blob: c9041d5499257667c9c35c5874750119489971f5 [file] [log] [blame] [edit]
# Owner(s): ["module: decompositions"]
from functools import partial
from itertools import product
import unittest
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import (parametrize, run_tests, TestCase, TEST_SCIPY,
set_default_dtype)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCUDA,
dtypes,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
)
from torch.testing._internal.common_device_type import (
ops,
)
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
import torch._prims as prims
from torch._prims_common import CUDARngStateHelper
from torch._prims.executor import make_traced
import torch._refs as refs
if TEST_SCIPY:
import scipy.special
NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor"
GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition"
class TestPrims(TestCase):
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim(self, device, dtype):
def _wrapper(a, b, broadcast_dimensions):
return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
# Same shape
shape = (5, 5)
a = make_arg(shape)
b = make_arg(shape, low=0.0, high=0.0)
result = fn(a, b, (0, 1))
self.assertEqual(result.shape, a.shape)
self.assertTrue(result.is_contiguous)
self.assertEqual(a, result)
# Error input: reordering dims
with self.assertRaises(Exception):
result = fn(a, b, (1, 0))
# Adding outermost dimensions
a = make_arg((5, 5))
b = make_arg((3, 3, 5, 5), low=0.0, high=0.0)
result = fn(a, b, (2, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.broadcast_to(b.shape), result)
# Expands
a = make_arg((1, 5, 1))
b = make_arg((3, 5, 7), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 2))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.expand_as(result), result)
# Unsqueezes
a = make_arg((1, 2, 3))
b = make_arg((1, 2, 1, 3), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.unsqueeze(2), result)
@onlyCUDA
@dtypes(torch.float32)
def test_broadcast_in_dim_sum(self, device, dtype):
def _wrapper(a):
a_sum = prims.sum(a, [0, 1])
a_bc = prims.broadcast_in_dim(a_sum, [], [])
return a_bc
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float64, torch.long)
def test_cbrt_prim(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)]
shapes = [(), (0,), (1,), (5,)]
# Sets the default dtype to NumPy's default dtype of double
with set_default_dtype(torch.double):
# Tested here, as this OP is not currently exposed or tested in ATen
for b, s in product(batches, shapes):
x = make_arg(b + s)
y = prims.cbrt(x)
x_np = x.cpu().numpy()
y_np = scipy.special.cbrt(x_np)
self.assertEqual(y, y_np, exact_device=False)
@dtypes(torch.float32)
def test_collapse(self, device, dtype):
t = torch.rand(2, 2, 2)
dim_ranges = [(0, 0), (0, 1), (1, 2), (0, 2)]
expected_shapes = [(2, 2, 2), (4, 2), (2, 4), (8,)]
for (start, end), shape in zip(dim_ranges, expected_shapes):
expect = t.reshape(shape)
copy = prims.collapse(t, start, end)
self.assertEqual(copy, expect)
self.assertFalse(copy._is_view())
view = prims.collapse_view(t, start, end)
self.assertEqual(view, expect)
self.assertTrue(view._is_view())
t_discontig = t.transpose(0, 1)
with self.assertRaises(ValueError, msg="no such view exists"):
view = prims.collapse_view(t_discontig, 0, 2)
copy = prims.collapse(t_discontig, 0, 1)
self.assertEqual(copy, t_discontig.reshape(4, 2))
error_dims = [(-1, 1), (0, 3), (1, -1)]
for start, end in error_dims:
for fn in [prims.collapse, prims.collapse_view]:
with self.assertRaises(AssertionError):
fn(t, start, end)
def test_aten_overload_to_prims(self, device):
# This test is to ensure that the torch.ops.aten calls are replaced with refs
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
a = torch.randn(3, 3, device=device)
def func(a):
return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a))
with TorchRefsMode():
gm = make_fx(func)(a)
# Check that all call_function nodes are prims
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
