(
RuntimeError,
"Given dimension 1 is irregular and does not have a size",
lambda: a.size(1),
)
self.assertEqual(a.size(2), 4)
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
@torch.inference_mode()
def test_stride(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support strides",
lambda: a1.stride(),
)
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
@torch.inference_mode()
def test_is_contiguous(self):
# Test empty case
nt_empty = torch.nested.nested_tensor([])
assert nt_empty.is_contiguous()
self.assertEqual(nt_empty, nt_empty.contiguous())
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
# Test contiguous case
assert nt_contiguous.is_contiguous()
self.assertEqual(nt_contiguous, nt_contiguous.contiguous())
# Test non_contiguous case
assert not nt_noncontiguous.is_contiguous()
self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous())
# Test querying by memory_format
self.assertTrue(
nt_contiguous.is_contiguous(memory_format=torch.contiguous_format)
)
self.assertTrue(
not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format)
)
@torch.inference_mode()
def test_repr_string(self):
a = torch.nested.nested_tensor([])
expected = "nested_tensor([\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([\n tensor(1.)\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = "nested_tensor([\n tensor([[1, 2]]),\n tensor([[4, 5]])\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
def test_to_padded_tensor_on_empty_tensor(self):
nt = torch.nested.nested_tensor([])
empty = torch.nested.to_padded_tensor(nt, 4)
self.assertEqual(empty, torch.tensor([]))
def test_nested_namespace(self):
nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)])
result = nt.to_padded_tensor(4)
nested_namespace_result = torch.nested.to_padded_tensor(nt, 4)
self.assertEqual(result, nested_namespace_result)
def test_to(self):
ntensors = 4
nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4))
def test_copy_behavior(t, non_blocking=False):
self.assertIs(t, t.to(t, non_blocking=non_blocking))
self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking))
self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking))
self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True))
self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True))
self.assertIsNot(
t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)
)
devices = [t.device]
if t.device.type == "cuda":
if t.device.index == -1:
devices.append(f"cuda:{torch.cuda.current_device()}")
elif t.device.index == torch.cuda.current_device():
devices.append("cuda")
for device in devices:
self.assertIs(t, t.to(device, non_blocking=non_blocking))
self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking))
self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True))
self.assertIsNot(
t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)
)
test_copy_behavior(nt)
self.assertEqual(nt.device, nt.to("cpu").device)
self.assertEqual(nt.device, nt.to("cpu", dtype=torch.float32).device)
self.assertIs(torch.float32, nt.to("cpu", dtype=torch.float32).dtype)
self.assertEqual(nt.device, nt.to(torch.float32).device)
self.assertIs(torch.float32, nt.to(dtype=torch.float32).dtype)
def test_data_ptr(getter):
self.assertEqual(getter(nt), getter(nt.to("cpu")))
self.assertEqual(
getter(nt), getter(nt.to(dtype=nt.dtype, device=nt.device, copy=False))
)
self.assertEqual(getter(nt), getter(nt.to("cpu", copy=False)))
self.assertNotEqual(getter(nt), getter(nt.to("cpu", copy=True)))
test_data_ptr(lambda nt: nt.data_ptr())
if torch.cuda.is_available():
for non_blocking in [True, False]:
for cuda in [
"cuda",
"cuda:0" if torch.cuda.device_count() == 1 else "cuda:1",
]:
nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4))
test_copy_behavior(nt2, non_blocking)
self.assertEqual(
nt2.device, nt2.to(cuda, non_blocking=non_blocking).device
)
self.assertEqual(
nt.device, nt2.to("cpu", non_blocking=non_blocking).device
)
self.assertEqual(
nt2.device, nt.to(cuda, non_blocking=non_blocking).device
)
self.assertIs(
torch.int32,
nt2.to(
"cpu", dtype=torch.int32, non_blocking=non_blocking
).dtype,
)
self.assertEqual(
nt.device,
nt2.to(
"cpu", dtype=torch.int32, non_blocking=non_blocking
).device,
)
self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype)
self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device)
def test_copy_(self):
ntensors = 4
nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4))
nt_copy = torch.empty_like(nt)
nt_copy.copy_(nt)
for nt_ub, nt_copy_ub in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
nt_error = torch.nested.nested_tensor([torch.tensor([0, 0])])
self.assertRaisesRegex(
RuntimeError,
"copy_ only supports tensors that are the same size for Nested implementations",
lambda: nt_error.copy_(nt),
)
if torch.cuda.is_available():
nt = random_nt(torch.device("cuda"), torch.float32, ntensors, (4, 4))
nt_copy = torch.empty_like(nt, device=torch.device("cpu"))
nt_copy.copy_(nt, non_blocking=True)
torch.cuda.current_stream(torch.cuda.current_device()).synchronize()
for nt_ub, nt_copy_ub in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
nt_copy = torch.empty_like(nt, device=torch.device("cpu"))
nt_copy.copy_(nt, non_blocking=False)
for nt_ub, nt_copy_ub in zip(nt.unbind(), nt_copy):
self.assertEqual(nt_ub, nt_copy_ub)
def test_fill_(self):
ntensors = 4
nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4))
nt.fill_(10.0)
for nt_ub in nt.unbind():
t = torch.empty_like(nt_ub)
t.fill_(10.0)
self.assertEqual(nt_ub, t)
fill_tensor = torch.tensor([11.0])
self.assertRaisesRegex(
RuntimeError,
"fill_ only supports 0-dimension value tensor",
lambda: nt.fill_(fill_tensor),
)
nt.fill_(fill_tensor[0])
for nt_ub in nt.unbind():
t = torch.empty_like(nt_ub)
t.fill_(11.0)
self.assertEqual(nt_ub, t)
def test_zero_(self):
ntensors = 4
nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4))
nt.zero_()
for nt_ub in nt.unbind():
t = torch.empty_like(nt_ub)
t.fill_(0.0)
self.assertEqual(nt_ub, t)
@parametrize(
"func",
[torch.ones_like, torch.zeros_like, torch.randn_like],
name_fn=lambda f: f.__name__,
)
def test_like_functions(self, func):
ntensors = 4
nt = random_nt(torch.device("cpu"), torch.float32, ntensors, (4, 4))
torch.manual_seed(1)
nt_like = func(nt)
torch.manual_seed(1)
for nt_ub in nt_like.unbind():
t_like = func(nt_ub)
self.assertEqual(nt_ub, t_like)
def test_cat(self):
# dim=0 success case
# No constraints on ragged structures matching.
x = random_nt_from_dims([5, None, 10])
y = random_nt_from_dims([3, 4, None])
output = torch.cat([x, y], dim=0)
for out_component, xy_component in zip(
output.unbind(), itertools.chain(x.unbind(), y.unbind())
):
self.assertEqual(out_component, xy_component)
# dim=-1 success case
# shape (B, *, D)
x = random_nt_from_dims([5, None, 10])
# shape (B, *, D'); same structure as x but dim=-1 differs
y = random_nt_from_similar(x, dims=[-1, -1, 8])
# should be shape (B, *, D + D') when supported
output = torch.cat([x, y], dim=-1)
for out_component, x_component, y_component in zip(
output.unbind(), x.unbind(), y.unbind()
):
self.assertEqual(
out_component, torch.cat([x_component, y_component], dim=-1)
)
# dim between 0 and -1 success case
x = random_nt_from_dims([5, None, 2, 3])
# same structure as x but dim=2 differs
y = random_nt_from_similar(x, dims=[-1, -1, 4, -1])
output = torch.cat([x, y], dim=2)
for out_component, x_component, y_component in zip(
output.unbind(), x.unbind(), y.unbind()
):
self.assertEqual(
out_component, torch.cat([x_component, y_component], dim=1)
)
# error case: mixed NT / dense inputs
x = random_nt_from_dims([5, None, 2])
y = torch.randn(5, 3, 2)
with self.assertRaisesRegex(
RuntimeError, "expected each tensor in given list to be nested"
):
torch.cat([x, y], dim=-1)
# error case: NTs with different dims
x = random_nt_from_dims([5, None, 2])
y = random_nt_from_dims([5, None, 2, 3])
with self.assertRaisesRegex(
RuntimeError,
"expected all nested tensors to have matching ragged structures outside of the concatenated dim",
):
torch.cat([x, y], dim=-1)
# error case: non-contiguous NT
x, y = random_nt_noncontiguous_pair((2, 3, 4), dtype=torch.float32)
# transpose to put ragged dim next to batch dim
x, y = x.transpose(-2, -1), y.transpose(-2, -1)
with self.assertRaisesRegex(
RuntimeError, "only contiguous nested tensors are supported"
):
torch.cat([x, y], dim=-1)
# error case: multiple ragged dims in inputs
x = random_nt_from_dims([5, None, None, 2])
y = random_nt_from_similar(x)
with self.assertRaisesRegex(
RuntimeError,
"only nested tensors with a single ragged dim next to the batch dim are supported",
):
torch.cat([x, y], dim=-1)
# error case: ragged dim not next to batch dim
x = random_nt_from_dims([5, 2, None])
y = random_nt_from_similar(x)
with self.assertRaisesRegex(
RuntimeError,
"only nested tensors with a single ragged dim next to the batch dim are supported",
):
torch.cat([x, y], dim=1)
# error case: NTs with different batch sizes
x = random_nt_from_dims([5, None, 2])
y = random_nt_from_dims([3, None, 2])
with self.assertRaisesRegex(
RuntimeError,
"expected all nested tensors to have matching ragged structures outside of the concatenated dim",
):
torch.cat([x, y], dim=-1)
# error case: NTs with different ragged structures
x = torch.nested.nested_tensor(
[
torch.randn(2, 6),
torch.randn(4, 6),
torch.randn(5, 6),
]
)
y = torch.nested.nested_tensor(
[
torch.randn(5, 6),
torch.randn(4, 6),
torch.randn(2, 6),
]
)
with self.assertRaisesRegex(
RuntimeError,
"expected all nested tensors to have matching ragged structures outside of the concatenated dim",
):
torch.cat([x, y], dim=-1)
@markDynamoStrictTest
class TestNestedTensorDeviceType(NestedTensorTestCase):
# Helper function to generate a pair of random nested tensors
# the 2 nested tensors have same shapes
def random_nt_pair(self, device, dtype, num_tensors, max_dims):
ts1 = []
ts2 = []
for _ in range(num_tensors):
tensor_dims = tuple(
[
torch.randint(low=0, high=max_dim, size=(1,)).item()
for max_dim in max_dims
]
)
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
t2 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
ts2.append(t2)
return (
torch.nested.nested_tensor(ts1, device=device, dtype=dtype),
torch.nested.nested_tensor(ts2, device=device, dtype=dtype),
)
@dtypes(*floating_types_and_half())
def test_detach(self, device, dtype):
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False)
x = torch.nested.nested_tensor([a, b], requires_grad=True)
x_detach = x.detach()
z = x_detach * 4
self.assertFalse(x_detach.requires_grad)
self.assertFalse(z.requires_grad)
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True)
x = torch.nested.as_nested_tensor([a, b])
y = x * 2
y = y.detach()
self.assertFalse(y.requires_grad)
self.assertIsNone(y.grad_fn)
z = x + y
torch.nested.to_padded_tensor(z, 0).sum().backward()
# This is an incorrect gradient, but we assume that's what the user
# wanted. detach() is an advanced option.
self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype))
self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype))
@dtypes(torch.float, torch.float16, torch.double)
def test_unbind_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device, dtype
)
ub_contiguous = nt_contiguous.unbind()
ub_noncontiguous = nt_noncontiguous.unbind()
self.assertEqual(len(ub_contiguous), len(ub_noncontiguous))
n = len(ub_contiguous)
for i in range(n):
self.assertEqual(ub_contiguous[i], ub_noncontiguous[i])
@dtypes(torch.float)
@skipMeta
def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
padded = torch.nested.to_padded_tensor(nt, 0)
nt_to = torch._nested_from_padded_and_nested_example(padded, nt)
for t1, t2 in zip(nt.unbind(), nt_to.unbind()):
self.assertEqual(t1, t2)
self.assertEqual(nt.device, nt_to.device)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm(self, device, dtype):
def _test(size):
# Simple shapes test
t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t0, t1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = layer_norm(nt)
for nt_subresult, t in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
# More complex nt test with different lengths for each tensor
t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False)
t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = layer_norm(nt)
for nt_subresult, t in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
if size <= 128:
# Test with multidimensional tensors after irregular dim
# (run only with smaller dimensions to ensure fast execution)
t0 = torch.randn(
4, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
t1 = torch.randn(
10, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
t2 = torch.randn(
7, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(
(size, size, 4), device=device, dtype=dtype
)
nt_result = layer_norm(nt)
for nt_subresult, t in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
self.assertEqual(nt_subresult, t_result)
# Test where the normalizing dimensions are not all
layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype)
nt_result = layer_norm(nt)
for nt_subresult, t in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0))
self.assertEqual(nt_subresult, t_result)
for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32):
_test(size)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm_breaking(self, device, dtype):
size = 128
t0 = torch.randn(
4, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
t1 = torch.randn(
10, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
t2 = torch.randn(
7, size, size, 4, device=device, dtype=dtype, requires_grad=False
)
ts = [t0, t1, t2, t0, t2]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"normalized_shape extends into irregular dimensions for the nested tensor",
lambda: layer_norm(nt),
)
layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"The shape at dimension 0",
lambda: layer_norm(nt),
)
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
def test_embedding(self, device, layout):
inputs = [
torch.randint(100, (L,), device=device, dtype=torch.int64)
for L in torch.randint(5, 50, (8,))
]
x = torch.nested.nested_tensor(
inputs, device=device, dtype=torch.int64, layout=layout
)
emb = torch.nn.Embedding(100, 8, device=device)
y = emb(x)
@torch._dynamo.disable
def check(inputs, y):
ys = y.unbind()
for i, inp in enumerate(inputs):
self.assertEqual(emb(inp), ys[i])
check(inputs, y)
@skipMeta
@torch.inference_mode()
@dtypes(*floating_types_and_half())
def test_masked_fill(self, device, dtype):
# nested tensor * nested tensor
(nt, mask) = self.random_nt_pair(device, dtype, 4, (4, 4))
mask = torch.nested.nested_tensor([m < 0 for m in mask.unbind()])
ref = torch.nested.nested_tensor(
[t.masked_fill(m, 0) for (t, m) in zip(nt.unbind(), mask.unbind())]
)
out = nt.masked_fill(mask, 0)
self.assertEqual(ref, out)
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_simple(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = torch.nested.to_padded_tensor(nt, padding_value)
correct_output = t.clone()
if padding_value == 0:
correct_output[0][-1] = torch.zeros_like(correct_output[0][-1])
else:
correct_output[0][-1] = torch.ones_like(correct_output[0][-1])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_output_size(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
output_size = (4, 6, 5)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = torch.nested.to_padded_tensor(
nt, padding_value, output_size=output_size
)
correct_output = (
torch.ones(output_size, device=device, dtype=dtype) * padding_value
)
correct_output[:4:, :4, :4] = t.clone()
if padding_value == 0:
correct_output[0][3] = torch.zeros_like(correct_output[0][3])
else:
correct_output[0][3] = torch.ones_like(correct_output[0][3])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim2(self, device, dtype):
ts = [
torch.randn(160, device=device, dtype=dtype),
torch.randn(1240, device=device, dtype=dtype),
torch.randn(2400, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[: t.size(0)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim3(self, device, dtype):
ts = [
torch.randn(16, 21, device=device, dtype=dtype),
torch.randn(24, 32, device=device, dtype=dtype),
torch.randn(40, 53, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[: t.size(0), : t.size(1)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim4(self, device, dtype):
ts = [
torch.randn(16, 21, 13, device=device, dtype=dtype),
torch.randn(24, 32, 14, device=device, dtype=dtype),
torch.randn(40, 53, 16, device=device, dtype=dtype),
]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[: t.size(0), : t.size(1), : t.size(2)].copy_(t)
correct_output = torch.stack(correct_output)
padded = torch.nested.to_padded_tensor(nt, pad)
self.assertEqual(padded, correct_output)
# TODO: test noncontiguous to_padded_tensor
# For now this tests the functionality of noncontiguous_to_padded_tensor
# and the error message of to_padded_tensor
# since to_padded_tensor does not support noncontiguous buffer yet
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_to_padded_tensor_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device, dtype
)
# test noncontiguous_to_padded_tensor functionality
self.assertEqual(
torch.nested.to_padded_tensor(nt_contiguous, 0.0),
noncontiguous_to_padded_tensor(nt_noncontiguous),
)
# test to_padded_tensor error message
self.assertRaisesRegex(
RuntimeError,
r"for now to_padded_tensor only supports contiguous nested tensor",
lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0),
)
@skipMeta
def test_device_checks(self, device):
nt = torch.nested.nested_tensor([], device=device)
is_cuda = "cuda" in str(device)
self.assertEqual(nt.is_cuda, is_cuda)
@dtypes(torch.float, torch.float16, torch.double)
def test_nested_tensor_indexing(self, device, dtype):
# edge case: empty nested tensor
nt0 = torch.nested.nested_tensor([])
self.assertRaises(IndexError, lambda: nt0[0])
# normal case
x0 = torch.randn((2, 5), device=device, dtype=dtype)
x1 = torch.randn((3, 4), device=device, dtype=dtype)
nt = torch.nested.nested_tensor([x0, x1])
# single index: only support integer in the batch dimension
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
self.assertRaises(IndexError, lambda: nt[2])
self.assertRaises(IndexError, lambda: nt[-3])
self.assertRaises(NotImplementedError, lambda: nt[:])
self.assertEqual(nt[...], nt)
# tuple of indices: only support integer in the batch dimension
# + all possible indexing in the original tensor dimensions
self.assertEqual(nt[0, 0, 0], x0[0, 0])
self.assertEqual(nt[0, 1, :], x0[1, :])
self.assertEqual(nt[1, ...], x1)
self.assertRaises(IndexError, lambda: nt[1, 4, 2])
self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1])
# test select on non-batch dimensions
self.assertEqual(nt.select(1, 0)[0], x0.select(0, 0))
self.assertEqual(nt.select(1, 0)[1], x1.select(0, 0))
self.assertRaises(IndexError, lambda: nt.select(1, 3))
self.assertEqual(nt.select(2, 0)[0], x0.select(1, 0))
self.assertEqual(nt.select(2, 0)[1], x1.select(1, 0))
self.assertRaises(IndexError, lambda: nt.select(2, 5))
# make sure indexing returns a view
nt[0].fill_(100.0)
answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5))
self.assertEqual(nt[0], answer)
nt[1, 1, :].fill_(200.0)
answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4)
self.assertEqual(nt[1, 1, :], answer)
# Test that indexing works when requires_grad_(True)
# previously this was failing because the backward kernel for select.int uses .sizes()
nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True)
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
grad_x0 = torch.randn((2, 5), device=device, dtype=dtype)
nt[0].backward(grad_x0)
expected_grad = torch.nested.nested_tensor(
[grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)]
)
self.assertEqual(nt.grad, expected_grad)
@parametrize(
"func",
[
subtest(torch.nn.functional.relu, name="relu"),
subtest(torch.nn.functional.relu_, name="relu_"),
subtest(torch.nn.functional.gelu, name="gelu"),
subtest(torch._C._nn.gelu_, name="gelu_"),
subtest(torch.tanh, name="tanh"),
subtest(torch.tanh_, name="tanh_"),
subtest(torch.neg, name="neg"),
subtest(torch.nn.functional.silu, name="silu"),
subtest(partial(torch.nn.functional.silu, inplace=True), name="silu_"),
subtest(torch.abs, name="abs"),
subtest(torch.abs_, name="abs_"),
subtest(torch.sgn, name="sgn"),
subtest(torch.logical_not, name="logical_not"),
subtest(torch.sin, name="sin"),
subtest(torch.cos, name="cos"),
],
)
def test_activations(self, device, func):
nt, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device=device, dtype=torch.float32
)
nested_result = func(nt)
self.assertTrue(nested_result.is_nested)
for t, t_res in zip(nt.unbind(), nested_result.unbind()):
self.assertEqual(func(t), t_res)
self.assertRaisesRegex(
RuntimeError,
"NestedTensor must be contiguous to get buffer.",
lambda: func(nt_noncontiguous),
)
@parametrize("func", [subtest(torch.ge, name="ge"), subtest(torch.eq, name="eq")])
def test_binary_ops_with_scalar(self, device, func):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device=device, dtype=torch.float32
)
scalar = 0.0
# should work regardless of contiguity
for nt in (nt_contiguous, nt_noncontiguous):
nested_result = func(nt, scalar)
self.assertTrue(nested_result.is_nested)
for t, t_res in zip(nt.unbind(), nested_result.unbind()):
self.assertEqual(func(t, scalar), t_res)
@dtypes(*floating_types_and_half())
def test_nested_tensor_chunk(self, device, dtype):
# Transformer use case
a = torch.randn(3, 3 * 4, device=device, dtype=dtype)
b = torch.randn(2, 3 * 4, device=device, dtype=dtype)
c = torch.randn(1, 3 * 4, device=device, dtype=dtype)
a_chunks = a.chunk(3, dim=-1)
b_chunks = b.chunk(3, dim=-1)
c_chunks = c.chunk(3, dim=-1)
a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]]
b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]]
c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]]
nt = torch.nested.nested_tensor([a, b, c])
chunked = nt.chunk(3, dim=-1)
self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt))
self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt))
self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt))
for chunk in chunked:
self.assertFalse(chunk.is_contiguous())
# Failure chunking on ragged dimensions
self.assertRaisesRegex(
RuntimeError,
"Chunk for nested tensors is currently only supported for the last dimension.",
lambda: torch.chunk(nt, 5, dim=1),
)
self.assertRaisesRegex(
RuntimeError,
"Chunk for nested tensors is currently only supported for the last dimension.",
lambda: torch.chunk(nt, 5, dim=0),
)
# Failure on non-contiguous nt
_, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
self.assertRaisesRegex(
RuntimeError,
"chunk expects `self` to be contiguous.",
lambda: torch.chunk(nt_noncontiguous, 5, dim=-1),
)
# Failure when calling non divisible n_chunks
self.assertRaisesRegex(
RuntimeError,
"Chunk for nested tensors is only supported for "
"nested tensors with trailing dimension divisible by chunks.",
lambda: torch.chunk(nt, 5, dim=-1),
)
# Failure when calling backward on a chunk
a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True)
b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True)
nt_grad = torch.nested.as_nested_tensor([a, b])
chunked = torch.chunk(nt_grad, 2, dim=-1)
self.assertRaisesRegex(
RuntimeError,
"Nested Strided Tensor doesn't support chunk backward.",
lambda: chunked[0].backward(chunked[0].clone()),
)
@dtypes(*floating_types_and_half())
def test_nested_tensor_split_with_sizes(self, device, dtype):
a = torch.randn(3, 20, device=device, dtype=dtype)
b = torch.randn(2, 20, device=device, dtype=dtype)
c = torch.randn(1, 20, device=device, dtype=dtype)
split_sizes = [4, 6, 10]
a_splits = a.split_with_sizes(split_sizes, dim=-1)
b_splits = b.split_with_sizes(split_sizes, dim=-1)
c_splits = c.split_with_sizes(split_sizes, dim=-1)
nt = torch.nested.nested_tensor([a, b, c])
nt_splits = nt.split_with_sizes(split_sizes, dim=-1)
for i, nt_split in enumerate(nt_splits):
self.assertEqual(
nt_split,
torch.nested.nested_tensor([a_splits[i], b_splits[i], c_splits[i]]),
)
dense_strides = torch.stack(
[
torch.tensor(a_splits[i].stride()),
torch.tensor(b_splits[i].stride()),
torch.tensor(c_splits[i].stride()),
]
)
self.assertEqual(nt_split._nested_tensor_strides(), dense_strides)
self.assertFalse(nt_split.is_contiguous())
# Failure calling on ragged dimensions
self.assertRaisesRegex(
RuntimeError,
"split_with_sizes for nested tensors is currently only supported for the last dimension.",
lambda: torch.split_with_sizes(nt, split_sizes, dim=1),
)
# Failure calling on non-last dimension
self.assertRaisesRegex(
RuntimeError,
"split_with_sizes for nested tensors is currently only supported for the last dimension.",
lambda: torch.split_with_sizes(nt, split_sizes, dim=0),
)
# Failure on non-contiguous nt
_, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
self.assertRaisesRegex(
RuntimeError,
"split_with_sizes expects `self` to be contiguous.",
