| # Owner(s): ["module: __torch_dispatch__"] |
| |
| import logging |
| import sys |
| import tempfile |
| import unittest |
| from copy import deepcopy |
| |
| import torch |
| import torch._dynamo |
| from torch import SymInt |
| from torch._C import DispatchKey, DispatchKeySet |
| from torch._custom_op.functional import register_functional_op |
| from torch._subclasses.fake_tensor import FakeTensorMode |
| from torch.cuda.jiterator import _create_jit_fn |
| from torch.fx.experimental.proxy_tensor import make_fx |
| from torch.fx.experimental.symbolic_shapes import ShapeEnv |
| from torch.library import _scoped_library, fallthrough_kernel, impl, Library |
| from torch.multiprocessing.reductions import StorageWeakRef |
| from torch.testing._internal.common_device_type import ( |
| instantiate_device_type_tests, |
| ops, |
| ) |
| from torch.testing._internal.common_methods_invocations import op_db |
| from torch.testing._internal.common_utils import ( |
| first_sample, |
| IS_WINDOWS, |
| run_tests, |
| TEST_WITH_ROCM, |
| TestCase, |
| ) |
| from torch.testing._internal.custom_op_db import custom_op_db |
| from torch.testing._internal.logging_tensor import ( |
| capture_logs, |
| capture_logs_with_logging_tensor_mode, |
| log_input, |
| LoggingTensor, |
| LoggingTensorMode, |
| LoggingTensorReentrant, |
| ) |
| from torch.testing._internal.two_tensor import TwoTensor |
| from torch.utils import _pytree as pytree |
| from torch.utils._mode_utils import all_same_mode, no_dispatch |
| from torch.utils._python_dispatch import ( |
| _get_current_dispatch_mode, |
| _get_current_dispatch_mode_stack, |
| is_in_torch_dispatch_mode, |
| TorchDispatchMode, |
| ) |
| from torch.utils._pytree import tree_map, tree_map_only |
| |
| |
| # used as DataLoader collate_fn below; named here to avoid trying to pickle a lambda |
| def _identity(x): |
| return x |
| |
| |
| class TestDispatcherPythonBindings(TestCase): |
| def test_call_boxed(self) -> None: |
| sin = torch._C._dispatch_find_schema_or_throw("aten::sin", "") |
| x = torch.randn(3) |
| y = torch._C._dispatch_call_boxed(sin, x) |
| self.assertEqual(y, x.sin()) |
| |
| |
| class TestPythonRegistration(TestCase): |
| test_ns = "_test_python_registration" |
| |
| def tearDown(self): |
| if hasattr(torch.ops, self.test_ns): |
| del torch.ops._test_python_registration |
| |
| def test_fallback(self) -> None: |
| test_key = "TESTING_ONLY_GenericMode" |
| test_keyset = torch._C.DispatchKeySet(test_key) |
| include_to_set = torch._C._dispatch_tls_local_include_set() | test_keyset |
| exclude_to_set = torch._C._dispatch_tls_local_exclude_set() |
| |
| with _scoped_library("_", "IMPL") as my_lib: |
| expected_op = None |
| expected_args = None |
| expected_kwargs = None |
| # Use this out shape to make sure the result from our fallback |
| # is what is returned to the user |
| out_shape = None |
| |
| def my_fallback(op, *args, **kwargs): |
| # Disable our handler during checks and generating the output |
| with torch._C._ForceDispatchKeyGuard( |
| include_to_set, exclude_to_set | test_keyset |
| ): |
| self.assertIs(op, expected_op) |
| self.assertEqual(args, expected_args) |
| self.assertEqual(kwargs, expected_kwargs) |
| # Return something specific |
| return torch.empty(out_shape) |
| |
| my_lib.fallback(my_fallback, test_key) |
| |
| a, b = torch.rand(2), torch.rand(2) |
| |
| with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set): |
| # Check a factory function |
| expected_op = torch.ops.aten.empty.memory_format |
| expected_args = ((2, 2),) |
| # Extra kwargs to bypass issues with default args in factory functions |
| expected_kwargs = { |
| "dtype": torch.float64, |
| "pin_memory": False, |
| "device": torch.device("cpu"), |
| } |
| out_shape = (3,) |
| out = torch.empty(*expected_args, **expected_kwargs) |
| self.assertEqual(out.size(), out_shape) |
| |
| # Check a regular function |
| expected_op = torch.ops.aten.add.Tensor |
| expected_args = (a, b) |
| expected_kwargs = {} |
| out_shape = (4,) |
| out = a + b |
| self.assertEqual(out.size(), out_shape) |
| |
| def test_fallback_keyset(self) -> None: |
| test_key_first = "TESTING_ONLY_GenericMode" |
| test_key_second = "TESTING_ONLY_GenericWrapper" |
| test_keyset = torch._C.DispatchKeySet(test_key_first) | torch._C.DispatchKeySet( |
| test_key_second |
| ) |
| include_to_set = torch._C._dispatch_tls_local_include_set() | test_keyset |
| exclude_to_set = torch._C._dispatch_tls_local_exclude_set() |
| |
| with _scoped_library("_", "IMPL") as my_lib: |
| first_called = False |
| second_called = False |
| |
| def first_fallback(keyset, op, *args, **kwargs): |
| nonlocal first_called |
| if second_called: |
| # Recursive call |
| first_called = True |
| with torch._C._ForceDispatchKeyGuard( |
| include_to_set, exclude_to_set | test_keyset |
| ): |
| return op(*args, **kwargs) |
| else: |
| # Redispatch down |
| keyset = keyset.remove(test_key_first) |
| return op.redispatch(keyset, *args, **kwargs) |
| |
| def second_fallback(op, *args, **kwargs): |
| nonlocal second_called |
| # Set to avoid infinite recursion |
| second_called = True |
| # New dispatcher call should hit the first callback again |
| self.assertFalse(first_called) |
| a, b = args |
| # Make a substraction here instead of add ! |
| c = a - b |
| self.assertTrue(first_called) |
| return c |
| |
| my_lib.fallback(first_fallback, test_key_first, with_keyset=True) |
| my_lib.fallback(second_fallback, test_key_second) |
| |
| a, b = torch.rand(2), torch.rand(2) |
| with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set): |
| c = a + b |
| |
| self.assertEqual(c, a - b) |
| self.assertTrue(first_called) |
| self.assertTrue(second_called) |
| |
| def test_fallback_fallthrough(self) -> None: |
| test_key_first = "TESTING_ONLY_GenericMode" |
| test_key_second = "TESTING_ONLY_GenericWrapper" |
| test_keyset = torch._C.DispatchKeySet(test_key_first) | torch._C.DispatchKeySet( |
| test_key_second |
| ) |
| include_to_set = torch._C._dispatch_tls_local_include_set() | test_keyset |
| exclude_to_set = torch._C._dispatch_tls_local_exclude_set() |
| |
| with _scoped_library("_", "IMPL") as my_lib: |
| is_called = False |
| |
| def my_fallback(op, *args, **kwargs): |
| nonlocal is_called |
| is_called = True |
| with torch._C._ForceDispatchKeyGuard( |
| include_to_set, exclude_to_set | test_keyset |
| ): |
| return op(*args, **kwargs) |
| |
| my_lib.fallback(torch.library.fallthrough_kernel, test_key_first) |
| my_lib.fallback(my_fallback, test_key_second) |
| |
| a, b = torch.rand(2), torch.rand(2) |
| with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set): |
| c = a + b |
| |
| self.assertEqual(c, a + b) |
| self.assertTrue(is_called) |
| |
| def test_override_aten_ops_with_multiple_libraries(self) -> None: |
| x = torch.tensor([1, 2]) |
| with _scoped_library("aten", "IMPL") as my_lib2: |
| with _scoped_library("aten", "IMPL") as my_lib1: |
| # Example 1 |
| def my_neg(*args, **kwargs): |
| return args[0]._neg_view() |
| |
| # Now we are secretly making the operator a view op so autograd needs to know how |
| # to handle it |
| my_lib1.impl("neg", my_neg, "AutogradCPU") |
| |
| self.assertTrue(torch.neg(x).is_neg()) |
| |
| # RuntimeError: impl("aten::neg", ...): |
| # Explicitly provided namespace (aten) in operator name does not match ... |
| with self.assertRaisesRegex( |
| RuntimeError, "operator name does not match namespace" |
| ): |
| with _scoped_library("foo", "DEF") as my_lib3: |
| my_lib3.define("neg(Tensor self) -> Tensor") |
| my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU") |
| |
| # Example 2 |
| def my_mul(*args, **kwargs): |
| return torch.zeros_like(args[0]) |
| |
| # torch.ops.aten.mul.Tensor |
| my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor") |
| |
| y = torch._efficientzerotensor(2) |
| self.assertFalse(torch.mul(x, y)._is_zerotensor()) |
| |
| # Assert that a user can't override the behavior of a (ns, op, dispatch_key) |
| # combination if someone overridden the behavior for the same before them |
| with self.assertRaisesRegex( |
| RuntimeError, "already a kernel registered from python" |
| ): |
| my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor") |
| |
| # Validate that lib2 is not affected by removing lib1 |
| self.assertFalse(torch.mul(x, y)._is_zerotensor()) |
| |
| # Validate that the old behavior is restored for neg and mul |
| self.assertFalse(torch.neg(x).is_neg()) |
| self.assertTrue(torch.mul(x, y)._is_zerotensor()) |
| |
| def test_error_if_fn_not_callable(self): |
| with self.assertRaisesRegex( |
| TypeError, "Input function is required to be a callable" |
| ): |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU") |
| |
| def test_finalizer(self): |
| impls_refcnt = sys.getrefcount(torch.library._impls) |
| lib = Library(self.test_ns, "FRAGMENT") # noqa: TOR901 |
| lib.define("foo123(Tensor x) -> Tensor") |
| |
| # 1 for `lib`, 1 for sys.getrefcount |
| self.assertEqual(sys.getrefcount(lib), 2) |
| # We gained an additional reference that gets cleared when the finalizer runs |
| self.assertEqual(sys.getrefcount(torch.library._impls), impls_refcnt + 1) |
| # 1 for `lib` |
| # 1 for the finalizer |
| # 1 for sys.getrefcount |
| self.assertEqual(sys.getrefcount(lib._op_impls), 3) |
| |
| def foo123(x): |
| pass |
| |
| lib.impl(f"{self.test_ns}::foo123", foo123, "CPU") |
| key = f"{self.test_ns}/foo123/CPU" |
| self.assertTrue(key in torch.library._impls) |
| |
| saved_op_impls = lib._op_impls |
| |
| # del will definitely work if the following passes |
| self.assertEqual(sys.getrefcount(lib), 2) |
| del lib |
| |
| # 1 for saved_op_impls |
| # 1 for sys.getrefcount |
| # This function should be the last user of lib._op_impls: |
