blob: 30b489f02fa6fb15a883eea5431f67a638cb54f2 [file] [log] [blame] [edit]
# Owner(s): ["module: optimizer"]
import functools
import math
import tempfile
import unittest
from copy import deepcopy
from typing import Any, Dict, Tuple
from unittest.mock import patch
from optim.test_lrscheduler import TestLRScheduler # noqa: F401
from optim.test_optim import TestDifferentiableOptimizer # noqa: F401
from optim.test_swa_utils import TestSWAUtils # noqa: F401
import torch
from torch.nn import Parameter
from torch.optim import Optimizer, SGD
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.optimizer import (
register_optimizer_step_post_hook,
register_optimizer_step_pre_hook,
)
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
largeTensorTest,
onlyCPU,
onlyCUDA,
onlyNativeDeviceTypes,
skipMPS,
TEST_WITH_ROCM,
)
from torch.testing._internal.common_dtype import floating_types_and
from torch.testing._internal.common_optimizers import (
_get_device_type,
_get_optim_inputs_including_global_cliquey_kwargs,
optim_db,
OptimizerErrorEnum,
optims,
TensorTracker,
)
from torch.testing._internal.common_utils import (
markDynamoStrictTest,
parametrize,
run_tests,
TEST_WITH_TORCHDYNAMO,
TestCase,
)
FP16_REDUCED_PRECISION = {"atol": 1e-5, "rtol": 1e-4}
def rosenbrock(tensor):
assert tensor.size() == torch.Size(
[2]
), f"Requires tensor with 2 scalars but got {tensor.size()}"
x, y = tensor
return (1 - x) ** 2 + 100 * (y - x**2) ** 2
def drosenbrock(tensor):
assert tensor.size() == torch.Size(
[2]
), f"Requires tensor with 2 scalars but got {tensor.size()}"
x, y = tensor
return torch.stack((-400 * x * (y - x**2) - 2 * (1 - x), 200 * (y - x**2)))
@markDynamoStrictTest
class TestOptimRenewed(TestCase):
"""
This test class validates the core optimizers and is structured as the correctness of:
- The update algorithms (forloop implementation)
* Every optimizer's algorithm is most readably implemented through a big for-loop
over all the parameters, which is what we refer to as the forloop or single tensor
implementation. These algorithms are manually validated by comparing to the paper
and systematically validated by assuring that the loss goes the right direction
when the optimizer has been applied.
* This implementation should compose with optimizer hyperparameters well, such as
supporting Tensor LRs, the capturable API, and sparse and complex parameters.
- Each varying implementation
* We then have implementations that improve upon the performance of the forloop
implementation by leveraging fusion, namely our foreach (mult_tensor) and fused
implementations.
* These variations are validated numerically by comparing with the forloop version
of the optimizer. In fact, we test most variations this way--we see the forloop
implementation as the ground truth and expect that improvements to it in any way
should be just as correct.
* Both params and optimizer states should be validated numerically.
- state_dict APIs
* The optimizer instance should be serializable
* Calling save and load should be deterministic
* Moving between devices should be seamless
* BC - load_state_dict should be able to handle older optimizer states
- Hook APIs (everything should fire in the right order)
- LR Scheduler integration (composing should not error + should go the right direction)
- Parameter groups (should be equivalent to having multiple optimizers)
- Erroring (what should error should error)
We also cover different ways of generating parameters and grads:
- With parameters, we either generate them randomly given specific shapes or we take
them from a sample NN module.
* Variety is important here because NN modules have type Parameter and randomly
generated tensors have type Tensor.
* Parameters can be sparse for a subset of the optimizers (check out OptimizerInfo)
* Complex parameters should be handled using view_as_real
* Parameters can be spread across different devices and different dtypes for any
given optimizer
* Parameters can be contiguous and noncontiguous
- With grads, we follow suit from the parameters.
* Grads can also be None, empty, or zero-valued, and this should not disrupt training.
"""
@onlyCPU
@optims(optim_db)
def test_optim_infos_do_not_specify_global_cliquey_kwargs(
self, device, dtype, optim_info
):
global_cliquey_flags = ["foreach", "fused", "differentiable"]
for optim_input in optim_info.optim_inputs_func(device=device):
self.assertFalse(
any(f for f in global_cliquey_flags if f in optim_input.kwargs)
)
@optims([optim for optim in optim_db if optim.optim_error_inputs_func is not None])
def test_errors(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
error_inputs = optim_info.optim_error_inputs_func(device=device, dtype=dtype)
for error_input in error_inputs:
optim_input = error_input.optimizer_error_input
params, kwargs = optim_input.params, optim_input.kwargs
if error_input.error_on == OptimizerErrorEnum.CONSTRUCTION_ERROR:
if issubclass(error_input.error_type, Warning):
with self.assertWarnsRegex(
error_input.error_type, error_input.error_regex
):
optim_cls(params, **kwargs)
else:
with self.assertRaisesRegex(
error_input.error_type, error_input.error_regex
):
optim_cls(params, **kwargs)
elif error_input.error_on == OptimizerErrorEnum.STEP_ERROR:
optim = optim_cls(params, **kwargs)
if issubclass(error_input.error_type, Warning):
with self.assertWarnsRegex(
error_input.error_type, error_input.error_regex
):
optim.step()
else:
with self.assertRaisesRegex(
error_input.error_type, error_input.error_regex
):
optim.step()
else:
raise NotImplementedError(f"Unknown error type {error_input.error_on}")
@parametrize("contiguous", [True, False])
@parametrize("with_lrsched", [True, False])
@optims(optim_db, dtypes=[torch.float32])
def test_forloop_goes_right_direction(
self, device, dtype, optim_info, contiguous, with_lrsched
):
optim_cls = optim_info.optim_cls
schedulers_constructors = (
optim_info.scheduler_inputs if with_lrsched else [None]
)
for schedulers_constructor in schedulers_constructors:
# with tensor LR we need fresh inputs for each scheduler
# or mutating it will carry across iters
optim_inputs = optim_info.optim_inputs_func(device=device)
for optim_input in optim_inputs:
if "foreach" in optim_info.supported_impls:
optim_input.kwargs["foreach"] = False # force forloop
if contiguous:
weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
bias = Parameter(torch.randn((10), device=device, dtype=dtype))
else:
weight = Parameter(
torch.randn((10, 5, 2), device=device, dtype=dtype)[..., 0]
)
bias = Parameter(
torch.randn((10, 2), device=device, dtype=dtype)[..., 0]
)
input = torch.randn(5, device=device, dtype=dtype)
optimizer = optim_cls([weight, bias], **optim_input.kwargs)
schedulers = [
s(optimizer)
for s in (schedulers_constructor if schedulers_constructor else [])
]
def closure():
optimizer.zero_grad()
loss = (weight.mv(input) + bias).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
return loss
initial_value = closure().item()
for _ in range(20):
if optim_info.step_requires_closure:
loss = optimizer.step(closure)
else:
loss = closure()
optimizer.step()
for scheduler in schedulers:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(loss)
else:
scheduler.step()
if optim_input.kwargs.get("maximize", False):
self.assertGreater(closure().item(), initial_value)
else:
self.assertLess(closure().item(), initial_value)
@onlyCUDA
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@parametrize("with_lrsched", [True, False])
@optims(optim_db, dtypes=[torch.float32])
def test_forloop_goes_right_direction_multigpu(
self, device, dtype, optim_info, with_lrsched
):
optim_cls = optim_info.optim_cls
schedulers_constructors = (
optim_info.scheduler_inputs if with_lrsched else [None]
)
for schedulers_constructor in schedulers_constructors:
# We need a fresh set of inputs if we have a tensor LR
# to not carry mutations across iterations.
optim_inputs = optim_info.optim_inputs_func(device=device)
for optim_input in optim_inputs:
if "foreach" in optim_info.supported_impls:
optim_input.kwargs["foreach"] = False # force forloop
weight = Parameter(torch.randn((10, 5), device="cuda:0", dtype=dtype))
bias = Parameter(torch.randn((10), device="cuda:1", dtype=dtype))
inpt = torch.randn(5, device="cuda:0", dtype=dtype)
optimizer = optim_cls([weight, bias], **optim_input.kwargs)
schedulers = [
s(optimizer)
for s in (schedulers_constructor if schedulers_constructor else [])
]
def closure():
optimizer.zero_grad()
loss = (weight.mv(inpt).cuda(1) + bias).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
return loss
initial_value = closure().item()
for _ in range(20):
loss = optimizer.step(closure)
for scheduler in schedulers:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(loss)
else:
scheduler.step()
if optim_input.kwargs.get("maximize", False):
self.assertGreater(closure().item(), initial_value)
else:
self.assertLess(closure().item(), initial_value)
@optims(optim_db, dtypes=[torch.float32])
def test_param_group_with_lrscheduler_goes_right_direction(
self, device, dtype, optim_info
):
optim_cls = optim_info.optim_cls
for schedulers_c in optim_info.scheduler_inputs:
weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
bias = Parameter(torch.randn((10), device=device, dtype=dtype))
inpt = torch.randn(5, device=device, dtype=dtype)
# avoid endless recompiles by wrapping LR in a tensor if we're compiling
lr = torch.tensor(0.01) if torch._utils.is_compiling() else 0.01
optimizer = optim_cls([{"params": [weight]}, {"params": [bias], "lr": lr}])
schedulers = [scheduler_c(optimizer) for scheduler_c in schedulers_c]
def closure():
optimizer.zero_grad()
loss = (weight.mv(inpt) + bias).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
return loss
initial_value = closure().item()
for _ in range(20):
loss = optimizer.step(closure)
for scheduler in schedulers:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(loss)
else:
scheduler.step()
self.assertLess(closure().item(), initial_value)
@optims(optim_db, dtypes=[torch.float32])
def test_tensor_lr(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
for optim_input in all_optim_inputs:
weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
weight_c = weight.clone().detach().requires_grad_(True)
bias = Parameter(torch.randn((10), device=device, dtype=dtype))
bias_c = bias.clone().detach().requires_grad_(True)
inpt = torch.randn(5, device=device, dtype=dtype)
kwargs = optim_input.kwargs
if "lr" in kwargs:
del kwargs["lr"]
kwargs["lr"] = 1.0 if optim_info.step_requires_closure else 1e-3
optimizer_r = optim_cls([weight, bias], **kwargs)
try:
kwargs["lr"] = torch.tensor(kwargs["lr"])
optimizer = optim_cls([weight_c, bias_c], **kwargs)
except ValueError as e:
self.assertRegex(str(e), ".*lr as a Tensor is not supported.*")
continue
def closure(optim, w, b, i):
optim.zero_grad()
loss = (w.mv(i) + b).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
w.grad = w.grad.to_sparse()
b.grad = b.grad.to_sparse()
return loss
for _ in range(5):
if optim_info.step_requires_closure:
optimizer_r.step(
functools.partial(closure, optimizer_r, weight, bias, inpt)
)
optimizer.step(
functools.partial(closure, optimizer, weight_c, bias_c, inpt)
)
else:
closure(optimizer_r, weight, bias, inpt)
closure(optimizer, weight_c, bias_c, inpt)
self.assertEqual(weight, weight_c)
self.assertEqual(bias, bias_c)
@parametrize("with_lrsched", [True, False])
@optims(
[o for o in optim_db if o.supports_sparse or o.only_supports_sparse_grads],
dtypes=[torch.float64],
)
def test_rosenbrock_sparse(self, device, dtype, optim_info, with_lrsched):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
# Fused impls do not support sparse gradients
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable", "fused")
)
kwarg_updates, schedulers_constructors = optim_info.metadata_for_sparse
if with_lrsched and len(schedulers_constructors) == 0:
return
supported_inputs = []
if len(kwarg_updates) != 0:
seen = set()
for i in all_optim_inputs:
for k in kwarg_updates:
if k in i.kwargs:
del i.kwargs[k]
hashable_kwargs = tuple(sorted(i.kwargs.items()))
if len(i.kwargs) > 0 and hashable_kwargs not in seen:
supported_inputs.append(i)
seen.add(hashable_kwargs)
if "lr" in kwarg_updates:
i.kwargs["lr"] = kwarg_updates["lr"]
else:
supported_inputs = all_optim_inputs
for optim_input in supported_inputs:
kwargs = optim_input.kwargs
multi_tensor = kwargs.get("foreach", False)
# For rosenbrock tests, it is mandated that the param is a tensor with 2 numbers
if multi_tensor:
params_t = [
torch.tensor([1.5, 1.5]),
torch.tensor([1.5, 1.5], dtype=dtype),
]
else:
params_t = [torch.tensor([1.5, 1.5])]
params = [Parameter(param_t) for param_t in params_t]
optimizer = optim_cls(params, **kwargs)
schedulers = [
s(optimizer) for s in (schedulers_constructors if with_lrsched else [])
]
if not optim_info.only_supports_sparse_grads:
params_c = [Parameter(param_t.clone()) for param_t in params_t]
optimizer_c = optim_cls(params_c, **kwargs)
schedulers_c = [
s(optimizer_c)
for s in (schedulers_constructors if with_lrsched else [])
]
solution = torch.tensor([1, 1])
with torch.no_grad():
initial_dist = sum(param.dist(solution) for param in params)
def get_grad(param, sparse_grad, w):
grad = drosenbrock(param)
# NB: We torture test the optimizer by returning an
# uncoalesced sparse tensor
# Depending on w, provide only the x or y gradient
if sparse_grad:
if w:
i = torch.tensor([[0, 0]], dtype=torch.int64)
x = grad[0]
v = torch.tensor([x / 4.0, x - x / 4.0])
else:
i = torch.tensor([[1, 1]], dtype=torch.int64)
y = grad[1]
v = torch.tensor([y - y / 4.0, y / 4.0])
grad_out = torch.sparse_coo_tensor(i, v, (2,), dtype=v.dtype)
else:
if w:
grad_out = torch.tensor([grad[0], 0], dtype=param.dtype)
else:
grad_out = torch.tensor([0, grad[1]], dtype=param.dtype)
return grad_out
def eval(params, sparse_grad, w):
optimizer.zero_grad()
if multi_tensor:
loss = sum(rosenbrock(param) for param in params)
else:
loss = rosenbrock(params[0])
loss.backward()
grads_out = [get_grad(param, sparse_grad, w) for param in params]
with torch.no_grad():
params[0].grad = grads_out[0]
if multi_tensor:
params[1].grad = grads_out[1].to(dtype=dtype)
return loss
for i in range(1800):
# Do cyclic coordinate descent
w = i % 2
optimizer.step(functools.partial(eval, params, True, w))
for scheduler in schedulers:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(rosenbrock(params[0]))
else:
scheduler.step()
if not optim_info.only_supports_sparse_grads:
optimizer_c.step(functools.partial(eval, params_c, False, w))
for scheduler in schedulers_c:
if isinstance(scheduler, ReduceLROnPlateau):
scheduler.step(rosenbrock(params_c[0]))
else:
scheduler.step()
# Tolerance is increased due to floating point error from different
# code path for dense case: x v.s. x - x / 4.0 + x / 4.0
self.assertEqual(params, params_c, atol=5e-6, rtol=5e-6)
if not kwargs.get("maximize", False):
self.assertLessEqual(
sum(param.dist(solution) for param in params), initial_dist
)
else:
self.assertGreaterEqual(
sum(rosenbrock(param) for param in params),
sum(rosenbrock(param_t) for param_t in params_t),
)
@skipMPS
@optims([o for o in optim_db if o.supports_complex], dtypes=[torch.complex64])
def test_complex(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
# Also skip fused, since our fused kernels do not support complex
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable", "fused")
)
for optim_input in all_optim_inputs:
# Last param is intentionally real to test that we can mix real and complex
complex_params = [
torch.randn(10, 5, device=device, dtype=dtype, requires_grad=True),
torch.randn(10, device=device, dtype=dtype, requires_grad=True),
torch.randn(
10, 5, device=device, dtype=torch.float32, requires_grad=True
),
]
real_params = [
(
torch.view_as_real(param).detach().clone().requires_grad_()
if param.is_complex()
else param.detach().clone().requires_grad_()
)
for param in complex_params
]
complex_optimizer = optim_cls(complex_params, **optim_input.kwargs)
real_optimizer = optim_cls(real_params, **optim_input.kwargs)
real_steps = []
complex_steps = []
grads_losses = []
def real_closure():
for param in real_params:
grad = torch.randn_like(param)
param.grad = grad
real_steps.append(param.detach().clone())
grads_losses.append(grad.clone())
loss = torch.randn(1)
grads_losses.append(loss.clone())
return loss
def complex_closure():
for param in complex_params:
if torch.is_complex(param):
grad = torch.view_as_complex(grads_losses.pop(0))
complex_steps.append(torch.view_as_real_copy(param.detach()))
else:
grad = grads_losses.pop(0)
complex_steps.append(param.detach().clone())
param.grad = grad
return grads_losses.pop(0)
for _ in range(3):
if optim_info.step_requires_closure:
# LBFGS, for example, requires closure and calls it internally
real_optimizer.step(real_closure)
complex_optimizer.step(complex_closure)
else:
# For other optimizers, we call closure explicitly to set the gradients
real_closure()
complex_closure()
real_optimizer.step()
complex_optimizer.step()
# Final Parameters should be the same
complex_params_asreal = [
torch.view_as_real(param) if param.is_complex() else param
for param in complex_params
]
self.assertEqual(real_params, complex_params_asreal)
# All intermediate steps should also be the same
# also checks steps taken within for example a line search
self.assertEqual(complex_steps, real_steps)
@skipMPS
@optims([o for o in optim_db if o.supports_complex], dtypes=[torch.complex64])
def test_complex_2d(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
# Also skip fused, since our fused kernels do not support complex
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable", "fused")
)
for optim_input in all_optim_inputs:
if optim_info.step_requires_closure:
# Why? The way we implement complex is by turning complex params into view_as_real
# alternatives. For example, an size (M,N) tensor will become (M,N,2). In this test,
# we break apart a tensor into its real and imaginary parts, which would be 2x(M,N).
# For other pointwise optimizers, this distinction is trivial, but for LBFGS where
# there are reductions across all parameters (and all the grads get flattened into
# one long Tensor), this ordering matters. Why? Reductions are not deterministic
# because addition between floating point numbers is not associative, i.e.,
# a + b + c != a + c + b. Thus, we add a seed here to control the discrepancy that
# will happen with LBFGS. Note that in test_complex above, there is no need for a seed
# nor for increased tolerance, because results should be bitwise equivalent.
torch.manual_seed(2024)
a1 = torch.randn(2, device=device, dtype=dtype, requires_grad=True)
a1_real = a1.real.clone().detach()
a1_imag = a1.imag.clone().detach()
a1_real.requires_grad_()
a1_imag.requires_grad_()
optim1 = optim_cls([a1], **optim_input.kwargs)
optim2 = optim_cls([a1_real, a1_imag], **optim_input.kwargs)
a1_reals = TensorTracker()
a1_imags = TensorTracker()
a1_grad_reals = TensorTracker()
a1_grad_imags = TensorTracker()
losses = TensorTracker()
def closure1():
optim1.zero_grad()
loss = rosenbrock(a1).abs()
loss.backward()
# Track clones to best test accuracy
a1_reals.add(a1.real)
a1_imags.add(a1.imag)
a1_grad_reals.add(a1.grad.real)
a1_grad_imags.add(a1.grad.imag)
losses.add(loss)
return loss
def closure2():
optim2.zero_grad()
a1_reals.pop_check_set(a1_real, self)
a1_imags.pop_check_set(a1_imag, self)
a2 = torch.complex(a1_real, a1_imag)
loss = rosenbrock(a2).abs()
losses.pop_check_set(loss, self)
loss.backward()
a1_grad_reals.pop_check_set(a1_real.grad, self)
a1_grad_imags.pop_check_set(a1_imag.grad, self)
return loss
for _ in range(3):
if optim_info.step_requires_closure:
# LBFGS, for example, requires closure and calls it internally
optim1.step(closure1)
optim2.step(closure2)
else:
closure1()
closure2()
optim1.step()
optim2.step()
self.assertEqual(a1.real, a1_real)
self.assertEqual(a1.imag, a1_imag)
self.assertTrue(a1_reals.all_popped())
self.assertTrue(a1_imags.all_popped())
self.assertTrue(a1_grad_reals.all_popped())
self.assertTrue(a1_grad_imags.all_popped())
self.assertTrue(losses.all_popped())
def _compare_between(
self, inputs, models, optimizers, assert_eq_kwargs=None, assert_step_dtype=None
):
# why 7? iteration 7 is where we start to see differences for RAdam
# params interacting with the small eps value, because that's right
# after rho_t becomes greater than 5 in step 6.
if assert_eq_kwargs is None:
assert_eq_kwargs = {}
kIterations = 7
tracker = TensorTracker(assert_eq_kwargs)
for i in range(kIterations):
state, updated_params = [], []
if not isinstance(inputs, list):
inputs = [inputs, inputs]
for input, model, optimizer in zip(inputs, models, optimizers):
optimizer.zero_grad()
if i == 3:
# Freeze a layer to test if the step of this layer in 'fused' or 'foreach'
# is same as the step in 'forloop'.
model[2].requires_grad_(False)
if i == 5:
# Unfreeze the layer after 2 iters.
model[2].requires_grad_(True)
# Test that step behaves as expected (a no-op) when grads are set to None
if i != 2:
output = model(input)
loss = output.sum()
loss.backward()
optimizer.step()
state.append(optimizer.state)
updated_params.append(model.parameters())
og_state, new_state = state
for og_p, new_p in zip(updated_params[0], updated_params[1]):
tracker.add(og_p)
tracker.pop_check_set(new_p, self)
# check that optimizer states are the same
og_p_state = og_state[og_p]
new_p_state = new_state[new_p]
if assert_step_dtype is not None:
if torch.is_tensor(og_p_state.get("step", None)):
self.assertEqual(og_p_state["step"].dtype, assert_step_dtype)
if torch.is_tensor(new_p_state.get("step", None)):
self.assertEqual(new_p_state["step"].dtype, assert_step_dtype)
for k in og_p_state:
tracker.add(og_p_state[k])
tracker.pop_check_set(new_p_state[k], self)
self.assertTrue(tracker.all_popped())
def _test_derived_optimizers(
self,
device,
dtype,
optim_info,
flag,
reduced_precision=False,
assert_step_dtype=None,
):
"""
Given a flag 'fused' or 'foreach', test for parity of optimizer state
and updated parameters between when the flag is set to True and False
for provided optimizer configurations.
"""
assert flag in ("foreach", "fused")
assert_eq_kwargs = {} if not reduced_precision else FP16_REDUCED_PRECISION
optim_inputs = optim_info.optim_inputs_func(device=device, dtype=dtype)
optim_cls = optim_info.optim_cls
for optim_input in optim_inputs:
models, optimizers = [], []
kwargs = deepcopy(optim_input.kwargs)
if kwargs.get("capturable", False) and _get_device_type(device) == "cpu":
# capturable is not supported on CPU
continue
for flag_value in (False, True):
kwargs[flag] = flag_value
input = torch.tensor(
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=dtype, device=device
).reshape(3, 2)
torch.manual_seed(1)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
)
model.to(dtype=dtype, device=device)
# foreach/fused optimizers should be tested with a
# zero_size tensor as its last param.
# ref: https://github.com/pytorch/pytorch/issues/100701
empty_param = torch.empty(
(), device=device, dtype=dtype, requires_grad=True
)
empty_param.grad = torch.rand_like(empty_param)
params = list(model.parameters()) + [empty_param]
optimizer = optim_cls(params, **kwargs)
models.append(model)
optimizers.append(optimizer)
self._compare_between(
input, models, optimizers, assert_eq_kwargs, assert_step_dtype
)
@skipMPS # MPS doesn't support torch.float64, see https://github.com/pytorch/pytorch/issues/115350
@optims(
[optim for optim in optim_db if "foreach" in optim.supported_impls],
dtypes=[torch.float64],
)
def test_foreach_matches_forloop(self, device, dtype, optim_info):
self._test_derived_optimizers(device, dtype, optim_info, "foreach")
@onlyCUDA
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@parametrize("impl", ["foreach", "fused"])
@optims(
[
optim
for optim in optim_db
if "foreach" in optim.supported_impls or "fused" in optim.supported_impls
]
)
def test_mixed_device_dtype(self, device, dtype, optim_info, impl):
"""
Similar in essence to _test_derived_optimizers above. The main difference is that
_test_derived_optimizers uses model parameters whereas we randomly pass in
parameters of different dtypes and devices here. We need multiple GPUs (vs just a
CPU and GPU) because fused adam only works on GPUs. (Thus we only run the tests
that call into this helper when TEST_MULTIGPU.)
