| # Owner(s): ["module: decompositions"] |
| |
| from functools import partial |
| from itertools import product |
| import unittest |
| |
| import torch |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_utils import (parametrize, run_tests, TestCase, TEST_SCIPY, |
| set_default_dtype) |
| from torch.testing._internal.common_device_type import ( |
| instantiate_device_type_tests, |
| onlyCUDA, |
| dtypes, |
| OpDTypes, |
| ) |
| from torch.testing._internal.common_methods_invocations import ( |
| op_db, |
| ) |
| from torch.testing._internal.common_device_type import ( |
| ops, |
| ) |
| |
| from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input |
| import torch._prims as prims |
| from torch._prims_common import CUDARngStateHelper |
| from torch._prims.executor import make_traced |
| import torch._refs as refs |
| |
| |
| if TEST_SCIPY: |
| import scipy.special |
| |
| NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor" |
| GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition" |
| |
| class TestPrims(TestCase): |
| @onlyCUDA |
| @dtypes(torch.float32) |
| def test_broadcast_in_dim(self, device, dtype): |
| def _wrapper(a, b, broadcast_dimensions): |
| return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions) |
| |
| traced = make_traced(_wrapper) |
| make_arg = partial(make_tensor, device=device, dtype=dtype) |
| |
| for executor in ('aten',): |
| fn = partial(traced, executor=executor) |
| # Same shape |
| shape = (5, 5) |
| a = make_arg(shape) |
| b = make_arg(shape, low=0.0, high=0.0) |
| result = fn(a, b, (0, 1)) |
| |
| self.assertEqual(result.shape, a.shape) |
| self.assertTrue(result.is_contiguous) |
| self.assertEqual(a, result) |
| |
| # Error input: reordering dims |
| with self.assertRaises(Exception): |
| result = fn(a, b, (1, 0)) |
| |
| # Adding outermost dimensions |
| a = make_arg((5, 5)) |
| b = make_arg((3, 3, 5, 5), low=0.0, high=0.0) |
| result = fn(a, b, (2, 3)) |
| |
| self.assertEqual(result.shape, b.shape) |
| self.assertEqual(a.broadcast_to(b.shape), result) |
| |
| # Expands |
| a = make_arg((1, 5, 1)) |
| b = make_arg((3, 5, 7), low=0.0, high=0.0) |
| result = fn(a, b, (0, 1, 2)) |
| |
| self.assertEqual(result.shape, b.shape) |
| self.assertEqual(a.expand_as(result), result) |
| |
| # Unsqueezes |
| a = make_arg((1, 2, 3)) |
| b = make_arg((1, 2, 1, 3), low=0.0, high=0.0) |
| result = fn(a, b, (0, 1, 3)) |
| |
| self.assertEqual(result.shape, b.shape) |
| self.assertEqual(a.unsqueeze(2), result) |
| |
| @onlyCUDA |
| @dtypes(torch.float32) |
| def test_broadcast_in_dim_sum(self, device, dtype): |
| def _wrapper(a): |
| a_sum = prims.sum(a, [0, 1]) |
| a_bc = prims.broadcast_in_dim(a_sum, [], []) |
| return a_bc |
| |
| traced = make_traced(_wrapper) |
| make_arg = partial(make_tensor, device=device, dtype=dtype) |
| |
| for executor in ('aten',): |
| fn = partial(traced, executor=executor) |
| shape = (5, 5) |
| a = make_arg(shape) |
| result = fn(a) |
| |
| self.assertEqual(result.shape, ()) |
| self.assertTrue(result.is_contiguous) |
| self.assertEqual(_wrapper(a), result) |
| |
| @unittest.skipIf(not TEST_SCIPY, "SciPy not found") |
| @dtypes(torch.float64, torch.long) |
| def test_cbrt_prim(self, device, dtype): |
| make_arg = partial(make_tensor, device=device, dtype=dtype) |
| batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)] |
| shapes = [(), (0,), (1,), (5,)] |
| |
| # Sets the default dtype to NumPy's default dtype of double |
| with set_default_dtype(torch.double): |
| # Tested here, as this OP is not currently exposed or tested in ATen |
| for b, s in product(batches, shapes): |
| x = make_arg(b + s) |
| y = prims.cbrt(x) |
| |
| x_np = x.cpu().numpy() |
| y_np = scipy.special.cbrt(x_np) |
| |
| self.assertEqual(y, y_np, exact_device=False) |
| |
| @dtypes(torch.float32) |
| def test_collapse(self, device, dtype): |