all_prims_namespace = all(
node.target.name().startswith("prims") for node in call_function_nodes
)
self.assertTrue(all_prims_namespace)
@onlyCUDA
@dtypes(torch.float32)
@parametrize("correction", [0, 1])
def test_var(self, device, dtype, correction):
def _wrapper(a):
return prims.var(a, [0, 1], correction=correction)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten',):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@dtypes(torch.float32)
def test_memory_format_strides(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(5),
(1, 0),
(1, 1),
(3, 7),
(3, 0, 2),
(1, 1, 2),
(4, 1, 1),
(7, 8, 9),
)
channels_last_shapes = (
(0, 0, 0, 0),
(1, 0, 3, 0),
(0, 2, 3, 5),
(2, 2, 2, 0),
(5, 4, 3, 2),
(8, 8, 7, 2),
(9, 1, 3, 1),
(4, 5, 8, 7)
)
channels_last_3d_shapes = (
(0, 8, 7, 9, 2),
(5, 0, 7, 9, 2),
(5, 0, 7, 9, 0),
(5, 8, 7, 9, 2),
(5, 1, 7, 9, 2),
(5, 1, 7, 9, 1),
)
pairs = (
(shapes, torch.contiguous_format),
(channels_last_shapes, torch.contiguous_format),
(channels_last_3d_shapes, torch.contiguous_format),
(channels_last_shapes, torch.channels_last),
(channels_last_3d_shapes, torch.channels_last_3d),
)
for shapes, memory_format in pairs:
for shape in shapes:
# tests empty
expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests clone
a = torch.testing.make_tensor(shape, device=device, dtype=dtype)
expected = torch.clone(a, memory_format=memory_format)
actual = torch.clone(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests contiguous
a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True)
expected = a.contiguous(memory_format=memory_format)
actual = refs.contiguous(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
@dtypes(torch.float32)
def test_reshape_view_method(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((5, 5))
new_shape = 1, 5, 1, 5
result_eager = a.reshape(*new_shape)
result_refs = refs.reshape(a, *new_shape)
self.assertEqual(result_eager, result_refs)
result_eager = a.view(*new_shape)
result_refs = refs.view(a, *new_shape)
self.assertEqual(result_eager, result_refs)
@onlyCUDA
@dtypes(torch.float32)
def test_philox_rand(self, device, dtype):
sizes = (1000, 1000000) # offsets of 4 and 8
repeats = 2 # Checks multiple rand calls results with multiple philox_rand calls
for size in sizes:
torch.cuda.manual_seed(123)
references = []
results = []
rng_states = []
for _ in range(repeats):
rng_states.append(CUDARngStateHelper.get_torch_state_as_tuple())
references.append(torch.rand(size, device=device, dtype=dtype))
torch.cuda.manual_seed(123)
for idx in range(repeats):
seed, offset = rng_states[idx]
result, _ = torch.ops.rngprims.philox_rand((size,),
seed=seed,
offset=offset,
stride=None,
device=device,
dtype=dtype)
results.append(result)
for a, b in zip(references, results):
self.assertEqual(a, b)
@dtypes(torch.float32)
def test_functional_rng_wrappers(self, device, dtype):
torch.manual_seed(123)
ref1 = torch.rand(10, device=device, dtype=dtype)
ref2 = torch.rand(10, device=device, dtype=dtype)
torch.manual_seed(123)
rng_state1, res1 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
rng_state2, res2 = torch._prims.rng_prims.run_and_save_rng_state(torch.rand, 10, device=device, dtype=dtype)
res3 = torch._prims.rng_prims.run_with_rng_state(rng_state1, torch.rand, 10, device=device, dtype=dtype)
res4 = torch._prims.rng_prims.run_with_rng_state(rng_state2, torch.rand, 10, device=device, dtype=dtype)
self.assertEqual(ref1, res1)
self.assertEqual(ref2, res2)
self.assertEqual(ref1, res3)
self.assertEqual(ref2, res4)
class TestPrimsBasic(TestCase):
def test_torch_ops(self):
r = make_tensor((2,), device='cpu', dtype=torch.float)
self.assertEqual(torch.ops.prims.sin(r), torch.sin(r))
r = LoggingTensor(r)
with capture_logs() as logs:
log_input("input", r)
prims.sin(r)
self.assertExpectedInline('\n'.join(logs), """\
$0: f32[2] = input('input')
$1: f32[2] = torch._ops.prims.sin.default($0)""")
def test_mul_complex(self):