"""
assert impl in ("foreach", "fused")
if impl == "foreach" and "foreach" not in optim_info.supported_impls:
return unittest.skip(
f"foreach not supported for {optim_info.optim_cls.__name__}"
)
elif impl == "fused" and "cuda" not in optim_info.supports_fused_on:
return unittest.skip(
f"fused not supported for {optim_info.optim_cls.__name__} on cuda"
)
params = [
torch.rand(2, 3, dtype=torch.float64, device="cuda:0", requires_grad=True),
torch.rand(2, 3, dtype=torch.float32, device="cuda:0", requires_grad=True),
torch.rand(2, 3, dtype=torch.float16, device="cuda:0", requires_grad=True),
torch.rand(2, 3, dtype=torch.bfloat16, device="cuda:0", requires_grad=True),
torch.rand(2, 3, dtype=torch.float64, device="cuda:1", requires_grad=True),
torch.rand(2, 3, dtype=torch.float32, device="cuda:1", requires_grad=True),
torch.rand(2, 3, dtype=torch.float16, device="cuda:1", requires_grad=True),
torch.rand(2, 3, dtype=torch.bfloat16, device="cuda:1", requires_grad=True),
torch.randint(
1024, (2, 3), dtype=torch.int64, device="cuda:1", requires_grad=False
),
]
for p in params:
if p.requires_grad:
p.grad = torch.rand_like(p, device=p.device, dtype=p.dtype)
kIterations = 7 if impl == "foreach" else 1
optim_inputs = optim_info.optim_inputs_func(device=device)
optim_cls = optim_info.optim_cls
for optim_input in optim_inputs:
updated_params, state = [], []
kwargs = deepcopy(optim_input.kwargs)
if kwargs.get("capturable", False) and _get_device_type(device) == "cpu":
# capturable is not supported on CPU
continue
for use_impl in (False, True):
kwargs[impl] = use_impl
params_clone = []
for p in params:
p_clone = p.clone().detach()
if p.requires_grad:
p_clone.requires_grad = True
p_clone.grad = p.grad.clone().detach()
params_clone.append(p_clone)
optimizer = optim_cls(params_clone, **kwargs)
for _ in range(kIterations):
optimizer.step()
state.append(optimizer.state)
updated_params.append(params_clone)
og_state, new_state = state
for og_p, new_p in zip(updated_params[0], updated_params[1]):
# Increasing the tolerance as we are collating lots of ops together for optimizers and
# the designated tolerances are for single op only.
single_rtol, single_atol = torch.testing._comparison.get_tolerances(
new_p.dtype, rtol=None, atol=None
)
rtol = 5 * single_rtol
atol = 5 * single_atol
self.assertEqual(og_p, new_p, rtol=rtol, atol=atol)
# check that optimizer states are the same
og_p_state = og_state[og_p]
new_p_state = new_state[new_p]
for k in og_p_state:
actual = new_p_state[k]
self.assertEqual(og_p_state[k], actual, rtol=rtol, atol=atol)
@onlyCUDA
@optims(
[optim for optim in optim_db if "foreach" in optim.supported_impls],
dtypes=[torch.float64],
)
def test_set_default_dtype_works_with_foreach(self, device, dtype, optim_info):
# https://github.com/pytorch/pytorch/issues/110940
# We coerce step to always be float32 unless the
# default dtype is higher prec float64
old_default_dtype = torch.get_default_dtype()
for default_dtype in [torch.float64, torch.float16]:
try:
torch.set_default_dtype(default_dtype)
self._test_derived_optimizers(
device,
dtype,
optim_info,
"foreach",
reduced_precision=default_dtype == torch.float16,
assert_step_dtype=(
torch.float64
if default_dtype == torch.float64
else torch.float32
),
)
finally:
torch.set_default_dtype(old_default_dtype)
@onlyCUDA
@largeTensorTest("72GB", "cuda")
@optims(
[optim for optim in optim_db if "foreach" in optim.supported_impls],
dtypes=[torch.float16],
)
def test_foreach_large_tensor(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
optim_inputs = optim_info.optim_inputs_func(device=device)
for optim_input in optim_inputs:
params = [torch.ones(2**32, device=device, dtype=dtype)]
params[0].grad = torch.zeros_like(params[0])
optimizer = optim_cls(params, foreach=True, **optim_input.kwargs)
optimizer.step()
@onlyCUDA
@optims(
[optim for optim in optim_db if "foreach" in optim.supported_impls],
dtypes=[torch.float32],
)
def test_peak_memory_foreach(self, device, dtype, optim_info):
nparams = 10
optim_inputs = optim_info.optim_inputs_func(device=device)
optim_cls = optim_info.optim_cls
for optim_input in optim_inputs:
kwargs = deepcopy(optim_input.kwargs)
max_mems = []
for flag_value in (False, True):
kwargs["foreach"] = flag_value
# The 16 * 8 = 128 is critical here! Our CUDACachingAllocator allocates in blocks
# of 512, meaning any tensor that occupies <512 bytes of memory will allocate a
# whole 512 bytes anyway. We use 128 (cuz datasize would be 4 bytes) so that param
# is size 512 exactly, making our later calculations for intermediate_size easy.
param = torch.rand(16, 8, device=device, dtype=dtype)
params = [torch.rand_like(param) for _ in range(nparams)]
optimizer = optim_cls(params, **kwargs)
for p in params:
p.grad = torch.rand_like(p)
optimizer.step()
import gc
gc.collect()
torch.cuda.reset_peak_memory_stats()
optimizer.step()
gc.collect()
max_mems.append(torch.cuda.max_memory_allocated())
st_max_mem, mt_max_mem = max_mems
intermediate_size = nparams * param.nelement() * param.element_size()
nintermediates = 1 # we expect a budget of 1 intermediate most of the time
# Check the param group directly to handle if the compiler set capturable
if optimizer.param_groups[0].get(
"capturable", False
) or optim_cls.__name__ in ["Adadelta", "ASGD", "RAdam"]:
# with capturable in Adam(W), we have 2 extra intermediates for the bias_corrections
# with Adadelta, we have 2 extra for (acc_delta + eps) and (square_avg + eps)
# ASGD allocates axs, 2x mus, 2x etas, and grads at the same time
nintermediates = 3
if optim_cls.__name__ == "NAdam":
# with capturable in NAdam, we have 3 extra intermediates for the
# bias_correction, mus, and mu_nexts
if TEST_WITH_TORCHDYNAMO:
# With dynamo, the eager/FX backend appears to hold memory longer than
# vanilla eager: https://github.com/pytorch/pytorch/issues/125511
nintermediates = 8
else:
nintermediates = 5
if optim_cls.__name__ == "RAdam":
# RAdam has four intermediates with capturable
# num, unrect_step_size, buffer, grouped_grads
if TEST_WITH_TORCHDYNAMO:
# With dynamo, the eager/FX backend appears to hold memory than
# vanilla eager: https://github.com/pytorch/pytorch/issues/125511
nintermediates = 6
else:
nintermediates = 4
elif optim_cls.__name__ in ["NAdam", "Adagrad", "RMSprop", "Adafactor"]:
# NAdam uses two intermediates at the same time (grads & exp_avg_sq_sqrt)
# Adagrad uses std and grads at the same time
# RMSprop uses avg and grads
# Adafactor uses row/col var and its mean
nintermediates = 2
if optim_cls.__name__ == "Adafactor" and kwargs.get("maximize", False):
# When maximize is True, Adafactor also tracks device_grad
nintermediates = 3
# Dynamo ST uses less mem than eager in the case of Adam/Adagrad/Nadam/RAdam
# which makes the foreach memory check fail
if TEST_WITH_TORCHDYNAMO:
st_max_mem += 6000
expected_max_mem = st_max_mem + intermediate_size * nintermediates
# hipcc currently can't generate efficient code for the small buffer optimization
# code path (see Note [small buffer optimization] for details), thus we always
# dynamically allocate the tensor metadata for ROCM. Adjusting the expected max
# memory usage to account for this.
if TEST_WITH_ROCM:
expected_max_mem *= 1.02
self.assertLessEqual(mt_max_mem, expected_max_mem)
@optims(
[optim for optim in optim_db if "fused" in optim.supported_impls],
dtypes=floating_types_and(
torch.bfloat16,
torch.float16,
),
)
def test_fused_matches_forloop(self, device, dtype, optim_info):
if _get_device_type(device) not in optim_info.supports_fused_on:
self.skipTest(
f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
)
if _get_device_type(device) == "mps" and dtype not in (
torch.float16,
torch.float32,
):
self.skipTest("MPS supports only torch.float16 and torch.float32")
self._test_derived_optimizers(device, dtype, optim_info, "fused")
@optims(
[optim for optim in optim_db if "fused" in optim.supported_impls],
dtypes=(torch.float32,),
)
def test_fused_error_on_params_on_meta(self, device, dtype, optim_info):
if _get_device_type(device) not in optim_info.supports_fused_on:
self.skipTest(
f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
)
with torch.device("meta"):
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
).to(dtype)
optimizer = optim_info.optim_cls(model.parameters(), fused=True)
with torch.device("meta"):
for p in model.parameters():
p.grad = torch.rand_like(p)
with self.assertRaisesRegex(
RuntimeError,
"`fused=True` requires all the params to be floating point Tensors",
):
optimizer.step()
optimizer.zero_grad(set_to_none=True)
model.to_empty(device=device)
for p in model.parameters():
p.grad = torch.rand_like(p)
optimizer.step()
@onlyNativeDeviceTypes
@largeTensorTest("64GB")
@optims(
[optim for optim in optim_db if "fused" in optim.supported_impls],
dtypes=[torch.float16],
)
def test_fused_large_tensor(self, device, dtype, optim_info):
if device not in optim_info.supports_fused_on:
self.skipTest(
f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
)
optim_cls = optim_info.optim_cls
optim_inputs = optim_info.optim_inputs_func(device=device)
for optim_input in optim_inputs:
params = [torch.ones(2**32, device=device, dtype=dtype)]
params[0].grad = torch.zeros_like(params[0])
optimizer = optim_cls(params, fused=True, **optim_input.kwargs)
optimizer.step()
@onlyCUDA
@optims(
[optim for optim in optim_db if "fused" in optim.supported_impls],
dtypes=[torch.float32],
)
def test_fused_does_not_step_if_foundinf(self, device, dtype, optim_info):
if device not in optim_info.supports_fused_on:
self.skipTest(
f"{device} is not supported for fused on {optim_info.optim_cls.__name__}"
)
optim_cls = optim_info.optim_cls
optim_inputs = optim_info.optim_inputs_func(device=device)
num_params = 5
for optim_input in optim_inputs:
for no_grad_scale in (False, True):
params = [
torch.ones((1,), device=device, dtype=dtype)
for _ in range(num_params)
]
params_c = [param.clone().detach() for param in params]
for p in params:
p.grad = torch.ones_like(p)
optimizer = optim_cls(params, fused=True, **optim_input.kwargs)
optimizer.grad_scale = (
None
if no_grad_scale
else torch.ones((1,), dtype=dtype, device=device)
)
optimizer.found_inf = torch.ones((), dtype=dtype, device=device)
optimizer.step()
for p in params:
if "step" in optimizer.state[p]:
self.assertEqual(
torch.zeros((), dtype=dtype, device=device),
optimizer.state[p]["step"],
)
self.assertEqual(params, params_c)
@parametrize("impl", ["fused", "capturable"])
@optims(
[optim for optim in optim_db if "fused" in optim.supported_impls],
dtypes=[torch.float32],
)
def test_cpu_load_state_dict(self, device, dtype, impl, optim_info):
# NOTE: This SIMULATES a fused/capturable optimizer with state moved to CPU, issue 103256
# How do we get there? Users typically create CUDA models on fused optimizers and then
# store checkpoints on CPU as CUDA memory is limited with torch.load(...map_location="cpu").
# Since this is a unit test, it is more expedient to simulate what the state_dict
# would look like, which is basically CPU tensors with fused/capturable flag = True.
optim_cls = optim_info.optim_cls
opt_name = optim_cls.__name__
if opt_name in ("SGD", "Adagrad") and impl == "capturable":
# Capturable SGD/Adagrad does not exist
self.skipTest("SGD does not currently support capturable")
if _get_device_type(device) == "cpu":
self.skipTest("Test is only for non-cpu devices")
elif (
impl == "fused"
and _get_device_type(device) not in optim_info.supports_fused_on
):
self.skipTest(f"{device} is not supported for fused on {opt_name}")
elif impl == "capturable" and _get_device_type(device) == "mps":
self.skipTest("MPS does not support capturable")
cpu_optim_inputs = optim_info.optim_inputs_func(device="cpu")
for optim_input in cpu_optim_inputs:
param = torch.tensor([0.1, 0.2], dtype=dtype, device="cpu")
optimizer = optim_cls([param], **optim_input.kwargs)
param.grad = torch.rand_like(param)
optimizer.step()
optim_state_dict_cpu = deepcopy(optimizer.state_dict())
optim_state_dict_cpu["param_groups"][0][impl] = True
# load
optim_input.kwargs[impl] = True
param_device = param.clone().detach().to(device=device)
optimizer_device = optim_cls([param_device], **optim_input.kwargs)
optimizer_device.load_state_dict(optim_state_dict_cpu)
optimizer_device.zero_grad()
param_device.grad = torch.rand_like(param_device)
optimizer_device.step()
@optims(optim_db, dtypes=[torch.float32])
def test_param_groups_weight_decay(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
for optim_input in all_optim_inputs:
weight_kwargs = optim_input.kwargs
bias_kwargs = deepcopy(optim_input.kwargs)
bias_kwargs["weight_decay"] = 0.0
weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
bias = Parameter(torch.randn((10), device=device, dtype=dtype))
input = torch.randn(5, device=device, dtype=dtype)
optimizer = optim_cls(
[
dict(params=[weight], **weight_kwargs),
dict(params=[bias], **bias_kwargs),
]
)
loss = (weight.mv(input) + bias).pow(2).sum()
initial_value = loss.item()
for _ in range(20):
optimizer.zero_grad()
loss = (weight.mv(input) + bias).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
optimizer.step()
# Test that the direction of loss moved appropriately
if optim_input.kwargs.get("maximize", False):
self.assertGreater(loss.item(), initial_value)
else:
self.assertLess(loss.item(), initial_value)
@optims(optim_db, dtypes=[torch.float32])
def test_param_groups_lr(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
for optim_input in all_optim_inputs:
# optim_input.kwargs will be the param group kwargs, which should have >0 lr
if "lr" not in optim_input.kwargs or optim_input.kwargs["lr"] == 0:
optim_input.kwargs["lr"] = 1e-3
outer_kwargs = {"lr": 1e-28}
if optim_cls.__name__ == "Rprop":
# Allow min step size to be 0
outer_kwargs["step_sizes"] = (0, 50)
weight = Parameter(torch.randn((10, 5), device=device, dtype=dtype))
bias = Parameter(torch.randn((10), device=device, dtype=dtype))
irrelevant = Parameter(torch.randn(2, device=device, dtype=dtype))
irrelevant_clone = irrelevant.clone()
input = torch.randn(5, device=device, dtype=dtype)
optimizer = optim_cls(
[
dict(params=[weight, bias], **optim_input.kwargs),
dict(params=[irrelevant]),
],
**outer_kwargs,
)
loss = (weight.mv(input) + bias).pow(2).sum()
initial_value = loss.item()
for _ in range(20):
optimizer.zero_grad()
loss = (weight.mv(input) + bias).pow(2).sum()
