| # Owner(s): ["module: sparse"] |
| |
| import torch |
| import itertools |
| import functools |
| import operator |
| import random |
| import unittest |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ |
| load_tests, TEST_NUMPY, TEST_SCIPY, IS_WINDOWS, gradcheck, coalescedonoff, \ |
| DeterministicGuard, first_sample, TEST_WITH_CROSSREF, TEST_WITH_ROCM, skipIfTorchDynamo, \ |
| parametrize, subtest, is_coalesced_indices, suppress_warnings, instantiate_parametrized_tests, \ |
| skipIfCrossRef |
| from torch.testing._internal.common_cuda import TEST_CUDA |
| from numbers import Number |
| from typing import Dict, Any |
| from packaging import version |
| from torch.testing._internal.common_cuda import \ |
| (SM53OrLater, SM80OrLater, TEST_MULTIGPU) |
| from torch.testing._internal.common_device_type import \ |
| (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, |
| deviceCountAtLeast, OpDTypes, onlyNativeDeviceTypes) |
| from torch.testing._internal.common_methods_invocations import \ |
| (op_db, reduction_ops, sparse_unary_ufuncs, sparse_masked_reduction_ops, binary_ufuncs) |
| from torch.testing._internal.common_dtype import ( |
| all_types, all_types_and_complex, all_types_and_complex_and, floating_and_complex_types, |
| floating_and_complex_types_and, integral_types, floating_types_and, |
| ) |
| from torch.testing._internal.opinfo.definitions.sparse import validate_sample_input_sparse |
| from torch.testing._internal.opinfo.refs import ( |
| ElementwiseBinaryPythonRefInfo, |
| ReductionPythonRefInfo |
| ) |
| |
| def _op_supports_any_sparse(op): |
| return (op.supports_sparse |
| or op.supports_sparse_csr |
| or op.supports_sparse_csc |
| or op.supports_sparse_bsr |
| or op.supports_sparse_bsc) |
| |
| |
| |
| reduction_ops_with_sparse_support = [ |
| op for op in reduction_ops if 'masked.' not in op.name and |
| _op_supports_any_sparse(op) and not isinstance(op, ReductionPythonRefInfo)] |
| |
| binary_ufuncs_with_sparse_support = [ |
| op for op in binary_ufuncs if _op_supports_any_sparse(op) and |
| not isinstance(op, ElementwiseBinaryPythonRefInfo)] |
| |
| like_fns_with_sparse_support = [op for op in op_db if _op_supports_any_sparse(op) and '_like' in op.name] |
| |
| if TEST_SCIPY: |
| import scipy.sparse |
| |
| # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for |
| # sharding on sandcastle. This line silences flake warnings |
| load_tests = load_tests |
| |
| # batched grad doesn't support sparse |
| gradcheck = functools.partial(gradcheck, check_batched_grad=False) |
| |
| CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( |
| IS_WINDOWS and torch.version.cuda and version.parse(torch.version.cuda) > version.parse("11.2") |
| ) or (not IS_WINDOWS and not TEST_WITH_ROCM) |
| |
| HIPSPARSE_SPMM_COMPLEX128_SUPPORTED = torch.version.hip and version.parse(torch.version.hip.split("-")[0]) >= version.parse("6.0") |
| |
| def all_sparse_layouts(test_name='layout', include_strided=False): |
| return parametrize(test_name, [ |
| subtest(torch.strided, name='Strided'), |
| subtest(torch.sparse_coo, name='SparseCOO'), |
| subtest(torch.sparse_csr, name='SparseCSR'), |
| subtest(torch.sparse_csc, name='SparseCSC'), |
| subtest(torch.sparse_bsr, name='SparseBSR'), |
| subtest(torch.sparse_bsc, name='SparseBSC'), |
| ][(0 if include_strided else 1):]) |
| |
| def gradcheck_semantics(test_name='gradcheck'): |
| gradcheck_sparse = functools.partial(gradcheck, masked=False) |
| gradcheck_masked = functools.partial(gradcheck, masked=True) |
| gradcheck_sparse.masked = False |
| gradcheck_masked.masked = True |