lambda: torch.split_with_sizes(nt_noncontiguous, split_sizes, dim=-1),
)
# Failure when calling with split_sizes that don't cover the full dim size
bad_split_sizes = [4, 6, 9] # don't add up to 20
self.assertRaisesRegex(
RuntimeError,
"split_with_sizes expects split_sizes to sum exactly to 20",
lambda: torch.split_with_sizes(nt, bad_split_sizes, dim=-1),
)
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_nested_tensor_indexing_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device, dtype
)
self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0))
n = nt_contiguous.size(0)
for i in range(n):
self.assertEqual(nt_contiguous[i], nt_noncontiguous[i])
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
@parametrize("transpose", [True, False])
def test_nested_tensor_add(self, device, dtype, transpose):
if transpose:
a = torch.randn(2, 2, 2, device=device, dtype=dtype)
b = torch.rand(2, 2, 2, device=device, dtype=dtype)
c = a.transpose(-1, -2).contiguous()
d = b.transpose(-1, -2).contiguous()
nt1 = torch.nested.nested_tensor([a, b, a, b])
nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2)
else:
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor(
[t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]
)
out = nt1 + nt2
self.assertEqual(ref, out)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
@parametrize("transpose", [True, False])
def test_nested_tensor_sub(self, device, dtype, transpose):
if transpose:
a = torch.randn(2, 2, 2, device=device, dtype=dtype)
b = torch.rand(2, 2, 2, device=device, dtype=dtype)
c = a.transpose(-1, -2).contiguous()
d = b.transpose(-1, -2).contiguous()
nt1 = torch.nested.nested_tensor([a, b, a, b])
nt2 = torch.nested.nested_tensor([c, d, c, d]).transpose(-1, -2)
else:
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor(
[t1 - t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]
)
out = nt1 - nt2
self.assertEqual(ref, out)
@onlyCUDA
@dtypes(torch.float, torch.float16)
@torch.inference_mode()
@parametrize("embedding_dim", [8, 128, 256, 384])
def test_nested_tensor_dense_elementwise(self, device, dtype, embedding_dim):
def _test_add_mul(nt, t):
ref_add = torch.nested.nested_tensor(
[t1 + t2 for (t1, t2) in zip(nt.unbind(), t.unbind())]
)
ref_mul = torch.nested.nested_tensor(
[t1 * t2 for (t1, t2) in zip(nt.unbind(), t.unbind())]
)
self.assertEqual(nt.add(t), ref_add)
self.assertEqual(nt.mul(t), ref_mul)
batch_size = 32
seq_lens = torch.randint(low=0, high=10, size=(batch_size,))
# [B, *, D], [B, 1, D] case
ts = [torch.randn((seq_len, embedding_dim)) for seq_len in seq_lens]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
t = torch.randn((batch_size, 1, embedding_dim), device=device, dtype=dtype)
_test_add_mul(nt, t)
# [B, *], [B, 1] case
ts = [torch.randn(seq_len) for seq_len in seq_lens]
nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype)
t = torch.randn((batch_size, 1), device=device, dtype=dtype)
_test_add_mul(nt, t)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul(self, device, dtype):
# nested tensor * nested tensor
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor(
[t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]
)
out = nt1 * nt2
self.assertEqual(ref, out)
# nested tensor * scalar
number = 10.0
scalar = torch.tensor(number).to(dtype).to(device)
ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()])
out_number0 = nt1 * number
out_number1 = number * nt1
out_scalar0 = nt1 * scalar
out_scalar1 = scalar * nt1
self.assertEqual(out_number0, ref)
self.assertEqual(out_number1, ref)
self.assertEqual(out_scalar0, ref)
self.assertEqual(out_scalar1, ref)
# error case: numel == 1 but dim > 0
vector = torch.tensor([number]).to(dtype).to(device)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a nested self and non-nested other",
lambda: nt1.mul(vector),
)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a non-nested self and nested other",
lambda: vector.mul(nt1),
)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_div(self, device, dtype):
nt, nt2 = self.random_nt_pair(device, dtype, 4, (4, 4))
scale = 4.0
ref = torch.nested.nested_tensor([t / scale for t in nt.unbind()])
out = nt / 4.0
self.assertEqual(ref, out)
ref_transposed = ref.transpose(1, 2)
out = nt.transpose(1, 2) / 4.0
self.assertEqual(ref_transposed, out)
ref = torch.nested.nested_tensor(
[t / t2 for (t, t2) in zip(nt.unbind(), nt2.unbind())]
)
out = nt / nt2
self.assertEqual(ref, out)
out = nt.transpose(1, 2) / nt2.transpose(1, 2)
self.assertEqual(ref.transpose(1, 2), out)
nt_transpose_copy = torch.nested.nested_tensor(
[t.transpose(0, 1) for t in nt.unbind()]
)
self.assertRaisesRegex(
RuntimeError,
"div requires strides to match when given NestedTensors",
lambda: nt_transpose_copy.transpose(1, 2) / nt2,
)
nt = torch.nested.nested_tensor(
[torch.randn(i, 4) for i in [3, 4, 5]], device=device, dtype=dtype
)
nt_chunks = nt.chunk(2, -1)
self.assertRaisesRegex(
RuntimeError,
"div requires offsets to match when given NestedTensors",
lambda: nt_chunks[0] / nt_chunks[1],
)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add_in_place(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor(
[t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]
)
nt1 += nt2
self.assertEqual(ref, nt1)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul_in_place(self, device, dtype):
# nested tensor * nested tensor
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested.nested_tensor(
[t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]
)
nt1 *= nt2
self.assertEqual(ref, nt1)
# nested tensor * scalar
number = 10.0
scalar = torch.tensor(number).to(dtype).to(device)
ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()])
out_number = nt1.clone()
out_number *= number
out_scalar = nt1.clone()
out_scalar *= scalar
self.assertEqual(out_number, ref)
self.assertEqual(out_scalar, ref)
self.assertRaisesRegex(
RuntimeError,
r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]",
lambda: scalar.mul_(nt1),
)
# error case: numel == 1 but dim > 0
vector = torch.tensor([number]).to(dtype).to(device)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a nested self and non-nested other",
lambda: nt1.mul_(vector),
)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a non-nested self and nested other",
lambda: vector.mul_(nt1),
)
@onlyCPU
@skipMeta
@dtypes(torch.float)
def test_nested_tensor_sum_dim(self, device, dtype):
params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7)))
def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True):
nt = random_nt(device, dtype, ntensors, max_sizes, require_non_empty=False)
nt2 = nt.clone()
ub2 = nt2.unbind()
nt.requires_grad_(True)
[t.requires_grad_(True) for t in ub2]
nt_sum = nt.sum(dim=dim, keepdim=keepdim)
ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2]
self.assertEqual(nt_sum, torch.nested.nested_tensor(ub2_sum))
# test backward
# generate gradient tensor that has the same size as the output
size = nt_sum._nested_tensor_size()
gt2 = []
for i in range(ntensors):
gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype))
gt = torch.nested.nested_tensor(gt2).clone()
nt_sum.backward(gt)
for t2, g2 in zip(ub2_sum, gt2):
t2.backward(g2)
self.assertEqual(nt.grad, torch.nested.nested_tensor([t.grad for t in ub2]))
return
for ntensors, max_sizes in params:
test_sum(device, dtype, ntensors, max_sizes, len(max_sizes))
# Test error inputs
with self.assertRaisesRegex(
RuntimeError, "NestedTensor can only be reduced across the last"
):
torch.nested.nested_tensor(
[torch.tensor([3, 4, 5]), torch.tensor([1, 2])]
).sum(0, keepdim=True)
with self.assertRaisesRegex(
RuntimeError, "NestedTensor only allows reduction of a single"
):
torch.nested.nested_tensor(
[torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])]
).sum([0, 1], keepdim=True)
with self.assertRaisesRegex(
RuntimeError, "NestedTensor always requires keepdim=True for now."
):
torch.nested.nested_tensor(
[torch.tensor([3, 4, 5]), torch.tensor([1, 2])]
).sum(-1)
@dtypes(torch.float, torch.float16)
def test_contiguous(self, device, dtype):
# Since we don't have access to the buffer in python this is harder to show what
# we are testing for. When we call chunk on a consistent dim of a NT
# for chunk_size > 1 the resulting tensors are views of the original NT
# whose numels is now less than the size of the buffer. Clone was
# previously creating a new NT with a buffer that was the same size as the
# original.
nt_contiguous = torch.nested.nested_tensor(
[
torch.randn(2, 20, device=device, dtype=dtype),
torch.randn(4, 20, device=device, dtype=dtype),
]
)
# Split up the last dimension which has a consistent size of 20 into 5 chunks
chunks = nt_contiguous.chunk(5, dim=-1)
# # Check chunks are contiguous after calling contiguous
for chunk in chunks:
self.assertFalse(chunk.is_contiguous())
self.assertTrue(chunk.contiguous().is_contiguous())
@dtypes(torch.float, torch.float16)
@skipMeta
def test_clone(self, device, dtype):
nt1 = random_nt(device, dtype, 4, (4, 4), (1, 1))
nt2 = nt1.clone()
# Verify the values match
self.assertEqual(nt1, nt2)
# Verify modifying nt2 doesn't affect nt1
nt2.mul_(nt1)
ub1 = nt1.unbind()
ub2 = nt2.unbind()
for i in range(len(ub1)):
self.assertNotEqual(ub1[i], ub2[i])
nt1.clone(memory_format=torch.preserve_format)
msg = "Nested tensor clone supports Preserve and Contiguous memory formats, called clone with memory format: ChannelsLast"
with self.assertRaisesRegex(RuntimeError, msg):
nt1.clone(memory_format=torch.channels_last)
# cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half'
@decorateIf(xfailIfTorchDynamo, lambda params: params["layout"] == torch.jagged)
@dtypes(torch.float, torch.double)
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
def test_dropout(self, device, dtype, layout):
# edge case: empty nested tensor
# TODO: support empty NT in jagged layout
if layout == torch.strided:
nt0 = torch.nested.nested_tensor([], layout=layout)
y = torch.nn.functional.dropout(nt0, 0.5)
self.assertEqual(nt0, y)
# normal nested tensor
ntensors = 4
if layout == torch.jagged:
nt = random_nt(device, dtype, ntensors, (4, 4), (0, 3), layout=layout)
else:
nt = random_nt(device, dtype, ntensors, (4, 4), layout=layout)
# edge case: invalid dropout
self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1))
self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1))
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1))
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1))
# edge case: no dropout
dropouter = torch.nn.Dropout(0.0)
y0 = dropouter(nt)
y1 = torch.nn.functional.dropout(nt, 0.0)
self.assertEqual(nt, y0)
self.assertEqual(nt, y1)
# edge case: all dropout
dropouter = torch.nn.Dropout(1.0)
y0 = dropouter(nt)
y1 = torch.nn.functional.dropout(nt, 1.0)
nt0 = torch.zeros_like(nt)
self.assertEqual(nt0, y0)
self.assertEqual(nt0, y1)
# normal case: normal dropout
p = 0.2
y = torch.nn.functional.dropout(nt, p)
expect = nt.clone()
if layout == torch.jagged:
expect = torch.where(y == 0.0, y, nt)
expect /= 1.0 - p
self.assertEqual(y, expect)
else:
expect = nt.clone()
for i in range(ntensors):
actual_tensor = y[i].view(-1)
expect_tensor = expect[i].view(-1)
for j in range(actual_tensor.shape[0]):
if actual_tensor[j].item() == 0.0:
expect_tensor[j] = 0.0
else:
expect_tensor[j] /= 1.0 - p
self.assertEqual(y, expect)
with freeze_rng_state():
dropouter = torch.nn.Dropout(p)
y0 = dropouter(nt)
with freeze_rng_state():
y1 = torch.nn.functional.dropout(nt, p)
self.assertEqual(y0, y1)
@dtypes(torch.float, torch.double)
def test_dropout_noncontiguous(self, device, dtype):
ntensors = 4
nt0 = random_nt(device, dtype, ntensors, (4, 4))
nt1 = nt0.transpose(-1, -2)
p = 0.3
with freeze_rng_state():
dropouter = torch.nn.Dropout(p)
y0 = dropouter(nt0)
with freeze_rng_state():
y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2)
self.assertEqual(y0, y1)
# cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_softmax(self, device, dtype):
# normal nested tensor
ntensors = 4
nt = random_nt(device, dtype, ntensors, (4, 4))
# error case: softmax across nested dimension
self.assertRaisesRegex(
RuntimeError,
"Cannot apply softmax across nested dimension 0",
lambda: torch.nn.functional.softmax(nt, 0),
)
self.assertRaisesRegex(
RuntimeError,
"Cannot apply softmax across nested dimension 0",
lambda: torch.nn.functional.softmax(nt, -3),
)
# error case: dimension out of range
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3))
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4))
# normal case: should equal to padding -inf
softmaxer = torch.nn.Softmax(1)
y0 = softmaxer(nt)
y1 = torch.nn.functional.softmax(nt, 1)
self.assertEqual(y0, y1)
pt = torch.nested.to_padded_tensor(nt, float("-inf"))
# if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan
# however, physically speaking that should be 0.0
expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0)
self.assertEqual(torch.nested.to_padded_tensor(y0, 0.0), expect)
# edge case: empty nested tensor
nt0 = torch.nested.nested_tensor([])
y = torch.nn.functional.softmax(nt0, 1)
self.assertEqual(nt0, y)
# edge case: nesting scalars
nt1 = torch.nested.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)])
self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0))
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1))
@dtypes(torch.float, torch.double)
@torch.inference_mode()
def test_softmax_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device, dtype
)
self.assertEqual(
torch.nn.functional.softmax(nt_contiguous, -1),
torch.nn.functional.softmax(nt_noncontiguous, -1),
)
def _test_bmm(self, device, dtype):
# error case: not 3D tensors
nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype)
nt1 = torch.nested.nested_tensor(
[torch.randn(2), torch.randn(3)], device=device, dtype=dtype
)
nt2 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt1)
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt2)
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt1)
)
self.assertRaisesRegex(
RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt2)
)
self.assertRaisesRegex(
RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt1)
)
# error case: incompatible batch size
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))],
device=device,
dtype=dtype,
)
self.assertRaisesRegex(
RuntimeError,
"Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.",
lambda: nt0.bmm(nt1),
)
self.assertRaisesRegex(
RuntimeError,
"Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.",
lambda: nt1.bmm(nt0),
)
# error case: underlying matrices cannot be multiplied
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError,
r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)",
lambda: nt0.bmm(nt0),
)
# normal nested tensor
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype
)
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(
torch.nested.to_padded_tensor(nt1, 0.0)
)
if dtype == torch.float16:
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
else:
self.assertEqual(actual, expect)
# nested tensor bmm normal tensor
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 7)), torch.randn((3, 7))], device=device, dtype=dtype
)
nt1 = torch.rand(2, 7, 5, dtype=dtype, device=device)
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(nt1)
if dtype == torch.float16:
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
else:
self.assertEqual(actual, expect)
# nested tensor bmm normal tensor with non-contiguous view
nt1 = torch.rand(2, 5, 7, dtype=dtype, device=device)
nt1 = nt1.transpose(1, 2)
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(nt1)
if dtype == torch.float16:
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
else:
self.assertEqual(actual, expect)
# normal tensor bmm nested tensor
nt0 = torch.rand(2, 5, 7, dtype=dtype, device=device)
nt1 = torch.nested.nested_tensor(
[torch.randn((7, 6)), torch.randn((7, 5))], device=device, dtype=dtype
)
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
expect = nt0.bmm(torch.nested.to_padded_tensor(nt1, 0.0))
if dtype == torch.float16:
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
else:
self.assertEqual(actual, expect)
# test tensorcore path
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 8)), torch.randn((3, 16))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((8, 8)), torch.randn((16, 8))], device=device, dtype=dtype
)
actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0)
expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(
torch.nested.to_padded_tensor(nt1, 0.0)
)
if dtype == torch.float16:
self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3)
else:
self.assertEqual(actual, expect)
@onlyCUDA
@dtypes(torch.float, torch.double, torch.float16)
def test_bmm_cuda(self, device, dtype):
self._test_bmm(device, dtype)
@onlyCPU
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_bmm_cpu(self, device, dtype):
self._test_bmm(device, dtype)
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_bmm_noncontiguous(self, device, dtype):
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair(
(2, 3), device, dtype
)
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair(
(6, 7), device, dtype
)
self.assertEqual(
nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous),
nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous),
)
@dtypes(torch.float, torch.double)
def test_matmul_with_bmm_path(self, device, dtype):
def unbind_rebind_matmul(nt1, nt2):
t1s = nt1.unbind()
t2s = nt2.unbind()
out_ts = [t1.matmul(t2) for t1, t2 in zip(t1s, t2s)]
return torch.nested.nested_tensor(out_ts)
# [N, n_head, *, head_dim], [N, n_head, head_dim, *]
Ns = [1, 2, 5]
n_heads = np.random.randint(2, 5)
head_dim = 3
t1s = []
t2s = []
for N in Ns:
for _ in range(N):
seq_len1 = np.random.randint(2, 5)
seq_len2 = np.random.randint(2, 5)
t1s.append(torch.randn(n_heads, seq_len1, head_dim))
t2s.append(torch.randn(n_heads, head_dim, seq_len2))
nt1 = torch.nested.nested_tensor(t1s, device=device, dtype=dtype)
nt2 = torch.nested.nested_tensor(t2s, device=device, dtype=dtype)
self.assertEqual(torch.matmul(nt1, nt2), unbind_rebind_matmul(nt1, nt2))
# test with noncontiguous
t3s = []
t4s = []
for _ in range(N):
seq_len = np.random.randint(2, 5)
t3s.append(torch.randn(seq_len, n_heads, head_dim))
t4s.append(torch.randn(seq_len, n_heads, head_dim))
nt3 = torch.nested.nested_tensor(t3s, device=device, dtype=dtype).transpose(
1, 2
)
nt4 = (
torch.nested.nested_tensor(t4s, device=device, dtype=dtype)
.transpose(1, 2)
.transpose(2, 3)
)
self.assertEqual(torch.matmul(nt3, nt4), unbind_rebind_matmul(nt3, nt4))
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_matmul(self, device, dtype):
# error case: one is nested but the other is not
nt = torch.nested.nested_tensor(
[torch.randn(2), torch.randn(3)], device=device, dtype=dtype
)
t = torch.randn(4, device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a nested self and non-nested other",
lambda: torch.matmul(nt, t),
)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a non-nested self and nested other",
lambda: torch.matmul(t, nt),
)
# error case: not 3+D tensors
nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype)
nt1 = torch.nested.nested_tensor(
[torch.randn(2), torch.randn(3)], device=device, dtype=dtype
)
nt2 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt0),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt1),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt2),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt0),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt1),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt2),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
lambda: torch.matmul(nt2, nt0),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
lambda: torch.matmul(nt2, nt1),
)
# error case: incompatible batch size
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))],
device=device,
dtype=dtype,
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
lambda: torch.matmul(nt0, nt1),
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
lambda: torch.matmul(nt1, nt0),
)
# error case: incompatible (wrong) batch sizes that shouldn't even broadcast?
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 2, 4)), torch.randn((2, 3, 4))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((3, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError,
"matmul(): For nested tensors, batch dimensions must have the same sizes,",
lambda: torch.matmul(nt0, nt1),
)
# error case: incompatible batch sizes that should technically broadcast
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 2, 4)), torch.randn((1, 3, 4))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((1, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError,
"matmul(): For nested tensors, batch dimensions must have the same sizes,",
lambda: torch.matmul(nt0, nt1),
)
# error case: underlying matrices cannot be multiplied
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype
)
self.assertRaisesRegex(
RuntimeError,
"matmul(): Nested tensors cannot be matrix multiplied",
lambda: torch.matmul(nt0, nt0),
)
# normal nested tensor: 3D
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype
)
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
expect = torch.matmul(
torch.nested.to_padded_tensor(nt0, 0.0),
torch.nested.to_padded_tensor(nt1, 0.0),
)
self.assertEqual(actual, expect)
# normal nested tensor: 4D (with testing for batch_size=1)
nt0 = torch.nested.nested_tensor(
[torch.randn((1, 2, 4)), torch.randn((8, 3, 7))], device=device, dtype=dtype
)
nt1 = torch.nested.nested_tensor(
[torch.randn((1, 4, 6)), torch.randn((8, 7, 5))], device=device, dtype=dtype
)
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
expect = torch.matmul(
torch.nested.to_padded_tensor(nt0, 0.0),
torch.nested.to_padded_tensor(nt1, 0.0),
)
self.assertEqual(actual, expect)
# normal nested tensor: 5D
nt0 = torch.nested.nested_tensor(
[torch.randn((8, 9, 2, 4)), torch.randn((8, 9, 3, 7))],
device=device,
dtype=dtype,
)
nt1 = torch.nested.nested_tensor(
[torch.randn((8, 9, 4, 6)), torch.randn((8, 9, 7, 5))],
device=device,
dtype=dtype,
)
actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0)
expect = torch.matmul(
torch.nested.to_padded_tensor(nt0, 0.0),
torch.nested.to_padded_tensor(nt1, 0.0),
)
self.assertEqual(actual, expect)
# only supported on CUDA for now
@dtypes(torch.float, torch.double)
def test_matmul_nt_with_broadcasted_t(self, device, dtype):
# NT (B, *, C, D) with T (D, E) broadcasting case
nt = random_nt_from_dims([3, None, 4, 5], device=device, dtype=dtype)
t = torch.randn(5, 6, device=device, dtype=dtype)
output = torch.matmul(nt, t)
# should be equivalent to matmul-ing each component with the dense tensor
self.assertEqual(nt.size(0), output.size(0))
for component, out_component in zip(nt, output):
self.assertEqual(out_component, torch.matmul(component, t))
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_matmul_noncontiguous(self, device, dtype):
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair(
(2, 3), device, dtype
)
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair(
(6, 7), device, dtype
)
self.assertEqual(
torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous),
torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous),
)
@dtypes(torch.float, torch.double)
def test_linear(self, device, dtype):
a = torch.randn(1, 2, device=device, dtype=dtype)
b = torch.randn(2, 2, device=device, dtype=dtype)
c = torch.randn(3, 2, device=device, dtype=dtype)
nt = torch.nested.nested_tensor([a, b, c])
weight = torch.randn(2, 2, device=device, dtype=dtype)
bias = torch.randn(2, device=device, dtype=dtype)
# success case
torch.functional.F.linear(nt, weight, bias)
# invalid nested tensor dimension
msg = r"Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2"
nt1 = torch.nested.nested_tensor(
[
torch.randn(1, device=device, dtype=dtype),
torch.randn(2, device=device, dtype=dtype),
]
)
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt1, weight, bias)
# invalid weight shape
msg = r"Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3"
weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, weight1, bias)
# inconsistent last dim of nested tensor
msg = r"Expected all tensors in nested tensor to have the same trailing dimension, instead last dimension equals:"
nt2 = torch.nested.nested_tensor(
[
torch.randn(1, 2, device=device, dtype=dtype),
torch.randn(2, 3, device=device, dtype=dtype),
]
)
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt2, weight, bias)
# Mismatch of nested tensor last dim and weight dimension
weight2 = torch.randn(2, 4, device=device, dtype=dtype)
msg = (
r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'"
r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4"
)
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, weight2, bias)
# Nested tensor input and nested weight
nt_weight = nt.clone()
msg = r"Linear does not support nested weight when input is a nested tensor."