| t = torch.rand(2, 2, 2) |
| dim_ranges = [(0, 0), (0, 1), (1, 2), (0, 2)] |
| expected_shapes = [(2, 2, 2), (4, 2), (2, 4), (8,)] |
| |
| for (start, end), shape in zip(dim_ranges, expected_shapes): |
| expect = t.reshape(shape) |
| |
| copy = prims.collapse(t, start, end) |
| self.assertEqual(copy, expect) |
| self.assertFalse(copy._is_view()) |
| |
| view = prims.collapse_view(t, start, end) |
| self.assertEqual(view, expect) |
| self.assertTrue(view._is_view()) |
| |
| t_discontig = t.transpose(0, 1) |
| with self.assertRaises(ValueError, msg="no such view exists"): |
| view = prims.collapse_view(t_discontig, 0, 2) |
| |
| copy = prims.collapse(t_discontig, 0, 1) |
| self.assertEqual(copy, t_discontig.reshape(4, 2)) |
| |
| error_dims = [(-1, 1), (0, 3), (1, -1)] |
| for start, end in error_dims: |
| for fn in [prims.collapse, prims.collapse_view]: |
| with self.assertRaises(AssertionError): |
| fn(t, start, end) |
| |
| |
| def test_aten_overload_to_prims(self, device): |
| # This test is to ensure that the torch.ops.aten calls are replaced with refs |
| from torch.fx.experimental.proxy_tensor import make_fx |
| from torch._prims.context import TorchRefsMode |
| |
| a = torch.randn(3, 3, device=device) |
| |
| def func(a): |
| return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a)) |
| |
| with TorchRefsMode(): |
| gm = make_fx(func)(a) |
| |
| # Check that all call_function nodes are prims |
| call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes)) |
| all_prims_namespace = all( |
| node.target.name().startswith("prims") for node in call_function_nodes |
| ) |
| self.assertTrue(all_prims_namespace) |
| |
| @onlyCUDA |
| @dtypes(torch.float32) |
| @parametrize("correction", [0, 1]) |
| def test_var(self, device, dtype, correction): |
| def _wrapper(a): |
| return prims.var(a, [0, 1], correction=correction) |
| |
| traced = make_traced(_wrapper) |
| make_arg = partial(make_tensor, device=device, dtype=dtype) |
| |
| for executor in ('aten',): |
| fn = partial(traced, executor=executor) |
| shape = (5, 5) |
| a = make_arg(shape) |
| result = fn(a) |
| |
| self.assertEqual(result.shape, ()) |
| self.assertTrue(result.is_contiguous) |
| self.assertEqual(_wrapper(a), result) |
| |
| @dtypes(torch.float32) |
| def test_memory_format_strides(self, device, dtype): |
| shapes = ( |
| (), |
| (0,), |
| (1,), |
| (5), |
| (1, 0), |
| (1, 1), |
| (3, 7), |
| (3, 0, 2), |
| (1, 1, 2), |
| (4, 1, 1), |
| (7, 8, 9), |
| ) |
| |
| channels_last_shapes = ( |
| (0, 0, 0, 0), |
| (1, 0, 3, 0), |
| (0, 2, 3, 5), |
| (2, 2, 2, 0), |
| (5, 4, 3, 2), |
| (8, 8, 7, 2), |
| (9, 1, 3, 1), |
| (4, 5, 8, 7) |
| ) |
| |
| channels_last_3d_shapes = ( |
| (0, 8, 7, 9, 2), |
| (5, 0, 7, 9, 2), |
| (5, 0, 7, 9, 0), |
| (5, 8, 7, 9, 2), |
| (5, 1, 7, 9, 2), |
| (5, 1, 7, 9, 1), |
| ) |
| |
| pairs = ( |
| (shapes, torch.contiguous_format), |
| (channels_last_shapes, torch.contiguous_format), |
| (channels_last_3d_shapes, torch.contiguous_format), |
| (channels_last_shapes, torch.channels_last), |
| (channels_last_3d_shapes, torch.channels_last_3d), |
| ) |
| |
| for shapes, memory_format in pairs: |
| for shape in shapes: |
| # tests empty |
| expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format) |
| actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format) |
| self.assertEqual(expected.stride(), actual.stride()) |
| |
| # tests clone |
| a = torch.testing.make_tensor(shape, device=device, dtype=dtype) |
| expected = torch.clone(a, memory_format=memory_format) |
| actual = torch.clone(a, memory_format=memory_format) |
| self.assertEqual(expected.stride(), actual.stride()) |
| |
| # tests contiguous |
| a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True) |
| expected = a.contiguous(memory_format=memory_format) |
| actual = refs.contiguous(a, memory_format=memory_format) |