| # - lib should not have a reference anymore (it was del'ed) |
| # - lib's finalizer should not have a reference anymore |
| self.assertEqual(sys.getrefcount(saved_op_impls), 2) |
| |
| self.assertTrue(key not in torch.library._impls) |
| |
| # lib's finalizer should not have a reference anymore |
| self.assertEqual(sys.getrefcount(torch.library._impls), impls_refcnt) |
| |
| def test_override_cpu_sum(self) -> None: |
| # Example 1 |
| run = [False] |
| |
| def my_sum(*args, **kwargs): |
| run[0] = True |
| return args[0].clone() |
| |
| with _scoped_library("aten", "IMPL") as my_lib1: |
| my_lib1.impl("aten::sum", my_sum, "CPU") |
| x = torch.tensor([1, 2]) |
| self.assertEqual(torch.sum(x), x) |
| self.assertTrue(run[0]) |
| # Validate that the old behavior is restored for sum |
| self.assertEqual(torch.sum(x), torch.tensor(3)) |
| |
| def test_override_cuda_with_jiterator(self) -> None: |
| def override_where_cuda() -> None: |
| # Example 1: Invert the behavior of where's condition input |
| not_where_code_string = """ |
| template <typename T> T inverted_where(bool cond, T a, T b){ |
| return !cond ? a : b; |
| } |
| """ |
| jitted_where = _create_jit_fn(not_where_code_string) |
| |
| CALLED = [False] |
| |
| def inverted_where(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_where(*args, **kwargs) |
| |
| # overriding where's cuda kernel with Jiterator generated kernel |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl("aten::where.self", inverted_where, "CUDA") |
| |
| device = "cuda" |
| cond = torch.tensor( |
| [True, True, False], device=device, dtype=torch.bool |
| ) |
| x = torch.tensor([1, 2, 3], device=device) |
| y = torch.tensor([-1, -2, -3], device=device) |
| |
| self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3])) |
| self.assertTrue(CALLED[0]) |
| |
| # behavior restored after deregistration |
| self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3])) |
| |
| def override_gelu_cuda() -> None: |
| # Example 2: Use relu to approximate gelu for faster compute |
| fastest_gelu_code_string = """ |
| template <typename T> T fast_gelu(T a){ |
| return a > 0 ? a : 0; |
| } |
| """ |
| jitted_gelu = _create_jit_fn(fastest_gelu_code_string) |
| |
| CALLED = [False] |
| |
| def fast_gelu(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_gelu(*args, **kwargs) |
| |
| # overriding gelu's cuda kernel with Jiterator generated relu kernel |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl("aten::gelu", fast_gelu, "CUDA") |
| |
| x = torch.rand([3, 3], device="cuda", dtype=torch.float) |
| self.assertEqual( |
| torch.nn.functional.gelu(x), torch.nn.functional.relu(x) |
| ) |
| self.assertTrue(CALLED[0]) |
| |
| # behavior restored after deregistration |
| self.assertNotEqual( |
| torch.nn.functional.gelu(x), torch.nn.functional.relu(x) |
| ) |
| |
| def override_exp_cuda() -> None: |
| # Example 3: Preventing exp from exploding for float16 |
| clipped_exp_code_string = """ |
| template <typename T> T clipped_exp(T a){ |
| return a > T(10.0) ? T(22026.4657948) : exp(a); |
| } |
| """ |
| jitted_exp = _create_jit_fn(clipped_exp_code_string) |
| |
| CALLED = [False] |
| |
| def clipped_exp(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_exp(*args, **kwargs) |
| |
| # overriding exp's cuda kernel with clipped_exp kernel |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl("aten::exp", clipped_exp, "CUDA") |
| |
| x = torch.tensor([0.0, 100.0], device="cuda", dtype=torch.float16) |
| self.assertEqual( |
| torch.exp(x), |
| torch.tensor([1.0, 22026.4657948], dtype=torch.float16), |
| ) |
| self.assertTrue(CALLED[0]) |
| |
| # behavior restored after deregistration |
| self.assertEqual( |
| torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16) |
| ) |
| |
| def override_add_cuda() -> None: |
| # Example 4: simulate a hardware bug, where the adder is always off by 1 |
| buggy_add_code_string = """ |
| template <typename T> T buggy_add(T a, T b){ |
| return a + b + T(1); |
| } |
| """ |
| jitted_add = _create_jit_fn(buggy_add_code_string) |
| |
| CALLED = [False] |
| |
| def buggy_add(*args, **kwargs): |
| CALLED[0] = True |
| return jitted_add(*args, **kwargs) |
| |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl("aten::add.Tensor", buggy_add, "CUDA") |
| |
| x_cpu = torch.rand([3, 3], device="cpu") |
| y_cpu = torch.rand([3], device="cpu") |
| |
| x_cuda = x_cpu.cuda() |
| y_cuda = y_cpu.cuda() |
| |
| self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1) |
| self.assertTrue(CALLED[0]) |
| |
| # behavior restored after deregistration |
| self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu) |
| |
| if torch.cuda.is_available() and not TEST_WITH_ROCM: |
| override_where_cuda() |
| override_gelu_cuda() |
| override_exp_cuda() |
| override_add_cuda() |
| |
| def test_extend_library_with_dispatch_key_arg(self): |
| def my_sum(*args, **kwargs): |
| return args[0].clone() |
| |
| with _scoped_library("aten", "IMPL", dispatch_key="CPU") as my_lib1: |
| # RuntimeError: Explicitly provided dispatch key (Conjugate) is |
| # inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block |
| with self.assertRaisesRegex( |
| RuntimeError, "inconsistent with the dispatch key" |
| ): |
| my_lib1.impl("sum", my_sum, "Conjugate") |
| my_lib1.impl("aten::sum", my_sum) |
| x = torch.tensor([1, 2]) |
| self.assertEqual(torch.sum(x), x) |
| |
| def test_create_new_library(self) -> None: |
| with _scoped_library(self.test_ns, "DEF") as my_lib1: |
| my_lib1.define("sum(Tensor self) -> Tensor") |
| |
| # Example 1 |
| @torch.library.impl(my_lib1, "sum", "CPU") |
| def my_sum(*args, **kwargs): |
| return args[0].clone() |
| |
| x = torch.tensor([1, 2]) |
| op = getattr(torch.ops, self.test_ns).sum |
| self.assertEqual(op(x), x) |
| |
| with _scoped_library(self.test_ns, "IMPL") as my_lib2: |
| # Example 2 |
| @torch.library.impl(my_lib2, op.default, "ZeroTensor") |
| def my_sum_zt(*args, **kwargs): |
| if args[0]._is_zerotensor(): |
| return torch._efficientzerotensor(args[0].shape) |
| else: |
| return args[0].clone() |
| |
| y = torch._efficientzerotensor(3) |
| self.assertTrue(op(y)._is_zerotensor()) |
| self.assertEqual(op(x), x) |
| |
| def test_create_new_library_fragment_no_existing(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as my_lib: |
| my_lib.define("sum2(Tensor self) -> Tensor") |
| |
| @torch.library.impl(my_lib, "sum2", "CPU") |
| def my_sum(*args, **kwargs): |
| return args[0] |
| |
| x = torch.tensor([1, 2]) |
| self.assertEqual(getattr(torch.ops, self.test_ns).sum2(x), x) |
| |
| def test_create_new_library_fragment_with_existing(self): |
| with _scoped_library(self.test_ns, "DEF") as my_lib1: |
| # Create a fragment |
| with _scoped_library(self.test_ns, "FRAGMENT") as my_lib2: |
| my_lib2.define("sum4(Tensor self) -> Tensor") |
| |
| @torch.library.impl(my_lib2, "sum4", "CPU") |
| def my_sum4(*args, **kwargs): |
| return args[0] |
| |
| x = torch.tensor([1, 2]) |
| self.assertEqual(getattr(torch.ops, self.test_ns).sum4(x), x) |
| |
| # Create another fragment |
| with _scoped_library(self.test_ns, "FRAGMENT") as my_lib3: |
| my_lib3.define("sum3(Tensor self) -> Tensor") |
| |
| @torch.library.impl(my_lib3, "sum3", "CPU") |
| def my_sum3(*args, **kwargs): |
| return args[0] |
| |
| x = torch.tensor([1, 2]) |
| self.assertEqual(getattr(torch.ops, self.test_ns).sum3(x), x) |
| |
| @unittest.skipIf(IS_WINDOWS, "Skipped under Windows") |
| def test_alias_analysis(self): |
| def test_helper(alias_analysis=""): |
| my_lib1 = Library(self.test_ns, "DEF") # noqa: TOR901 |
| |
| called = [0] |
| |
| @torch.library.define( |
| my_lib1, "_op() -> None", alias_analysis=alias_analysis |
| ) |
| def _op(*args, **kwargs): |
| called[0] += 1 |
| |
| @torch.jit.script |
| def _test(): |
| torch.ops._test_python_registration._op() |
| |
| assert "_test_python_registration::_op" in str(_test.graph) |
| |
| with self.assertRaises(AssertionError): |
| test_helper("") # alias_analysis="FROM_SCHEMA" |
| |
| test_helper("CONSERVATIVE") |
| |
| def test_error_for_unsupported_ns_or_kind(self) -> None: |
| with self.assertRaisesRegex(ValueError, "Unsupported kind"): |
| my_lib1 = Library("myns", "BLA") # noqa: TOR901 |
| |
| for kind in ("DEF", "FRAGMENT"): |
| with self.assertRaisesRegex(ValueError, "reserved namespace"): |
| my_lib1 = Library("prim", kind) # noqa: TOR901 |
| |
| def test_returning_symint(self) -> None: |
| shape_env = ShapeEnv() |
| fake_tensor_mode = FakeTensorMode(shape_env=shape_env) |
| |
| ft = fake_tensor_mode.from_tensor(torch.rand(2, 3)) |
| |
| s0, s1 = ft.shape |
| |
| with _scoped_library(self.test_ns, "DEF") as tlib: |
| tlib.define("sqsum(SymInt a, SymInt b) -> SymInt") |
| |
| @impl(tlib, "sqsum", "CompositeExplicitAutograd") |
| def sqsum(a: SymInt, b: SymInt): |
| return a * a + b * b |
| |
| out = getattr(torch.ops, self.test_ns).sqsum.default(s0, s1) |
| out_val = shape_env.evaluate_expr(out.node.expr) |
| self.assertEqual(out_val, 13) |
| |
| def test_register_functional_op_error_cases(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| with self.assertRaisesRegex(TypeError, "instance of OpOverload"): |
| register_functional_op(lib, "abs", torch.ops.aten.abs_) |
| with self.assertRaisesRegex(RuntimeError, "Expected op to be mutable"): |
| register_functional_op(lib, "abs", torch.ops.aten.abs_.default) |
| with self.assertRaisesRegex(RuntimeError, "Expected op to be mutable"): |
| register_functional_op(lib, "abs", torch.ops.aten.abs.out) |
| |
| schemas = [ |
| "foo(Tensor x, Tensor(a!)[] y) -> ()", |
| "foo(Tensor x, Tensor(a!) y, Tensor(b) z) -> Tensor(b)", |
| "foo(Tensor x, Tensor(a!) y) -> (Tensor, Tensor(a))", |
| ] |
| |