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, nt_weight, bias)
# TODO: test noncontiguous linear
# For now this tests the error message of linear
# since linear does not support noncontiguous buffer yet
@dtypes(torch.float, torch.double)
def test_linear_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair(
(2, 3, 6, 7), device, dtype
)
weight = torch.randn((8, 5), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"for now linear only supports contiguous nested tensor",
lambda: torch.nn.functional.linear(nt_noncontiguous, weight),
)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_zero_numel_errors(self, device, dtype):
ts = [torch.ones(1, 0), torch.ones(0, 0)]
nt = torch.nested.nested_tensor(
ts, device=device, dtype=dtype, layout=torch.strided
)
self.assertRaisesRegex(
RuntimeError,
r"at least one constituent tensor should have non-zero numel",
lambda: torch.nested.to_padded_tensor(nt, 0.0),
)
@dtypes(torch.float, torch.float16, torch.double)
def test_transpose(self, device, dtype):
nt = random_nt(device, dtype, 4, (4, 4))
# error case: transpose nested dimension
self.assertRaisesRegex(
RuntimeError,
"Nested tensor dimension 0 cannot be transposed",
lambda: nt.transpose(0, 1),
)
self.assertRaisesRegex(
RuntimeError,
"Nested tensor dimension 0 cannot be transposed",
lambda: nt.transpose(1, -3),
)
# error case: dimension out of range
self.assertRaises(IndexError, lambda: nt.transpose(1, 3))
self.assertRaises(IndexError, lambda: nt.transpose(-4, -1))
# normal case
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = torch.nested.to_padded_tensor(nt, 0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
@dtypes(torch.float, torch.float16, torch.double)
def test_squeeze_unsqueeze(self, device, dtype):
a = torch.arange(6).reshape(2, 3)
b = torch.arange(15).reshape(5, 3)
nt = torch.nested.nested_tensor([a, b], device=device, dtype=dtype)
# error case: squeeze no dimension
self.assertRaisesRegex(
RuntimeError,
"For nested tensors, squeeze without the dim argument",
lambda: nt.squeeze(),
)
# error case: squeeze nested dimension
self.assertRaisesRegex(
RuntimeError,
"For nested tensors, squeezing dimension 0",
lambda: nt.squeeze(0),
)
# error case: dimension out of range
self.assertRaises(IndexError, lambda: nt.squeeze(3))
# error case: squeeze nested tensor of singleton tensors
c = torch.ones(1)
nt_singleton = torch.nested.nested_tensor([c, c], device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"For nested tensors, squeezing a nested tensor of singleton",
lambda: nt_singleton.squeeze(1),
)
# squeezing a dim which does not have size 1 should be a no-op
nt2 = nt.squeeze(-1)
self.assertEqual(nt, nt2)
# test cases that should work
nt_sizes = nt._nested_tensor_size()
nt_strides = nt._nested_tensor_strides()
for i in range(-2, 4):
if i == 0:
# cannot unsqueeze batch dim
continue
nt_unsqueezed = nt.unsqueeze(i)
# negative dim will correspond to unsqueeze() applied at dim = dim + nt.dim() + 1
wrapped_i = i + nt.dim() + 1 if i < 0 else i
# col_index into nt size tensor is requires subtraction of 1 to ignore batch dim
size_idx = wrapped_i - 1
self.assertEqual(
nt_unsqueezed._nested_tensor_size()[:, size_idx],
torch.ones(2, dtype=torch.long),
)
unsqueezed_stride = nt_unsqueezed._nested_tensor_strides()[:, size_idx]
if i == nt.ndim or i == -1:
self.assertEqual(unsqueezed_stride, torch.ones(2, dtype=torch.long))
else:
stride_col_after = nt_strides[:, size_idx]
size_col_after = nt_sizes[:, size_idx]
self.assertEqual(unsqueezed_stride, stride_col_after * size_col_after)
nt_squeezed = nt_unsqueezed.squeeze(i)
self.assertEqual(nt_squeezed, nt)
self.assertEqual(nt_squeezed._nested_tensor_size(), nt_sizes)
self.assertEqual(nt_squeezed._nested_tensor_strides(), nt_strides)
@dtypes(torch.float, torch.float16, torch.double)
def test_transpose_inference_mode_interaction(self, device, dtype):
nt = random_nt(device, dtype, 4, (4, 4))
# Construct in default mode and transpose while in inference mode
with torch.inference_mode():
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = torch.nested.to_padded_tensor(nt, 0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
# Construct and transpose while in inference mode
with torch.inference_mode():
nt = random_nt(device, dtype, 4, (4, 4))
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = torch.nested.to_padded_tensor(nt, 0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
@dtypes(torch.float, torch.float16, torch.double)
def test_view(self, device, dtype):
nt = random_nt(device, dtype, 4, (4, 4))
# error case: empty shape
self.assertRaisesRegex(
RuntimeError,
r"shape '\[\]' is invalid for a nested tensor",
lambda: nt.view(()),
)
# error case: empty nested tensor
nt_empty = torch.nested.nested_tensor([])
self.assertRaisesRegex(
RuntimeError,
"empty nested tensor cannot be reshaped",
lambda: nt_empty.view(-1),
)
# error case: -1 for batch size
self.assertRaisesRegex(
RuntimeError,
r"view: For now nested view cannot change or infer the implicit batch dimension",
lambda: nt.view(-1, 2, 3),
)
self.assertRaisesRegex(
RuntimeError,
r"shape '\[.*\]' is invalid for input of size [0-9]+",
lambda: nt.view(4, 2, 3),
)
# normal case
x0 = torch.randn((2, 20), device=device, dtype=dtype)
x1 = torch.randn((3, 20), device=device, dtype=dtype)
nt = torch.nested.nested_tensor([x0, x1])
pt = torch.nested.to_padded_tensor(nt, 0.0)
# error case, trying to reshape batch dim to a legit shape
self.assertRaisesRegex(
RuntimeError,
r"For now nested view cannot change or infer the implicit batch dimension",
lambda: nt.transpose(-1, -2).view(40, -1),
)
# inherit only the ragged dimension
# (2, 20) -> (2, 5, 4)
# (3, 20) -> (3, 5, 4)
nt1 = nt.view(2, -1, 5, 4)
# (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4)
pt1 = pt.view(2, -1, 5, 4)
self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1)
# more than one -1 (even for "old" dims), should fail
# this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2)
# but we ban "inherit old behavior" for >1 dimension
self.assertRaisesRegex(
RuntimeError,
r"only one dimension can be inferred",
lambda: nt1.view(2, -1, -1, 2, 2),
)
@dtypes(torch.float, torch.float16, torch.double)
def test_view_inference_mode_interaction(self, device, dtype):
# Construct in default mode and view while in inference mode
nt = torch.nested.nested_tensor(
[torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype
)
with torch.inference_mode():
ntT = nt.view(2, -1, 4, 5)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = torch.nested.to_padded_tensor(nt, 0.0)
ptT = pt.view(2, -1, 4, 5)
self.assertEqual(ptT, ptT_from_ntT)
# Construct and view while in inference mode
with torch.inference_mode():
nt = torch.nested.nested_tensor(
[torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype
)
ntT = nt.view(2, -1, 4, 5)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = torch.nested.to_padded_tensor(nt, 0.0)
ptT = pt.view(2, -1, 4, 5)
self.assertEqual(ptT, ptT_from_ntT)
@dtypes(torch.float, torch.float16, torch.double)
def test_reshape(self, device, dtype):
nt = random_nt(device, dtype, 4, (4, 4))
# error case: empty shape
self.assertRaisesRegex(
RuntimeError,
r"shape '\[\]' is invalid for a nested tensor",
lambda: nt.reshape(()),
)
# error case: empty nested tensor
nt_empty = torch.nested.nested_tensor([])
self.assertRaisesRegex(
RuntimeError,
"empty nested tensor cannot be reshaped",
lambda: nt_empty.reshape(-1),
)
# error case: -1 for batch size
self.assertRaisesRegex(
RuntimeError,
r"reshape: For now nested reshape cannot change or infer the implicit batch dimension",
lambda: nt.reshape(-1, 2, 3),
)
self.assertRaisesRegex(
RuntimeError,
r"shape '\[.*\]' is invalid for input of size [0-9]+",
lambda: nt.reshape(4, 2, 3),
)
# normal case
x0 = torch.randn((2, 20), device=device, dtype=dtype)
x1 = torch.randn((3, 20), device=device, dtype=dtype)
nt = torch.nested.nested_tensor([x0, x1]) # (2, (2, 3), 20)
pt = torch.nested.to_padded_tensor(nt, 0.0)
# error case, trying to reshape batch dim to a legit shape
self.assertRaisesRegex(
RuntimeError,
r"reshape: For now nested reshape cannot change or infer the implicit batch dimension",
lambda: nt.transpose(-1, -2).reshape(40, -1),
)
# inherit only the ragged dimension
# (2, 20) -> (2, 5, 4)
# (3, 20) -> (3, 5, 4)
nt1 = nt.reshape(2, -1, 5, 4)
# (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4)
pt1 = pt.reshape(2, -1, 5, 4)
self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1)
# more than one -1 (even for "old" dims), should fail
# this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2)
# but we ban "inherit old behavior" for >1 dimension
self.assertRaisesRegex(
RuntimeError,
r"only one dimension can be inferred",
lambda: nt1.reshape(2, -1, -1, 2, 2),
)
def test_nested_masked_select(self, device):
t = torch.randn([3, 3], device=device)
mask = torch.tensor([False], device=device)
njt = torch.nested.masked_select(t, mask)
self.assertEqual(njt.values(), torch.tensor([], device=device))
self.assertEqual(njt.offsets(), torch.tensor([0, 0, 0, 0], device=device))
mask = torch.tensor([[False], [False], [True]], device=device)
njt = torch.nested.masked_select(t, mask)
self.assertEqual(njt.values(), t[-1], atol=0.1, rtol=0.1)
self.assertEqual(njt.offsets(), torch.tensor([0, 0, 0, 3], device=device))
mask = torch.tensor(
[[False, False, True], [True, False, True], [False, False, True]],
device=device,
)
njt = torch.nested.masked_select(t, mask)
self.assertEqual(njt.values(), t.masked_select(mask))
self.assertEqual(njt.offsets(), torch.tensor([0, 1, 3, 4], device=device))
t = torch.randn([2, 3, 3, 1], device=device)
mask = torch.tensor(
[
[
[[True], [False], [True]],
[[True], [False], [True]],
[[True], [False], [True]],
],
[
[[False], [True], [True]],
[[False], [True], [True]],
[[True], [True], [True]],
],
],
device=device,
)
njt = torch.nested.masked_select(t, mask)
self.assertEqual(njt.values(), t.masked_select(mask))
self.assertEqual(
njt.offsets(),
torch.tensor(
[0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13],
device=device,
),
)
@dtypes(torch.float, torch.float16, torch.double)
def test_narrow(self, device, dtype):
nt = random_nt_from_dims([5, None, None, None], device=device, dtype=dtype)
# narrow on dim=0 from start to end
bounds = [(0, 5), (0, 3), (1, 2), (1, 5), (2, 4)]
for start, end in bounds:
length = end - start
narrowed = nt.narrow(dim=0, start=start, length=length)
# ensure output is a view
self.assertTrue(narrowed._base is nt)
for nc, c in zip(narrowed.unbind(), nt.unbind()[start:end]):
self.assertEqual(nc, c)
# dim != 0 is not supported
for dim in range(1, nt.dim()):
with self.assertRaisesRegex(
RuntimeError, "only dim=0 supported for nested tensors"
):
nt.narrow(dim=dim, start=0, length=1)
# error case: non-contiguous NT
_, nt_noncont = random_nt_noncontiguous_pair((2, 3, 4))
with self.assertRaisesRegex(
RuntimeError, "only contiguous nested tensors supported"
):
nt_noncont.narrow(dim=0, start=0, length=1)
@parametrize("input_dim", [3, 4])
def test_scaled_dot_product_attention(self, device, input_dim):
def rand_tensor(*shape):
return torch.randn(shape, device=device)
E = 8
if input_dim == 3:
# Shape: (N, L, E); ragged L
query = torch.nested.nested_tensor(
[rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)]
)
# Shape: (N, S, E); ragged S
key = torch.nested.nested_tensor(
[rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]
)
value = torch.nested.nested_tensor(
[rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]
)
elif input_dim == 4:
# In the 4D case the L and S is ragged
# Shape: (N, N', L, E); ragged N' and L
query = torch.nested.nested_tensor(
[rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)]
)
# Shape: (N, N', S, E); ragged N' and S
key = torch.nested.nested_tensor(
[rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]
)
value = torch.nested.nested_tensor(
[rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]
)
else:
self.fail(f"Invalid input_dim {input_dim} encountered in SDP test")
def rand_mask(size):
return torch.randint(0, 2, size=size, dtype=torch.bool, device=device)
# Shape: (N, L, S); ragged L and S matching above
attn_mask = torch.nested.nested_tensor(
[rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))]
)
dropout_p = 0.0 # no dropout for reproducibility
# Success case: no attn_mask set and is_causal=False.
actual = torch.nn.functional.scaled_dot_product_attention(
query, key, value, attn_mask=None, is_causal=False, dropout_p=dropout_p
)
expected_outputs = []
for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()):
output = torch.nn.functional.scaled_dot_product_attention(
q.unsqueeze(0),
k.unsqueeze(0),
v.unsqueeze(0),
attn_mask=None,
dropout_p=dropout_p,
)
expected_outputs.append(output.squeeze(0))
expected_output_nested = torch.nested.nested_tensor(expected_outputs)
self.assertEqual(actual, expected_output_nested)
# Error case: explicit attn_mask set.
with self.assertRaisesRegex(
RuntimeError, "not supported when an explicit attn_mask is set"
):
torch.nn.functional.scaled_dot_product_attention(
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p
)
# Error case: is_causal=True.
with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"):
torch.nn.functional.scaled_dot_product_attention(
query, key, value, dropout_p=dropout_p, is_causal=True
)
@dtypes(torch.float, torch.float16, torch.double)
def test_empty_like(self, device, dtype):
ntensors = 4
nt = random_nt(device, dtype, ntensors, (4, 4))
# Create empty on same device as original nested tensor
nt_empty = torch.empty_like(nt)
assert nt.is_same_size(nt_empty)
self.assertEqual(nt.dtype, nt_empty.dtype)
self.assertEqual(nt.device, nt_empty.device)
self.assertEqual(nt.layout, nt_empty.layout)
if torch.cuda.is_available():
if device == "cpu":
nt_cuda = torch.empty_like(nt, device="cuda")
self.assertEqual(torch.device("cuda").type, nt_cuda.device.type)
else:
nt_cpu = torch.empty_like(nt, device="cpu")
self.assertEqual(torch.device("cpu").type, nt_cpu.device.type)
# Check changing dtype of empty_like nested tensor output
dtype_set = {torch.float, torch.float16, torch.double}
for other_dtype in dtype_set - {dtype}:
nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype)
self.assertEqual(nt.dtype, dtype)
self.assertEqual(nt_empty_other_dtype.dtype, other_dtype)
self.assertEqual(nt.device, nt_empty.device)
self.assertEqual(nt.layout, nt_empty.layout)
# Create tensor for autograd
nt_empty_req_grad = torch.empty_like(nt, requires_grad=True)
self.assertEqual(nt_empty_req_grad.requires_grad, True)
# Test noncontiguous tensor does not fail to copy
nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7))
nt_empty = torch.empty_like(nt_cont)
assert nt_cont.is_same_size(nt_empty)
nt_empty_non_contig = torch.empty_like(nt_noncont)
assert nt_noncont.is_same_size(nt_empty_non_contig)
# Test the contiguous memory format option
nt_empty_contig = torch.empty_like(
nt_cont, memory_format=torch.contiguous_format
)
assert nt_cont.is_same_size(nt_empty_contig)
assert nt_empty_contig.is_contiguous()
nt_empty_non_contig = torch.empty_like(
nt_noncont, memory_format=torch.contiguous_format
)
assert nt_noncont.is_same_size(nt_empty_non_contig)
assert nt_empty_non_contig.is_contiguous()
# Test other memory formats fail
self.assertRaises(
RuntimeError,
lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last),
)
self.assertRaises(
RuntimeError,
lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last),
)
self.assertRaises(
RuntimeError,
lambda: torch.empty_like(nt_cont, memory_format=torch.channels_last_3d),
)
self.assertRaises(
RuntimeError,
lambda: torch.empty_like(nt_noncont, memory_format=torch.channels_last_3d),
)
@markDynamoStrictTest
class TestNestedTensorAutograd(NestedTensorTestCase):
# Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck
# includes the default parameters used for testing ops with gradcheck. However nested tensor
# does not support the stack op therefore we turn it off for these tests
def _create_leaf_nested_tensor_from_list(self, tensor_device, requires_grad=False):
return torch.nested.nested_tensor(
[torch.randn(1, 2), torch.randn(7, 8)],
requires_grad=requires_grad,
device=tensor_device,
)
def _create_nested_tensor_from_list(self, tensor_device, requires_grad=False):
return torch.nested.as_nested_tensor(
[
torch.randn(1, 2, requires_grad=requires_grad),
torch.randn(7, 8, requires_grad=requires_grad),
],
device=tensor_device,
)
def _create_nested_tensor_from_mask(self, tensor_device, requires_grad=False):
data = torch.randn(2, 3, 4, requires_grad=requires_grad, device=tensor_device)
mask = torch.ones_like(data[:, :, 0]).bool()
return torch._nested_tensor_from_mask(data, mask)
def test_as_nested_tensor_propagates_gradients(self, device):
a = torch.arange(3, dtype=torch.float, device=device)
b = torch.arange(5, dtype=torch.float, device=device)
nt = torch.nested.as_nested_tensor([a, b])
# tensors with requires_grad=False are leaves
self.assertTrue(nt.is_leaf)
self.assertTrue(not nt.requires_grad)
a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device)
b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device)
nt2 = torch.nested.as_nested_tensor([a, b])
fake_grad = torch.nested.nested_tensor(
[torch.ones_like(a), torch.zeros_like(b)], device=device
)
nt2.backward(fake_grad)
self.assertEqual(a.grad, fake_grad[0])
self.assertEqual(b.grad, fake_grad[1])
def test_nested_tensor_generates_leaf(self, device):
a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device)
b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device)
nt = torch.nested.nested_tensor([a, b], requires_grad=False)
self.assertTrue(nt.is_leaf)
self.assertTrue(not nt.requires_grad)
nt2 = torch.nested.nested_tensor([a, b], requires_grad=True)
self.assertTrue(nt2.is_leaf)
self.assertTrue(nt2.requires_grad)
fake_grad = torch.nested.nested_tensor(
[torch.ones_like(a), torch.zeros_like(b)], device=device
)
nt2.backward(fake_grad)
self.assertEqual(nt2.grad, fake_grad)
self.assertEqual(a.grad, None)
self.assertEqual(b.grad, None)
def test_set_requires_grad_from_list(self, device):
nt = self._create_nested_tensor_from_list(device)
nt.requires_grad_()
assert nt.requires_grad
def test_set_requires_grad_from_mask(self, device):
nt = self._create_nested_tensor_from_mask(device)
nt.requires_grad_()
assert nt.requires_grad
def test_backward_for_add_op(self, device):
nt_1 = self._create_nested_tensor_from_mask(device)
nt_2 = self._create_nested_tensor_from_mask(device)
nt_1.requires_grad_()
c = nt_1 + nt_2
assert nt_1.requires_grad
assert c.requires_grad
grad_output = self._create_nested_tensor_from_mask(device)
c.backward(grad_output)