prims.mul(torch.randn(2), 1 + 1j)
def test_clone_complex(self):
with torch._dispatch.python.enable_python_dispatcher():
x = torch.randn(4, dtype=torch.complex64, device='meta').conj()
out = x + 1
def test_check_deprecation_warning(self):
with self.assertWarnsRegex(FutureWarning, 'will be removed in the future'):
torch._prims_common.check(True, lambda: 'message')
instantiate_device_type_tests(TestPrims, globals())
class TestRefs(TestCase):
@dtypes(torch.float32)
def test_constant_pad_nd_memory_format(self, device, dtype):
# Test memory format is preserved in unambiguous cases
for mf, ndim in (
(torch.channels_last, 4),
(torch.contiguous_format, 4),
(torch.channels_last_3d, 5),
(torch.contiguous_format, 5),
):
a = torch.zeros([2] * ndim).to(memory_format=mf)
res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim))
self.assertTrue(res.is_contiguous(memory_format=mf))
# Ambiguous cases
# is_channels_last_ and is_contiguous_, results in channels_last output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last))
# is_channels_last_contiguous_ but not is_channels_last_, results in
# contiguous output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous())
def test_unbind(self):
# If unbind returns empty tuple, it breaks some assumptions in some backward tests in test_ops.py.
# So can't put this test into common_methods_invocations.py.
a = torch.rand([3, 0, 4])
actual = refs.unbind(a, 1)
expect = torch.unbind(a, 1)
self.assertEqual(actual, expect)
def test_logspace_with_complex_input(self):
actual = refs.logspace(2, 10 + 5j, steps=5)
expect = torch.logspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
def test_linspace_with_complex_input(self):
actual = refs.linspace(2, 10 + 5j, steps=5)
expect = torch.linspace(2, 10 + 5j, steps=5)
self.assertEqual(actual, expect)
# From https://github.com/pytorch/pytorch/issues/109558
def test_infinite_loop_from_py_dispatcher(self):
# enables prim decomps
with torch._dispatch.python.enable_python_dispatcher():
x = torch.ones(4)
y = x.to(device="meta")
def test_inferred_tags(self):
self.assertEqual(torch.ops.prims.normal.default.tags, (torch.Tag.nondeterministic_seeded, torch.Tag.pt2_compliant_tag))
instantiate_device_type_tests(TestRefs, globals())
class TestDecomp(TestCase):
@ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one)
def test_decomposition_method_vararg(self, device, dtype, op):
# some ops have vararg variants for the methods. this tests it.
# we don't have tests for varargs in OpInfo, so we need to
# improvise this a bit.
# The rule for general functions (the special cases being e.g. tensor
# creation functions taking shapes) is that things can be vararg
# if the method has only one argument of sequence type.
# e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1)
# as well as t.permute([0, 2, 1])
# when the signature in native_functions.yaml
# shows arguments Tensor self, IntList dims
# we might need to adjust things for the factory functions or
# have them do their own test
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
# filter out empty tuple as that cannot be the varargs
sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False)
if (si.args[-1] if si.args else si.input))
# just run one test, we assume there is a suitable one in the tests
sample_input = next(sample_inputs)
all_args = (sample_input.input,) + sample_input.args
# in general, the methods take varargs and not (always?) the function
# variants, the exception to this rule are the factory functions
if op.is_factory_function:
fn = op.op
else:
fn = op.method_variant
with TorchRefsMode():
gm = make_fx(fn)(*all_args[:-1], *all_args[-1])
# in case we add random factory functions
torch.manual_seed(1)
res = gm(*all_args[:-1], *all_args[-1])
torch.manual_seed(1)
expected = fn(*all_args[:-1], *all_args[-1])
self.assertEqual(res, expected)
instantiate_device_type_tests(TestDecomp, globals())
if __name__ == "__main__":
run_tests()