loss.backward()
irrelevant.grad = torch.rand_like(irrelevant)
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
irrelevant.grad = irrelevant.grad.to_sparse()
optimizer.step()
# Test that the direction of loss moved appropriately
if optim_input.kwargs.get("maximize", False):
self.assertGreater(loss.item(), initial_value)
else:
self.assertLess(loss.item(), initial_value)
# Test that irrelevant parameters were not updated since lr was almost 0
self.assertEqual(irrelevant, irrelevant_clone)
@optims(optim_db, dtypes=[torch.float32])
def test_step_is_noop_when_params_have_no_grad(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
params = [
torch.randn(2, 3, requires_grad=False, device=device, dtype=dtype)
for _ in range(2)
]
old_params = [p.clone().detach() for p in params]
def closure():
return torch.tensor([1], device=device, dtype=dtype)
for optim_input in all_optim_inputs:
optimizer = optim_cls(params, **optim_input.kwargs)
optimizer.step(closure)
@optims(optim_db, dtypes=[torch.float32])
def test_step_is_noop_for_zero_grads(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
param = torch.randn((5, 1), device=device, dtype=dtype, requires_grad=True)
old_param = param.clone().detach()
def closure():
return torch.tensor([1], device=device, dtype=dtype)
for optim_input in all_optim_inputs:
kwargs = optim_input.kwargs
# params will decay even if grads are empty if weight_decay != 0,
# and capturable doesn't work for CPU tensors
if kwargs.get("weight_decay", 0) != 0:
continue
# AdamW params will be updated regardless of grads due to lr, so make lr smaller
if optim_cls.__name__ == "AdamW":
kwargs["lr"] = (
torch.tensor(1e-5)
if isinstance(kwargs.get("lr", 1e-5), torch.Tensor)
else 1e-5
)
if kwargs.get("differentiable", False):
params = [param.clone()]
else:
params = [param]
optimizer = optim_cls(params, **kwargs)
if optim_info.only_supports_sparse_grads:
# Intentionally construct a multidimensional empty v for the sparse grad
# Single dim v passes the test while multidim correctly repros the issue
# https://github.com/pytorch/pytorch/issues/82486
i = torch.empty((1, 0), device=device, dtype=dtype)
v = torch.empty((0, 1), device=device, dtype=dtype)
params[0].grad = torch.sparse_coo_tensor(
i, v, (5, 1), device=device, dtype=dtype
)
else:
params[0].grad = torch.zeros_like(params[0])
optimizer.step(closure)
self.assertEqual(old_param, params[0])
@optims(optim_db, dtypes=[torch.float32])
def test_optimizer_can_be_printed(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
params = [
Parameter(torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype))
for _ in range(2)
]
for optim_input in all_optim_inputs:
optimizer = optim_cls(params, **optim_input.kwargs)
optimizer.__repr__()
@optims(optim_db, dtypes=[torch.float32])
def test_state_dict_deterministic(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
weight = Parameter(
torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype)
)
bias = Parameter(torch.randn(2, requires_grad=True, device=device, dtype=dtype))
input = torch.randn(3, requires_grad=True, device=device, dtype=dtype)
params = [weight, bias]
def fwd_bwd(optim, w, b, i):
optim.zero_grad()
loss = (w.mv(i) + b).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
if w.grad is not None:
w.grad = w.grad.to_sparse()
if b.grad is not None:
b.grad = b.grad.to_sparse()
return loss
for optim_input in all_optim_inputs:
optimizer = optim_cls(params, **optim_input.kwargs)
closure = functools.partial(fwd_bwd, optimizer, weight, bias, input)
# Prime the optimizer
for _ in range(10):
if optim_info.step_requires_closure:
optimizer.step(closure)
else:
closure()
optimizer.step()
# Clone the weights and construct a new optimizer for them
with torch.no_grad():
weight_c = Parameter(weight.clone())
bias_c = Parameter(bias.clone())
optimizer_c = optim_cls([weight_c, bias_c], **optim_input.kwargs)
closure_c = functools.partial(fwd_bwd, optimizer_c, weight_c, bias_c, input)
# Load the state dict from the original optimizer into the new one
optimizer_c.load_state_dict(deepcopy(optimizer.state_dict()))
# Run both optimizers in parallel
for _ in range(10):
if optim_info.step_requires_closure:
optimizer.step(closure)
optimizer_c.step(closure_c)
else:
closure()
closure_c()
optimizer.step()
optimizer_c.step()
self.assertEqual(weight, weight_c)
self.assertEqual(bias, bias_c)
# Make sure state dict is deterministic with equal (not identical) parameters
self.assertEqual(optimizer.state_dict(), optimizer_c.state_dict())
# Make sure repeated parameters have identical representation (see #36831)
optimizer_c.param_groups.extend(optimizer_c.param_groups)
self.assertEqual(
optimizer.state_dict()["param_groups"][-1],
optimizer_c.state_dict()["param_groups"][-1],
)
@optims(optim_db, dtypes=[torch.float32])
def test_can_load_older_state_dict(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
for optim_input in all_optim_inputs:
torch.manual_seed(1)
model = torch.nn.Sequential(
torch.nn.Conv2d(4, 2, 1, stride=2),
torch.nn.BatchNorm2d(2, eps=1e-05, momentum=0.1),
)
model.to(dtype=dtype, device=device)
input = torch.rand(1, 4, 16, 16, device=device, dtype=dtype)
optimizer = optim_cls(model.parameters(), **optim_input.kwargs)
def fwd_bwd(optim, mod, i):
optim.zero_grad()
loss = mod(i).sum()
loss.backward()
return loss
for _ in range(3):
if optim_info.step_requires_closure:
optimizer.step(functools.partial(fwd_bwd, optimizer, model, input))
else:
fwd_bwd(optimizer, model, input)
optimizer.step()
# old_state_dict has all new flags del'd
old_state_dict = deepcopy(optimizer.state_dict())
old_state_dict_pg = old_state_dict["param_groups"]
for group in old_state_dict_pg:
for flag in optim_info.not_og_supported_flags:
if flag in group:
del group[flag]
optimizer.load_state_dict(old_state_dict)
# Make sure we can still step
if optim_info.step_requires_closure:
optimizer.step(functools.partial(fwd_bwd, optimizer, model, input))
else:
fwd_bwd(optimizer, model, input)
optimizer.step()
@optims(optim_db, dtypes=[torch.float32])
def test_save_load_equality_with_weights_only(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
weight = Parameter(
torch.randn(2, 3, requires_grad=True, device=device, dtype=dtype)
)
bias = Parameter(torch.randn(2, requires_grad=True, device=device, dtype=dtype))
input = torch.randn(3, requires_grad=True, device=device, dtype=dtype)
params = [weight, bias]
def fwd_bwd(optim, w, b, i):
optim.zero_grad()
loss = (w.mv(i) + b).pow(2).sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
weight.grad = weight.grad.to_sparse()
bias.grad = bias.grad.to_sparse()
return loss
for optim_input in all_optim_inputs:
optimizer = optim_cls(params, **optim_input.kwargs)
closure = functools.partial(fwd_bwd, optimizer, weight, bias, input)
# Prime the optimizer
for _ in range(3):
optimizer.step(closure)
sd = optimizer.state_dict()
# === Check saved/loaded state_dict are the same (including weights_only load). ===
with tempfile.TemporaryFile() as f:
torch.save(sd, f)
f.seek(0)
sd_copy = torch.load(f)
self.assertEqual(sd_copy, sd)
del sd_copy
f.seek(0)
sd_copy_wo = torch.load(f, weights_only=True)
self.assertEqual(sd_copy_wo, sd)
@optims(optim_db, dtypes=[torch.float32])
def test_load_nontensor_step(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
params = [
Parameter(torch.randn(2, 3, device=device, dtype=dtype)) for _ in range(2)
]
for p in params:
p.grad = torch.rand_like(p)
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
p.grad = p.grad.to_sparse()
# Needed for second order optims like LBFGS
closure_loss = torch.rand(1, device=device, dtype=dtype)