# Grad check doesn't work with nested yet.
# d/dnt_1 (nt + nt_1) = 1*grad_output
self.assertEqual(nt_1.grad, grad_output)
def test_backward_for_sub_op(self, device):
nt_1 = self._create_nested_tensor_from_mask(device)
nt_2 = self._create_nested_tensor_from_mask(device)
nt_1.requires_grad_()
nt_2.requires_grad_()
c = nt_1 - nt_2
assert nt_1.requires_grad
assert nt_2.requires_grad
assert c.requires_grad
grad_output = self._create_nested_tensor_from_mask(device)
c.backward(grad_output)
self.assertEqual(nt_1.grad, grad_output)
self.assertEqual(nt_2.grad, -1 * grad_output)
def test_backward_sub_strided(self, device):
a = torch.nested.nested_tensor(
[torch.randn(9, 2, 4), torch.randn(12, 2, 4)],
requires_grad=True,
device=device,
)
b = torch.nested.nested_tensor(
[torch.randn(9, 4, 2), torch.randn(12, 4, 2)],
requires_grad=True,
device=device,
)
c = a - b.transpose(-1, -2)
grad_output = c.clone()
c.backward(grad_output)
self.assertEqual(a.grad, grad_output)
self.assertEqual(b.grad, -1 * grad_output.transpose(-1, -2))
def test_backward_add_strided(self, device):
a = torch.nested.nested_tensor(
[torch.randn(9, 2, 4), torch.randn(12, 2, 4)],
requires_grad=True,
device=device,
)
b = torch.nested.nested_tensor(
[torch.randn(9, 4, 2), torch.randn(12, 4, 2)],
requires_grad=True,
device=device,
)
c = a + b.transpose(-1, -2)
grad_output = c.clone()
c.backward(grad_output)
self.assertEqual(a.grad, grad_output)
self.assertEqual(b.grad, grad_output.transpose(-1, -2))
# Test Factory Functions
def test_nested_tensor_to_padded_tensor(self, device):
for padding_val in [0, 1]:
nt = self._create_leaf_nested_tensor_from_list(
tensor_device=device, requires_grad=True
)
out = torch.nested.to_padded_tensor(nt, padding_val)
grad_output = torch.ones(out.shape, device=device)
out.backward(grad_output)
self.assertEqual(
nt.grad,
torch.nested.nested_tensor(
[torch.ones(1, 2), torch.ones(7, 8)], device=device
),
)
def test_nested_tensor_from_mask_and_to_padded(self, device):
N, L, D = 2, 4, 4
mask = torch.ones(N, L, device=device)
for i in range(1, N):
end = torch.randint(1, L - 1, (1,), device=device)
mask[i, end:] = 0
mask[0, :] = 1
mask = mask.bool()
data = torch.randn(
N, L, D, requires_grad=True, dtype=torch.float64, device=device
)
def grad_test_func(inpt):
nt = torch._nested_tensor_from_mask(inpt, mask)
# This implicitly tests to_padded_tensor grads
return torch.nested.to_padded_tensor(nt, 0)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_padded(self, device):
nested_size = torch.tensor([[1, 2], [2, 2]])
padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64, device=device)
padded_tensor[0, 1, :] = 0
padded_tensor.requires_grad_()
def grad_test_func(tensor, nested_size):
nt = torch._nested_from_padded(
tensor, nested_size, fuse_transform_0213=False
)
# This implicitly tests to_padded_tensor grads
return torch.nested.to_padded_tensor(nt, 0)
data = (padded_tensor, nested_size)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_padded_fused(self, device):
nested_size = torch.tensor([[1, 8], [2, 8]])
padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64, device=device)
padded_tensor[0, 1, :] = 0
padded_tensor.requires_grad_()
def grad_test_func(tensor, nested_size):
nt = torch._nested_from_padded(
tensor, nested_size, fuse_transform_0213=True
)
# This implicitly tests to_padded_tensor grads
return torch.nested.to_padded_tensor(nt, 0)
data = (padded_tensor, nested_size)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_list(self, device):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
c = torch.nested.as_nested_tensor([a, b, c])
# This implictily tests to_padded_tensor grads
return torch.nested.to_padded_tensor(c, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
@parametrize("layout", [torch.strided, torch.jagged], name_fn=layout_name)
def test_dropout_backward(self, layout):
if layout == torch.jagged:
nt = torch.nested.nested_tensor(
[torch.randn((2, 5)), torch.randn((3, 5))],
requires_grad=True,
layout=layout,
)
else:
nt = torch.nested.nested_tensor(
[torch.randn((2, 5)), torch.randn((3, 4))],
requires_grad=True,
layout=layout,
)
p = 0.2
y = torch.nn.functional.dropout(nt, p)
y.backward(nt.clone().detach())
self.assertEqual(nt.grad, y)
def test_nested_tensor_bmm_gradcheck(self, device):
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device)
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c, d):
nt0 = torch.nested.as_nested_tensor([a, b])
nt1 = torch.nested.as_nested_tensor([c, d])
result = nt0.bmm(nt1)
return torch.nested.to_padded_tensor(result, 0.0)
data = (a, b, c, d)
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
def test_nested_tensor_bmm_backward(self, device):
nt0 = torch.nested.nested_tensor(
[torch.randn((2, 6)), torch.randn((3, 6))],
requires_grad=True,
device=device,
)
nt1 = torch.nested.nested_tensor(
[torch.randn((6, 4)), torch.randn((6, 5))],
requires_grad=True,
device=device,
)
with torch.no_grad():
pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True)
pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True)
ynt = nt0.bmm(nt1)
ypt = pt0.bmm(pt1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad)
self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad)
def test_nested_tensor_matmul_gradcheck(self, device):
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device)
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c, d):
nt0 = torch.nested.as_nested_tensor([a, b])
nt1 = torch.nested.as_nested_tensor([c, d])
result = torch.matmul(nt0, nt1)
return torch.nested.to_padded_tensor(result, 0.0)
data = (a, b, c, d)
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
def test_nested_tensor_matmul_backward(self, device):
nt0 = torch.nested.nested_tensor(
[torch.randn((7, 2, 6)), torch.randn((7, 3, 6))],
requires_grad=True,
device=device,
)
nt1 = torch.nested.nested_tensor(
[torch.randn((7, 6, 4)), torch.randn((7, 6, 5))],
requires_grad=True,
device=device,
)
with torch.no_grad():
pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True)
pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True)
ynt = torch.matmul(nt0, nt1)
ypt = torch.matmul(pt0, pt1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad)
self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad)
def test_nested_tensor_transpose_gradcheck(self, device):
a = torch.randn(2, 5, requires_grad=True, device=device)
b = torch.randn(3, 4, requires_grad=True, device=device)
def grad_test_func(a, b):
nt = torch.nested.as_nested_tensor([a, b])
result = nt.transpose(-2, -1).transpose(-2, -1)
return torch.nested.to_padded_tensor(result, 0.0)
data = (a, b)
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
def test_nested_tensor_transpose_backward(self, device):
nt = torch.nested.nested_tensor(
[torch.randn((2, 5)), torch.randn((3, 4))],
requires_grad=True,
device=device,
)
with torch.no_grad():
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
ynt = nt.transpose(-2, -1)
ypt = pt.transpose(-2, -1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
def test_nested_tensor_reshape_gradcheck(self, device):
a = torch.randn(2, 6, requires_grad=True, device=device)
b = torch.randn(3, 6, requires_grad=True, device=device)
def grad_test_func(a, b):
nt = torch.nested.as_nested_tensor([a, b])
result = nt.reshape(2, -1, 2, 3)
return torch.nested.to_padded_tensor(result, 0.0)
data = (a, b)
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
def test_nested_tensor_reshape_backward(self):
nt = torch.nested.nested_tensor(
[torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True
)
with torch.no_grad():
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
ynt = nt.reshape(2, -1, 2, 3)
ypt = pt.reshape(2, -1, 2, 3)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
def test_nested_tensor_squeeze_backward(self, device):
nt = torch.nested.nested_tensor(
[torch.randn((2, 6, 1)), torch.randn((3, 6, 1))],
requires_grad=True,
device=device,
)
with torch.no_grad():
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
ynt = nt.squeeze(-1)
ypt = pt.squeeze(-1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
def test_nested_tensor_squeeze_gradcheck(self, device):
a = torch.randn(
(2, 6, 1), dtype=torch.float64, requires_grad=True, device=device
)
b = torch.randn(
(3, 6, 1), dtype=torch.float64, requires_grad=True, device=device
)
def grad_test_func(a, b):
nt = torch.nested.as_nested_tensor([a, b])
result = nt.squeeze(-1)
return torch.nested.to_padded_tensor(result, 0.0)
assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3)
def test_nested_tensor_unsqueeze_backward(self, device):
nt = torch.nested.nested_tensor(
[torch.randn((2, 6)), torch.randn((3, 6))],
requires_grad=True,
device=device,
)
with torch.no_grad():
pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True)
ynt = nt.unsqueeze(2)
ypt = pt.unsqueeze(2)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad)
def test_nested_tensor_unsqueeze_gradcheck(self, device):
a = torch.randn((2, 6), dtype=torch.float64, requires_grad=True, device=device)
b = torch.randn((3, 6), dtype=torch.float64, requires_grad=True, device=device)
def grad_test_func(a, b):
nt = torch.nested.as_nested_tensor([a, b])
result = nt.unsqueeze(-1)
return torch.nested.to_padded_tensor(result, 0.0)
assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3)
def test_nested_tensor_linear(self, device):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
weight = torch.randn(
2, 2, requires_grad=True, dtype=torch.float64, device=device
)
bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c, weight, bias=None):
nt = torch.nested.as_nested_tensor([a, b, c])
# This implicitly tests to_padded_tensor grads
d = torch.functional.F.linear(nt, weight, bias)
return torch.nested.to_padded_tensor(d, 0)
data = (a, b, c, weight, bias)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# Test linear with no bias added
data = (a, b, c, weight)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_linear_plus_transpose(self, device):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
weight = torch.randn(
2, 2, requires_grad=True, dtype=torch.float64, device=device
)
bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c, weight, bias=None):
nt = torch.nested.as_nested_tensor([a, b, c])
# This implicitly tests to_padded_tensor grads
d = torch.functional.F.linear(nt, weight, bias)
d = d.transpose(-1, -2).contiguous()
return torch.nested.to_padded_tensor(d, 0)
data = (a, b, c, weight, bias)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# Test linear with no bias added
data = (a, b, c, weight)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_softmax(self, device):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c, dim):
nt = torch.nested.as_nested_tensor([a, b, c])
# This implicitly tests to_padded_tensor grads
d = torch.functional.F.softmax(nt, dim=dim)
return torch.nested.to_padded_tensor(d, 0)
# softmax over last dim
data = (a, b, c, -1)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_linear_backward(self, device):
a = torch.randn(1, 2, requires_grad=False, device=device)
b = torch.randn(2, 2, requires_grad=False, device=device)
c = torch.randn(3, 2, requires_grad=False, device=device)
weight = torch.randn(2, 2, requires_grad=True, device=device)
bias = torch.randn(2, requires_grad=True, device=device)
nt = torch.nested.as_nested_tensor([a, b, c], device=device)
out = torch.functional.F.linear(nt, weight, bias)
out.backward(out.clone())
assert weight.grad is not None
assert bias.grad is not None
assert a.grad is None
assert b.grad is None
assert c.grad is None
def test_values_grad_with_broadcast(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
buffer = nt.values()
return buffer.sum()
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_to_buffer_series_ops_grad_with_broadcast(self, device):
a = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
buffer = nt.values()
buffer = buffer * 2
return buffer.exp()
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_unbind_flow_through(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
ntT = nt.transpose(-1, -2)
unbound = ntT.unbind()
d = unbound[0]
d = torch.pow(d, 2)
return d
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_split_with_sizes_flow_through(self, device):
a = torch.randn(2, 5, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 5, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 5, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
splits = nt.split_with_sizes([2, 3], dim=-1)
unbound = splits[1].unbind()
d = unbound[0]
d = torch.pow(d, 2)
return d
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_indexing_backward(self, device):
x0 = torch.randn((2, 5))
x1 = torch.randn((3, 4))
nt = torch.nested.nested_tensor([x0, x1], device=device, requires_grad=True)
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
grad_x0 = torch.randn((2, 5), device=device)
nt[0].backward(grad_x0)
expected_grad = torch.nested.nested_tensor(
[grad_x0, torch.zeros((3, 4), device=device)]
)
self.assertEqual(nt.grad, expected_grad)
def test_masked_fill_backward(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
mask = nt.detach().clone().to(bool)
out = nt.masked_fill(mask, 0)
out = torch.nested.to_padded_tensor(out, 0)
return out
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_gelu_backward(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
nt_gelu = torch.nn.functional.gelu(nt)
return torch.nested.to_padded_tensor(nt_gelu, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_relu_backward(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
nt_relu = torch.nn.functional.relu(nt)
return torch.nested.to_padded_tensor(nt_relu, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_selu_backward(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
nt_relu = torch.nn.functional.silu(nt)
return torch.nested.to_padded_tensor(nt_relu, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_abs_backward(self, device):
a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
nt_abs = torch.abs(nt)
return torch.nested.to_padded_tensor(nt_abs, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# Previously would error when input NT doesn't require grad
# NotImplementedError: Cannot access storage of UndefinedTensorImpl
def test_layer_norm_backward_edge_case(self, device):
size = 4
a = torch.randn(
1, 2, size, requires_grad=False, dtype=torch.float64, device=device
)
nt = torch.nested.nested_tensor([a])
nt_layer_norm = torch.nn.LayerNorm(
nt.size(-1), device=device, dtype=torch.float64
)
out = nt_layer_norm(nt)
out.backward(out.clone())
def test_accumulate_grad_different_strides(self, device):
a = torch.rand(1, 4, 2, requires_grad=True, dtype=torch.float64, device=device)
b = torch.rand(1, 8, 2, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b):
nt_1 = torch.nested.as_nested_tensor([a, b])
nt_2 = nt_1.clone()
out = torch.nn.functional.scaled_dot_product_attention(nt_1, nt_2, nt_2)
return torch.nested.to_padded_tensor(out, 0)
data = (a, b)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# https://github.com/pytorch/pytorch/issues/95562
@skipIfSlowGradcheckEnv
@parametrize("size", [1024, 1023, 513, 512, 256, 128, 32, 4, 2])
def test_layer_norm_backward(self, device, size):
a = torch.randn(
1, 2, size, requires_grad=True, dtype=torch.float64, device=device
)
b = torch.randn(
2, 2, size, requires_grad=True, dtype=torch.float64, device=device
)
c = torch.randn(
3, 2, size, requires_grad=True, dtype=torch.float64, device=device
)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
layer_norm = torch.nn.LayerNorm(
nt.size(-1), device=device, dtype=torch.float64
)
nt_layer_norm = layer_norm(nt)
return torch.nested.to_padded_tensor(nt_layer_norm, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# https://github.com/pytorch/pytorch/issues/95562
@skipIfSlowGradcheckEnv
# Could either mark slow or reduce size
@parametrize("size", [128, 32, 4, 2])
def test_layer_norm_backward_5d(self, device, size):
a = torch.randn(
4, size, size, 4, requires_grad=True, dtype=torch.float64, device=device
)
b = torch.randn(
7, size, size, 4, requires_grad=True, dtype=torch.float64, device=device
)
c = torch.randn(
10, size, size, 4, requires_grad=True, dtype=torch.float64, device=device
)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c])
layer_norm = torch.nn.LayerNorm(
(size, size, nt.size(-1)), device=device, dtype=torch.float64
)
nt_layer_norm = layer_norm(nt)
return torch.nested.to_padded_tensor(nt_layer_norm, 0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# Found in torch/testing/_comparison.py
default_atol = {torch.float16: 1e-3, torch.bfloat16: 1e-3, torch.float32: 1e-5}
default_rtol = {torch.float16: 1e-3, torch.bfloat16: 1.6e-2, torch.float32: 1.3e-6}
def get_rtol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
deviation = true_value - computed_value
deviation = torch.abs(deviation / true_value)
# Fill in the nans with the default rtol
torch.nan_to_num_(deviation, nan=default_rtol[computed_value.dtype])
return deviation.max().item()
def get_atol(true_value: torch.Tensor, computed_value: torch.Tensor) -> float:
deviation = true_value - computed_value
atol = torch.abs(deviation).max().item()
return atol
def get_tolerances(
true_value: torch.Tensor,
computed_value: torch.Tensor,
fudge_factor: Optional[float] = None,
) -> Tuple[float, float]:
"""Returns the absolute and relative tolerances for comparing two tensors."""
fudge_factor = fudge_factor if fudge_factor is not None else 1.0
atol = get_atol(true_value, computed_value)
rtol = get_rtol(true_value, computed_value)
atol = fudge_factor * max(atol, default_atol[computed_value.dtype])
rtol = fudge_factor * max(rtol, default_rtol[computed_value.dtype])
# torch.isclose() has weird behavior around see:
# https://github.com/pytorch/pytorch/issues/102400
if rtol > 1e30:
rtol = default_rtol[computed_value.dtype]
return atol, rtol
# We can probably parametrizing existing tests instead of having a separate
# test class as we begin to support more ops. Also maybe rewrite with OpInfos.
@markDynamoStrictTest
class TestNestedTensorSubclass(NestedTensorTestCase):
# TODO: consolidate with the below
def _get_list_for_jagged_tensor(self, nested_size, device, requires_grad=True):
Ds = nested_size[1:]
out = []
for s in nested_size[0]:
out.append(
torch.randn(
s,
*Ds,
requires_grad=requires_grad,
device=device,
dtype=torch.float64,
)
)
return out
def _get_example_tensor_lists(
self,
include_list_of_lists=True,
include_requires_grad=True,
include_inner_dim_size_1=False,
include_2d_tensor=False,
):
def _make_tensor(
*shape, include_requires_grad=include_requires_grad, requires_grad=True
):
return torch.randn(
*shape,
requires_grad=(requires_grad if include_requires_grad else False),
)
# Purposefully introduce mixed requires_grad settings for the components
# when include_requires_grad=True.
example_lists = [
# (B, *, D) with B=4
[
_make_tensor(2, 5),
_make_tensor(3, 5, requires_grad=False),
_make_tensor(4, 5, requires_grad=False),
_make_tensor(6, 5),
],
# (B, *, D_0, D_1) with B=5
[
_make_tensor(2, 5, 6),
_make_tensor(3, 5, 6),
_make_tensor(4, 5, 6, requires_grad=False),
_make_tensor(5, 5, 6),
_make_tensor(6, 5, 6),
],
# (B, *, D_0, D_1, D_2) with B=6
[
_make_tensor(2, 5, 6, 7),
_make_tensor(3, 5, 6, 7),
_make_tensor(4, 5, 6, 7, requires_grad=False),
_make_tensor(5, 5, 6, 7),
_make_tensor(6, 5, 6, 7),
_make_tensor(7, 5, 6, 7),
],
]
if include_list_of_lists:
example_lists.append(
# (B, *, D) with B=3 in list form
[
_make_tensor(2, 5, requires_grad=False).tolist(),
_make_tensor(3, 5).tolist(),
_make_tensor(4, 5).tolist(),
]
)
if include_inner_dim_size_1:
example_lists.append(
[
_make_tensor(2, 1),
_make_tensor(3, 1, requires_grad=False),
_make_tensor(4, 1, requires_grad=False),
_make_tensor(6, 1),
] # (B, *, 1)
)
example_lists.append(
[
_make_tensor(2, 5, 1),
_make_tensor(3, 5, 1, requires_grad=False),
_make_tensor(4, 5, 1, requires_grad=False),
_make_tensor(6, 5, 1),
] # (B, *, 5, 1)
)
if include_2d_tensor:
example_lists.append(
[
_make_tensor(2),
_make_tensor(3, requires_grad=False),
_make_tensor(4, requires_grad=False),
_make_tensor(6),
] # (B, *)
)
return example_lists
def test_tensor_attributes(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
_offsets = nt.offsets()
for op in (
torch.ops.aten.is_non_overlapping_and_dense.default,
torch.ops.aten.sym_size.default,
torch.ops.aten.dim.default,
torch.ops.aten.numel.default,
torch.ops.aten.sym_numel.default,
torch.ops.aten.sym_stride.default,
torch.ops.aten.sym_storage_offset.default,
):
op(nt)
with self.assertRaisesRegex(
RuntimeError, "directly calling torch.ops.aten.size"
):
torch.ops.aten.size.default(nt)
nested_int = torch.nested._internal.nested_tensor.get_tensor_symint(
_offsets, coeff=1
)
self.assertEqual(nt.size(), (3, nested_int, 3))
self.assertEqual(nt.shape, (3, nested_int, 3))
self.assertEqual(nt.dim(), 3)
self.assertEqual(nt.numel(), 27)
@parametrize("nt_dim", [3, 4, 5])
def test_linear(self, device, nt_dim):
if nt_dim == 3:
fixed_shape = (3,)
elif nt_dim == 4:
fixed_shape = (4, 3)
elif nt_dim == 5:
fixed_shape = (5, 4, 3)
a = torch.randn(
2, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device
)
b = torch.randn(
3, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device
)
c = torch.randn(
4, *fixed_shape, requires_grad=True, dtype=torch.float64, device=device
)
weight = torch.randn(
4, 3, requires_grad=True, dtype=torch.float64, device=device
)
def grad_test_func(a, b, c, weight):
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
out = torch.nn.functional.linear(nt, weight)
return out.values()
gradcheck(grad_test_func, inputs=(a, b, c, weight), check_batched_grad=False)
def test_unary_pointwise(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
out = torch.nn.functional.silu(nt.sin().cos())
return out.values()
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
def test_unary_pointwise_transposed_inputs(self, device):
a, b, c = (
torch.randn(
i + 2, 5, requires_grad=True, dtype=torch.float64, device=device
)
for i in range(3)
)
nt = torch.nested.nested_tensor(
[a.detach(), b.detach(), c.detach()], layout=torch.jagged
)
nt_t = nt.transpose(1, 2)
self.assertFalse(nt_t.is_contiguous())
out = torch.nn.functional.silu(nt_t.sin().cos())
self.assertEqual(
out.is_contiguous(),
torch.nn.functional.silu(b.transpose(-1, -2).sin().cos()).is_contiguous(),
)
self.assertEqual(nt_t.shape, out.shape)
a, b, c = (
torch.randn(
i + 2, 5, requires_grad=True, dtype=torch.float64, device=device
)
for i in range(3)
)
def grad_test_func(a, b, c):
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
nt_t = nt.transpose(1, 2)
out = torch.nn.functional.silu(nt_t.sin().cos())
return out.values()
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
def test_binary_pointwise(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
# Incorrect usage: shape check will fail if the offsets tensor are not
# the same exact tensor object
nt1 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
nt2 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
self.assertRaisesRegex(
RuntimeError,
"cannot call binary pointwise function .* with inputs of shapes",
lambda: nt1 * nt2,
)
# Correct usage: chain the calls using the same offsets tensor object
def grad_test_func(a, b, c):
nt1 = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
# TODO: Switch to public API that takes in (values, offsets) once it exists
nt2, offsets = jagged_from_list([a, b, c], nt1.offsets())
out = nt1 * nt2
return out.values()
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
def test_binary_pointwise_transposed(self, device):
a, b, c = (
torch.randn(i + 2, 5, dtype=torch.float64, device=device) for i in range(3)
)
nt1, offsets = jagged_from_list([a, b, c], None)
nt2, offsets = jagged_from_list([a, b, c], offsets)
nt1_t = nt1.transpose(1, 2)
nt2_t = nt2.transpose(1, 2)
# out = nt1_t * nt2_t
# self.assertFalse(nt1_t.is_contiguous())
# self.assertEqual(out.is_contiguous(), (b.transpose(-1, -2) * b.transpose(-1, -2)).is_contiguous())
# self.assertEqual(out.shape, nt1_t.shape)
self.assertRaisesRegex(
RuntimeError,
"cannot call binary pointwise function mul.Tensor with inputs of shapes",
lambda: nt1 * nt2_t,
)
a, b, c = (
torch.randn(
i + 2, 5, requires_grad=True, dtype=torch.float64, device=device
)
for i in range(3)
)
# Correct usage: chain the calls using the same offsets tensor object
def grad_test_func(a, b, c):
nt1, offsets = jagged_from_list([a, b, c], None)
nt2, offsets = jagged_from_list([a, b, c], offsets)
nt1_t = nt1.transpose(1, 2)
nt2_t = nt2.transpose(1, 2)
out = nt1_t * nt2_t
return out.values()
gradcheck(grad_test_func, inputs=(a, b, c), check_batched_grad=False)
def test_split(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
out = torch.split(nt, 2, -1)
self.assertEqual(len(out), 2)
self.assertEqualIgnoringNestedInts(
out[0],
torch.nested.as_nested_tensor(
[a[:, 0:2], b[:, 0:2], c[:, 0:2]], layout=torch.jagged
),
)
self.assertEqualIgnoringNestedInts(
out[1],
torch.nested.as_nested_tensor(
[a[:, 2:], b[:, 2:], c[:, 2:]], layout=torch.jagged
),
)
with self.assertRaisesRegex(
RuntimeError,
r"split\(\): not supported for NestedTensor on dim=1",
):
torch.split(nt, 2, 1)
def test_split_with_sizes(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
nt = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
out = torch.split(nt, [1, 2], -1)
self.assertEqual(len(out), 2)
self.assertEqualIgnoringNestedInts(
out[0],
torch.nested.as_nested_tensor(
[a[:, 0:1], b[:, 0:1], c[:, 0:1]], layout=torch.jagged
),
)
self.assertEqualIgnoringNestedInts(
out[1],
torch.nested.as_nested_tensor(
[a[:, 1:], b[:, 1:], c[:, 1:]], layout=torch.jagged
),
)
with self.assertRaisesRegex(
RuntimeError,
r"split_with_sizes\(\): not supported for NestedTensor on dim=1",
):
torch.split(nt, [1, 2], 1)
def test_softmax(self, device):
nt = random_nt_from_dims(
[3, None, 5],
device=device,
dtype=torch.float32,
layout=torch.jagged,
requires_grad=True,
)
# operate on dim=2
output = nt.softmax(dim=2)
@torch._dynamo.disable
def _compare_to_ref(nt, output, dim):
for in_component, out_component in zip(nt.unbind(), output.unbind()):
self.assertEqual(in_component.softmax(dim=dim), out_component)
# dim=2 -> dim=1 after unbind
_compare_to_ref(nt, output, dim=1)
# operate on dim=-1
output2 = nt.softmax(dim=-1)
torch._dynamo.disable(self.assertEqual)(output, output2)
_compare_to_ref(nt, output2, dim=-1)
def grad_test_func(a, b):
nt = torch.nested.as_nested_tensor([a, b], layout=torch.jagged)
out = nt.softmax(dim=-1)
return out.values()
a = torch.rand(4, 5, requires_grad=True, dtype=torch.float64, device=device)
b = torch.rand(8, 5, requires_grad=True, dtype=torch.float64, device=device)
gradcheck(grad_test_func, inputs=(a, b), check_batched_grad=False)
def test_views_inherit_ragged_dim(self, device):
# view
nt = random_nt_from_dims(
[4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged
)
# inherit ragged dim via -1
view = nt.view(4, -1, 80)
self.assertEqual(nt.shape[1], view.shape[1])
# inherit batch and ragged dims via -1
view2 = nt.view(-1, -1, 80)
self.assertEqual(nt.shape[:2], view2.shape[:2])
# expand
nt = random_nt_from_dims(
[3, None, 1], device=device, dtype=torch.float32, layout=torch.jagged
)
# inherit batch and ragged dims via -1
view = nt.expand(-1, -1, 5)
self.assertEqual(nt.shape[:2], view.shape[:2])
def test_view_ragged_idx_not_one(self, device):
nt = random_nt_from_dims(
[2, None, 20], device=device, dtype=torch.float32, layout=torch.jagged
)
view_transposed = nt.transpose(1, 2).view(2, 20, nt.size(1))
self.assertEqual((2, 20, nt.size(1)), (view_transposed.size()))
self.assertEqual(view_transposed._base, nt._base)
def test_unsafe_view(self, device):
nt = random_nt_from_dims(
[4, None, 8, 10], device=device, dtype=torch.float32, layout=torch.jagged
)
# basic view
view1 = torch.ops.aten._unsafe_view(nt, (4, -1, 80))
self.assertEqual((4, nt.size(1), 80), tuple(view1.size()))
# _unsafe_view differs from view in that the view information is not tracked
self.assertTrue(view1._base is None)
# test an unsafe_view when ragged_idx != 1, currently only supports identity view
nt_t = nt.transpose(1, 2)
view2 = torch.ops.aten._unsafe_view(nt_t, (4, 8, nt.size(1), 10))
self.assertEqual((4, 8, nt.size(1), 10), tuple(view2.size()))
self.assertTrue(view2._base is None)
@xfailIfTorchDynamo
@parametrize("requires_grad", [False, True])
def test_reshape_decomp(self, device, requires_grad):