| for schema in schemas: |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| lib.define(schema) |
| with self.assertRaisesRegex(RuntimeError, "NYI"): |
| register_functional_op( |
| lib, |
| "foo_functional", |
| getattr(torch.ops, self.test_ns).foo.default, |
| ) |
| |
| def _check_is_functional_variant(self, mutable_op, functional_op, args): |
| # functional op should not mutate |
| cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args) |
| functional_result = functional_op(*cloned_args) |
| self.assertEqual(cloned_args, args) |
| |
| # check functional_result includes mutable_result |
| mutable_result = mutable_op(*cloned_args) |
| if mutable_result is None: |
| flat_mutable_result = [] |
| else: |
| flat_mutable_result = pytree.tree_leaves(mutable_result) |
| flat_functional_result = pytree.tree_leaves(functional_result) |
| assert len(flat_functional_result) > len(flat_mutable_result) |
| self.assertEqual( |
| flat_functional_result[: len(flat_mutable_result)], flat_mutable_result |
| ) |
| |
| # check rest of functional_result is the mutated args |
| mutated_args = [ |
| maybe_mutated_arg |
| for maybe_mutated_arg, arg in zip(cloned_args, args) |
| if not ( |
| maybe_mutated_arg is not None |
| and arg is not None |
| and torch.allclose(maybe_mutated_arg, arg) |
| ) |
| ] |
| self.assertEqual( |
| flat_functional_result[len(flat_mutable_result) :], mutated_args |
| ) |
| |
| # check that functionalization kernel was indeed registered |
| def fn(*args): |
| cloned_args = pytree.tree_map_only(torch.Tensor, torch.clone, args) |
| mutable_op(*cloned_args) |
| return cloned_args |
| |
| gm = make_fx(torch.func.functionalize(fn))(*args) |
| has_functional_op = False |
| for node in gm.graph.nodes: |
| self.assertFalse(node.target is mutable_op) |
| if node.target is functional_op: |
| has_functional_op = True |
| self.assertTrue(has_functional_op) |
| |
| def test_register_functional_op_no_returns(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| lib.define("foo(Tensor x, Tensor(a!) y, Tensor z, Tensor(b!) w) -> ()") |
| |
| def foo_impl(x, y, z, w): |
| y.fill_(3.14) |
| w.fill_(2.71) |
| |
| lib.impl("foo", foo_impl, "CPU") |
| register_functional_op( |
| lib, "foo_functional", getattr(torch.ops, self.test_ns).foo.default |
| ) |
| x = torch.randn([]) |
| y = torch.randn([]) |
| z = torch.randn([]) |
| w = torch.randn([]) |
| self._check_is_functional_variant( |
| getattr(torch.ops, self.test_ns).foo.default, |
| getattr(torch.ops, self.test_ns).foo_functional.default, |
| (x, y, z, w), |
| ) |
| |
| def test_register_functional_op_with_optional(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| lib.define( |
| "foo(Tensor x, Tensor(a!) y, Tensor (b!) z, Tensor(c!)? w) -> ()" |
| ) |
| |
| def foo_impl(x, y, z, w): |
| y.fill_(3.14) |
| z.fill_(2.71) |
| if w is not None: |
| w.fill_(1.618) |
| |
| lib.impl("foo", foo_impl, "CPU") |
| register_functional_op( |
| lib, "foo_functional", getattr(torch.ops, self.test_ns).foo.default |
| ) |
| x = torch.randn([]) |
| y = torch.randn([]) |
| z = torch.randn([]) |
| w = torch.randn([]) |
| self._check_is_functional_variant( |
| getattr(torch.ops, self.test_ns).foo.default, |
| getattr(torch.ops, self.test_ns).foo_functional.default, |
| (x, y, z, w), |
| ) |
| self._check_is_functional_variant( |
| getattr(torch.ops, self.test_ns).foo.default, |
| getattr(torch.ops, self.test_ns).foo_functional.default, |
| (x, y, z, None), |
| ) |
| |
| def test_register_functional_op_one_return(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| lib.define( |
| "foo(Tensor x, Tensor(a!) y, Tensor(c!) z, Tensor(b!) w) -> Tensor" |
| ) |
| |
| def foo_impl(x, y, z, w): |
| y.fill_(3.14) |
| w.fill_(2.71) |
| z.fill_(0.99) |
| return x.clone() |
| |
| lib.impl("foo", foo_impl, "CPU") |
| register_functional_op( |
| lib, "foo_functional", getattr(torch.ops, self.test_ns).foo.default |
| ) |
| x = torch.randn([]) |
| y = torch.randn([]) |
| z = torch.randn([]) |
| w = torch.randn([]) |
| self._check_is_functional_variant( |
| getattr(torch.ops, self.test_ns).foo.default, |
| getattr(torch.ops, self.test_ns).foo_functional.default, |
| (x, y, z, w), |
| ) |
| |
| def test_register_functional_op_multiple_returns(self): |
| with _scoped_library(self.test_ns, "FRAGMENT") as lib: |
| lib.define( |
| "foo(Tensor x, Tensor(a!) y, Tensor z, Tensor(b!) w) -> (Tensor, Tensor)" |
| ) |
| |
| def foo_impl(x, y, z, w): |
| y.fill_(3.14) |
| w.fill_(2.71) |
| return x.clone(), z.clone() |
| |
| lib.impl("foo", foo_impl, "CPU") |
| register_functional_op( |
| lib, "foo_functional", getattr(torch.ops, self.test_ns).foo.default |
| ) |
| |
| x = torch.randn([]) |
| y = torch.randn([]) |
| z = torch.randn([]) |
| w = torch.randn([]) |
| self._check_is_functional_variant( |
| getattr(torch.ops, self.test_ns).foo.default, |
| getattr(torch.ops, self.test_ns).foo_functional.default, |
| (x, y, z, w), |
| ) |
| |
| def test_register_fallthrough(self): |
| with _scoped_library("aten", "IMPL") as my_lib: |
| my_lib.impl("mm", fallthrough_kernel, "AutocastCPU") |
| |
| a = torch.randn(2, 3, device="cpu", dtype=torch.float32) |
| b = torch.randn(3, 2, device="cpu", dtype=torch.float32) |
| with torch.autocast(device_type="cpu", dtype=torch.bfloat16): |
| # dtype for mm should be float32 since we registered a fallthrough |
| self.assertEqual(torch.mm(a, b).dtype, torch.float32) |
| # ops that don't have a fallthrough registered should not be affected |
| self.assertEqual(torch.matmul(a, b).dtype, torch.bfloat16) |
| |
| with torch.autocast(device_type="cpu", dtype=torch.bfloat16): |
| # default behavior should have been restored |
| self.assertEqual(torch.mm(a, b).dtype, torch.bfloat16) |
| |
| |
| class TestPythonDispatch(TestCase): |
| def test_basic(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) |
| log_input("x", x) |
| y = x * x |
| saved_x = y.grad_fn._saved_self |
| grad_y = LoggingTensor(torch.tensor([1.0])) |
| log_input("grad_y", grad_y) |
| (g,) = torch.autograd.grad((y,), (x,), (grad_y,)) |
| |
| self.assertEqual(g.elem, torch.tensor([6.0])) |
| with torch.no_grad(): |
| self.assertEqual(saved_x, x) |
| self.assertEqual(saved_x._version, x._version) |
| x.add_(2) |
| self.assertEqual(saved_x, x) |
| # TODO: figure out why broken |
| # self.assertEqual(saved_x._version, x._version) |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1] = torch._ops.aten.mul.Tensor($0, $0) |
| $2: f32[1] = input('grad_y') |
| $3: f32[1] = torch._ops.aten.mul.Tensor($2, $0) |
| $4: f32[1] = torch._ops.aten.mul.Tensor($2, $0) |
| $5: f32[1] = torch._ops.aten.add.Tensor($4, $3)""", |
| ) |
| |
| def test_out(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| y = LoggingTensor(torch.zeros(1)) |
| log_input("x", x) |
| log_input("y", y) |
| torch.abs(x, out=y) |
| |
| self.assertEqual(y.elem, torch.ones(1)) |
| # TODO: arguably this shouldn't pass and we should complain |
| # that out isn't a kwarg |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1] = input('y') |
| $2: f32[1] = torch._ops.aten.abs.out($0, out=$1)""", |
| ) |
| |
| def test_kwarg_only(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| y = LoggingTensor(torch.ones(1, 1)) |
| z = LoggingTensor(torch.ones(1)) |
| log_input("x", x) |
| log_input("y", y) |
| log_input("z", z) |
| torch.addmv(x, y, z) |
| torch.addmv(x, y, z, beta=1) |
| torch.addmv(x, y, z, beta=2) |
| torch.addmv(x, y, z, alpha=2) |
| torch.addmv(x, y, z, beta=2, alpha=2) |
| |
| # The expectation is that beta/alpha don't show up when they're |
| # defaulted. This is even if the user explicitly specified it. |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1, 1] = input('y') |
| $2: f32[1] = input('z') |
| $3: f32[1] = torch._ops.aten.addmv.default($0, $1, $2) |
| $4: f32[1] = torch._ops.aten.addmv.default($0, $1, $2) |
| $5: f32[1] = torch._ops.aten.addmv.default($0, $1, $2, beta=2) |
| $6: f32[1] = torch._ops.aten.addmv.default($0, $1, $2, alpha=2) |
| $7: f32[1] = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)""", |
| ) |
| |
| def test_kwarg_only_and_positional_default(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1)) |
| log_input("x", x) |
| torch.ops.aten._foobar(x) |
| torch.ops.aten._foobar(x, False) |
| torch.ops.aten._foobar(x, arg3=False) |
| torch.ops.aten._foobar(x, False, arg3=False) |
| |
| # What we are testing here is that we omit arg2 |
| # if it is defaulted, even if a kwarg is set |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1] = torch._ops.aten._foobar.default($0) |
| $2: f32[1] = torch._ops.aten._foobar.default($0, False) |
| $3: f32[1] = torch._ops.aten._foobar.default($0, arg3=False) |
| $4: f32[1] = torch._ops.aten._foobar.default($0, False, arg3=False)""", |
| ) |
| |
| def test_produce_real_type(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(2, 2)) |
| log_input("x", x) |
| x.to(dtype=torch.double) # non-optional dtype |
| torch.cumprod(x, 0, dtype=torch.double) # optional dtype |
| x[:, 1].contiguous( |
| memory_format=torch.contiguous_format |
| ) # optional memory format |
| # There doesn't appear to be any layout signatures which are |
| # triggerable using tensor subclasses (need to use a mode) |
| |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[2, 2] = input('x') |
| $1: f64[2, 2] = torch._ops.aten._to_copy.default($0, dtype=torch.float64) |
| $2: f64[2, 2] = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64) |
| $3: f32[2, 2] = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807) |
| $4: f32[2] = torch._ops.aten.select.int($3, 1, 1) |
| $5: f32[2] = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)""", |
| ) |
| |
| def test_optional_tensor_list(self) -> None: |
| def weird(xs): |
| print("woof") |
| return torch.empty(()) |