| return parametrize(test_name, [ |
| subtest(gradcheck_sparse, name='sparse'), |
| subtest(gradcheck_masked, name='masked')]) |
| |
| |
| class CrossRefSparseFakeMode(torch._subclasses.CrossRefFakeMode): |
| def __init__(self) -> None: |
| super().__init__( |
| self.ignore_op, check_strides=False, |
| check_aliasing=False, |
| ) # TODO: enable stride/alias checking |
| |
| # empty_like excluded for now due to sparse complex |
| # aten._to_dense.default this one is getting called with csc |
| @staticmethod |
| def ignore_op(func): |
| return func in ( |
| torch.ops.aten.empty_like.default, |
| torch.ops.aten.set_.source_Storage_storage_offset, |
| torch.ops.aten.sspaddmm.out, |
| torch.ops.aten._spdiags.default, |
| torch.ops.aten._to_dense.default, |
| torch.ops.aten.indices.default, |
| torch.ops.aten._indices.default, |
| torch.ops.aten.values.default, |
| torch.ops.aten._values.default, |
| ) |
| |
| class TestSparseLegacyAndDeprecation(TestCase): |
| |
| @skipIfTorchDynamo("TorchDynamo fails with unknown reason") |
| def test_legacy_warnings(self): |
| |
| def f1(): |
| "torch.sparse.SparseTensor() is deprecated."\ |
| " Please use torch.sparse_coo_tensor((0,), dtype=)" |
| x_ref = torch.sparse_coo_tensor((0,), dtype=torch.float64) |
| x = torch.sparse.DoubleTensor() |
| self.assertEqual(x, x_ref) |
| |
| def f2(): |
| "torch.sparse.SparseTensor(cdata=x._cdata) is deprecated."\ |
| " Please use torch.sparse_coo_tensor(x._indices(), x._values(), x.shape)" |
| x_ref = torch.tensor([[1, 2], [3, 4]], dtype=torch.float64).to_sparse() |
| x = torch.sparse.DoubleTensor(cdata=x_ref._cdata) |
| y = torch.sparse_coo_tensor(x._indices(), x._values(), x.shape) |
| self.assertEqual(x, x_ref) |
| self.assertEqual(y, x_ref) |
| |
| def f3(): |
| "torch.sparse.SparseTensor(indices, values, *, device=) is deprecated."\ |
| " Please use torch.sparse_coo_tensor(indices, values, dtype=, device=)" |
| x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], dtype=torch.float64) |
| x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), |
| torch.tensor([1, 2, 3, 4], dtype=torch.float64)) |
| self.assertEqual(x, x_ref) |
| |
| def f4(): |
| "torch.sparse.SparseTensor(indices, values, shape, *, device=) is deprecated."\ |
| " Please use torch.sparse_coo_tensor(indices, values, shape, dtype=, device=)" |
| x_ref = torch.sparse_coo_tensor([[0, 0, 1, 1], [0, 1, 0, 1]], [1, 2, 3, 4], (2, 3), dtype=torch.float64) |
| x = torch.sparse.DoubleTensor(torch.tensor([[0, 0, 1, 1], [0, 1, 0, 1]]), |
| torch.tensor([1, 2, 3, 4], dtype=torch.float64), (2, 3)) |
| self.assertEqual(x, x_ref) |
| |
| def f5(): |
| "torch.sparse.SparseTensor(shape, *, device=) is deprecated."\ |
| " Please use torch.sparse_coo_tensor(shape, dtype=, device=)" |
| x_ref = torch.sparse_coo_tensor((2, 3), dtype=torch.float64) |
| x = torch.sparse.DoubleTensor(2, 3) |
| self.assertEqual(x, x_ref) |
| |
| for test_f in [f1, f2, f3, f4, f5]: |
| |
| with self.assertWarns(UserWarning, msg=test_f.__doc__) as cm: |
| test_f() |
| test_f() |
| |
| # Check warn-once: |
| self.assertEqual(len(cm.warnings), 1) |
| |
| |
| class TestSparseBase(TestCase): |
| def run(self, result=None): |
| if TEST_WITH_CROSSREF: |
| with CrossRefSparseFakeMode(): |
| return super().run(result) |
| else: |
| return super().run(result) |
| |
| class TestSparse(TestSparseBase): |
| |
| def setUp(self): |
| TestCase.setUp(self) |
| |
| self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64) |
| |
| def sparse_empty_factory(*args, **kwargs): |
| kwargs['layout'] = kwargs.get('layout', torch.sparse_coo) |