def closure():
return closure_loss if optim_info.step_requires_closure else None
for optim_input in all_optim_inputs:
kwargs = optim_input.kwargs
optimizer = optim_cls(params, **optim_input.kwargs)
for _ in range(3):
optimizer.step(closure)
state_dict = deepcopy(optimizer.state_dict())
for p_state in state_dict["state"].values():
if "step" in p_state and torch.is_tensor(p_state["step"]):
p_state["step"] = p_state["step"].item()
optimizer.load_state_dict(state_dict)
optimizer.step(closure)
@onlyCUDA
@optims(optim_db, dtypes=[torch.float32])
def test_state_dict_with_cuda_params(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
# We limit our configs to CPU only, because we will be moving them to CUDA later
cpu_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
"cpu", dtype, optim_info, skip=("differentiable",)
)
# Needed for second order optims like LBFGS
closure_loss = torch.rand(1, device=device, dtype=dtype)
def closure():
return closure_loss if optim_info.step_requires_closure else None
for optim_input in cpu_optim_inputs:
if (
"fused" in optim_input.kwargs
and "cuda" not in optim_info.supports_fused_on
):
self.skipTest(
f"cuda is not supported for fused on {optim_cls.__name__}"
)
params = [
Parameter(torch.randn(2, 3, device="cpu", dtype=dtype))
for _ in range(2)
]
for p in params:
p.grad = torch.randn_like(p)
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
p.grad = p.grad.to_sparse()
optimizer = optim_cls(params, **optim_input.kwargs)
for _ in range(3):
optimizer.step(closure)
with torch.no_grad():
params_cuda = [p.to(device="cuda") for p in params]
for i, p in enumerate(params_cuda):
p.grad = params[i].grad.to(device="cuda")
optimizer_cuda = optim_cls(params_cuda, **optim_input.kwargs)
state_dict_cpu = deepcopy(optimizer.state_dict())
state_dict_cuda = deepcopy(optimizer.state_dict())
optimizer_cuda.load_state_dict(state_dict_cuda)
# Make sure state_dict_cuda isn't modified by merely calling load_state_dict
self.assertEqual(state_dict_cpu, state_dict_cuda)
# Make sure that device of state['step'] is still CPU _unless_ torch.compile() added a capturable!
capturable = state_dict_cpu["param_groups"][0].get("capturable", False)
fused = state_dict_cpu["param_groups"][0].get("fused", False)
new_state_dict = optimizer_cuda.state_dict()
for state_cpu, state_cuda in zip(
state_dict_cpu["state"].values(), new_state_dict["state"].values()
):
if "step" in state_cpu and torch.is_tensor(state_cpu["step"]):
self.assertEqual(
state_cuda["step"].device.type,
"cuda" if capturable or fused else "cpu",
)
for _ in range(5):
optimizer.step(closure)
optimizer_cuda.step(closure)
self.assertEqual(params, params_cuda)
self.assertEqual(optimizer.state_dict(), optimizer_cuda.state_dict())
@staticmethod
def _state_dict_pre_hook(optimizer: Optimizer) -> None:
optimizer.state["test"] = 1
@staticmethod
def _state_dict_post_hook(
optimizer: Optimizer, state_dict: Dict[str, Any]
) -> Dict[str, Any]:
if "test" in state_dict["state"]:
state_dict["state"].pop("test")
state_dict["ran_state_dict_pre_hook"] = True
else:
state_dict["ran_state_dict_pre_hook"] = False
return state_dict
@optims(optim_db, dtypes=[torch.float32])
def test_state_dict_pre_hook(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
optim.register_state_dict_pre_hook(self.__class__._state_dict_pre_hook)
state_dict = optim.state_dict()
self.assertEqual(state_dict["state"]["test"], 1)
@optims(optim_db, dtypes=[torch.float32])
def test_state_dict_post_hook(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
optim.register_state_dict_post_hook(self.__class__._state_dict_post_hook)
state_dict = optim.state_dict()
self.assertFalse(state_dict["ran_state_dict_pre_hook"])
@optims(optim_db, dtypes=[torch.float32])
def test_state_dict_pre_post_hook(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
optim.register_state_dict_pre_hook(self.__class__._state_dict_pre_hook)
optim.register_state_dict_post_hook(self.__class__._state_dict_post_hook)
state_dict = optim.state_dict()
self.assertFalse("test" in state_dict["state"])
self.assertTrue(state_dict["ran_state_dict_pre_hook"])
@staticmethod
def _load_state_dict_pre_hook1(
optimizer: Optimizer, state_dict: Dict[str, Any]
) -> None:
state_dict["param_groups"][0]["lr"] = 0.002
@staticmethod
def _load_state_dict_pre_hook2(
optimizer: Optimizer, state_dict: Dict[str, Any]
) -> Dict[str, Any]:
# The typical use case for returning a state dict is to drastically modify the state dict.
# I will simulate by simply making a deep copy and ensuring that my_state_dict still gets used
my_state_dict = deepcopy(state_dict)
my_state_dict["param_groups"][0]["lr"] = 0.003
return my_state_dict
@staticmethod
def _load_state_dict_post_hook(optimizer: Optimizer) -> None:
optimizer.state["ran_load_state_dict_pre_hook2"] = (
optimizer.param_groups[0]["lr"] == 0.003
)
optimizer.state["ran_load_state_dict_post_hook"] = True
@optims(optim_db, dtypes=[torch.float32])
def test_load_state_dict_pre_hook_and_prepend(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
state_dict = optim.state_dict()
# usually one would have a new optim instance here, but it's all the same here
optim.register_load_state_dict_pre_hook(
self.__class__._load_state_dict_pre_hook1
)
optim.load_state_dict(state_dict)
self.assertEqual(optim.param_groups[0]["lr"], 0.002)
optim.register_load_state_dict_pre_hook(
self.__class__._load_state_dict_pre_hook2, prepend=True
)
optim.load_state_dict(state_dict)
# If prepend were False would be 0.003 but since prepend is True, the other hook overrides
self.assertEqual(optim.param_groups[0]["lr"], 0.002)
@optims(optim_db, dtypes=[torch.float32])
def test_load_state_dict_post_hook(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
optim.register_load_state_dict_post_hook(
self.__class__._load_state_dict_post_hook
)
optim.load_state_dict(optim.state_dict())
self.assertFalse(optim.state["ran_load_state_dict_pre_hook2"])
self.assertTrue(optim.state["ran_load_state_dict_post_hook"])
@optims(optim_db, dtypes=[torch.float32])
def test_load_state_dict_pre_post_hook(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
param = torch.rand(2, 3, device=device, dtype=dtype, requires_grad=True)
optim = optim_cls([param], **optim_input.kwargs)
optim.register_load_state_dict_pre_hook(
self.__class__._load_state_dict_pre_hook2
)
optim.register_load_state_dict_post_hook(
self.__class__._load_state_dict_post_hook
)
optim.load_state_dict(optim.state_dict())
self.assertTrue(optim.state["ran_load_state_dict_pre_hook2"])
self.assertTrue(optim.state["ran_load_state_dict_post_hook"])
@optims(optim_db, dtypes=[torch.float32])
def test_step_post_hook(self, device, dtype, optim_info):
def post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data += 2
params = [torch.tensor([1, 1], device=device, dtype=dtype)]
def dummy_closure():
return 1
closure = dummy_closure if optim_info.step_requires_closure else None
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
optim = optim_info.optim_cls(params, **optim_input.kwargs)
data = 2
hook_handle = optim.register_step_post_hook(post_hook)
optim.step(closure)
optim.step(closure)
# check if post hooks were registered
self.assertEqual(data, 6)
# remove handles, take step and verify that hook is no longer registered
hook_handle.remove()
optim.step(closure)
self.assertEqual(data, 6)
@optims(optim_db, dtypes=[torch.float32])
def test_step_pre_hook(self, device, dtype, optim_info):
def pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data += 2
params = [torch.tensor([1, 1], device=device, dtype=dtype)]