| |
| with _scoped_library("my_lib", "DEF") as my_lib: |
| my_lib.define("weird(Tensor?[] self) -> Tensor") |
| my_lib.impl("weird", weird, "CPU") |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(2, 2)) |
| log_input("x", x) |
| torch.ops.my_lib.weird.default([None, x]) |
| |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[2, 2] = input('x') |
| $1: f32[] = torch._ops.my_lib.weird.default(['None', '$0'])""", |
| ) |
| |
| def test_list_ret(self) -> None: |
| # test all sequence types are permissible returns |
| for list_type in (list, tuple): |
| |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| if func.overloadpacket == torch.ops.aten.split: |
| with no_dispatch(): |
| return list_type(torch.split(*args)) |
| else: |
| raise AssertionError(f"unrecognized func: {func}") |
| |
| self.assertEqual( |
| torch.split(A(torch.tensor([0, 1])), 2), |
| torch.split(torch.tensor([0, 1]), 2), |
| ) |
| |
| def test_invalid_ret(self) -> None: |
| # test invalid return gets reasonable error message |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return "arf" |
| |
| # Wobbles depending on NDEBUG mode of pybind11 |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Unable to cast", |
| lambda: A(torch.zeros(1)).neg(), |
| ) |
| self.assertRaisesRegex( |
| RuntimeError, |
| "Unable to cast", |
| lambda: A(torch.zeros(1)).detach(), |
| ) |
| |
| def test_detach_appears_twice_when_called_once(self) -> None: |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.tensor([3.0]), requires_grad=True) |
| log_input("x", x) |
| x.detach() |
| # FIXME: We actually want this to emit a single detach. However, |
| # it currently emits two, for reasons unclear to us. Leaving |
| # this test here to make sure we don't regress even further (it |
| # would be bad if calling .detach() once emits 3+ detaches). |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1] = torch._ops.aten.detach.default($0) |
| $2: f32[1] = torch._ops.aten.detach.default($1)""", |
| ) |
| |
| def test_storage(self) -> None: |
| # For now, just make sure it doesn't crash. Ideally, we should |
| # return some virtual storage that is safe to work with |
| x = LoggingTensor(torch.ones(1)) |
| storage = x.untyped_storage() |
| self.assertRaises(RuntimeError, lambda: storage.data_ptr()) |
| |
| def test_make_wrapper_subclass_noalloc(self) -> None: |
| # This is ludicrously big (8TB) and this should pass because wrapper |
| # subclasses don't allocate |
| torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,)) |
| |
| def test_version(self) -> None: |
| x = LoggingTensor(torch.ones(1)) |
| prev_vc = x._version |
| x.detach().add_(2) |
| cur_vc = x._version |
| self.assertNotEqual(prev_vc, cur_vc) |
| x.data.add_(2) |
| self.assertEqual(cur_vc, x._version) |
| |
| def test_subclass_priority(self) -> None: |
| class ErrorA(RuntimeError): |
| pass |
| |
| class ErrorB(RuntimeError): |
| pass |
| |
| # The big tests for code coverage are test_precedence_semantics in |
| # test_overrides.py; this is just to make sure it is wired up at all |
| # correctly for __torch_dispatch__ |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise ErrorA |
| |
| class B(A): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise ErrorB |
| |
| self.assertRaises( |
| ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))) |
| ) |
| self.assertRaises( |
| ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))) |
| ) |
| self.assertRaises( |
| ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))) |
| ) |
| self.assertRaises( |
| ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))) |
| ) |
| |
| def test_format(self) -> None: |
| x = LoggingTensor(torch.ones(1)) |
| s1 = str(x) |
| s2 = repr(x) |
| s3 = f"{x}" |
| self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""") |
| self.assertEqual(s1, s2) |
| self.assertEqual(s1, s3) |
| |
| def test_custom_autograd(self) -> None: |
| escape = [None] |
| |
| class Square(torch.autograd.Function): |
| @staticmethod |
| def forward(ctx, x): |
| y = x**2 |
| ctx.save_for_backward(x) |
| return y |
| |
| @staticmethod |
| def backward(ctx, grad_output): |
| assert isinstance(grad_output, LoggingTensor) |
| (x,) = ctx.saved_tensors |
| assert isinstance(x, LoggingTensor) |
| escape[0] = x |
| return grad_output * 2 * x |
| |
| with capture_logs() as logs: |
| x = LoggingTensor(torch.ones(1), requires_grad=True) |
| log_input("x", x) |
| x.grad = LoggingTensor(torch.zeros(1)) |
| log_input("x.grad", x.grad) |
| y = Square.apply(x) |
| grad_output = LoggingTensor(torch.ones(1)) |
| log_input("grad_output", grad_output) |
| y.backward(grad_output) |
| |
| with torch.no_grad(): |
| self.assertEqual(escape[0], x) |
| self.assertEqual(escape[0]._version, x._version) |
| # TODO: figure out why x.requires_grad = False doesn't |
| # trigger an error for LoggingTensor |
| x.add_(2) |
| self.assertEqual(escape[0], x) |
| # TODO: figure out why this is broken |
| # self.assertEqual(escape[0]._version, x._version) |
| |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[1] = input('x') |
| $1: f32[1] = input('x.grad') |
| $2: f32[1] = torch._ops.aten.pow.Tensor_Scalar($0, 2) |
| $3: f32[1] = input('grad_output') |
| $4: f32[1] = torch._ops.aten.mul.Tensor($3, 2) |
| $5: f32[1] = torch._ops.aten.mul.Tensor($4, $0) |
| $6: f32[1] = torch._ops.aten.add_.Tensor($1, $5)""", |
| ) |
| |
| def test_subclass_creation(self): |
| # Make sure these statements runs without error |
| # In particular checking that when internal detach returns |
| # subclasses, these are cleanly overwritten. |
| class Foo(torch.Tensor): |
| pass |
| |
| err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor" |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2))) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| b = LoggingTensor(torch.rand(2)).as_subclass(Foo) |
| with self.assertRaisesRegex(RuntimeError, err_msg): |
| Foo(LoggingTensor(torch.rand(2))) |
| |
| with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"): |
| torch.Tensor._make_wrapper_subclass(Foo, (2, 2)) |
| |
| def test_new_ones(self) -> None: |
| class MyTensor(torch.Tensor): |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return MyTensor(3) |
| |
| self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor) |
| |
| def test_like(self) -> None: |
| class MyTensor(torch.Tensor): |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return MyTensor(3) |
| |
| for f in ["empty", "ones", "rand", "randn", "zeros"]: |
| f_name = f + "_like" |
| self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor) |
| |
| self.assertEqual(type(torch.full_like(MyTensor(2), 1.0)), MyTensor) |
| self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor) |
| |
| def test_make_fx_with_subclass(self) -> None: |
| def f(x, y): |
| # Returns (TwoTensor, Tensor) |
| return x * y, y + y |
| |
| x_a = torch.zeros(4) |
| x_b = torch.zeros(4) |
| y = torch.ones(4) |
| |
| # make_fx() is not responsible for unwrapping tensor subclass inputs, |
| # so we do it manually here. |
| # Why? In general, make_fx(f)(*args) promises that the graph returned has the same calling |
| # convention as f(*args). Unwrapping tensor subclass inputs can potentially change |
| # the number of input args to the graph, breaking that assumption |
| def f_to_trace(x_a, x_b, y): |
| x = TwoTensor(x_a, x_b) |
| out1, out2 = f(x, y) |
| out1_unwrapped_attrs, _ = out1.__tensor_flatten__() |
| return (*[getattr(out1, attr) for attr in out1_unwrapped_attrs], out2) |
| |
| fx_g = make_fx(f_to_trace, tracing_mode="fake")(x_a, x_b, y) |
| self.assertExpectedInline( |
| fx_g.code, |
| """\ |
| |
| |
| |
| def forward(self, x_a_1, x_b_1, y_1): |
| mul = torch.ops.aten.mul.Tensor(x_a_1, y_1); x_a_1 = None |
| mul_1 = torch.ops.aten.mul.Tensor(x_b_1, y_1); x_b_1 = None |
| add = torch.ops.aten.add.Tensor(y_1, y_1); y_1 = None |
| return (mul, mul_1, add) |
| """, |
| ) |
| |
| # See https://github.com/pytorch/pytorch/issues/117794 |
| def test_return_and_correct_aliasing_gives_correct_stride(self): |
| t = TwoTensor(torch.randn(2, 2), torch.randn(2, 2)) |
| x = torch.randn(2, 2) |
| # slicing should result in the same stride for TwoTensor as a dense tensor would give |
| self.assertEqual(t[:, 0].stride(), x[:, 0].stride()) |
| |
| def test_make_wrapper_subclass_propagates_metadata(self) -> None: |
| class WrapperTensor(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ["elem"] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, |
| elem.size(), |
| dtype=elem.dtype, |
| layout=elem.layout, |
| device=elem.device, |
| requires_grad=elem.requires_grad, |
| strides=elem.stride(), |
| storage_offset=elem.storage_offset(), |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise RuntimeError("NYI") |
| |
| # non-contiguous strides, non-zero storage offset |
| x = torch.randn(4, 6).t().diagonal(offset=2) |
| y = WrapperTensor(x) |
| self.assertEqual(y.size(), x.size()) |
| self.assertEqual(y.stride(), x.stride()) |
| self.assertEqual(y.storage_offset(), x.storage_offset()) |
| |
| def test_wrapper_subclass_serializes(self) -> None: |
| with tempfile.TemporaryFile() as f: |
| # purposefully use int64 to test non-default dtype |
| x = LoggingTensor(torch.randperm(3)) |
| torch.save(x, f) |
| f.seek(0) |
| with torch.serialization.safe_globals([LoggingTensor]): |
| x_loaded = torch.load(f) |
| self.assertTrue(type(x_loaded) is type(x)) |
| self.assertEqual(x, x_loaded) |
| self.assertEqual(x.elem, x_loaded.elem) |
| self.assertFalse(x is x_loaded) |
| |
| def test_deepcopy_wrapper_subclass(self) -> None: |
| # purposefully use int64 to test non-default dtype |
| x = LoggingTensor(torch.randperm(3)) |
| x_copy = deepcopy(x) |
| self.assertTrue(type(x_copy) is type(x)) |