| self.assertEqual(expected.stride(), actual.stride()) |
| |
| @dtypes(torch.float32) |
| def test_reshape_view_method(self, device, dtype): |
| make_arg = partial(make_tensor, device=device, dtype=dtype) |
| a = make_arg((5, 5)) |
| new_shape = 1, 5, 1, 5 |
| result_eager = a.reshape(*new_shape) |
| result_refs = refs.reshape(a, *new_shape) |
| self.assertEqual(result_eager, result_refs) |
| |
| result_eager = a.view(*new_shape) |
| result_refs = refs.view(a, *new_shape) |
| self.assertEqual(result_eager, result_refs) |
| |
| |
| @onlyCUDA |
| @dtypes(torch.float32) |
| def test_philox_rand(self, device, dtype): |
| sizes = (1000, 1000000) # offsets of 4 and 8 |
| repeats = 2 # Checks multiple rand calls results with multiple philox_rand calls |
| for size in sizes: |
| torch.cuda.manual_seed(123) |
| references = [] |
| results = [] |
| rng_states = [] |
| for _ in range(repeats): |
| rng_states.append(CUDARngStateHelper.get_torch_state_as_tuple()) |
| references.append(torch.rand(size, device=device, dtype=dtype)) |
| |
| torch.cuda.manual_seed(123) |
| for idx in range(repeats): |
| seed, offset = rng_states[idx] |
| result, _ = torch.ops.rngprims.philox_rand((size,), |
| seed=seed, |
| offset=offset, |
| stride=None, |
| device=device, |
| dtype=dtype) |
| results.append(result) |
| |
| for a, b in zip(references, results): |
| self.assertEqual(a, b) |
| |
| |
| @dtypes(torch.float32) |
| def test_functional_rng_wrappers(self, device, dtype): |
| |
| torch.manual_seed(123) |
| ref1 = torch.rand(10, device=device, dtype=dtype) |
| ref2 = torch.rand(10, device=device, dtype=dtype) |
| |
| |
| torch.manual_seed(123) |
| rng_state1, res1 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype) |
| rng_state2, res2 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype) |
| |
| res3 = torch._prims.rng_prims.run_with_rng_state(rng_state1, torch.rand, 10, device=device, dtype=dtype) |
| res4 = torch._prims.rng_prims.run_with_rng_state(rng_state2, torch.rand, 10, device=device, dtype=dtype) |
| |
| self.assertEqual(ref1, res1) |
| self.assertEqual(ref2, res2) |
| self.assertEqual(ref1, res3) |
| self.assertEqual(ref2, res4) |
| |
| class TestPrimsBasic(TestCase): |
| def test_torch_ops(self): |
| r = make_tensor((2,), device='cpu', dtype=torch.float) |
| self.assertEqual(torch.ops.prims.sin(r), torch.sin(r)) |
| |
| r = LoggingTensor(r) |
| with capture_logs() as logs: |
| log_input("input", r) |
| prims.sin(r) |
| self.assertExpectedInline('\n'.join(logs), """\ |
| $0: f32[2] = input('input') |
| $1: f32[2] = torch._ops.prims.sin.default($0)""") |
| |
| def test_mul_complex(self): |
| prims.mul(torch.randn(2), 1 + 1j) |
| |
| def test_clone_complex(self): |
| with torch._dispatch.python.enable_python_dispatcher(): |
| x = torch.randn(4, dtype=torch.complex64, device='meta').conj() |
| out = x + 1 |
| |
| def test_check_deprecation_warning(self): |
| with self.assertWarnsRegex(FutureWarning, 'will be removed in the future'): |
| torch._prims_common.check(True, lambda: 'message') |
| |
| |
| instantiate_device_type_tests(TestPrims, globals()) |
| |
| |
| class TestRefs(TestCase): |
| @dtypes(torch.float32) |
| def test_constant_pad_nd_memory_format(self, device, dtype): |
| # Test memory format is preserved in unambiguous cases |
| for mf, ndim in ( |
| (torch.channels_last, 4), |
| (torch.contiguous_format, 4), |
| (torch.channels_last_3d, 5), |
| (torch.contiguous_format, 5), |
| ): |
| a = torch.zeros([2] * ndim).to(memory_format=mf) |
| res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim)) |
| self.assertTrue(res.is_contiguous(memory_format=mf)) |
| |
| # Ambiguous cases |
| |
| # is_channels_last_ and is_contiguous_, results in channels_last output |
| a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1)) |
| self.assertTrue(a.is_contiguous(memory_format=torch.channels_last)) |