# contiguous NT should result in view.
nt = (
random_nt_from_dims(
[3, None, 10],
device=device,
dtype=torch.float32,
layout=torch.jagged,
)
.detach()
.requires_grad_(requires_grad)
)
view = nt.reshape(-1, -1, 5, 2)
self.assertEqual(view.shape[:2], nt.shape[:2])
self.assertTrue(view._is_view() and view._base is nt)
# make sure gradients flow back
if requires_grad:
view.backward(torch.ones_like(view))
self.assertEqual(nt.grad, torch.ones_like(nt))
# non-contiguous NT should result in contiguous copy
nt = random_nt_from_dims(
[3, None, 5, 2],
device=device,
dtype=torch.float32,
layout=torch.jagged,
requires_grad=requires_grad,
)
nt_noncontig = nt.transpose(-1, -2)
self.assertFalse(nt_noncontig.is_contiguous())
copy = nt_noncontig.reshape(-1, -1, 10)
self.assertTrue(copy.is_contiguous())
self.assertEqual(copy.shape[:2], nt.shape[:2])
# make sure gradients flow back
if requires_grad:
copy.backward(torch.ones_like(copy))
self.assertEqual(nt.grad, torch.ones_like(nt))
def test_flatten_decomp(self, device):
nt = random_nt_from_dims(
[3, None, 5, 2], device=device, dtype=torch.float32, layout=torch.jagged
)
flattened = nt.flatten(-2, -1)
self.assertEqual(flattened.shape, nt.view(3, -1, 10).shape)
nt = random_nt_from_dims(
[3, None, 5, 2, 6], device=device, dtype=torch.float32, layout=torch.jagged
)
flattened = nt.flatten(-3, -2)
self.assertEqual(flattened.shape, nt.view(3, -1, 10, 6).shape)
def test_chunk(self, device):
# none NJT case
t = torch.randn(10, 4, 5, requires_grad=True)
t_list = t.chunk(3, dim=0)
loss = t_list[0].sum() + t_list[2].sum()
loss.backward()
# normal case
D = 30
B = 8
nt = random_nt_from_dims(
[B, None, D],
device=device,
dtype=torch.float32,
layout=torch.jagged,
requires_grad=True,
)
NUM_CHUNKS = 3
chunks = nt.chunk(NUM_CHUNKS, dim=-1)
self.assertEqual(len(chunks), NUM_CHUNKS)
for i in range(NUM_CHUNKS):
self.assertEqual(chunks[i].shape[-1], D // NUM_CHUNKS)
# test chunk_backward
values = torch.randn(
5, 11, dtype=torch.float64, device=device, requires_grad=True
)
offsets = torch.tensor([0, 2, 3, 5], device=device)
def grad_test_func(values, offsets):
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
chunks = nt.chunk(3, dim=-1)
return chunks[0].values().sum()
assert gradcheck(
grad_test_func,
inputs=(values, offsets),
check_batched_grad=False,
)
# chunk on batch dim
chunks = nt.chunk(NUM_CHUNKS, dim=0)
self.assertEqual(len(chunks), NUM_CHUNKS)
chunk_size = math.ceil(B / NUM_CHUNKS)
for i in range(NUM_CHUNKS):
if i < NUM_CHUNKS - 1:
self.assertEqual(chunks[i].shape[0], chunk_size)
else:
self.assertEqual(chunks[i].shape[0], B - chunk_size * (NUM_CHUNKS - 1))
offsets_expected = (
nt._offsets[i * chunk_size + 1 : (i + 1) * chunk_size + 1]
- nt._offsets[i * chunk_size]
)
self.assertEqual(chunks[i]._offsets[1:], offsets_expected)
self.assertEqual(nt._values, torch.cat([x._values for x in chunks], dim=0))
with self.assertRaisesRegex(
RuntimeError,
"dim != 0 INTERNAL ASSERT FAILED .* Nested Tensor doesn't support chunk backward on dim=0 yet.",
):
# doesn't support backward for chunk (dim=0) yet
loss = (
chunks[0].values().sum()
+ chunks[1].values().sum()
+ chunks[2].values().sum()
)
loss.backward()
# chunk on ragged dim not supported
with self.assertRaisesRegex(
RuntimeError, "chunk.* not supported for NestedTensor on dim=1"
):
nt.chunk(2, dim=1)
def test_squeeze(self, device):
B = 4
D = 6
# squeeze middle dim
nt = random_nt_from_dims(
[B, None, 1, D], device=device, dtype=torch.float32, layout=torch.jagged
)
j0 = nt.shape[1]
for dim_arg in [-2, 2]:
out = nt.squeeze(dim_arg)
self.assertEqual(out.shape, (B, j0, D))
self.assertEqual(out.unsqueeze(-2), nt)
# squeeze last dim
nt = random_nt_from_dims(
[B, None, 1], device=device, dtype=torch.float32, layout=torch.jagged
)
j1 = nt.shape[1]
for dim_arg in [-1, 2]:
out = nt.squeeze(dim_arg)
self.assertEqual(out.shape, (B, j1))
self.assertEqual(out.unsqueeze(-1), nt)
# squeeze on batch dim not supported
with self.assertRaisesRegex(
RuntimeError, "squeeze.* not supported for NestedTensor on dim=0"
):
nt.squeeze(0)
# squeeze on ragged dim not supported
with self.assertRaisesRegex(
RuntimeError, "squeeze.* not supported for NestedTensor on dim=1"
):
nt.squeeze(1)
def test_binary_pointwise_broadcasting(self, device):
# (B, j0, 3, 4)
ts = self._get_list_for_jagged_tensor(
((2, 3, 4), 3, 4), device, requires_grad=True
)
# (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
# (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
# (B, j0, ?, ?) + (1, ?, ?) -> (B, j0, ?, ?)
# Unsupported: (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?)
t_sizes = (
(4,),
(1, 4),
(3, 1),
(1, 3, 1),
(1, 1, 1, 4),
# (1, 1, 1, 1, 4), (unsupported today)
)
def grad_test_func(t, *ts):
nt = torch.nested.as_nested_tensor(list(ts), layout=torch.jagged)
out = nt + t
return out.values()
for t_size in t_sizes:
t = torch.rand(
t_size, requires_grad=True, device=device, dtype=torch.float64
)
gradcheck(grad_test_func, inputs=(t, *ts), check_batched_grad=False)
def test_threshold_backward(self, device):
ts1 = self._get_list_for_jagged_tensor(
((2, 3, 4), 16), device=device, requires_grad=False
)
ts2 = self._get_list_for_jagged_tensor(
((2, 3, 4), 16), device=device, requires_grad=False
)
nt1, offsets = jagged_from_list(ts1, None)
nt2, offsets = jagged_from_list(ts2, offsets)
buf1 = nt1.values().detach().clone()
buf2 = nt2.values().detach().clone()
res_nt = torch.ops.aten.threshold_backward(nt1, nt2, 0.0)
res_dense = torch.ops.aten.threshold_backward(buf1, buf2, 0.0)
self.assertEqual(res_dense, res_nt.values())
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_jagged_op_different_output_shape_dim(
self, device, dtype, keepdim, requires_grad, components_require_grad, func
):
"""
Operator passes when reducing on valid reduction dimensions.
This test is for operators which return an output tensor with a shape different from the input tensor.
"""
if get_op_name(func) == "mean" and not keepdim:
return
op_name = get_op_name(func)
ts = self._get_list_for_jagged_tensor(
((2, 3, 4), 3, 4), device=device, requires_grad=True
) # (B, j0, 3, 4)
# verify correctness of shapes (assuming that ragged_idx == 1)
if op_name == "sum":
reduce_dims = (
((0, 1), (3, 4), (1, 1, 3, 4), (0,)), # batch, ragged
((2, 3), (3, None), (3, None, 1, 1), (1, 2)), # non-batch, non-batch
((0, 1, 3), (3,), (1, 1, 3, 1), (0, 2)), # batch, ragged, non-batch
((0, 1, 2), (4,), (1, 1, 1, 4), (0, 1)), # batch, ragged, non-batch
(
(0, 1, 2, 3),
(),
(1, 1, 1, 1),
(0, 1, 2),
), # batch, ragged, non-batch, non-batch
((2,), (3, None, 4), (3, None, 1, 4), (1,)), # non-batch
) # (dims, expected shape, expected keepdim shape, reduce_dim_expected), where j0 is represented as None
elif op_name == "mean":
reduce_dims = (
((2,), (3, None, 4), (3, None, 1, 4), (1,)),
((3,), (3, None, 3), (3, None, 3, 1), (2,)),
)
for rd, ref_shape_no_keepdim, ref_shape_keepdim, _ in reduce_dims:
nt = torch.nested.as_nested_tensor(ts, layout=torch.jagged)
out = func(nt, dim=rd, keepdim=keepdim)
ref_shape = ref_shape_keepdim if keepdim else ref_shape_no_keepdim
if not torch.compiler.is_compiling: # if not using torch dynamo
self.assertEqual(len(out.shape), len(ref_shape))
for o, r in zip(out.shape, ref_shape):
if r is not None:
self.assertEqual(o, r)
else:
self.assertTrue(isinstance(o, torch.SymInt))
# verify correctness of values
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True,
)
for tensor_list, reduce_dim_tuple in itertools.product(
tensor_lists, reduce_dims
):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
reduce_dim, _, _, reduce_dim_expected = reduce_dim_tuple
if nt.dim() > reduce_dim[-1]:
out_actual = func(nt, dim=reduce_dim, keepdim=keepdim)
if nt._ragged_idx in reduce_dim: # raggedness reduced away
out_expected = func(
nt.values(), dim=reduce_dim_expected, keepdim=keepdim
)
self.assertTrue(torch.allclose(out_actual, out_expected))
else: # raggedness preserved
out_expected = func(nt.values(), dim=reduce_dim_expected)
self.assertTrue(
torch.allclose(
out_actual.values().view(-1), out_expected.view(-1)
)
)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_dim(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Softmax passes when reducing on valid reduction dimensions.
"""
ts = self._get_list_for_jagged_tensor(
((2, 3, 4), 3, 4), device=device, requires_grad=True
) # (B, j0, 3, 4)
output_shape = (3, None, 3, 4)
# verify correctness of shapes (assuming that ragged_idx == 1)
reduce_dims = (
(2, 1),
(3, 2),
) # (reduction dimension, effective reduction dimension for baseline)
for reduce_dim, _ in reduce_dims:
nt = torch.nested.as_nested_tensor(ts, layout=torch.jagged)
out_actual = torch.nn.functional.softmax(nt, dim=reduce_dim)
torch._dynamo.disable(self.assertEqual)(
len(out_actual.shape), len(output_shape)
) # disable if running on dynamo
for dim_actual, dim_expected in zip(out_actual.shape, output_shape):
if dim_expected is not None:
self.assertEqual(dim_actual, dim_expected)
else:
self.assertTrue(isinstance(dim_actual, torch.SymInt))
# verify correctness of values
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True,
)
for tensor_list, reduce_dim_tuple in itertools.product(
tensor_lists, reduce_dims
):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
reduce_dim, reduce_dim_expected = reduce_dim_tuple
if nt.dim() > reduce_dim:
out_actual = torch.nn.functional.softmax(
nt, dim=reduce_dim
) # nested tensor
out_expected = torch.nn.functional.softmax(
nt.values(), dim=reduce_dim_expected
) # dense tensor of dimensions 1 less than out_actual
self.assertTrue(
torch.allclose(out_actual.values().view(-1), out_expected.view(-1))
)
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_op_dim_reduce_ragged_idx_1_different_output_shape(
self, device, dtype, keepdim, requires_grad, components_require_grad, func
):
"""
Operator on NestedTensor passes when trying to reduce across ragged dimension, where ragged_idx == 1.
This test is for operators which return an output tensor with a shape different from the input tensor.
"""
if get_op_name(func) == "mean" and not keepdim:
return
op_name = get_op_name(func)
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
)
reduce_dim = (1,) # ragged
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
out_actual = func(nt, dim=reduce_dim, keepdim=keepdim)
out_expected = torch.cat(
[func(t, dim=(reduce_dim[0] - 1)).unsqueeze(0) for t in nt.unbind()]
)
self.assertFalse(
out_actual.is_nested,
f"{op_name}(): the result of reducing a nested tensor along the ragged dimension is a dense tensor",
) # output is a dense tensor
self.assertTrue(torch.allclose(out_actual, out_expected))
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_dim_reduce_ragged_idx_1(
self, device, dtype, requires_grad, components_require_grad
):
"""
Softmax on NestedTensor passes when trying to reduce across ragged dimension, where ragged_idx == 1.
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
include_2d_tensor=True, # (B, *)
)
reduce_dim = 1 # ragged
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
out_actual = torch.nn.functional.softmax(nt, dim=reduce_dim)
out_expected = torch.cat(
[
torch.nn.functional.softmax(t, dim=reduce_dim - 1)
for t in nt.unbind()
]
)
self.assertTrue(
out_actual.is_nested,
"softmax(): the result of reducing a nested tensor along the ragged dimension is a nested tensor",
) # output is a nested tensor
self.assertTrue(torch.allclose(out_actual.values(), out_expected))
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_reduce_batch_dim(
self, device, dtype, requires_grad, components_require_grad
):
"""
Softmax on NestedTensor fails when trying to reduce across batch dimension.
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
)
reduce_dim = 0 # batch
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
with self.assertRaisesRegex(
RuntimeError,
"not supported when reducing across the batch dimension for NestedTensor",
):
out = torch.nn.functional.softmax(nt, dim=reduce_dim)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_layer_norm_reduce_ragged_idx_1(
self, device, dtype, requires_grad, components_require_grad
):
"""
Layer normalization on NestedTensor passes when trying to normalize across ragged dimension, where ragged_idx == 1.
"""
# requires_grad = False does not currently work with dynamo tests and throws this error:
# AssertionError: SymInts must use SymNodeVariable.
# If the underlying value is static, we will create a ConstantVariable and specialize.
if torch._dynamo.is_compiling() and not requires_grad:
return
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
)
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if (
nt.dim() >= 3
): # layer norm only works for tensors with 3 or more dimensions
normalized_shape = nt.shape[nt._ragged_idx :]
out_actual = torch.nn.functional.layer_norm(
nt, normalized_shape=normalized_shape
)
out_expected = torch.cat(
[
torch.nn.functional.layer_norm(t, normalized_shape=t.shape)
for t in nt.unbind()
]
) # e.g. in 3D tensor (B, *, M), performs layer normalization on B 2D tensors (*, M)
self.assertTrue(
out_actual.is_nested,
"layer_norm(): the result of reducing a nested tensor along the ragged dimension is a nested tensor",
) # output is a nested tensor
self.assertEqual(out_actual._values.shape, out_expected.shape)
self.assertTrue(torch.allclose(out_actual.values(), out_expected))
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_layer_norm_2d_input(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Layer normalization on NestedTensor fails when trying to operate on a 2-dimensional tensor
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
include_2d_tensor=True, # (B, *)
)
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() <= 2:
with self.assertRaisesRegex(
RuntimeError,
"not supported for NestedTensor objects with 2 or fewer dimensions",
):
out = torch.nn.functional.layer_norm(
nt, normalized_shape=(nt.shape[nt._ragged_idx],)
)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_layer_norm_operate_on_batch_dim(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Layer normalization on NestedTensor fails when trying to operate on the batch dimension
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
include_2d_tensor=True, # (B, *)
)
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > 2: # cannot perform layer normalization on 2D tensors
with self.assertRaisesRegex(
RuntimeError,
"not supported when normalizing over the batch dimension for NestedTensor",
):
out = torch.nn.functional.layer_norm(nt, normalized_shape=nt.shape)
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize(
"transpose_offset", [1, 2]
) # [transpose consecutive dimensions, transpose nonconsecutive dimensions]
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_op_dim_reduce_ragged_idx_greater_than_1_different_output_shape(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
func,
transpose_offset,
):
"""
Operator on NestedTensor passes when trying to reduce across a transposed ragged dimension, i.e. ragged_idx > 1
This test is for operators which return an output tensor with a shape different from the input tensor.
"""
if get_op_name(func) == "mean" and not keepdim:
return
op_name = get_op_name(func)
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
include_2d_tensor=True, # (B, *)
)
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > nt._ragged_idx + transpose_offset:
nt_transposed = nt.transpose(
nt._ragged_idx, nt._ragged_idx + transpose_offset
)
reduce_dim = (nt_transposed._ragged_idx,) # ragged
out_actual = func(nt_transposed, dim=reduce_dim, keepdim=keepdim)
out_expected = torch.cat(
[
func(t, dim=(reduce_dim[0] - 1)).unsqueeze(0)
for t in nt_transposed.unbind()
]
)
self.assertFalse(
out_actual.is_nested,
f"{op_name}(): the result of reducing a nested tensor along the ragged dimension is a dense tensor",
) # output is a dense tensor
self.assertTrue(torch.allclose(out_actual, out_expected, rtol=1e-4))
@dtypes(torch.float32)
@parametrize(
"transpose_offset", [1, 2]
) # [transpose consecutive dimensions, transpose nonconsecutive dimensions]
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_dim_reduce_ragged_idx_greater_than_1_same_output_shape(
self,
device,
dtype,
requires_grad,
components_require_grad,
transpose_offset,
):
"""
Softmax on NestedTensor fails when trying to reduce across a transposed ragged dimension, i.e. ragged_idx > 1
This test is for operators which return an output tensor with the same shape as the input tensor.
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
)
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > nt._ragged_idx + transpose_offset:
nt_transposed = nt.transpose(
nt._ragged_idx, nt._ragged_idx + transpose_offset
)
reduce_dim = nt_transposed._ragged_idx # ragged
with self.assertRaisesRegex(
RuntimeError,
"not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor",
):
out = torch.nn.functional.softmax(nt_transposed, dim=reduce_dim)
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_op_dim_transpose_non_ragged_dim_different_output_shape(
self, device, dtype, keepdim, requires_grad, components_require_grad, func
):
"""
Operator passes when reducing transposed nested tensors on valid reduction dimensions.
This test is for operators which return an output tensor with a shape different from the input tensor.
"""
if get_op_name(func) == "mean" and not keepdim:
return
# verify correctness of shapes (assuming that ragged_idx == 1)
if get_op_name(func) == "sum":
reduce_dims = (
((0, 1), (3, 4), (1, 1, 3, 4), (0,)), # batch, ragged
((2, 3), (3, None), (3, None, 1, 1), (1, 2)), # non-batch, non-batch
((0, 1, 3), (3,), (1, 1, 3, 1), (0, 2)), # batch, ragged, non-batch
((0, 1, 2), (4,), (1, 1, 1, 4), (0, 1)), # batch, ragged, non-batch
(
(0, 1, 2, 3),
(),
(1, 1, 1, 1),
(0, 1, 2),
), # batch, ragged, non-batch, non-batch
((2,), (3, None, 4), (3, None, 1, 4), (1,)), # non-batch
) # (dims, expected shape, expected keepdim shape, reduce_dim_expected), where j0 is represented as None
elif get_op_name(func) == "mean":
reduce_dims = (
((2,), (3, None, 4), (3, None, 1, 4), (1,)),
((3,), (3, None, 3), (3, None, 3, 1), (2,)),
)
# verify correctness of values
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
)
for tensor_list, reduce_dim_tuple in itertools.product(
tensor_lists, reduce_dims
):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
).transpose(-1, -2)
reduce_dim, _, _, reduce_dim_expected = reduce_dim_tuple
if nt.dim() > max(
reduce_dim[-1], nt._ragged_idx + 2
): # ensure that transposed dimensions are non-batch, non-ragged dimensions
out_actual = func(nt, dim=reduce_dim, keepdim=keepdim)
if nt._ragged_idx in reduce_dim: # raggedness reduced away
out_expected = func(
nt.values(), dim=reduce_dim_expected, keepdim=keepdim
)
self.assertTrue(torch.allclose(out_actual, out_expected))
else: # raggedness preserved
out_expected = func(nt.values(), dim=reduce_dim_expected)
self.assertTrue(
torch.allclose(
out_actual.values().view(-1), out_expected.view(-1)
)
)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_dim_transpose_non_ragged_dim(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Softmax passes when reducing transposed nested tensors on valid reduction dimensions.
This test is for operators which return an output tensor with the same shape as the input tensor.
"""
# verify correctness of shapes (assuming that ragged_idx == 1)
reduce_dims = (
(2, 1),
(3, 2),
) # (reduction dimension, effective reduction dimension for baseline)
# verify correctness of values
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False,
include_requires_grad=components_require_grad,
include_inner_dim_size_1=True, # (B, *, 1)
)
for tensor_list, reduce_dim_tuple in itertools.product(
tensor_lists, reduce_dims
):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
).transpose(-1, -2)
reduce_dim, reduce_dim_expected = reduce_dim_tuple
if nt.dim() > max(reduce_dim, nt._ragged_idx + 2):
out_actual = torch.nn.functional.softmax(
nt, dim=reduce_dim
) # nested tensor
out_expected = torch.nn.functional.softmax(
nt.values(), dim=reduce_dim_expected
) # dense tensor of dimensions 1 less than out_actual
self.assertTrue(
torch.allclose(out_actual.values().view(-1), out_expected.view(-1))
)
@dtypes(torch.float32)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_sum_dim_reduce_ragged_and_non_batch(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
):
"""
Sum on NestedTensor fails when trying to reduce across ragged and non-batch dimensions
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
)
reduce_dims = (
(1, 2), # ragged, non-batch
(1, 3), # ragged, non-batch
)
for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > reduce_dim[-1]:
with self.assertRaisesRegex(
RuntimeError,
"not supported along a ragged and non-batch dimension for NestedTensor",
):
out = torch.sum(nt, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float32)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_sum_dim_reduce_batch_and_non_batch(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
):
"""
Sum on NestedTensor fails when trying to reduce across batch and non-batch dimensions
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
)
reduce_dims = (
(0, 2), # batch, non-batch
(0, 3), # batch, non-batch
)
for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > reduce_dim[-1]:
with self.assertRaisesRegex(
RuntimeError,
"not supported along the batch dimension but not the ragged dimension for NestedTensor",
):
out = torch.sum(nt, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_op_dim_reduce_batch_only_different_output_shape(
self, device, dtype, keepdim, requires_grad, components_require_grad, func
):
"""
Operator on NestedTensor fails when trying to reduce across batch dimension
"""
if get_op_name(func) == "mean" and not keepdim:
return
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
)
reduce_dim = (0,) # batch
for tensor_list in tensor_lists:
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
with self.assertRaisesRegex(
RuntimeError,
"not supported along the batch dimension but not the ragged dimension for NestedTensor",
):
out = func(nt, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float32)
@parametrize(
"func",
[torch.ops.aten.sum.dim_IntList, torch.ops.aten.mean.dim],
name_fn=get_op_name,
)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_op_dim_with_lengths_different_output_shape(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
func,
):
"""
Operator on NestedTensor fails when trying to reduce a nested tensor with lengths,
i.e. a nested tensor with holes, if reducing on the ragged dimension.
This test is for operators which return an output tensor with different shape than the input tensor.
"""
if get_op_name(func) == "mean" and not keepdim:
return
reduce_dims = ((1,), (2,), (2, 3))
lengths = torch.randint(5, 10, (20,), device=device)
offsets = torch.zeros((21,), device=device, dtype=torch.int)
torch.cumsum(lengths, dim=0, out=offsets[1:])
values = torch.randn(
(offsets[-1].item(), 20),
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
nt_with_holes = torch.nested.nested_tensor_from_jagged(
values,
offsets,
lengths=offsets.diff() - 2, # arbitrary subtraction to create holes
)
for reduce_dim in reduce_dims:
if nt_with_holes.dim() > reduce_dim[-1]:
if nt_with_holes._ragged_idx in reduce_dim:
with self.assertRaisesRegex(
RuntimeError,
"not supported where lengths is not None "
+ "if reducing across the ragged dimension for NestedTensor",
):
out = func(nt_with_holes, dim=reduce_dim, keepdim=keepdim)
else:
out = func(nt_with_holes, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_softmax_dim_with_lengths(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Softmax on NestedTensor fails when trying to reduce a nested tensor with lengths,
i.e. a nested tensor with holes, if reducing on the ragged dimension.
"""
reduce_dims = (1, 2, 3)
lengths = torch.randint(5, 10, (20,), device=device)
offsets = torch.zeros((21,), device=device, dtype=torch.int)
torch.cumsum(lengths, dim=0, out=offsets[1:])
values = torch.randn(
(offsets[-1].item(), 20),
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
nt_with_holes = torch.nested.nested_tensor_from_jagged(
values,
offsets,
lengths=offsets.diff() - 2, # arbitrary subtraction to create holes
)
for reduce_dim in reduce_dims:
if nt_with_holes.dim() > reduce_dim:
if nt_with_holes._ragged_idx == reduce_dim:
with self.assertRaisesRegex(
RuntimeError,
"not supported where lengths is not None "
+ "if reducing across the ragged dimension for NestedTensor",
):
out = torch.nn.functional.softmax(nt_with_holes, dim=reduce_dim)
else:
out = torch.nn.functional.softmax(nt_with_holes, dim=reduce_dim)
@skipIfTorchDynamo(
"ragged_size = nt_with_holes.shape[nt_with_holes._ragged_idx] does not currently work "
+ "with dynamo tests and throws this error: `AssertionError: SymInts must use SymNodeVariable. "
+ "If the underlying value is static, we will create a ConstantVariable and specialize.`"
)
@dtypes(torch.float32)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_layer_norm_with_lengths(
self,
device,
dtype,
requires_grad,
components_require_grad,
):
"""
Layer normalization on NestedTensor fails when trying to operate on a nested tensor with lengths,
i.e. a nested tensor with holes, if operating on the ragged dimension.