| self.assertEqual(x, x_copy) |
| self.assertEqual(x.elem, x_copy.elem) |
| self.assertFalse(x is x_copy) |
| |
| def test_deepcopy_wrapper_subclass_with_clone_returning_different_type( |
| self, |
| ) -> None: |
| class MyWrapperTensor(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ["elem"] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, |
| elem.size(), |
| dtype=elem.dtype, |
| layout=elem.layout, |
| device=elem.device, |
| requires_grad=elem.requires_grad, |
| strides=elem.stride(), |
| storage_offset=elem.storage_offset(), |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| if func.overloadpacket.__name__ == "clone": |
| # Return a plain tensor from clone(). |
| return args[0].elem.clone() |
| raise RuntimeError("NYI") |
| |
| # NB: The default Tensor.__torch_function__ implementation called for deepcopy |
| # disables __torch_function__ by the time we get to clone(), so there is no need to |
| # explicitly disable __torch_function__ for this subclass. |
| |
| x = MyWrapperTensor(torch.randn(3)) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "for which cloning returns another instance of the same subclass", |
| ): |
| x_copy = deepcopy(x) |
| |
| def test_deepcopy_non_wrapper_subclass(self) -> None: |
| # Ensure correct error is thrown for common error cases. |
| class SubTensorError1(torch.Tensor): |
| # Default implementation of new_empty() returns a plain tensor. |
| pass |
| |
| class SubTensorError2(torch.Tensor): |
| # new_empty() incorrectly returns a different type (i.e. a plain tensor). |
| def new_empty(self, shape): |
| return torch.Tensor(shape) |
| |
| for error_cls in [SubTensorError1, SubTensorError2]: |
| x = error_cls(3) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "for which that function returns another instance of the same subclass", |
| ): |
| x_copy = deepcopy(x) |
| |
| # Ensure a correctly implemented new_empty() causes deepcopy() to work. |
| class SubTensorSuccess(torch.Tensor): |
| def new_empty(self, shape): |
| return type(self)(shape) |
| |
| x = SubTensorSuccess(3) |
| x_copy = deepcopy(x) |
| self.assertIs(type(x_copy), type(x)) |
| |
| def test_wrapper_subclass_extra_dispatch_keys(self) -> None: |
| class ExtraKeysTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| # NB: only the non-kwarg overload of _make_wrapper_subclass supports |
| # extra dispatch keys. We probably want to unify the two APIs |
| # in the future. |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, |
| elem.size(), |
| elem.stride(), |
| elem.storage_offset(), |
| torch.contiguous_format, |
| elem.dtype, |
| elem.layout, |
| elem.device, |
| False, |
| False, |
| None, |
| False, |
| False, |
| DispatchKeySet(DispatchKey.NestedTensor), |
| ) |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| pass |
| |
| x = ExtraKeysTensor(torch.randn(3)) |
| self.assertTrue(torch._C._dispatch_keys(x).has(DispatchKey.NestedTensor)) |
| self.assertFalse( |
| torch._C._dispatch_keys(x).has(DispatchKey.AutogradNestedTensor) |
| ) |
| |
| def test_wrapper_subclass_multiprocessing_preserves_dtype(self): |
| # a and b have dtype of int64, which is purposefully different from the default |
| # assumed by _make_wrapper_subclass(). |
| a = torch.randperm(5) |
| b = torch.randperm(5) |
| data = TwoTensor(a, b) |
| expected_dtype = data.dtype |
| |
| loader = torch.utils.data.DataLoader( |
| [data, data], |
| batch_size=2, |
| num_workers=2, |
| collate_fn=_identity, |
| ) |
| for batch in loader: |
| self.assertEqual(batch[0].dtype, expected_dtype) |
| |
| def test_index_put_where_only_index_is_subclass(self) -> None: |
| called_funcs = [] |
| |
| class MyTensor(torch.Tensor): |
| elem: torch.Tensor |
| __slots__ = ["elem"] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( |
| cls, |
| elem.size(), |
| dtype=elem.dtype, |
| layout=elem.layout, |
| device=elem.device, |
| requires_grad=elem.requires_grad, |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called_funcs.append(func) |
| return MyTensor(torch.tensor(3)) |
| |
| x = torch.randn(3, 3) |
| idxs = (MyTensor(torch.tensor(0)),) |
| v = torch.randn(1) |
| res = x.index_put_(idxs, v) |
| self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default]) |
| |
| def test_torch_dispatch_mode_basic(self) -> None: |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| torch.empty([]) |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""", |
| ) |
| |
| def test_torch_dispatch_mode_unrelated_tensors(self) -> None: |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| x + y |
| self.assertExpectedInline( |
| "\n".join(logs), """$2: f32[] = torch._ops.aten.add.Tensor($0, $1)""" |
| ) |
| |
| def test_nested_push_logging_tensor_mode(self): |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode(): |
| with LoggingTensorMode(): |
| torch.empty([]) |
| x + y |
| |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3: f32[] = torch._ops.aten.add.Tensor($1, $2) |
| $3: f32[] = torch._ops.aten.add.Tensor($1, $2)""", |
| ) |
| |
| def test_capture_logs_with_torch_dispatch_mode(self): |
| x = torch.randn([]) |
| y = torch.randn([]) |
| with capture_logs_with_logging_tensor_mode() as logs: |
| torch.empty([]) |
| x + y |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3: f32[] = torch._ops.aten.add.Tensor($1, $2)""", |
| ) |
| |
| x = torch.randn([]) |
| y = torch.randn([]) |
| |
| with capture_logs_with_logging_tensor_mode() as logs1: |
| with capture_logs_with_logging_tensor_mode() as logs2: |
| torch.empty([]) |
| x + y |
| |
| self.assertExpectedInline( |
| "\n".join(logs2), |
| """\ |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $3: f32[] = torch._ops.aten.add.Tensor($1, $2) |
| $3: f32[] = torch._ops.aten.add.Tensor($1, $2)""", |
| ) |
| |
| self.assertEqual(logs1, logs2) |
| |
| def test_torch_dispatch_mode_subclass_priority(self) -> None: |
| class ErrorA(RuntimeError): |
| pass |
| |
| class ErrorB(RuntimeError): |
| pass |
| |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with AMode(): |
| raise ErrorA |
| |
| class B(A): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with BMode(): |
| func(*args, **kwargs) |
| |
| class AMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA |
| |
| class BMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorB |
| |
| a = A(torch.empty(1)) |
| b = B(torch.empty(1)) |
| with self.assertRaises(ErrorA): |
| a + a |
| with self.assertRaises(ErrorB): |
| a + b |
| |
| # B has precedence over A due to the subclass relationship yet |
| # modes take precedence over arguments |
| with self.assertRaises(ErrorA): |
| with AMode(): |
| b + b |
| with self.assertRaises(ErrorB): |
| with BMode(): |
| a + a |
| with self.assertRaises(ErrorB): |
| with BMode(): |
| a + b |
| |
| def test_mode_with_make_subclass(self): |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| class BasicMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| return func(*args, **kwargs) |
| |
| x = torch.randn(3) |
| with BasicMode(): |
| y = SubTensor(x) |
| self.assertIsInstance(y, SubTensor) |
| |
| def test_torch_dispatch_mode_respects_no_dispatch(self) -> None: |
| with capture_logs(is_mode=True) as logs1: |
| with LoggingTensorMode(): |
| torch.ones([2, 3]) |
| with no_dispatch(): |
| torch.ones([2, 3]) |
| with capture_logs(is_mode=True) as logs2: |
| with LoggingTensorMode(): |
| torch.ones([2, 3]) |
| self.assertEqual(logs1, logs2) |
| |
| def test_shallow_copy_and_detach(self) -> None: |
| seen = set() |
| test_case = self |
| |
| class TestMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| tree_map_only( |
| torch.Tensor, lambda t: test_case.assertIn(t, seen), (args, kwargs) |
| ) |
| if kwargs is None: |
| kwargs = {} |
| r = func(*args, **kwargs) |
| tree_map_only(torch.Tensor, lambda t: seen.add(t), r) |
| return r |
| |
| with TestMode(): |
| x = torch.randn(3, requires_grad=True) |
| loss = (x * x).sum() |
| loss.backward() |
| |
| def test_exception_handling(self): |
| class A(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| class AMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| if func.__name__ == "randn.default": |
| raise RuntimeError |
| return A(torch.zeros(())) |
| |
| with AMode(): |
| try: |
| torch.randn(()) |
| except RuntimeError: |
| pass |
| self.assertTrue(isinstance(torch.zeros(()), A)) |
| |
| def test_with_mode_created_separately(self): |
| class ErrorA(RuntimeError): |
| pass |
| |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA |
| |
| x = A() |
| with self.assertRaises(ErrorA): |
| with x: |
| torch.empty([]) |
| |
| def test_with_nested_modes(self): |
| class ErrorA(RuntimeError): |
| def __init__(self, msg): |
| super().__init__(msg) |
| |
| class A(TorchDispatchMode): |
| def __init__(self, msg): |
| self.msg = msg |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| raise ErrorA(self.msg) |
| |
| with self.assertRaisesRegex(ErrorA, "layer2"): |
| with A("layer1"): |
| with A("layer2"): |
| torch.empty([]) |
| |
| def test_make_subclass_with_modes(self): |
| class ModeTensor(torch.Tensor): |
| def __new__(cls, elem, mode): |
| r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| r.elem = elem |
| r.mode = mode |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| raise NotImplementedError("Shouldn't be here") |
| |
| class Mode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| if isinstance(e, ModeTensor): |
| return e.elem |
| else: |
| return e |
| |
| def wrap(t): |
| if isinstance(t, torch.Tensor): |
| return ModeTensor(t, self) |
| else: |
| return t |
| |
| return wrap(func(*tuple(unwrap(a) for a in args), **kwargs)) |
| |
| class BasicMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| return func(*args, **kwargs) |
| |
| x = torch.tensor(4.0) |