| self.assertTrue(a.is_contiguous()) |
| actual = refs.constant_pad_nd(a, pad=[1] * 8) |
| expect = torch.constant_pad_nd(a, pad=[1] * 8) |
| self.assertEqual(actual.stride(), expect.stride()) |
| self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last)) |
| |
| # is_channels_last_contiguous_ but not is_channels_last_, results in |
| # contiguous output |
| a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1)) |
| self.assertTrue(a.is_contiguous(memory_format=torch.channels_last)) |
| self.assertTrue(a.is_contiguous()) |
| actual = refs.constant_pad_nd(a, pad=[1] * 8) |
| expect = torch.constant_pad_nd(a, pad=[1] * 8) |
| self.assertEqual(actual.stride(), expect.stride()) |
| self.assertTrue(actual.is_contiguous()) |
| |
| def test_unbind(self): |
| # If unbind returns empty tuple, it breaks some assumptions in some backward tests in test_ops.py. |
| # So can't put this test into common_methods_invocations.py. |
| a = torch.rand([3, 0, 4]) |
| actual = refs.unbind(a, 1) |
| expect = torch.unbind(a, 1) |
| self.assertEqual(actual, expect) |
| |
| def test_logspace_with_complex_input(self): |
| actual = refs.logspace(2, 10 + 5j, steps=5) |
| expect = torch.logspace(2, 10 + 5j, steps=5) |
| self.assertEqual(actual, expect) |
| |
| def test_linspace_with_complex_input(self): |
| actual = refs.linspace(2, 10 + 5j, steps=5) |
| expect = torch.linspace(2, 10 + 5j, steps=5) |
| self.assertEqual(actual, expect) |
| |
| # From https://github.com/pytorch/pytorch/issues/109558 |
| def test_infinite_loop_from_py_dispatcher(self): |
| # enables prim decomps |
| with torch._dispatch.python.enable_python_dispatcher(): |
| x = torch.ones(4) |
| y = x.to(device="meta") |
| |
| def test_inferred_tags(self): |
| self.assertEqual(torch.ops.prims.normal.default.tags, (torch.Tag.nondeterministic_seeded, torch.Tag.pt2_compliant_tag)) |
| |
| |
| |
| instantiate_device_type_tests(TestRefs, globals()) |
| |
| |
| class TestDecomp(TestCase): |
| @ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one) |
| def test_decomposition_method_vararg(self, device, dtype, op): |
| # some ops have vararg variants for the methods. this tests it. |
| # we don't have tests for varargs in OpInfo, so we need to |
| # improvise this a bit. |
| # The rule for general functions (the special cases being e.g. tensor |
| # creation functions taking shapes) is that things can be vararg |
| # if the method has only one argument of sequence type. |
| # e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1) |
| # as well as t.permute([0, 2, 1]) |
| # when the signature in native_functions.yaml |
| # shows arguments Tensor self, IntList dims |
| # we might need to adjust things for the factory functions or |
| # have them do their own test |
| from torch.fx.experimental.proxy_tensor import make_fx |
| from torch._prims.context import TorchRefsMode |
| |
| # filter out empty tuple as that cannot be the varargs |
| sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False) |
| if (si.args[-1] if si.args else si.input)) |
| |
| # just run one test, we assume there is a suitable one in the tests |
| sample_input = next(sample_inputs) |
| all_args = (sample_input.input,) + sample_input.args |
| |
| # in general, the methods take varargs and not (always?) the function |
| # variants, the exception to this rule are the factory functions |
| if op.is_factory_function: |
| fn = op.op |
| else: |
| fn = op.method_variant |
| with TorchRefsMode(): |
| gm = make_fx(fn)(*all_args[:-1], *all_args[-1]) |
| |
| # in case we add random factory functions |
| torch.manual_seed(1) |
| res = gm(*all_args[:-1], *all_args[-1]) |
| torch.manual_seed(1) |
| expected = fn(*all_args[:-1], *all_args[-1]) |
| self.assertEqual(res, expected) |
| |
| |
| instantiate_device_type_tests(TestDecomp, globals()) |
| |
| |
| if __name__ == "__main__": |
| run_tests() |