"""
# create components for nested tensor
lengths = torch.randint(5, 10, (20,), device=device)
offsets = torch.zeros((21,), device=device, dtype=torch.int)
torch.cumsum(lengths, dim=0, out=offsets[1:])
values = torch.randn(
(offsets[-1].item(), 10, 30),
device=device,
dtype=dtype,
requires_grad=requires_grad,
)
nt_with_holes = torch.nested.nested_tensor_from_jagged(
values,
offsets,
lengths=offsets.diff() - 2, # arbitrary subtraction to create holes
)
ragged_size = nt_with_holes.shape[nt_with_holes._ragged_idx]
normalized_shapes = (
(10, 30), # normalization on non-ragged dimension passes
(ragged_size, 10, 30), # normalization on ragged dimension fails
)
for normalized_shape in normalized_shapes:
if ragged_size in normalized_shape:
with self.assertRaisesRegex(
RuntimeError,
"not supported where lengths is not None if operating on the ragged dimension for NestedTensor",
):
out = torch.nn.functional.layer_norm(
nt_with_holes, normalized_shape=normalized_shape
)
else:
out = torch.nn.functional.layer_norm(
nt_with_holes, normalized_shape=normalized_shape
)
@dtypes(torch.float32)
@parametrize("keepdim", [True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_mean_dim_reduce_multiple_dims(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
):
"""
Mean on NestedTensor fails when trying to reduce across multiple dimensions
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
)
reduce_dims = ((0, 1), (2, 3), (2, 3, 4))
for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > reduce_dim[-1]:
with self.assertRaisesRegex(
RuntimeError,
"not supported across multiple dimensions for NestedTensor",
):
out = torch.mean(nt, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float32)
@parametrize("keepdim", [False, True])
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_mean_dim_keepdim_False(
self,
device,
dtype,
keepdim,
requires_grad,
components_require_grad,
):
"""
Mean on NestedTensor fails when keepdim=False
"""
tensor_lists = self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
)
reduce_dims = ((1,), (2,), (3,))
for tensor_list, reduce_dim in itertools.product(tensor_lists, reduce_dims):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
if nt.dim() > reduce_dim[-1]:
if not keepdim:
with self.assertRaisesRegex(
RuntimeError,
"not supported when keepdim=False for NestedTensor",
):
out = torch.mean(nt, dim=reduce_dim, keepdim=keepdim)
else:
out = torch.mean(nt, dim=reduce_dim, keepdim=keepdim)
@dtypes(torch.float, torch.double, torch.half)
@parametrize("requires_grad", [False, True])
@parametrize("weights_only", [False, True])
def test_serialization(self, device, dtype, requires_grad, weights_only):
def compare_metadata(nt1, nt2):
self.assertEqual(nt1._nested_tensor_size(), nt2._nested_tensor_size())
self.assertEqual(nt1._nested_tensor_strides(), nt2._nested_tensor_strides())
self.assertEqual(
nt1._nested_tensor_storage_offsets(),
nt2._nested_tensor_storage_offsets(),
)
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
for a in [nt_contiguous, nt_noncontiguous]:
buffer = io.BytesIO()
serialized = torch.save(a, buffer)
buffer.seek(0)
b = torch.load(buffer, weights_only=weights_only)
# should be both conceptually equal and metadata equivalent
self.assertEqual(a, b)
compare_metadata(a, b)
# should be conceptually equal but not necessarily metadata equivalent
self.assertEqual(b, nt_contiguous)
self.assertEqual(b, nt_noncontiguous)
@unittest.skipIf(
PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property"
)
@onlyCUDA
def test_pin_memory(self, device):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
for nt in [nt_contiguous, nt_noncontiguous]:
self.assertFalse(nt.is_pinned())
pinned = nt.pin_memory(device)
self.assertTrue(pinned.is_pinned())
self.assertEqual(nt, pinned)
self.assertNotEqual(nt.data_ptr(), pinned.data_ptr())
# test that pin_memory on already pinned tensor has no effect
self.assertIs(pinned, pinned.pin_memory())
self.assertEqual(pinned.data_ptr(), pinned.pin_memory().data_ptr())
@torch.compiler.disable
def _validate_nt(
self,
nt,
device,
dtype,
layout,
requires_grad,
dim,
batch_size,
contiguous,
cached_min_seqlen=None,
cached_max_seqlen=None,
base=None,
ref_nt=None,
):
# Validate a bunch of properties after NT construction.
device = torch.device(device)
self.assertEqual(nt.dim(), dim)
self.assertEqual(nt.device, device)
self.assertEqual(nt.dtype, dtype)
self.assertEqual(nt.layout, layout)
self.assertEqual(nt.requires_grad, requires_grad)
self.assertEqual(nt.is_contiguous(), contiguous)
if layout == torch.jagged:
self.assertEqual(nt._values.device, device)
self.assertEqual(nt._offsets.device, device)
self.assertEqual(nt.shape[0], batch_size)
self.assertTrue(isinstance(nt.shape[1], torch.SymInt))
if base is not None:
self.assertTrue(nt._is_view() and nt._base is base)
replay_cache = nt._view_func(torch.randn_like(nt._base))._metadata_cache
self.assertEqual(
"min_seqlen" in replay_cache, cached_min_seqlen is not None
)
self.assertEqual(
"max_seqlen" in replay_cache, cached_max_seqlen is not None
)
self.assertEqual(
"min_seqlen" in nt._metadata_cache, cached_min_seqlen is not None
)
self.assertEqual(
"max_seqlen" in nt._metadata_cache, cached_max_seqlen is not None
)
if cached_min_seqlen is not None:
self.assertEqual(nt._min_seqlen, cached_min_seqlen)
if cached_max_seqlen is not None:
self.assertEqual(nt._max_seqlen, cached_max_seqlen)
if ref_nt is not None:
self.assertEqual(nt.size(0), ref_nt.size(0))
for n1, n2 in zip(nt.unbind(), ref_nt.unbind()):
self.assertEqual(n1, n2)
@dtypes(torch.float, torch.double, torch.half)
@parametrize("requires_grad", [False, True])
@parametrize("components_require_grad", [False, True])
def test_jagged_layout_construction_nested_tensor(
self, device, dtype, requires_grad, components_require_grad
):
for tensor_list in self._get_example_tensor_lists(
include_list_of_lists=True, include_requires_grad=components_require_grad
):
nt = torch.nested.nested_tensor(
tensor_list,
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=requires_grad,
)
expected_dim = torch.as_tensor(tensor_list[0]).dim() + 1
expected_batch_size = len(tensor_list)
expected_contiguous = True
expected_min_seqlen = min(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
expected_max_seqlen = max(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
requires_grad,
expected_dim,
expected_batch_size,
expected_contiguous,
expected_min_seqlen,
expected_max_seqlen,
)
# Make sure grads -don't- flow back into original tensors for nested_tensor()
if requires_grad:
(nt * 2).backward(torch.ones_like(nt))
for t in tensor_list:
t = t if isinstance(t, torch.Tensor) else torch.as_tensor(t)
self.assertTrue(t.grad is None)
@dtypes(torch.float, torch.double, torch.half)
@parametrize("components_require_grad", [False, True])
def test_jagged_layout_construction_as_nested_tensor(
self, device, dtype, components_require_grad
):
# NB: as_nested_tensor(tensor_list) doesn't support lists of lists for tensor_list
for tensor_list in self._get_example_tensor_lists(
include_list_of_lists=False, include_requires_grad=components_require_grad
):
nt = torch.nested.as_nested_tensor(
tensor_list, device=device, dtype=dtype, layout=torch.jagged
)
# nt.requires_grad=True should be set if at least one component requires grad
expected_dim = tensor_list[0].dim() + 1
expected_batch_size = len(tensor_list)
expected_contiguous = True
expected_min_seqlen = min(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
expected_max_seqlen = max(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
components_require_grad,
expected_dim,
expected_batch_size,
expected_contiguous,
expected_min_seqlen,
expected_max_seqlen,
)
# Make sure grads flow back into original tensors for as_nested_tensor()
if components_require_grad:
(nt * 2).backward(torch.ones_like(nt))
for t in tensor_list:
if t.requires_grad:
self.assertEqual(t.grad, torch.ones_like(t) * 2)
else:
self.assertTrue(t.grad is None)
@xfailIfTorchDynamo
@unittest.skipIf(
PYTORCH_CUDA_MEMCHECK, "is_pinned uses failure to detect pointer property"
)
@onlyCUDA
def test_jagged_layout_construction_with_pinned_memory(self, device):
for tensor_list in self._get_example_tensor_lists():
nt = torch.nested.nested_tensor(
tensor_list, layout=torch.jagged, device="cpu", pin_memory=True
)
expected_dim = torch.as_tensor(tensor_list[0]).dim() + 1
expected_batch_size = len(tensor_list)
expected_min_seqlen = min(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
expected_max_seqlen = max(
(torch.tensor(t) if isinstance(t, list) else t).shape[0]
for t in tensor_list
)
self._validate_nt(
nt,
device="cpu",
dtype=torch.float32,
layout=torch.jagged,
requires_grad=False,
dim=expected_dim,
batch_size=expected_batch_size,
contiguous=True,
cached_min_seqlen=expected_min_seqlen,
cached_max_seqlen=expected_max_seqlen,
)
self.assertTrue(nt.is_pinned())
@dtypes(torch.float, torch.double, torch.half)
@parametrize("requires_grad", [False, True])
@parametrize("values_is_view", [False, True])
def test_jagged_view_from_values_offsets(
self, device, dtype, requires_grad, values_is_view
):
if values_is_view:
# make values a view of base
base = torch.randn(
2, 3, 4, 5, 6, device=device, dtype=dtype, requires_grad=requires_grad
)
values = base.flatten(0, -2)
else:
values = torch.randn(
10, 5, device=device, dtype=dtype, requires_grad=requires_grad
)
offsets = torch.tensor([0, 2, 4, 6, 10], device=device, dtype=torch.int64)
nt = nested_view_from_values_offsets(values, offsets)
expected_dim = values.dim() + 1
expected_batch_size = offsets.shape[0] - 1
expected_base = base if values_is_view else values
lengths = offsets.diff()
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
requires_grad,
expected_dim,
expected_batch_size,
# ensure NT is a proper view
base=expected_base,
contiguous=True,
# if no min / max are passed, expect the metadata cache to be empty
cached_min_seqlen=None,
cached_max_seqlen=None,
)
if requires_grad:
# Make sure grads flow back
(nt * 2).backward(torch.ones_like(nt))
@torch.compiler.disable
def _check_grad(t):
self.assertTrue(t.grad is not None)
self.assertEqual(t.grad, torch.ones_like(t) * 2)
_check_grad(base if values_is_view else values)
@dtypes(torch.float)
@parametrize("pass_min_max", [False, True])
def test_nested_tensor_from_jagged(self, device, dtype, pass_min_max):
# === construct from (values, offsets) ===
values = torch.randn(10, 5, device=device, dtype=dtype)
offsets = torch.tensor([0, 2, 4, 6, 10], device=device, dtype=torch.int64)
# compute min / max seqlen
lengths = offsets.diff()
min_seqlen = lengths.min().item()
max_seqlen = lengths.max().item()
if pass_min_max:
nt = torch.nested.nested_tensor_from_jagged(
values, offsets=offsets, min_seqlen=min_seqlen, max_seqlen=max_seqlen
)
else:
nt = torch.nested.nested_tensor_from_jagged(values, offsets=offsets)
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
requires_grad=False,
dim=3,
batch_size=4,
contiguous=True,
cached_min_seqlen=(min_seqlen if pass_min_max else None),
cached_max_seqlen=(max_seqlen if pass_min_max else None),
base=values,
)
# === construct from (values, offsets, lengths) ===
lengths = torch.tensor([2, 1, 1, 2], device=device)
# compute min / max seqlen
min_seqlen = lengths.min().item()
max_seqlen = lengths.max().item()
if pass_min_max:
nt = torch.nested.nested_tensor_from_jagged(
values,
offsets=offsets,
lengths=lengths,
min_seqlen=min_seqlen,
max_seqlen=max_seqlen,
)
else:
nt = torch.nested.nested_tensor_from_jagged(
values, offsets=offsets, lengths=lengths
)
# when both offsets / lengths are specified, expect non-contiguous
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
requires_grad=False,
dim=3,
batch_size=4,
contiguous=False,
cached_min_seqlen=(min_seqlen if pass_min_max else None),
cached_max_seqlen=(max_seqlen if pass_min_max else None),
base=values,
)
self.assertIs(nt.lengths(), lengths)
# === construct from (values, lengths) ===
values = torch.randn(14, 5, device=device, dtype=dtype)
lengths = torch.tensor([2, 3, 4, 5], device=device)
# compute min / max seqlen
min_seqlen = lengths.min().item()
max_seqlen = lengths.max().item()
if pass_min_max:
nt = torch.nested.nested_tensor_from_jagged(
values, lengths=lengths, min_seqlen=min_seqlen, max_seqlen=max_seqlen
)
else:
nt = torch.nested.nested_tensor_from_jagged(values, lengths=lengths)
# for now, if only lengths is specified, convert to offsets to integrate best with the
# existing kernels
expected_offsets = torch.tensor([0, 2, 5, 9, 14], device=device)
expected_nt = torch.nested.nested_tensor_from_jagged(
values, offsets=expected_offsets
)
self._validate_nt(
nt,
device,
dtype,
torch.jagged,
requires_grad=False,
dim=3,
batch_size=4,
contiguous=True,
cached_min_seqlen=(min_seqlen if pass_min_max else None),
cached_max_seqlen=(max_seqlen if pass_min_max else None),
base=values,
ref_nt=expected_nt,
)
# error case: no offsets or lengths
with self.assertRaisesRegex(
RuntimeError, "At least one of offsets or lengths is required"
):
torch.nested.nested_tensor_from_jagged(values, offsets=None, lengths=None)
@onlyCPU
def test_nested_tensor_from_jagged_fx_trace(self, device):
def fn(x, y):
return torch.nested.nested_tensor_from_jagged(x, y)
def user_unwrapped(x, y):
return fn(x, y)
with self.assertRaisesRegex(
RuntimeError,
"torch.nested.nested_tensor_from_jagged does not support tracing with fx.symbolic_trace",
):
torch.fx.symbolic_trace(user_unwrapped)
@dtypes(torch.float, torch.double, torch.half)
@parametrize("dim", range(5))
@parametrize(
"layout",
[torch.strided, torch.jagged],
name_fn=lambda l: f"layout_{str(l).split('.')[1]}",
)
@parametrize("requires_grad", [False, True])
@parametrize("contiguous", [False, True])
def test_as_nested_tensor_from_tensor(
self, device, dtype, dim, layout, requires_grad, contiguous
):
if dim == 0:
t = torch.tensor(3.0, requires_grad=requires_grad)
else:
t = torch.randn(*(3 for _ in range(dim)), requires_grad=requires_grad)
assert t.dim() == dim
if dim < 2:
# 0-1 dim tensors can't be converted to NTs
with self.assertRaisesRegex(
RuntimeError, "Expected tensor argument to have dim"
):
nt = torch.nested.as_nested_tensor(
t, device=device, dtype=dtype, layout=layout
)
return
orig_t = t
if not contiguous:
t = t.transpose(0, 1)
nt = torch.nested.as_nested_tensor(t, device=device, dtype=dtype, layout=layout)
expected_dim = t.dim()
expected_batch_size = t.size(0)
expected_seqlen = t.size(1) if layout == torch.jagged else None
self._validate_nt(
nt,
device,
dtype,
layout,
requires_grad=requires_grad,
dim=dim,
batch_size=expected_batch_size,
contiguous=True,
cached_min_seqlen=expected_seqlen,
cached_max_seqlen=expected_seqlen,
)
if torch.device(device) == t.device and dtype == t.dtype and contiguous:
# should be the non-copying (view) case
self.assertTrue(nt._is_view() and nt._base is t)
# should have equivalent components to construction from unbound tensor list
nt_from_unbind = torch.nested.as_nested_tensor(
list(t.unbind(0)), device=device, dtype=dtype, layout=layout
)
self.assertEqualIgnoringNestedInts(nt, nt_from_unbind)
# ensure call on a NT with the same properties returns the NT directly
nt2 = torch.nested.as_nested_tensor(
nt, device=device, dtype=dtype, layout=layout
)
self.assertTrue(nt is nt2)
# ensure call with device=None uses input tensor device
nt3 = torch.nested.as_nested_tensor(
t.to(device=device, dtype=dtype),
device=None,
dtype=None,
layout=layout,
)
self._validate_nt(
nt3,
device,
dtype,
layout,
requires_grad=requires_grad,
dim=dim,
batch_size=expected_batch_size,
contiguous=True,
cached_min_seqlen=expected_seqlen,
cached_max_seqlen=expected_seqlen,
)
# we don't support conversion between layouts this way atm
other_layout = torch.strided if layout == torch.jagged else torch.jagged
with self.assertRaisesRegex(
RuntimeError, "Converting between nested tensor layouts is not supported"
):
torch.nested.as_nested_tensor(
nt, device=device, dtype=dtype, layout=other_layout
)
if requires_grad:
# make sure gradients flow back into inputs
(nt * 2).backward(torch.ones_like(nt))
self.assertEqual(orig_t.grad, torch.ones_like(orig_t) * 2)
@dtypes(torch.double, torch.half)
@onlyCUDA
def test_device_dtype_transfer_updates_offsets(self, device, dtype):
for tensor_list in self._get_example_tensor_lists():
orig_device = torch.device("cpu")
orig_dtype = torch.float32
nt = torch.nested.nested_tensor(
tensor_list, layout=torch.jagged, device=orig_device, dtype=orig_dtype
)
self.assertEqual(torch.int64, nt.offsets().dtype)
nt = nt.to(device=device).to(dtype=dtype)
# offsets should still be int64 on the new device
self.assertEqual(nt.values().device, nt.offsets().device)
self.assertEqual(torch.int64, nt.offsets().dtype)
def test_unbind(self, device):
for tensor_list in self._get_example_tensor_lists():
nt = torch.nested.nested_tensor(
tensor_list, layout=torch.jagged, device=device
) # ragged_idx = 1
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(t, tensor_list[i])
@parametrize("ragged_idx", [2, 3])
def test_unbind_transpose(self, device, ragged_idx):
for tensor_list in self._get_example_tensor_lists():
nt = torch.nested.nested_tensor(
tensor_list, layout=torch.jagged, device=device
)
if ragged_idx < nt.dim():
nt = nt.transpose(1, ragged_idx) # set ragged_idx
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(
t.transpose(0, ragged_idx - 1), tensor_list[i]
) # transpose back each element of result
def test_unbind_transpose_ragged_idx_last_dim(self, device):
for tensor_list in self._get_example_tensor_lists():
nt = torch.nested.nested_tensor(
tensor_list, layout=torch.jagged, device=device
).transpose(1, -1) # set ragged_idx = last dimension
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(
t.transpose(0, -1), tensor_list[i]
) # transpose back each element of result
def test_unbind_lengths(self, device):
values = torch.randn(16, 128, device=device)
offsets = torch.tensor([0, 8, 12, 13, 16], device=device)
lengths = torch.tensor([6, 2, 1, 2], device=device)
nt = torch.nested.nested_tensor_from_jagged(
values, offsets=offsets, lengths=lengths
) # 3D nested tensor
tensor_list = []
for i in range(offsets.shape[0] - 1):
tensor_list.append(values[offsets[i] : (offsets[i] + lengths[i])])
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(t, tensor_list[i])
def test_unbind_lengths_ragged_idx_1(self, device):
values = torch.randn(16, 8, 128, device=device)
offsets = torch.tensor([0, 8, 12, 13, 16], device=device)
lengths = torch.tensor([6, 2, 1, 2], device=device)
ragged_idx = 1
nt = torch.nested._internal.nested_tensor.NestedTensor(
values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx
) # 4D nested tensor
tensor_list = []
for i in range(offsets.shape[0] - 1):
tensor_list.append(values[offsets[i] : (offsets[i] + lengths[i]), :, :])
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(t, tensor_list[i])
def test_unbind_lengths_ragged_idx_equals_2_bad_dim(self, device):
values = torch.randn(16, 8, 128, device=device)
offsets = torch.tensor([0, 8, 12, 13, 16], device=device)
lengths = torch.tensor([6, 2, 1, 2], device=device)
ragged_idx = 2
nt = torch.nested._internal.nested_tensor.NestedTensor(
values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx
) # 4D nested tensor
self.assertRaisesRegex(
RuntimeError,
r"unbind\(\): nested tensor offsets and lengths.*",
lambda: nt.unbind(),
)
def test_unbind_lengths_ragged_idx_2(self, device):
values = torch.randn(16, 8, 128, device=device)
offsets = torch.tensor([0, 2, 4, 8], device=device)
lengths = torch.tensor([2, 1, 3], device=device)
ragged_idx = 2
nt = torch.nested._internal.nested_tensor.NestedTensor(
values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx
) # 4D nested tensor
tensor_list = []
for i in range(offsets.shape[0] - 1):
tensor_list.append(values[:, offsets[i] : (offsets[i] + lengths[i]), :])
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(t, tensor_list[i])
def test_unbind_lengths_ragged_idx_3(self, device):
values = torch.randn(16, 8, 128, device=device)
offsets = torch.tensor([0, 100, 128], device=device)
lengths = torch.tensor([50, 28], device=device)
ragged_idx = 3
nt = torch.nested._internal.nested_tensor.NestedTensor(
values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx
) # 4D nested tensor
tensor_list = []
for i in range(offsets.shape[0] - 1):
tensor_list.append(values[:, :, offsets[i] : (offsets[i] + lengths[i])])
out = nt.unbind()
self.assertEqual(len(out), len(tensor_list))
for i, t in enumerate(out):
self.assertEqual(t, tensor_list[i])
@skipIfTorchDynamo(
"TorchDynamo raises an error for ragged_idx == 0 earlier than Torch"
)
def test_unbind_lengths_ragged_idx_0(self, device):
values = torch.randn(16, 8, 128, device=device)
offsets = torch.tensor([0, 100, 128], device=device)
lengths = torch.tensor([50, 28], device=device)
ragged_idx = 0
nt = torch.nested._internal.nested_tensor.NestedTensor(
values, offsets=offsets, lengths=lengths, _ragged_idx=ragged_idx
) # 4D nested tensor
tensor_list = []
for i in range(offsets.shape[0] - 1):
tensor_list.append(values[:, :, offsets[i] : (offsets[i] + lengths[i])])
self.assertRaisesRegex(
RuntimeError,
r"unbind\(\): nested tensor.*out of bounds",
lambda: nt.unbind(),
)
def test_narrow(self, device):
starts = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64)
lengths = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64)
buffer = (
torch.arange(0, 10, device=device, dtype=torch.int64)
.unsqueeze(0)
.expand(5, -1)
.clone()
.detach()
)
nt = torch.nested.narrow(buffer, 1, starts, lengths, layout=torch.jagged)
self.assertTrue(nt._is_view() and nt._base is buffer)
# TODO: Use this approach when unbind is functional
# unbinded_nt = nt.unbind()
# for i in range(starts.shape[0]):
# self.assertEqual(torch.arange(starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64), unbinded_nt[i])
for i in range(starts.shape[0]):
self.assertEqual(
torch.arange(
starts[i], starts[i] + lengths[i], device=device, dtype=torch.int64
),
nt.values()[nt.offsets()[i] : (nt.offsets()[i] + nt.lengths()[i])],
)
def test_njt_cat(self, device):
offsets = torch.tensor([0, 2, 3], device=device, dtype=torch.int64)
values_1 = torch.randn(
3, 2, dtype=torch.float64, device=device, requires_grad=True
)
values_2 = torch.randn(
3, 4, dtype=torch.float64, device=device, requires_grad=True
)
def grad_test_func(values_1, values_2, offsets):
nt_1 = torch.nested.nested_tensor_from_jagged(values_1, offsets)
nt_2 = torch.nested.nested_tensor_from_jagged(values_2, offsets)
nt_3 = torch.cat([nt_1, nt_2], dim=-1)
return nt_3.values()
assert gradcheck(
grad_test_func,
inputs=(values_1, values_2, offsets),
check_batched_grad=False,
)
def test_is_contiguous(self, device):
a = torch.randn(2, 3, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, requires_grad=True, dtype=torch.float64, device=device)
nt_contiguous = torch.nested.as_nested_tensor([a, b, c], layout=torch.jagged)
starts_nc = torch.tensor([0, 1, 2, 3, 4], device=device, dtype=torch.int64)
lengths_nc = torch.tensor([3, 2, 2, 1, 5], device=device, dtype=torch.int64)
narrow_base = (
torch.arange(0, 10, device=device, dtype=torch.int64)
.unsqueeze(0)
.expand(5, -1)
.clone()
)
nt_noncontiguous = torch.nested.narrow(
narrow_base, 1, starts_nc, lengths_nc, layout=torch.jagged
)
starts_c = torch.tensor([1, 0, 0, 0, 0], device=device, dtype=torch.int64)
lengths_c = torch.tensor([9, 10, 10, 10, 8], device=device, dtype=torch.int64)
nt_contiguous_narrow = torch.nested.narrow(
narrow_base, 1, starts_c, lengths_c, layout=torch.jagged
)
# Test contiguous case
assert nt_contiguous.is_contiguous()
# Test narrow case
assert not nt_noncontiguous.is_contiguous()
assert nt_contiguous_narrow.is_contiguous()
# Test querying by memory_format
self.assertTrue(
nt_contiguous.is_contiguous(memory_format=torch.contiguous_format)
)
self.assertTrue(
not nt_noncontiguous.is_contiguous(memory_format=torch.contiguous_format)
)
self.assertTrue(
nt_contiguous_narrow.is_contiguous(memory_format=torch.contiguous_format)
)
def test_layout_under_torch_dispatch_mode(self):
from torch.testing._internal.logging_tensor import (
capture_logs_with_logging_tensor_mode,
)
nt = random_nt_from_dims(
[2, None, 3], torch.device("cpu"), torch.float32, layout=torch.jagged
)
with capture_logs_with_logging_tensor_mode():
self.assertEqual(nt.layout, torch.jagged)
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
@parametrize(
"func", [torch.empty_like, torch.randn_like], name_fn=lambda f: f.__name__
)
def test_like_shape(self, func):
nt = random_nt_from_dims(
[2, None, 3], torch.device("cpu"), torch.float32, layout=torch.jagged
)
nt_like = func(nt)
for nt_ub in nt_like.unbind():
t_like = func(nt_ub)
self.assertEqual(nt_ub.shape, t_like.shape)
@skipIfTorchDynamo("Not a suitable test for TorchDynamo")
@parametrize(
"func", [torch.ones_like, torch.zeros_like], name_fn=lambda f: f.__name__
)
def test_like_value(self, func):
nt = random_nt_from_dims(
[2, None, 3], torch.device("cpu"), torch.float32, layout=torch.jagged
)
nt_like = func(nt)
for nt_ub in nt_like.unbind():
t_like = func(nt_ub)
self.assertEqual(nt_ub, t_like)
def test_noncontiguous_pointwise(self, device):
a = torch.randn(2, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
b = torch.randn(3, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
c = torch.randn(4, 3, 4, requires_grad=True, dtype=torch.float64, device=device)
nt = torch.nested.nested_tensor([a, b, c], layout=torch.jagged)
# transpose ragged dim
transposed = nt.transpose(1, 2)
self.assertFalse(transposed.is_contiguous())
clone = transposed.clone()
def check_nt_equality(x, y):
self.assertEqual(x.values(), y.values())
self.assertEqual(x.offsets(), y.offsets())
self.assertEqual(x._ragged_idx, y._ragged_idx)
self.assertEqual(x.shape, y.shape)
self.assertFalse(clone.is_contiguous())
check_nt_equality(clone, transposed)
clone_contig = transposed.clone(memory_format=torch.contiguous_format)
self.assertTrue(clone_contig.is_contiguous())
check_nt_equality(clone_contig, transposed)
detached = transposed.detach()
self.assertFalse(clone.is_contiguous())
check_nt_equality(detached, transposed)
def test_permute(self, device):
nt = random_nt_from_dims(
[2, None, 3, 5], device, torch.float32, layout=torch.jagged
)
nt_shape = nt.shape
nt_inner_shape = nt.values().shape
with self.assertRaisesRegex(
ValueError,
r"permute\(\): number of dimensions in the tensor input \(4\) "
+ r"does not match the length of the desired ordering of dimensions \(3\).",
):
nt.permute(0, 2, 1)
with self.assertRaisesRegex(
ValueError, r"permute\(\): duplicate dims are not allowed."