| with Mode(): |
| y = x + x |
| z = y + y |
| self.assertIsInstance(y, ModeTensor) |
| self.assertIsInstance(z, ModeTensor) |
| |
| with Mode(): |
| with BasicMode(): # we can't nest two modes that call make_subclass because it only accepts vanilla tensors |
| y = x + x |
| z = y + y |
| self.assertIsInstance(y, ModeTensor) |
| self.assertIsInstance(z, ModeTensor) |
| |
| assert self.assertRaisesRegex( |
| RuntimeError, |
| "subclass Mode but.* associated to a python object of type Mode", |
| ) |
| |
| def test_notimplemented_mode(self): |
| sub_count = 0 |
| |
| class PoliteMode(TorchDispatchMode): |
| def __init__(self) -> None: |
| self.pre_count = 0 |
| self.post_count = 0 |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| self.pre_count += 1 |
| if any(t is not torch.Tensor for t in types): |
| return NotImplemented |
| self.post_count += 1 |
| return func(*args, **kwargs) |
| |
| class SubTensor(torch.Tensor): |
| def __new__(cls, elem): |
| r = torch.Tensor._make_wrapper_subclass(cls, elem.shape) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| nonlocal sub_count |
| sub_count += 1 |
| |
| def unwrap(t): |
| if isinstance(t, SubTensor): |
| return t.elem |
| else: |
| return t |
| |
| return func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) |
| |
| a = SubTensor(torch.randn(2)) |
| with PoliteMode() as mode: |
| a.abs() |
| |
| self.assertEqual(mode.pre_count, 2) |
| self.assertEqual(mode.post_count, 1) |
| self.assertEqual(sub_count, 1) |
| |
| # make sure this doesn't error |
| with PoliteMode(): |
| with PoliteMode(): |
| a.abs() |
| |
| def test_nesting_same_mode(self): |
| # If the pushed mode is the same instance as the current mode, we allow pushing an already active mode. |
| |
| with capture_logs(is_mode=True) as logs: |
| with LoggingTensorMode() as reenabled: |
| with reenabled: |
| torch.empty([]) |
| self.assertExpectedInline( |
| "\n".join(logs), |
| """\ |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False) |
| $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""", |
| ) |
| |
| def test_error_using_class_method_on_mode(self): |
| class A(TorchDispatchMode): |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| return func(args, kwargs) |
| |
| x = torch.tensor(5.0) |
| with self.assertRaisesRegex( |
| RuntimeError, "classmethod is not supported, please make it a plain method" |
| ): |
| with A(): |
| x + x |
| |
| def test_get_cur_mode(self): |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| pass |
| |
| self.assertEqual(_get_current_dispatch_mode(), None) |
| |
| with A() as mode1: |
| self.assertEqual(_get_current_dispatch_mode(), mode1) |
| |
| with mode1: |
| with A() as mode2: |
| self.assertEqual(_get_current_dispatch_mode(), mode2) |
| |
| def test_get_mode_stack(self): |
| class A(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| pass |
| |
| self.assertEqual(_get_current_dispatch_mode_stack(), []) |
| |
| with A() as mode1: |
| self.assertEqual(_get_current_dispatch_mode_stack(), [mode1]) |
| |
| with mode1: |
| with A() as mode2: |
| self.assertEqual(_get_current_dispatch_mode_stack(), [mode1, mode2]) |
| |
| def test_all_same_mode(self): |
| x = LoggingTensorMode() |
| y = LoggingTensorMode() |
| self.assertTrue(all_same_mode([x, x, x])) |
| self.assertFalse(all_same_mode([x, None])) |
| self.assertFalse(all_same_mode([x, y])) |
| |
| def test_mode_detection(self): |
| class InfraMode(TorchDispatchMode): |
| @classmethod |
| def is_infra_mode(cls): |
| return True |
| |
| class NonInfraMode(TorchDispatchMode): |
| pass |
| |
| with InfraMode(): |
| self.assertTrue(is_in_torch_dispatch_mode()) |
| self.assertFalse(is_in_torch_dispatch_mode(include_infra_modes=False)) |
| with NonInfraMode(): |
| self.assertTrue(is_in_torch_dispatch_mode()) |
| self.assertTrue(is_in_torch_dispatch_mode(include_infra_modes=False)) |
| with InfraMode(): |
| self.assertTrue(is_in_torch_dispatch_mode()) |
| self.assertTrue( |
| is_in_torch_dispatch_mode(include_infra_modes=False) |
| ) |
| |
| self.assertTrue(is_in_torch_dispatch_mode()) |
| self.assertTrue(is_in_torch_dispatch_mode(include_infra_modes=False)) |
| self.assertTrue(is_in_torch_dispatch_mode()) |
| self.assertFalse(is_in_torch_dispatch_mode(include_infra_modes=False)) |
| |
| self.assertFalse(is_in_torch_dispatch_mode()) |
| self.assertFalse(is_in_torch_dispatch_mode(include_infra_modes=False)) |
| |
| def test_tolist_numpy_with_torch_dispatch_mode(self) -> None: |
| x = LoggingTensor(torch.tensor([2.0, 3.0])) |
| with self.assertRaisesRegex( |
| RuntimeError, "is not supported for tensor subclasses." |
| ): |
| x.tolist() |
| with self.assertRaisesRegex( |
| RuntimeError, "is not supported for tensor subclasses." |
| ): |
| x.numpy() |
| with self.assertRaises(AssertionError): |
| self.assertEqual(x, None) |
| |
| def test_record_stream(self) -> None: |
| class TestMode(TorchDispatchMode): |
| def __init__(self, testcase): |
| self.testcase = testcase |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| self.testcase.assertEqual(func.name(), "aten::record_stream") |
| self.testcase.assertIsInstance(args[0], torch.Tensor) |
| self.testcase.assertIsInstance(args[1], torch.Stream) |
| self.testcase.assertEqual(args[1].stream_id, 1) |
| self.testcase.assertEqual(args[1].device_index, 2) |
| self.testcase.assertEqual(args[1].device_type, 3) |
| |
| t = torch.tensor(5.0) |
| s = torch.Stream(stream_id=1, device_index=2, device_type=3) |
| with TestMode(self): |
| t.record_stream(s) |
| |
| def test_return_stream(self) -> None: |
| with _scoped_library("test_return_stream", "DEF") as l_def: |
| l_def.define("return_stream(Tensor self) -> Stream") |
| with _scoped_library("test_return_stream", "IMPL", "CPU") as l_impl: |
| l_impl.impl( |
| "return_stream", |
| lambda _: torch.Stream(stream_id=0, device_index=1, device_type=2), |
| ) |
| |
| class TestMode(TorchDispatchMode): |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| return torch.Stream(stream_id=1, device_index=2, device_type=3) |
| |
| t = torch.tensor(5.0) |
| s = torch.ops.test_return_stream.return_stream(t) |
| self.assertIsInstance(s, torch.Stream) |
| self.assertEqual(s.stream_id, 0) |
| self.assertEqual(s.device_index, 1) |
| self.assertEqual(s.device_type, 2) |
| |
| with TestMode(): |
| s = torch.ops.test_return_stream.return_stream(t) |
| self.assertIsInstance(s, torch.Stream) |
| self.assertEqual(s.stream_id, 1) |
| self.assertEqual(s.device_index, 2) |
| self.assertEqual(s.device_type, 3) |
| |
| def test_subclass_autograd_device_check(self) -> None: |
| class NonWrapperSubclass(torch.Tensor): |
| elem: torch.Tensor |
| |
| __slots__ = ["elem"] |
| |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| # Wrong device here! |
| r = torch.Tensor._make_subclass( |
| cls, elem.to("meta"), elem.requires_grad |
| ) |
| # ...the real tensor is held as an element on the tensor. |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| return e.elem if isinstance(e, NonWrapperSubclass) else e |
| |
| def wrap(e): |
| return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e |
| |
| rs = tree_map( |
| wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) |
| ) |
| logging.getLogger("NonWrapperSubclass").info( |
| f"{func.__module__}.{func.__name__}", # noqa: G004 |
| args, |
| kwargs, |
| rs, |
| ) |
| return rs |
| |
| x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True)) |
| y = torch.randn(2, requires_grad=True) |
| z = x * y |
| self.assertIsInstance(z, NonWrapperSubclass) |
| z.sum().backward(torch.tensor(1)) |
| self.assertEqual(x.grad, y) |
| self.assertEqual(y.grad, x) |
| |
| def test_none_wrapping(self): |
| # A Tensor subclass that returns None when doing add |
| # See LoggingTensor above for more details on the subclass |
| class SubclassWithNone(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( |
| cls, |
| elem.size(), |
| dtype=elem.dtype, |
| layout=elem.layout, |
| device=elem.device, |
| requires_grad=elem.requires_grad, |
| ) |
| r.elem = elem |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| def unwrap(e): |
| return e.elem if isinstance(e, SubclassWithNone) else e |
| |
| def wrap(e): |
| return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e |
| |
| rs = tree_map( |
| wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)) |
| ) |
| if func.overloadpacket.__name__ == "add": |
| return None |
| else: |
| return rs |
| |
| x = SubclassWithNone(torch.rand(2)) |
| # Make sure both run without error |
| self.assertIsInstance(x * 2, SubclassWithNone) |
| self.assertIsNone(x + 2) |
| |
| x.requires_grad_() |
| out = x.acos().sum() |
| |
| # The backward of acos does add then rsqrt so here we make sure that the |
| # undefined Tensor generated by the user code is nicely handled. |
| # If acos formula changes in the future, this can be replaced by any other |
| # function that does add then something in the backward in a composite way |
| with self.assertRaisesRegex(RuntimeError, "but got None"): |
| out.backward() |
| |
| def test_storage_can_be_converted_to_python_object(self): |
| s = torch.Storage() |
| z = LoggingTensor(torch.empty([])) |
| z.set_(s) |
| |
| def test_autograd_in_attr(self): |
| # We want the wrapped Tensor to require gradients! |
| true_t = torch.rand(2, requires_grad=True) |
| t = LoggingTensorReentrant(true_t) |
| |
| out = t + 2 |
| |
| self.assertFalse(out.requires_grad) |
| self.assertIsNone(out.grad_fn) |
| |
| self.assertTrue(out.elem.requires_grad) |
| self.assertIsNotNone(out.elem.grad_fn) |
| |
| with self.assertRaisesRegex(RuntimeError, "does not require grad"): |
| out.sum().backward() |
| |
| out.elem.sum().backward() |
| |
| self.assertIsNone(t.grad) |
| self.assertIsNotNone(t.elem.grad) |