def dummy_closure():
return 1
closure = dummy_closure if optim_info.step_requires_closure else None
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
optim = optim_info.optim_cls(params, **optim_input.kwargs)
data = 5
hook_handle = optim.register_step_pre_hook(pre_hook)
optim.step(closure)
optim.step(closure)
# check if pre hooks were registered
self.assertEqual(data, 9)
# remove handles, take step and verify that hook is no longer registered
hook_handle.remove()
optim.step(closure)
self.assertEqual(data, 9)
@optims(optim_db, dtypes=[torch.float32])
def test_step_all_hooks(self, device, dtype, optim_info):
def global_pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data.append(0)
def global_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data.append(5)
def local_pre_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data.append(1)
def local_post_hook(opt: Optimizer, args: Tuple[Any], kwargs: Dict[Any, Any]):
nonlocal data
data.append(2)
params = [torch.tensor([1, 1], device=device, dtype=dtype)]
def dummy_closure():
return 1
closure = dummy_closure if optim_info.step_requires_closure else None
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info
)
for optim_input in all_optim_inputs:
optim = optim_info.optim_cls(params, **optim_input.kwargs)
optim2 = SGD(params)
data = []
# register global hooks to both optimizers
global_pre_handle = register_optimizer_step_pre_hook(global_pre_hook)
global_post_handle = register_optimizer_step_post_hook(global_post_hook)
# register local hooks
first_pre_handle = optim.register_step_pre_hook(local_pre_hook)
first_post_handle = optim.register_step_post_hook(local_post_hook)
second_pre_handle = optim2.register_step_pre_hook(local_pre_hook)
second_post_handle = optim2.register_step_post_hook(local_post_hook)
optim.step(closure)
self.assertListEqual(data, [0, 1, 2, 5])
optim2.step(closure)
self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5])
optim.step(closure)
self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])
# remove all hooks
global_pre_handle.remove()
global_post_handle.remove()
first_pre_handle.remove()
first_post_handle.remove()
second_pre_handle.remove()
second_post_handle.remove()
optim.step(closure)
optim2.step(closure)
self.assertListEqual(data, [0, 1, 2, 5, 0, 1, 2, 5, 0, 1, 2, 5])
@optims(optim_db, dtypes=[torch.float32])
def test_deepcopy_copies_all_public_attrs(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
# Skip differentiable testing for now, see https://github.com/pytorch/pytorch/issues/116490
all_optim_inputs = _get_optim_inputs_including_global_cliquey_kwargs(
device, dtype, optim_info, skip=("differentiable",)
)
params = [
Parameter(torch.randn(2, 3, device=device, dtype=dtype)) for _ in range(2)
]
for p in params:
p.grad = torch.rand_like(p)
if optim_info.only_supports_sparse_grads:
# For this test, we naively convert the Tensor layout, which we know does
# NOT represent the expected use case for optims like SparseAdam!
p.grad = p.grad.to_sparse()
# Needed for second order optims like LBFGS
def closure():
return 1 if optim_info.step_requires_closure else None
def getPublicAttrs(obj):
return {k for k in obj.__dict__ if not k.startswith("_")}
for optim_input in all_optim_inputs:
optimizer = optim_cls(params, **optim_input.kwargs)
# Make some state
for _ in range(3):
if optim_info.step_requires_closure:
optimizer.step(closure)
else:
closure()
optimizer.step()
self.assertEqual(
getPublicAttrs(optimizer), getPublicAttrs(deepcopy(optimizer))
)
@optims(
[optim for optim in optim_db if optim.step_requires_closure],
dtypes=[torch.float32],
)
def test_second_order_optims_return_consistent_types(
self, device, dtype, optim_info
):
# Motivated by #7586
optim_cls = optim_info.optim_cls
params = [
torch.randn(10, 5, device=device, dtype=dtype),
torch.randn(10, device=device, dtype=dtype),
]
def closure():
return torch.tensor([10], device=device, dtype=dtype)
for optim_input in optim_info.optim_inputs_func(device=device):
# Currently, the only second order optim is LBFGS, so we just go ahead and modify
# "tolerance_grad", but this may not scale if we add second order optims in the future
kwargs = optim_input.kwargs
kwargs["tolerance_grad"] = math.inf
optim_inf = optim_cls(params, **kwargs)
kwargs["tolerance_grad"] = -math.inf
optim_neg_inf = optim_cls(params, **kwargs)
res1 = optim_inf.step(closure)
res2 = optim_neg_inf.step(closure)
self.assertEqual(type(res1), type(res2))
@onlyCUDA
@optims(
[
optim
for optim in optim_db
if "cpu" in optim.supports_fused_on and "cuda" in optim.supports_fused_on
],
dtypes=floating_types_and(
torch.bfloat16,
torch.float16,
),
)
def test_fused_cpu_matches_cuda(self, device, dtype, optim_info):
optim_cls = optim_info.optim_cls
optim_inputs = optim_info.optim_inputs_func(device="cpu")
for optim_input in optim_inputs:
inpts, models, optimizers = [], [], []
for dev in ("cpu", "cuda"):
kwargs = optim_input.kwargs
kwargs["fused"] = True
inpt = torch.tensor(
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=dtype, device=dev
).reshape(3, 2)
torch.manual_seed(1)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Sigmoid(),
torch.nn.Linear(3, 1),
torch.nn.Sigmoid(),
)
model.to(dtype=dtype, device=dev)
# foreach/fused optimizers should be tested with a
# zero_size tensor as its last param.
# ref: https://github.com/pytorch/pytorch/issues/100701
empty_param = torch.empty(
(), device=dev, dtype=dtype, requires_grad=True
)
empty_param.grad = torch.rand_like(empty_param)
params = list(model.parameters()) + [empty_param]
optimizer = optim_cls(params, **kwargs)
inpts.append(inpt)
models.append(model)
optimizers.append(optimizer)
self._compare_between(inpts, models, optimizers)
@onlyCUDA
@optims(
[
o
for o in optim_db
if ("foreach" in o.supported_impls and o.optim_cls.__name__ != "Adafactor")
],
dtypes=[torch.float32],
)
def test_defaults_changed_to_foreach(self, device, dtype, optim_info):
# Test that the default implementations for optimizers are changed to foreach
# except Adafactor, which defaults to the single tensor impl for memory efficiency.
optim_cls = optim_info.optim_cls
model = torch.nn.Linear(5, 5)
model.to(dtype=dtype, device=device)
inpt = torch.rand(2, 5, dtype=dtype, device=device)
import inspect
module = inspect.getmodule(optim_cls)
for optim_input in optim_info.optim_inputs_func(device=device):
optim = optim_cls(model.parameters(), **optim_input.kwargs)
optim.zero_grad()
output = model(inpt)
loss = output.sum()
loss.backward()
with patch.object(
module, f"_multi_tensor_{optim_cls.__name__.lower()}"
) as mocked_foreach_impl:
optim.step()
self.assertTrue(mocked_foreach_impl.called)
@optims(optim_db, dtypes=[torch.float32])
def test_non_empty_state(self, device, dtype, optim_info):
# There are internal tests that check that the state is not empty
optim_cls = optim_info.optim_cls
model = torch.nn.Linear(5, 5)
model.to(dtype=dtype, device=device)
inpt = torch.rand(2, 5, dtype=dtype, device=device)
for optim_input in optim_info.optim_inputs_func(device=device):
optim = optim_cls(model.parameters(), **optim_input.kwargs)
optim.zero_grad()
output = model(inpt)
loss = output.sum()
loss.backward()
if optim_info.only_supports_sparse_grads:
for param in model.parameters():
if param.grad is not None:
param.grad = param.grad.to_sparse()
if optim_info.step_requires_closure:
optim.step(lambda: 1.0)
else:
optim.step()
for state in optim.state.values():
self.assertGreater(len(state), 0)
instantiate_device_type_tests(TestOptimRenewed, globals(), allow_mps=True)
if __name__ == "__main__":
run_tests()