):
nt.permute(0, 2, -2, 3)
with self.assertRaisesRegex(
ValueError, "Permute is not supported on the batch dimension for jagged NT"
):
nt.permute(1, 0, 2, 3)
nt_permute = nt.permute(0, 2, 1, -1)
self.assertEqual(
nt_permute.shape, (nt_shape[0], nt_shape[2], nt_shape[1], nt_shape[3])
)
self.assertEqual(
nt_permute.values().shape,
(nt_inner_shape[1], nt_inner_shape[0], nt_inner_shape[2]),
)
self.assertEqual(nt_permute._ragged_idx, 2)
self.assertEqual(nt_permute.permute(0, 2, 1, 3), nt)
def test_to_dtype(self, device):
nt = random_nt_from_dims(
[2, None, 3], device, torch.float32, layout=torch.jagged
)
nt_after = nt.to(torch.float64)
self.assertEqual(torch.float32, nt.dtype)
self.assertEqual(torch.float64, nt_after.dtype)
self.assertEqual(torch.float64, nt_after.values().dtype)
self.assertEqual(torch.int64, nt_after.offsets().dtype)
noncontiguous_nt = nt.transpose(1, 2)
noncontiguous_nt_after = noncontiguous_nt.to(torch.bfloat16)
self.assertEqual(torch.bfloat16, noncontiguous_nt_after.dtype)
self.assertEqual(torch.bfloat16, noncontiguous_nt_after.values().dtype)
self.assertEqual(torch.int64, noncontiguous_nt_after.offsets().dtype)
def test_to_copy(self, device):
nt = torch.nested.nested_tensor(
[
torch.randn(
i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device
)
for i in range(3)
],
layout=torch.jagged,
)
nt_copy_dtype = torch.ops.aten._to_copy(nt, dtype=torch.float16)
self.assertEqual(torch.float16, nt_copy_dtype.dtype)
nt_t = nt.transpose(1, 2)
nt_t_copy_dtype = torch.ops.aten._to_copy(nt_t, dtype=torch.float16)
self.assertEqual(torch.float16, nt_t_copy_dtype.dtype)
def test_copy_(self, device):
offsets = torch.tensor([0, 2, 4], device=device)
a = torch.nested.nested_tensor_from_jagged(
torch.zeros(4, 3, device=device), offsets
)
b = torch.nested.nested_tensor_from_jagged(
torch.ones(4, 3, device=device), offsets
)
a.copy_(b)
torch._dynamo.disable(self.assertEqual)(a, b)
offsets_2 = torch.tensor([0, 2, 4], device=device)
c = torch.nested.nested_tensor_from_jagged(
torch.ones(4, 3, device=device), offsets_2
)
# fail when tensors have the same size but not the exact same offset tensor.
with self.assertRaisesRegex(
RuntimeError,
"copy_ only supports Nested Tensors that have same size and the exact same offset tensor.",
):
a.copy_(c)
# fail when tensors have different sizes
a = a.transpose(1, 2)
with self.assertRaisesRegex(
RuntimeError,
"copy_ only supports Nested Tensors that have same size and the exact same offset tensor.",
):
a.copy_(b)
@skipIfTorchDynamo("Dynamo doesn't know how to trace prof.events()")
def test_profiler_sequence_nr(self):
with torch.profiler.profile() as prof:
values = torch.randn(4, 6, requires_grad=True)
offsets = torch.tensor([0, 2, 4])
values = values * 2
l = torch.nn.Linear(6, 8)
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
nt = l(nt)
val = nt.values()
loss = val.sum()
loss.backward()
fwd_seq_nrs = []
for evt in prof.events():
if (
"linear" in evt.name.lower()
and "backward" not in evt.name.lower()
and evt.sequence_nr != -1
):
fwd_seq_nrs.append(evt.sequence_nr)
bwd_seq_nrs = []
for evt in prof.events():
if (
"linear" in evt.name.lower()
and "backward" in evt.name.lower()
and "evaluate_function" not in evt.name.lower()
and evt.sequence_nr != -1
):
bwd_seq_nrs.append(evt.sequence_nr)
# There should only be one such event with a sequence number:
# the PythonTLSSnapshot event - but, note that it's not terrible if
# we end up with multiple events with the same sequence number - so we
# could relax this check if it becomes inconvenient to maintain this
# property.
self.assertEqual(len(fwd_seq_nrs), 1)
self.assertEqual(len(bwd_seq_nrs), 1)
self.assertEqual(fwd_seq_nrs[0], bwd_seq_nrs[0])
def test_is_same_size(self, device):
def get_3_tensors():
return [
torch.randn(
i + 2, 3, 4, requires_grad=True, dtype=torch.float64, device=device
)
for i in range(3)
]
nt1, offsets1 = jagged_from_list(get_3_tensors(), None)
nt2, offsets1 = jagged_from_list(get_3_tensors(), offsets1)
nt3, offsets2 = jagged_from_list(get_3_tensors(), None)
nt4, offsets2 = jagged_from_list(get_3_tensors(), offsets2)
def check_size(nt1, nt2, nt3, nt4):
self.assertTrue(torch.ops.aten.is_same_size(nt1, nt2))
self.assertTrue(torch.ops.aten.is_same_size(nt3, nt4))
self.assertFalse(torch.ops.aten.is_same_size(nt1, nt3))
check_size(nt1, nt2, nt3, nt4)
nt1_t, nt2_t, nt3_t, nt4_t = (x.transpose(1, 2) for x in (nt1, nt2, nt3, nt4))
check_size(nt1_t, nt2_t, nt3_t, nt4_t)
@skipIfTorchDynamo("compiles internally")
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
def test_specialize_dynamic_shape(self, device):
values = torch.randn((18, 16), device=device)
offsets = torch.tensor([0, 2, 3, 6, 15, 18], device=device)
like_values = torch.randn_like(values)
# this marks values as dynamic
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
def fn(values, same_size):
# here, the dynamic shape is specialized by same_size's shape
# https://github.com/pytorch/pytorch/issues/127097
# make sure this doesn't error out in torch.compile
return values + same_size
self.assertEqual(
fn(values, like_values),
torch.compile(fn)(values, like_values),
)
@skipIfTorchDynamo("compiles internally")
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
def test_specialize_dynamic_shape_recompile(self, device):
def generate_inp(total_len):
values = torch.randn((total_len, 16), device=device)
offsets = torch.tensor([0, 2, 3, 6, 15, total_len], device=device)
like_values = torch.randn_like(values)
return values, offsets, like_values
def check_results(ref_fn, res_fn, args):
values, offsets, like_values = args
# this may add dynamic shape markings
# goal of this test is to make sure that whatever markings are there,
# we eventually stop recompiling as shape changes.
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
self.assertEqual(ref_fn(values, like_values), res_fn(values, like_values))
def fn(values, same_size):
return values + same_size
compile_counter = torch._dynamo.testing.CompileCounter()
compiled_fn = torch._dynamo.optimize(compile_counter, nopython=True)(fn)
check_results(fn, compiled_fn, generate_inp(18))
self.assertEqual(compile_counter.frame_count, 1)
check_results(fn, compiled_fn, generate_inp(19))
# we'll probably recompile here with dynamic shapes - it's okay if not though.
frame_count_2 = compile_counter.frame_count
self.assertIn(frame_count_2, [1, 2])
# make sure that by now we've already compiled with dynamic shapes, so additional
# shapes should not trigger additional recompiles.
check_results(fn, compiled_fn, generate_inp(20))
self.assertEqual(compile_counter.frame_count, frame_count_2)
# Note 1: Math fallback doesn't work with bfloat16 on CUDA
# Note 2: ROCm doesn't support flash attention or mem_efficient attention for NT
@unittest.skipIf(
TEST_WITH_ROCM,
"ROCm doesn't support flash attention or mem_efficient attention for NT",
)
@dtypes(
*(
[torch.float16, torch.bfloat16, torch.float32]
if SM80OrLater
else [torch.float16, torch.float32]
)
)
def test_sdpa(self, device, dtype):
batch_size = 1
emb_dims = 128
n_heads = 8
head_dims = emb_dims // n_heads
sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device)
sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device)
query = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
key = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
value = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
# Simplest case: 1 sentence, no batching
x_d1 = sen1.unsqueeze(0)
x_nt = torch.nested.as_nested_tensor([sen1], layout=torch.jagged)
# See note below for why we detach here.
q_d1 = (
query(x_d1)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
q_d1_t = q_d1.transpose(1, 2)
k_d1 = (
key(x_d1)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
k_d1_t = k_d1.transpose(1, 2)
v_d1 = (
value(x_d1)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
v_d1_t = v_d1.transpose(1, 2)
q_nt = (
query(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
q_nt_t = q_nt.transpose(1, 2)
k_nt = (
key(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
k_nt_t = k_nt.transpose(1, 2)
v_nt = (
value(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
v_nt_t = v_nt.transpose(1, 2)
# High Precision Math Reference
q_d1_f32 = q_d1.to(torch.float32)
k_d1_f32 = k_d1.to(torch.float32)
v_d1_f32 = v_d1.to(torch.float32)
q_d1_f32_t = q_d1_f32.transpose(1, 2)
k_d1_f32_t = k_d1_f32.transpose(1, 2)
v_d1_f32_t = v_d1_f32.transpose(1, 2)
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
q_d1_f32_t, k_d1_f32_t, v_d1_f32_t
)[0]
grads_ref = torch.autograd.grad(out_ref.sum(), (q_d1_f32, k_d1_f32, v_d1_f32))
# Low Precision Math Reference
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
q_d1_t, k_d1_t, v_d1_t
)[0]
grads_lp_ref = torch.autograd.grad(out_lp_ref.sum(), (q_d1, k_d1, v_d1))
# Compute tolerances
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
grad_q_ref_atol, grad_q_ref_rtol = get_tolerances(grads_ref[0], grads_lp_ref[0])
grad_k_ref_atol, grad_k_ref_rtol = get_tolerances(grads_ref[1], grads_lp_ref[1])
grad_v_ref_atol, grad_v_ref_rtol = get_tolerances(grads_ref[2], grads_lp_ref[2])
grad_atols = [grad_q_ref_atol, grad_k_ref_atol, grad_v_ref_atol]
grad_rtols = [grad_q_ref_rtol, grad_k_ref_rtol, grad_v_ref_rtol]
attn_d1 = torch.nn.functional.scaled_dot_product_attention(
q_d1_t, k_d1_t, v_d1_t
).transpose(1, 2)
attn_nt = torch.nn.functional.scaled_dot_product_attention(
q_nt_t, k_nt_t, v_nt_t
).transpose(1, 2)
self.assertEqual(
attn_d1,
attn_nt.unbind()[0].unsqueeze(0),
atol=output_ref_atol,
rtol=output_ref_rtol,
)
# Simple case: 2 sentences, no extra params
x_d2 = sen2.unsqueeze(0)
x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged)
# NB: we make sure the leaf tensor we compute gradients for is the view-ed tensor before
# it is transposed. This is because today we cannot backward through view or unbind a
# transposed tensor.
q_d2 = (
query(x_d2)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
q_d2_t = q_d2.transpose(1, 2)
k_d2 = (
key(x_d2)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
k_d2_t = k_d2.transpose(1, 2)
v_d2 = (
value(x_d2)
.view(batch_size, -1, n_heads, head_dims)
.detach()
.requires_grad_(True)
)
v_d2_t = v_d2.transpose(1, 2)
q_nt = (
query(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
q_nt_t = q_nt.transpose(1, 2)
k_nt = (
key(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
k_nt_t = k_nt.transpose(1, 2)
v_nt = (
value(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.requires_grad_(True)
)
v_nt_t = v_nt.transpose(1, 2)
attn_d2 = torch.nn.functional.scaled_dot_product_attention(
q_d2_t, k_d2_t, v_d2_t
).transpose(1, 2)
d1_grads = torch.autograd.grad(attn_d1.sum(), (q_d1, k_d1, v_d1))
d2_grads = torch.autograd.grad(attn_d2.sum(), (q_d2, k_d2, v_d2))
# Simple case 3: batch_size = 1, seq_len = 1
q_3 = torch.randn(1, 8, 16, dtype=dtype, device=device)
q_nt_3 = torch.nested.as_nested_tensor([q_3], layout=torch.jagged)
q_nt_3 = q_nt_3.transpose(1, 2)
attn_out = torch.nn.functional.scaled_dot_product_attention(
q_nt_3, q_nt_3, q_nt_3
)
self.assertEqual(attn_out.shape, q_nt_3.shape)
def check_forward_backward():
attn_nt = torch.nn.functional.scaled_dot_product_attention(
q_nt_t, k_nt_t, v_nt_t
).transpose(1, 2)
attn_nts = attn_nt.unbind()
self.assertEqual(
attn_d1,
attn_nts[0].unsqueeze(0),
atol=output_ref_atol,
rtol=output_ref_rtol,
)
self.assertEqual(
attn_d2,
attn_nts[1].unsqueeze(0),
atol=output_ref_atol,
rtol=output_ref_rtol,
)
nt_grads = torch.autograd.grad(attn_nt.values().sum(), (q_nt, k_nt, v_nt))
for nt_grad, d1_grad, d2_grad, grad_atol, grad_rtol in zip(
nt_grads, d1_grads, d2_grads, grad_atols, grad_rtols
):
unbound_nt_grads = nt_grad.unbind()
self.assertEqual(
d1_grad,
unbound_nt_grads[0].unsqueeze(0),
atol=grad_atol,
rtol=grad_rtol,
)
self.assertEqual(
d2_grad,
unbound_nt_grads[1].unsqueeze(0),
atol=grad_atol,
rtol=grad_rtol,
)
# Default
check_forward_backward()
# Test dispatcher works by calling only mem-effn and math (as they are safe for all devices)
with torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_mem_efficient=True, enable_math=True
):
check_forward_backward()
# Test math fallback
with torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_mem_efficient=False, enable_math=True
):
# Math fallback doesn't work with bfloat16 on CUDA because
# "group_gemm_dispatch" not implemented for 'BFloat16'
if not (str(device).startswith("cuda") and dtype == torch.bfloat16):
check_forward_backward()
@skipIfTorchDynamo("SDPA test compiles internally")
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
# Guarding with sqrt() doesn't work on ROCm?
@skipCUDAIfRocm
@onlyCUDA
@dtypes(
*(
[torch.float16, torch.bfloat16, torch.float32]
if SM80OrLater
else [torch.float16, torch.float32]
)
)
def test_sdpa_compile(self, device, dtype):
batch_size = 1
emb_dims = 1024
n_heads = 8
head_dims = emb_dims // n_heads
sen1 = torch.randn(11, emb_dims, dtype=dtype, device=device)
sen2 = torch.randn(13, emb_dims, dtype=dtype, device=device)
query = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
key = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
value = torch.nn.Linear(
emb_dims, emb_dims, bias=False, device=device, dtype=dtype
)
# Simplest case: 1 sentence, no batching
x_d1 = sen1.unsqueeze(0)
x_d2 = sen2.unsqueeze(0)
x_nt = torch.nested.as_nested_tensor([sen1, sen2], layout=torch.jagged)
q_d1 = query(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
k_d1 = key(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
v_d1 = value(x_d1).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
q_d2 = query(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
k_d2 = key(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
v_d2 = value(x_d2).view(batch_size, -1, n_heads, head_dims).transpose(1, 2)
q_nt = (
query(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.transpose(1, 2)
)
k_nt = (
key(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.transpose(1, 2)
)
v_nt = (
value(x_nt)
.view(*x_nt.size()[0:2], n_heads, head_dims)
.detach()
.transpose(1, 2)
)
# High Precision Math Reference
q_d1_f32 = q_d1.to(torch.float32)
k_d1_f32 = k_d1.to(torch.float32)
v_d1_f32 = v_d1.to(torch.float32)
out_ref = torch.ops.aten._scaled_dot_product_attention_math(
q_d1_f32, k_d1_f32, v_d1_f32
)[0]
# Low Precision Math Reference
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(
q_d1, k_d1, v_d1
)[0]
output_ref_atol, output_ref_rtol = get_tolerances(out_ref, out_lp_ref)
attn_d1 = torch.nn.functional.scaled_dot_product_attention(
q_d1, k_d1, v_d1
).transpose(1, 2)
attn_d2 = torch.nn.functional.scaled_dot_product_attention(
q_d2, k_d2, v_d2
).transpose(1, 2)
compiled_sdpa = torch.compile(torch.nn.functional.scaled_dot_product_attention)
attn_nt = compiled_sdpa(q_nt, k_nt, v_nt).transpose(1, 2)
attn_nts = attn_nt.unbind()
self.assertEqual(
attn_d1,
attn_nts[0].unsqueeze(0),
atol=output_ref_atol,
rtol=output_ref_rtol,
)
self.assertEqual(
attn_d2,
attn_nts[1].unsqueeze(0),
atol=output_ref_atol,
rtol=output_ref_rtol,
)
@dtypes(torch.float32, torch.double, torch.half)
def test_sdpa_with_constant_sequence_length(self, device, dtype):
# shape (B, P*, S, D)
# B: batch size
# P*: ragged number of prompts
# S: (constant) sequence length
# D: embedding size
query = random_nt_from_dims(
[4, None, 8, 10],
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=True,
)
key = random_nt_from_similar(query)
value = random_nt_from_similar(query)
output = F.scaled_dot_product_attention(query, key, value)
self.assertTrue(isinstance(output, NestedTensor))
output.values().sum().backward()
query_dense = query.clone().detach().requires_grad_(True)
# should be equivalent to just running the buffers through
output_dense = F.scaled_dot_product_attention(
query_dense.values(), key.values(), value.values()
)
torch._dynamo.disable(self.assertEqual)(output._values, output_dense)
output_dense.sum().backward()
torch._dynamo.disable(self.assertEqual)(query.grad, query_dense.grad)
@onlyCUDA
@unittest.skipIf(
not PLATFORM_SUPPORTS_FUSED_ATTENTION,
"Platform doesn't support flash or mem-efficient attention",
)
@dtypes(
*(
[torch.float16, torch.bfloat16, torch.float32]
if SM80OrLater
else [torch.float16, torch.float32]
)
)
def test_sdpa_with_packed_in_proj(self, device, dtype):
# shape (B, *, D)
input_packed = random_nt_from_dims(
[5, None, 10], device=device, dtype=dtype, layout=torch.jagged
)