| |
| def test_dispatch_super_call(self): |
| called = [] |
| |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| return super().__torch_dispatch__(func, types, args, kwargs) |
| |
| x = torch.randn(2) |
| y = torch.randn(2) |
| self.assertEqual(SubTensor(x) + SubTensor(y), x + y) |
| self.assertEqual(called, [torch.ops.aten.add.Tensor]) |
| |
| def test_dispatch_super_call_list_arg(self): |
| called = [] |
| |
| class SubTensorWithListArg(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| return super().__torch_dispatch__(func, types, list(args), kwargs) |
| |
| x = torch.randn(2) |
| self.assertEqual(SubTensorWithListArg(x).neg(), x.neg()) |
| self.assertEqual(called, [torch.ops.aten.neg.default]) |
| |
| def test_dispatch_super_dont_autograd(self): |
| called = [] |
| |
| class SubTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| return torch.Tensor._make_subclass(cls, elem, elem.requires_grad) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| called.append(func) |
| # This argument still requires grad because it was passed |
| # through directly... |
| self.assertTrue(args[0].requires_grad) |
| r = super().__torch_dispatch__(func, types, args, kwargs) |
| # But the output better not require grad, because that means |
| # you did autograd again in torch dispatch (oops) |
| self.assertFalse(r.requires_grad) |
| return r |
| |
| x = SubTensor(torch.randn(2, requires_grad=True)) |
| x.neg() |
| self.assertEqual(called, [torch.ops.aten.neg.default]) |
| |
| def test_set_data(self): |
| called = 0 |
| |
| class SubTensor(torch.Tensor): |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| nonlocal called |
| called += 1 |
| return super().__torch_dispatch__(func, types, args, kwargs) |
| |
| x = SubTensor(torch.empty(2)) |
| x.data |
| self.assertEqual(called, 1) |
| x.data = torch.empty(2) |
| self.assertEqual(called, 1) |
| x.data |
| self.assertEqual(called, 2) |
| self.assertIs(type(x), SubTensor) |
| x.set_(torch.empty(2)) |
| self.assertEqual(called, 3) |
| x.data |
| self.assertEqual(called, 4) |
| self.assertIs(type(x), SubTensor) |
| |
| def test_construct_int_tensor(self): |
| class SubTensor(torch.Tensor): |
| pass |
| |
| # should not fail |
| SubTensor(torch.zeros(2, dtype=torch.int)) |
| |
| def test_multiple_ops_subclass(self): |
| # This is a Direct Subclass, don't do that! |
| class MySubclass(torch.Tensor): |
| @staticmethod |
| def __new__(cls, elem): |
| r = torch.Tensor._make_subclass(cls, elem) |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| with no_dispatch(): |
| return func(*args, **kwargs) |
| |
| x = MySubclass(torch.rand(2, 2, dtype=torch.complex64)) |
| y = x.conj() |
| # Details of the bug that this tests for: |
| # Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU} |
| # There are a few calls to the dispatcher that are going to happen here: |
| # - call_exp: User calling exp on y |
| # - PythonTLSSnapshot: records the TLS on entry and redispatch |
| # - AutogradCPU: no input requires grad, so does nothing and redispatch |
| # - Conjugate: no special implementation for exp: use the fallback that |
| # first clone the Tensor (to materialize the conj) then redispatch |
| # - call_clone: conjugate fallback calling clone on y |
| # - PythonTLSSnapshot: records the TLS on entry and redispatch |
| # - (AutogradCPU: skipped as autograd added itself to the exclude set above) |
| # - Conjugate: special implementation for clone: just skip this key |
| # - Python: Reset the TLS based on the snapshot above and call the user implementation (this |
| # actually calls into the dispatcher again but since we disable both our keys |
| # before, not detailed here) |
| # - exit Python: restore the TLS and exit |
| # - exit Conjugate: nothing was inplace so just exit |
| # - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty |
| # - Python: Reset the TLS again based on the snapshot. <- this used to fail |
| # - More steps.... |
| y.exp() |
| |
| @staticmethod |
| def subclass_helper(cls, data, use_wrapper_subclass, **kwargs): |
| if use_wrapper_subclass: |
| kwargs["device"] = data.device |
| kwargs["dtype"] = data.dtype |
| kwargs["layout"] = data.layout |
| kwargs["requires_grad"] = True |
| return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs) # type: ignore[attr-defined] |
| else: |
| return torch.Tensor._make_subclass(cls, data, True, **kwargs) |
| |
| def test_is_contiguous_slow_path(self): |
| data = torch.randn(3, 3) |
| contiguous_data = data.clone() |
| not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2)) |
| |
| for use_wrapper_subclass in [True, False]: |
| |
| class ExampleTensor1(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class ExampleTensor2(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.is_contiguous: |
| return contiguous_data.is_contiguous() |
| return NotImplemented |
| |
| class ExampleTensor3(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.is_contiguous: |
| return not_contiguous_data.is_contiguous() |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.aten.is_contiguous'" |
| e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.is_contiguous() |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.contiguous() |
| |
| e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.is_contiguous(), True) |
| e.contiguous() # this will just return the original TensorImpl since is_contiguous = True |
| |
| err_msg = "Multiple dispatch failed for" |
| e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.is_contiguous(), False) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.contiguous() |
| |
| def test_fancy_strides(self): |
| calls = [] |
| |
| class ExampleTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, False, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func in [ |
| torch.ops.aten.is_contiguous.default, |
| torch.ops.aten.is_contiguous.memory_format, |
| torch.ops.aten.is_strides_like_format.default, |
| torch.ops.aten.is_non_overlapping_and_dense.default, |
| torch.ops.aten.stride.default, |
| ]: |
| calls.append((func, list(args)[1:])) |
| return None |
| with no_dispatch(): |
| return func(*args, **kwargs) |
| |
| e = ExampleTensor(torch.randn(2, 2)) |
| self.assertFalse(e.is_contiguous(memory_format=torch.channels_last)) |
| self.assertEqual( |
| calls, [(torch.ops.aten.is_contiguous.memory_format, [torch.channels_last])] |
| ) |
| calls.clear() |
| self.assertFalse( |
| torch.ops.aten.is_strides_like_format.default(e, torch.channels_last) |
| ) |
| self.assertEqual( |
| calls, |
| [(torch.ops.aten.is_strides_like_format.default, [torch.channels_last])], |
| ) |
| calls.clear() |
| self.assertTrue(torch.ops.aten.is_non_overlapping_and_dense.default(e)) |
| self.assertEqual( |
| calls, [(torch.ops.aten.is_non_overlapping_and_dense.default, [])] |
| ) |
| |
| def test_device_slowpath(self): |
| for use_wrapper_subclass in [True]: |
| |
| class ExampleTensor1(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_device=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class ExampleTensor2(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_device=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.device: |
| return torch.device("meta") |
| return NotImplemented |
| |
| class ExampleTensor3(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_device=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.device: |
| return torch.device("meta") |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.prim.device'" |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass) |
| e.device() |
| |
| ten = torch.rand([1]) |
| e = ExampleTensor2(torch.randn(3, 3, device="cpu"), use_wrapper_subclass) |
| self.assertEqual(e.device.type, "meta") |
| self.assertEqual(ten.type_as(e).device.type, "meta") |
| |
| e = ExampleTensor3(torch.randn(3, 3, device="cpu"), use_wrapper_subclass) |
| self.assertEqual(e.device.type, "meta") |
| self.assertEqual(ten.type_as(e).device.type, "meta") |
| |
| def test_dim_slowpath(self): |
| data = torch.randn(3, 3) |
| |
| for use_wrapper_subclass in [True, False]: |
| |
| class DimNotImplementedTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class DimImplementedTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.aten.dim'" |
| e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.dim() |
| |
| t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(t.dim(), 2) |
| |
| def test_maybe_tuple_bug(self): |
| class T(torch.Tensor): |
| @classmethod |
| def __torch_function__(cls, *args, **kwargs): |
| pass |
| |
| a = torch.rand(3) |
| |
| a[[T(), T()]] |
| |
| def test_standard_is_not_subclass(self): |
| # https://github.com/pytorch/pytorch/issues/79079 |
| self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0))) |
| |
| def test_sym_sizes_strides_slow_path(self): |
| class TestTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, *args, **kwargs): |
| r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined] |
| cls, (0,), dispatch_sizes_strides_policy="sizes" |
| ) |
| return r |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args=(), kwargs=None): |
| if func in ( |
| torch.ops.aten.sym_size.default, |
| torch.ops.aten.sym_stride.default, |
| ): |
| from torch._dynamo.source import ConstantSource |
| from torch.fx.experimental.symbolic_shapes import ( |
| DimDynamic, |
| ShapeEnv, |
| ) |
| |
| shape_env = ShapeEnv() |
| si = shape_env.create_symintnode( |
| shape_env.create_symbol( |
| 123, |
| source=ConstantSource("abc"), |
| dynamic_dim=DimDynamic.DUCK, |
| constraint_dim=None, |
| ), |
| hint=123, |
| ) |
| return (si,) |
| |
| t = TestTensor() |
| si = t.size()[0] |
| self.assertIsInstance(si, torch.SymInt) |
| si = t.stride()[0] |
| self.assertIsInstance(si, torch.SymInt) |