# Do input projection.
num_heads = 2
# should be multiple of 4 for efficient kernels (e.g. flash / mem-efficient)
head_dim = 8
qkv_linear = torch.nn.Linear(10, num_heads * head_dim * 3).to(
device=device, dtype=dtype
)
def in_proj(input_packed, qkv_linear=qkv_linear):
qkv_post_proj = qkv_linear(input_packed)
# these are non-contiguous to trigger _is_safe_to_get_storage_as_tensor()
q, k, v = qkv_post_proj.chunk(3, dim=-1)
q = q.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3)
k = k.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3)
v = v.unflatten(-1, [num_heads, head_dim]).transpose(-2, -3)
return q, k, v
q, k, v = in_proj(input_packed)
output = F.scaled_dot_product_attention(q, k, v, attn_mask=None)
# compare to individually running unbound components through
for in_component, out_component in zip(
input_packed.unbind(), output.transpose(-2, -3).unbind()
):
q, k, v = in_proj(in_component)
out = F.scaled_dot_product_attention(q, k, v).transpose(-2, -3)
# Low Precision Math Reference
out_lp_ref = torch.ops.aten._scaled_dot_product_attention_math(q, k, v)[
0
].transpose(-2, -3)
output_ref_atol, output_ref_rtol = get_tolerances(
out, out_lp_ref, fudge_factor=2
)
self.assertEqual(
out, out_component, atol=output_ref_atol, rtol=output_ref_rtol
)
@skipIfTorchDynamo("SDPA test compiles internally")
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
# mha_varlen_fwd not supported on ROCm
@skipCUDAIfRocm
@onlyCUDA
@dtypes(
*(
[torch.float16, torch.bfloat16, torch.float32]
if SM80OrLater
else [torch.float16, torch.float32]
)
)
def test_sdpa_backwards(self, device, dtype):
values = torch.randn(9, 3, 256, requires_grad=True, device=device, dtype=dtype)
offsets = torch.tensor([0, 1, 3, 5, 9], device=device, dtype=torch.int64)
@torch.compile
def f(values, offsets):
nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4)
nt = nt.transpose(-2, -3)
# purposefully graph break to trigger view replay for subclass view input
torch.tensor(1).item()
output = F.scaled_dot_product_attention(nt, nt, nt).transpose(-2, -3)
return convert_nt_to_jagged(output)
output = f(values, offsets)
output.sum().backward()
self.assertEqual(values.grad, torch.ones_like(values))
@unittest.skipIf(
not PLATFORM_SUPPORTS_FUSED_ATTENTION,
"Platform doesn't support flash or mem-efficient attention",
)
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
@onlyCUDA
@skipIfTorchDynamo()
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
def test_sdpa_autocast(self, device):
def fn_nt(values32, values16, offsets):
nt32 = convert_jagged_to_nested_tensor(values32, offsets, max_length=16)
nt16 = convert_jagged_to_nested_tensor(values16, offsets, max_length=16)
nt32 = nt32.transpose(1, 2)
nt16 = nt16.transpose(1, 2)
return F.scaled_dot_product_attention(nt32, nt16, nt32)
def fn_dense(x32, x16):
x32 = x32.view(8, 16, 4, 16).transpose(1, 2)
x16 = x16.view(8, 16, 4, 16).transpose(1, 2)
return F.scaled_dot_product_attention(x32, x16, x32)
values32 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float32)
values16 = torch.randn((8 * 16, 4, 16), device=device, dtype=torch.float16)
offsets = torch.arange(0, 8 * 16 + 1, 16, device=device, dtype=torch.int32)
x32 = values32.clone()
x16 = values16.clone()
with torch.autocast(device_type="cuda", dtype=torch.float16):
out_dense_eager = fn_dense(x32, x16)
out_dense_compiled = torch.compile(fn_dense)(x32, x16)
out_nt_eager = fn_nt(values32, values16, offsets)
out_nt_compiled = torch.compile(fn_nt)(values32, values16, offsets)
self.assertEqual(out_dense_eager, out_dense_compiled)
self.assertEqual(
out_dense_eager.transpose(1, 2),
out_nt_eager.values().transpose(0, 1).view(8, 16, 4, 16),
)
self.assertEqual(
out_dense_eager.transpose(1, 2),
out_nt_compiled.values().transpose(0, 1).view(8, 16, 4, 16),
)
def get_values():
return tuple(
x.clone().detach().requires_grad_(True) for x in (values32, values16)
)
v32_dense_eager, v16_dense_eager = get_values()
v32_dense_compile, v16_dense_compile = get_values()
v32_nt_eager, v16_nt_eager = get_values()
v32_nt_compile, v16_nt_compile = get_values()
with torch.autocast(device_type="cuda", dtype=torch.float16):
loss_dense_eager = fn_dense(v32_dense_eager, v16_dense_eager).sum()
loss_dense_compile = torch.compile(fn_dense)(
v32_dense_compile, v16_dense_compile
).sum()
loss_nt_eager = fn_nt(v32_nt_eager, v16_nt_eager, offsets).values().sum()
loss_nt_compile = (
torch.compile(fn_nt)(v32_nt_compile, v16_nt_compile, offsets)
.values()
.sum()
)
loss_dense_eager.backward()
loss_dense_compile.backward()
loss_nt_eager.backward()
loss_nt_compile.backward()
self.assertEqual(v32_dense_eager.grad, v32_dense_compile.grad)
self.assertEqual(v32_dense_eager.grad, v32_nt_eager.grad)
self.assertEqual(v32_dense_eager.grad, v32_nt_compile.grad)
self.assertEqual(v16_dense_eager.grad, v16_dense_compile.grad)
self.assertEqual(v16_dense_eager.grad, v16_nt_eager.grad)
self.assertEqual(v16_dense_eager.grad, v16_nt_compile.grad)
@unittest.skipIf(
not PLATFORM_SUPPORTS_FUSED_ATTENTION,
"Platform doesn't support flash or mem-efficient attention",
)
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
@onlyCUDA
@skipIfTorchDynamo()
def test_sdpa_flop_counter(self, device):
from torch.utils.flop_counter import FlopCounterMode
def get_flops(nt):
flop_counter = FlopCounterMode(display=False)
with flop_counter:
ret = torch.nn.functional.scaled_dot_product_attention(nt, nt, nt)
ret.values().sum().backward()
return flop_counter.get_total_flops()
values = torch.randn(
(8 * 16, 4, 16), requires_grad=True, device=device, dtype=torch.float16
)
offsets = torch.arange(0, 8 * 16 + 1, 16, device=device, dtype=torch.int32)
nt = convert_jagged_to_nested_tensor(values, offsets, max_length=16)
values_meta = torch.randn(
(8 * 16, 4, 16), requires_grad=True, device="meta", dtype=torch.float16
)
offsets_meta = torch.arange(0, 8 * 16 + 1, 16, device="meta", dtype=torch.int32)
nt_meta = convert_jagged_to_nested_tensor(values, offsets, max_length=16)
self.assertEqual(get_flops(nt), get_flops(nt_meta))
@skipIfTorchDynamo()
def test_nested_tensor_activation_checkpoint(self, device):
values = torch.randn(
9, 3, 256, requires_grad=True, device=device, dtype=torch.float32
)
lengths = torch.tensor([1, 2, 3, 3], device=device, dtype=torch.int64)
offsets = F.pad(lengths, pad=(1, 0)).cumsum(dim=0)
def fn(values, offsets):
nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4)
return convert_nt_to_jagged(nt).sum()
checkpoint(fn, values, offsets, use_reentrant=False).backward()
self.assertIsNotNone(values.grad)
context_fn = partial(
create_selective_checkpoint_contexts, [torch.ops.aten.cumsum.default]
)
values.grad = None
def fn(values, lengths):
offsets = F.pad(lengths, pad=(1, 0)).cumsum(dim=0)
nt = convert_jagged_to_nested_tensor(values, offsets, max_length=4)
return convert_nt_to_jagged(nt).sum()
checkpoint(
fn, values, lengths, use_reentrant=False, context_fn=context_fn
).backward()
self.assertIsNotNone(values.grad)
# Internally-defined NT use cases are lifted to here for maximum test realism.
# TODO: Remove these when ViewNestedFromBuffer, etc. are deprecated.
@skipCUDAIfRocm # not needed
@skipIfTorchDynamo("compiles internally")
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@parametrize("use_legacy_api", [True, False])
@skipCPUIf(True, "SPDA Math NT fallback causes failure: see issue #133644")
def test_dummy_mha_with_nt(self, device, use_legacy_api):
bs = 3
d1 = 2
d2 = 4
d3 = 16
n_heads = 2
d_head = d3 // n_heads
max_length_1 = 10
max_length_2 = 20
torch.manual_seed(0)
class mha(torch.nn.Module):
def __init__(self, use_legacy_api) -> None:
super().__init__()
torch.manual_seed(0)
self.linear = torch.nn.Linear(d2, d3, device=device)
self.use_legacy_api = use_legacy_api
def forward(self, query, value, offsets):
value = self.linear(value)
if self.use_legacy_api:
key = convert_jagged_to_nested_tensor_legacy(
value, offsets, max_length_1
)
value = convert_jagged_to_nested_tensor_legacy(
value, offsets, max_length_2
)
query = convert_dense_to_nested_tensor_legacy(query)
else:
key = convert_jagged_to_nested_tensor(value, offsets, max_length_1)
value = convert_jagged_to_nested_tensor(
value, offsets, max_length_2
)
query = convert_dense_to_nested_tensor(query)
q = query.view(bs, -1, n_heads, d_head).transpose(1, 2)
k = key.view(bs, -1, n_heads, d_head).transpose(1, 2)
v = value.view(bs, -1, n_heads, d_head).transpose(1, 2)
with torch.nn.attention.sdpa_kernel(
[
torch.nn.attention.SDPBackend.FLASH_ATTENTION,
torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION,
]
):
attn_output = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
)
attn_output = attn_output.transpose(1, 2)
if self.use_legacy_api:
attn_output = convert_nt_to_jagged_legacy(attn_output)
else:
attn_output = convert_nt_to_jagged(attn_output)
return attn_output, key._max_seqlen, value._max_seqlen
query = torch.rand(bs, d1, d3, device=device)
value = torch.rand(30, d2, requires_grad=True, device=device)
# total_length must > than max_length otherwise flash_attn backwark will fail
offsets = torch.tensor([0, 2, 3, 30], device=device)
m = mha(use_legacy_api)
symbolic_traced: torch.fx.GraphModule = torch.fx.symbolic_trace(m)
m = torch.compile(symbolic_traced)
attn_output, cached_key_max_seqlen, cached_value_max_seqlen = m(
query, value, offsets
)
loss = attn_output.sum()
# Check that NT can be fx traced and torch.compile, and backward works
loss.backward()
# Check that value.requires_grad is not lost after tracing and compiling
value_grad = value.grad # save for comparison later
self.assertIsNotNone(value_grad)
# check that max_seqlen is cached properly
self.assertEqual(cached_key_max_seqlen, max_length_1)
self.assertEqual(cached_value_max_seqlen, max_length_2)
# check if the output is numerically equivalent with the eager mode
m_eager = mha(use_legacy_api)
value.grad = None
attn_output_eager, _, _ = m_eager(query, value, offsets)
attn_output_eager.sum().backward()
self.assertTrue(torch.allclose(attn_output_eager, attn_output))
self.assertTrue(torch.allclose(value_grad, value.grad))
@dtypes(torch.float32)
def test_apply_(self, device, dtype):
nt = random_nt_from_dims(
[5, None, 10],
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=True,
)
def f(x):
return x * 2
if device != "cpu":
with self.assertRaisesRegex(
TypeError, "apply_ is only implemented on CPU tensors"
):
nt.apply_(f)
return
before = nt._values.clone().detach()
nt.apply_(f)
expected = f(before)
self.assertEqual(expected, nt._values)
# apply_ should swap values in-place without appending to autograd graph
self.assertIsNone(nt.grad)
self.assertIsNone(nt._values.grad_fn)
@dtypes(torch.float64, torch.float32, torch.half)
def test_jagged_padded_dense_conversion_kernels(self, device, dtype):
values = torch.randn(10, 5, device=device, dtype=dtype)
offsets = torch.tensor([0, 1, 3, 8, 10], device=device, dtype=torch.int64)
max_length = offsets.diff().max().item()
padding_value = 1.3
# convert jagged -> padded dense
padded = torch.ops.aten._jagged_to_padded_dense_forward(
values, [offsets], [max_length], padding_value
)
batch_size = offsets.shape[0] - 1
expected_padded_shape = (batch_size, max_length, values.shape[-1])
self.assertEqual(padded.shape, expected_padded_shape)
# convert padded dense -> jagged
total_L = values.shape[0]
output_jagged = torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets], total_L
)
# should be equivalent to the original values
self.assertEqual(values, output_jagged)
# success case: truncate to max length as needed
trunc_max_length = max_length - 1
trunc_padded = torch.ops.aten._jagged_to_padded_dense_forward(
values, [offsets], [trunc_max_length], padding_value
)
self.assertEqual(padded[:, :trunc_max_length, :], trunc_padded)
# specific to CPU impls
if device == "cpu":
# error case: multiple offsets on cpu since CPU kernels don't support more now
with self.assertRaisesRegex(
RuntimeError, "only a single jagged dim is supported"
):
torch.ops.aten._jagged_to_padded_dense_forward(
values, [offsets, offsets], [max_length, max_length], padding_value
)
with self.assertRaisesRegex(
RuntimeError, "only a single jagged dim is supported"
):
torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets, offsets], total_L
)
# error case: > 1D offsets
offsets2d = offsets.unsqueeze(-1)
with self.assertRaisesRegex(RuntimeError, "expected 1D offsets"):
torch.ops.aten._jagged_to_padded_dense_forward(
values, [offsets2d], [max_length], padding_value
)
with self.assertRaisesRegex(RuntimeError, "expected 1D offsets"):
torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets2d], total_L
)
# error case: final offset != total_L
offsets_wrong = offsets.clone().detach()
offsets_wrong[-1] = total_L + 1
with self.assertRaisesRegex(
RuntimeError, "final offset should match total_L value"
):
torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets_wrong], total_L
)
# error case: 1D padded input
padded_wrong = padded.flatten().clone().detach()
with self.assertRaisesRegex(RuntimeError, "expected padded dim >= 2"):
torch.ops.aten._padded_dense_to_jagged_forward(
padded_wrong, [offsets], total_L
)
# error case: batch item has length > max length
# max_length is 5 above; 7 here
offsets_wrong = torch.tensor(
[0, 1, 8, 9, 10], device=device, dtype=torch.int64
)
with self.assertRaisesRegex(RuntimeError, "found batch item of length"):
torch.ops.aten._padded_dense_to_jagged_forward(
padded, [offsets_wrong], total_L
)
@dtypes(torch.float32)
@skipIfTorchDynamo("Test compiles internally")
@unittest.skipIf(
sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+"
)
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
def test_compile_preserves_metadata_cache(self, device, dtype):
# shape (B, *, D)
nt = random_nt_from_dims(
[4, None, 3, 16],
device=device,
dtype=dtype,
layout=torch.jagged,
requires_grad=True,
)
# expect min / max seqlen to be stored here
cache = dict(nt._metadata_cache)
@torch.compile
def f(nt):
q = nt.transpose(-3, -2)
output = F.scaled_dot_product_attention(q, q, q).transpose(-3, -2)
return output
output = f(nt)
output.backward(torch.ones_like(output))
self.assertEqual(output._metadata_cache, cache)
@dtypes(torch.float32)
@skipIfTorchDynamo("Test compiles internally")
@unittest.skipIf(
sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+"
)
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
def test_compile_with_dynamic_max_seq_len(self, device, dtype):
# shape (B, *, D)
# max seq len: 18
nt = torch.nested.nested_tensor(
[
torch.randn(2, 5),
torch.randn(3, 5),
torch.randn(18, 5),
],
layout=torch.jagged,
)
# max seq len: 19
nt2 = torch.nested.nested_tensor(
[
torch.randn(2, 5),
torch.randn(3, 5),
torch.randn(19, 5),
],
layout=torch.jagged,
)
def f(nt):
# TODO: Replace with public API when we can use @properties
return torch.ones_like(nt) * nt._get_max_seqlen()
for dynamic in [False, True, None]:
self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic))
@dtypes(torch.float32)
@skipIfTorchDynamo("Test compiles internally")
@unittest.skipIf(
sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+"
)
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
def test_compile_with_dynamic_min_seq_len(self, device, dtype):
# shape (B, *, D)
# min seq len: 7
nt = torch.nested.nested_tensor(
[
torch.randn(7, 5),
torch.randn(8, 5),
torch.randn(9, 5),
],
layout=torch.jagged,
)
# min seq len: 8
nt2 = torch.nested.nested_tensor(
[
torch.randn(8, 5),
torch.randn(9, 5),
torch.randn(10, 5),
],
layout=torch.jagged,
)
def f(nt):
# TODO: Replace with public API when we can use @properties
return torch.ones_like(nt) * nt._get_min_seqlen()
for dynamic in [False, True, None]:
self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic))
@dtypes(torch.float32)
@skipIfTorchDynamo("Test compiles internally")
@unittest.skipIf(
sys.version_info >= (3, 12), "torch.compile is not supported on python 3.12+"
)
@unittest.skipIf(IS_WINDOWS, reason="Windows not yet supported for torch.compile")
@skipCUDAIf(not SM70OrLater, "GPU capability is < SM70")
@skipCUDAIfRocm
def test_compile_with_propagated_dynamic_max_seq_len(self, device, dtype):
# shape (B, *, D)
# max seq len: 18
nt = torch.nested.nested_tensor(
[
torch.randn(2, 5),
torch.randn(3, 5),
torch.randn(18, 5),
],
layout=torch.jagged,
)
# max seq len: 19
nt2 = torch.nested.nested_tensor(
[
torch.randn(2, 5),
torch.randn(3, 5),
torch.randn(19, 5),
],
layout=torch.jagged,
)
def f(nt):
nt2 = nt.sin() + 1
# TODO: Replace with public API when we can use @properties
return torch.ones_like(nt2) * nt2._get_max_seqlen()
ref = f(nt)
output = torch.compile(f, fullgraph=True, dynamic=False)(nt)
self.assertEqual(ref, output)
for dynamic in [False, True, None]:
self.assertFalse(_recompiles_for_inputs(f, (nt,), (nt2,), dynamic=dynamic))
@dtypes(torch.float32, torch.double, torch.half)
def test_unbind_backward(self, device, dtype):
nt = torch.nested.nested_tensor(
[
torch.randn(2, 4, device=device),
torch.randn(5, 4, device=device),
torch.randn(3, 4, device=device),
],
layout=torch.jagged,
requires_grad=True,
)
a, b, c = nt.unbind()
b.sum().backward()
@torch._dynamo.disable
def check(nt):
expected_grad = torch.zeros_like(nt)
expected_grad.unbind()[1].add_(1.0)
self.assertEqual(nt.grad, expected_grad)
check(nt)
FORWARD_FAILURES = {
# === BEGIN NotImplementedError SECTION ===
# unary
"nn.functional.celu",
"nn.functional.elu",
"nn.functional.hardshrink",
"nn.functional.hardsigmoid",
"nn.functional.hardtanh",
"nn.functional.logsigmoid",
"nn.functional.mish",
"nn.functional.relu6",
"nn.functional.rrelu",
"nn.functional.selu",
"nn.functional.softplus",
"nn.functional.softshrink",
"nn.functional.threshold",
"rad2deg",
# binary
"__rsub__",
"complex",
"floor_divide",
"polar",
"rsub",
# reduction
"all",
"amax",
"amin",
"any",
"argmax",
"argmin",
"count_nonzero",
"linalg.vector_norm",
"nansum",
"std",
"std.unbiased",
"var",
"var.unbiased",
# === BEGIN UNSUPPORTED SECTION ===
# RuntimeError: mean(): not supported for NestedTensor on dim=1
"mean",
# ValueError: expects strided tensor (got torch.jagged tensor)
"masked.amax",
"masked.amin",
"masked.argmax",
"masked.argmin",
"masked.logsumexp",
"masked.mean",
"masked.norm",
"masked.prod",
"masked.std",
"masked.sum",
"masked.var",
# === BEGIN BUG SECTION ===
# Returns a tuple of Tensors so it doesn't work with NJT's unary pointwise logic
"frexp",
# Need to adjust sample input func to pass the right thing
"nn.functional.prelu",
# TypeError: fill() received an invalid combination of arguments
# got (NestedTensor), but expected one of:
# * (Tensor input, Tensor value)
# * (Tensor input, Number value)
"fill",
# RuntimeError: unsupported tensor layout: Jagged
"jiterator_binary",
"jiterator_binary_return_by_ref",
"jiterator_unary",
# Bug found: sum() with keepdim=True returns invalid shape
"sum",
# RuntimeError: prod(): keepdim=True must be set for NestedTensor
"prod",
# RuntimeError: "jagged_to_padded_dense" not implemented for 'Bool'
"nanmean",
}
BACKWARD_FAILURES = {
*FORWARD_FAILURES,
# TODO: categorize these
"__rpow__",
"atanh",
"cdouble",
"cfloat",
"chalf",
"clamp_max",
"clamp_min",
"copysign",
"float_power",
"max.binary",
"maximum",
"min.binary",
"minimum",
"pow",
"sgn",
"sinc",
"special.i1",
"special.i1e",
# clone() on a "non-contiguous with holes" NJT allocates a new offsets -> new nested int
# RuntimeError: Function CloneBackward0 returned an invalid gradient at index 0 -
# got [3, j29, 5] but expected shape compatible with [3, j28, 5]
"clone",
# Calling into torch.ops.aten.size directly
"masked_select",
}
COMPILE_FORWARD_FAILURES = {
*FORWARD_FAILURES,
# clone() on non-contiguous with holes NJTs currently use unbind(), leading to
# data-dependent error in torch.compile
"clone",
}
COMPARE_TENSOR_COMPONENT_EQUALITY = {
# masked_select is expected to output a different shape
"masked_select",
}
def withXFails(failure_list):
return decorateIf(
unittest.expectedFailure,
lambda params: params["op"].full_name in failure_list,
)
# OpInfo-based NJT tests. These tests utilize an NJT-specific op_db generated from the standard
# op_db. Note that certain tradeoffs were made wrt coverage vs. time spent running tests:
# * All tests run with dtype=torch.float32 only
class TestNestedTensorOpInfo(NestedTensorTestCase):
# TODO: move this
def _gen_grad_outputs(self, out_val):
if isinstance(out_val, (list, tuple)):
return tuple(torch.ones_like(c) for c in out_val)
else:
return (torch.ones_like(out_val),)
@withXFails(FORWARD_FAILURES)
@ops([op for op in njt_op_db if op.supports_njt], allowed_dtypes=(torch.float32,))
def test_forward(self, device, dtype, op):
for sample in op.sample_inputs(device=device, dtype=dtype, requires_grad=False):
# compare to reference, but expect different nested int
out = op.op(sample.input, *sample.args, **sample.kwargs)
out_ref = op.ref(op, sample)
self.assertEqualIgnoringNestedInts(out, out_ref)
@withXFails(BACKWARD_FAILURES)
@ops(
[op for op in njt_op_db if op.supports_njt and op.supports_autograd],
allowed_dtypes=(torch.float32,),
)
def test_backward(self, device, dtype, op):
for sample in op.sample_inputs(device=device, dtype=dtype, requires_grad=True):
# compare to reference, but expect different nested int
out = op.op(sample.input, *sample.args, **sample.kwargs)
out_ref = op.ref(op, sample)
self.assertEqualIgnoringNestedInts(out, out_ref)
inps, _ = tree_flatten((sample.input, sample.args, sample.kwargs))
g_inps = [
inp
for inp in inps
if isinstance(inp, torch.Tensor) and inp.requires_grad
]
if len(g_inps) > 0:
grads = torch.autograd.grad(
out, inputs=g_inps, grad_outputs=self._gen_grad_outputs(out)
)
grads_ref = torch.autograd.grad(
out_ref,
inputs=g_inps,
grad_outputs=self._gen_grad_outputs(out_ref),
)
self.assertEqual(grads, grads_ref)
@withXFails(COMPILE_FORWARD_FAILURES)
@torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True)
@ops([op for op in njt_op_db if op.supports_njt], allowed_dtypes=(torch.float32,))
def test_compile_forward(self, device, dtype, op):
for sample in op.sample_inputs(device=device, dtype=dtype, requires_grad=False):
torch.compiler.reset()
op_fn = op.op
def f(*args, **kwargs):
return op_fn(*args, **kwargs)
compiled_f = torch.compile(
f, fullgraph=True, backend="aot_eager_decomp_partition"
)
out_ref = f(sample.input, *sample.args, **sample.kwargs)
out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs)
if op.full_name in COMPARE_TENSOR_COMPONENT_EQUALITY:
self.assertEqualIgnoringNestedInts(out_compile, out_ref)
else:
self.assertEqual(out_compile, out_ref)
@withXFails(BACKWARD_FAILURES)
@ops(
[op for op in njt_op_db if op.supports_njt and op.supports_autograd],
allowed_dtypes=(torch.float32,),
)
@torch._dynamo.config.patch(capture_dynamic_output_shape_ops=True)
def test_compile_backward(self, device, dtype, op):
for sample in op.sample_inputs(device=device, dtype=dtype, requires_grad=True):
torch.compiler.reset()
op_fn = op.op
def f(*args, **kwargs):
return op_fn(*args, **kwargs)
compiled_f = torch.compile(
f, fullgraph=True, backend="aot_eager_decomp_partition"
)
out_ref = f(sample.input, *sample.args, **sample.kwargs)
out_compile = compiled_f(sample.input, *sample.args, **sample.kwargs)
self.assertEqual(out_compile, out_ref)
inps, _ = tree_flatten((sample.input, sample.args, sample.kwargs))
g_inps = [
inp
for inp in inps
if isinstance(inp, torch.Tensor) and inp.requires_grad
]
if len(g_inps) > 0:
grads_compile = torch.autograd.grad(
out_compile,
inputs=g_inps,
grad_outputs=self._gen_grad_outputs(out_compile),
)
grads_ref = torch.autograd.grad(
out_ref, inputs=g_inps, grad_outputs=self._gen_grad_outputs(out_ref)
)
self.assertEqual(grads_compile, grads_ref)
instantiate_parametrized_tests(TestNestedTensor)
instantiate_device_type_tests(TestNestedTensorDeviceType, globals())
instantiate_device_type_tests(TestNestedTensorAutograd, globals())
instantiate_device_type_tests(TestNestedTensorSubclass, globals())
instantiate_device_type_tests(TestNestedTensorOpInfo, globals())
if __name__ == "__main__":
run_tests()