| |
| def test_strides_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| |
| class StridesNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class StridesCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func == torch.ops.aten.sym_stride.default: |
| return (4, 2) |
| return NotImplemented |
| |
| class StridesDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="strides" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func == torch.ops.aten.sym_stride.default: |
| return None |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.aten.sym_stride'" |
| e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.stride() |
| |
| e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.stride(), (4, 2)) |
| |
| e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass) |
| self.assertEqual(e.stride(), (2, 1)) |
| |
| def test_sizes_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| data = torch.randn(6, 2) |
| |
| class SizesNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| return NotImplemented |
| |
| class SizesCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| if func.overloadpacket == torch.ops.aten.sym_size: |
| return (5, 3) |
| return NotImplemented |
| |
| class SizesDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| if func.overloadpacket == torch.ops.aten.sym_size: |
| return None |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.aten.sym_size'" |
| e = SizesNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.size() |
| |
| e = SizesCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.size(), (5, 3)) |
| |
| e = SizesDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) |
| self.assertEqual(e.size(), (4, 2)) |
| |
| def test_custom_size_policy_dynamic_shapes(self): |
| data = torch.randn(6, 2) |
| |
| class CustomSizeDynamicShapesTensor(torch.Tensor): |
| @staticmethod |
| def __new__(cls, inner): |
| return torch.Tensor._make_wrapper_subclass( |
| # TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great. |
| # Calling the overload that has kwargs causes us to go down the first overload path, |
| # which will **always** specialize sizes. |
| # We should probably eventually fix this so that the first overload can just handle dynamic shapes. |
| cls, |
| inner.size(), |
| inner.stride(), |
| None, |
| None, |
| inner.dtype, |
| inner.layout, |
| inner.device, |
| False, |
| inner.requires_grad, |
| "sizes", |
| ) |
| |
| def __init__(self, inner): |
| self.inner = inner |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func == torch.ops.aten.sym_size.default: |
| return args[0].inner.shape |
| if func == torch.ops.aten.sym_stride.default: |
| return args[0].inner.shape |
| return NotImplemented |
| |
| x = torch.ones(2, 2) |
| |
| def trace_fn(x): |
| x_wrapper = CustomSizeDynamicShapesTensor(x) |
| return x_wrapper.size(), x_wrapper.stride() |
| |
| fx_g = make_fx(trace_fn, tracing_mode="symbolic")(x) |
| self.assertExpectedInline( |
| fx_g.code.strip(), |
| """\ |
| def forward(self, x_1): |
| sym_size_int = torch.ops.aten.sym_size.int(x_1, 0) |
| sym_size_int_1 = torch.ops.aten.sym_size.int(x_1, 1); x_1 = None |
| return ((sym_size_int, sym_size_int_1), (sym_size_int, sym_size_int_1))""", |
| ) |
| |
| def test_data_ptr_respects_numel_slow_path(self): |
| data = torch.randn(6, 2) |
| |
| class NumelDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_sizes_strides_policy="sizes" |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.aten.dim: |
| return data.dim() |
| if func.overloadpacket == torch.ops.aten.numel: |
| numel_called[0] = True |
| return None |
| return NotImplemented |
| |
| for use_wrapper_subclass in (False, True): |
| numel_called = [False] |
| e = NumelDefaultReturn(torch.randn(2, 2), use_wrapper_subclass) |
| e.data_ptr() |
| self.assertTrue(numel_called[0]) |
| |
| def test_layout_slow_path(self): |
| for use_wrapper_subclass in [True, False]: |
| data = torch.randn(6, 2) |
| |
| class LayoutNotImplemented(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_layout=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| return NotImplemented |
| |
| class LayoutCustomReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_layout=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.layout: |
| return torch.sparse_csr |
| return NotImplemented |
| |
| class LayoutDefaultReturn(torch.Tensor): |
| @staticmethod |
| def __new__(cls, data, wrapper): |
| return TestPythonDispatch.subclass_helper( |
| cls, data, wrapper, dispatch_layout=True |
| ) |
| |
| @classmethod |
| def __torch_dispatch__(cls, func, types, args, kwargs): |
| if func.overloadpacket == torch.ops.prim.layout: |
| return data.layout |
| return NotImplemented |
| |
| err_msg = "Multiple dispatch failed for 'torch.ops.prim.layout'" |
| e = LayoutNotImplemented(torch.randn(3, 3), use_wrapper_subclass) |
| with self.assertRaisesRegex(TypeError, err_msg): |
| e.layout |
| |
| e = LayoutCustomReturn(torch.randn(3, 3), use_wrapper_subclass) |
| self.assertEqual(e.layout, torch.sparse_csr) |
| |
| e = LayoutDefaultReturn(torch.randn(4, 2), use_wrapper_subclass) |
| self.assertEqual(e.layout, torch.strided) |
| |
| |
| class TestPythonDispatcher(TestCase): |
| def test_basic(self): |
| x = torch.randn(2, requires_grad=True) |
| r = torch._C._EnablePythonDispatcher() |
| torch.add(x, x) |
| |
| def test_lstsq(self): |
| a = torch.randn(4, 3) |
| b = torch.rand(4, 3) |
| expected_shape = torch.linalg.lstsq(a, b).solution.shape |
| r = torch._C._EnablePythonDispatcher() |
| python_disp_shape = torch.linalg.lstsq(a, b).solution.shape |
| self.assertEqual(expected_shape, python_disp_shape) |
| |
| |
| class TestWrapperSubclassAliasing(TestCase): |
| def _test_wrapper_subclass_aliasing(self, op, args, kwargs): |
| def to_subclass(t: torch.Tensor): |
| return TwoTensor(t, t.clone()) |
| |
| result_ref = op(*args, **kwargs) |
| |
| args_subclass = pytree.tree_map_only(torch.Tensor, to_subclass, args) |
| kwargs_subclass = pytree.tree_map_only(torch.Tensor, to_subclass, kwargs) |
| |
| result_test = op(*args_subclass, **kwargs_subclass) |
| |
| args_ref_flat = pytree.arg_tree_leaves(*args, **kwargs) |
| args_ref_flat_tensors = [ |
| x for x in args_ref_flat if isinstance(x, torch.Tensor) |
| ] |
| |
| args_test_flat = pytree.tree_leaves((args_subclass, kwargs_subclass)) |
| args_test_flat_tensors = [ |
| x for x in args_test_flat if isinstance(x, torch.Tensor) |
| ] |
| |
| result_ref_flat = pytree.tree_leaves(result_ref) |
| result_ref_flat_tensors = [ |
| x for x in result_ref_flat if isinstance(x, torch.Tensor) |
| ] |
| |
| result_test_flat = pytree.tree_leaves(result_test) |
| result_test_flat_tensors = [ |
| x for x in result_test_flat if isinstance(x, torch.Tensor) |
| ] |
| |
| for o_ref, o_test in zip(result_ref_flat_tensors, result_test_flat_tensors): |
| for a_ref, a_test in zip(args_ref_flat_tensors, args_test_flat_tensors): |
| out_is_inpt = o_ref is a_ref |
| if out_is_inpt: |
| self.assertTrue(o_test is a_test) |
| |
| out_aliases_inpt = StorageWeakRef( |
| o_ref.untyped_storage() |
| ) == StorageWeakRef(a_ref.untyped_storage()) |
| if out_aliases_inpt: |
| self.assertTrue( |
| StorageWeakRef(o_test.untyped_storage()) |
| == StorageWeakRef(a_test.untyped_storage()) |
| ) |
| else: |
| self.assertFalse( |
| StorageWeakRef(o_test.untyped_storage()) |
| == StorageWeakRef(a_test.untyped_storage()) |
| ) |
| |
| # This tests the correctness of `torch.utils._python_dispatch.return_and_correct_aliasing`, |
| # a util for wrapper subclasses to promise correct aliasing behavior. |
| # It's probably overkill to test every OpInfo, |
| # so I picked a sampling of ops with representative schemas. |
| @ops( |
| [ |
| op |
| for op in op_db |
| if op.name |
| in [ |
| "mul", # out-of-place |
| "cat", # out-of-place (TensorList input) |
| "index", # out-of-place (Optional TensorList input) |
| "mul_", # inplace |
| "view", # view |
| "t_", # inplace-view |
| "split", # view (multi-return) |
| "native_batch_norm", # mutable op (returns outputs and mutates some inputs) |
| ] |
| ], |
| allowed_dtypes=(torch.float,), |
| ) |
| def test_wrapper_subclass_aliasing(self, device, dtype, op): |
| samples = op.sample_inputs(device, dtype) |
| sample = first_sample(self, samples) |
| args = (sample.input, *sample.args) |
| kwargs = sample.kwargs |
| self._test_wrapper_subclass_aliasing(op, args, kwargs) |
| |
| @ops(custom_op_db, allowed_dtypes=(torch.float,)) |
| def test_wrapper_subclass_aliasing_custom(self, device, dtype, op): |
| samples = op.sample_inputs(device, dtype) |
| sample = first_sample(self, samples) |
| args = (sample.input, *sample.args) |
| kwargs = sample.kwargs |
| self._test_wrapper_subclass_aliasing(op, args, kwargs) |
| |
| def test_wrapper_subclass_aliasing_conv2d(self, device): |
| args = (torch.randn(4, 4, 4, 4), torch.randn(4, 4, 4, 4)) |
| kwargs = {} |
| # conv2d has a default arg 'int[2] strides=0', |
| # which torchscript expands into 'int[2] strides=[0, 0]' |
| # Make sure that _return_and_correct_aliasing can handle this case |
| # (I'm using inference_mode to make sure conv2d doesn't decompose and goes to torch_dispatch) |
| with torch.inference_mode(): |
| self._test_wrapper_subclass_aliasing( |
| torch.ops.aten.conv2d.default, args, kwargs |
| ) |
| |
| def test_wrapper_subclass_aliasing_out_op(self, device): |
| # Make sure that _return_and_correct_aliasing can handle kwargs w mutable tensors |
| args = (torch.ones(4), torch.ones(4)) |
| kwargs = {"out": torch.empty(4)} |
| self._test_wrapper_subclass_aliasing(torch.ops.aten.add.out, args, kwargs) |
| |
| |
| instantiate_device_type_tests(TestWrapperSubclassAliasing, globals()) |
| |
| if __name__ == "__main__": |
| run_tests() |