| return torch.empty(*args, **kwargs) |
| self.sparse_empty = sparse_empty_factory |
| |
| def sparse_tensor_factory(*args, **kwargs): |
| return torch.sparse_coo_tensor(*args, **kwargs) |
| self.sparse_tensor = sparse_tensor_factory |
| |
| def _gen_sparse(self, sparse_dim, nnz, with_size, dtype, device, coalesced): |
| if isinstance(with_size, Number): |
| with_size = [with_size] * sparse_dim |
| |
| x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, not coalesced, dtype=dtype, device=device) |
| |
| if not coalesced: |
| self.assert_uncoalesced(x) |
| |
| return x, i, v |
| |
| def assert_uncoalesced(self, x): |
| """ |
| Test if a CPU tensor is uncoalesced. This is used to ensure |
| correctness of the uncoalesced tensor generation algorithm. |
| """ |
| assert not x.is_coalesced() |
| existing_indices = set() |
| indices = x._indices() |
| for i in range(x._nnz()): |
| index = str(indices[:, i]) |
| if index in existing_indices: |
| return True |
| else: |
| existing_indices.add(index) |
| |
| def randn(self, *args, **kwargs): |
| """ |
| Variant of torch.randn that also works in the TEST_CUDA case. |
| """ |
| # TODO: Put this in torch.cuda.randn |
| return torch.empty(*args, **kwargs).normal_() |
| |
| @dtypes(torch.double) |
| def test_print_coalesced(self, device, dtype): |
| self._test_print(device, dtype, True) |
| |
| @dtypes(torch.double) |
| def test_print_uncoalesced(self, device, dtype): |
| self._test_print(device, dtype, False) |
| |
| def _test_print(self, device, dtype, coalesced): |
| shape_sparse_dim_nnz = [ |
| ((), 0, 2), |
| ((0,), 0, 10), |
| ((2,), 0, 3), |
| ((100, 3), 1, 3), |
| ((100, 20, 3), 2, 0), |
| ((10, 0, 3), 0, 3), |
| ((10, 0, 3), 0, 0), |
| ] |
| printed = [] |
| for shape, sparse_dim, nnz in shape_sparse_dim_nnz: |
| indices_shape = torch.Size((sparse_dim, nnz)) |
| values_shape = torch.Size((nnz,) + shape[sparse_dim:]) |
| printed.append(f"# shape: {torch.Size(shape)}") |
| printed.append(f"# nnz: {nnz}") |
| printed.append(f"# sparse_dim: {sparse_dim}") |
| printed.append(f"# indices shape: {indices_shape}") |
| printed.append(f"# values shape: {values_shape}") |
| |
| indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, |
| device=device).view(indices_shape) |
| for d in range(sparse_dim): |
| indices[d].clamp_(max=(shape[d] - 1)) # make it valid index |
| if not coalesced and indices.numel() > 0: |
| indices[:, -1] = indices[:, 0] # make it uncoalesced |
| values_numel = values_shape.numel() |
| values = torch.arange(values_numel, dtype=dtype, |
| device=device).view(values_shape).div_(values_numel / 2.) |
| sp_tensor = self.sparse_tensor(indices, values, shape, dtype=dtype, device=device) |
| |
| dtypes = [torch.int32] |
| if values.dtype == torch.double: |
| dtypes.append(torch.float) |
| else: |
| dtypes.append(torch.double) |
| for dtype in dtypes: |
| printed.append(f"########## {dtype} ##########") |
| x = sp_tensor.detach().to(dtype) |
| printed.append("# sparse tensor") |
| printed.append(str(x)) |
| if x.dtype.is_floating_point: |
| printed.append("# after requires_grad_") |
| printed.append(str(x.requires_grad_())) |
| printed.append("# after addition") |
| printed.append(str(x + x)) |
| printed.append("# _indices") |
| printed.append(str(x._indices())) |
| printed.append("# _values") |
| printed.append(str(x._values())) |
| printed.append('') |
| self.assertExpected('\n'.join(printed)) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_basic(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, with_size): |
| if isinstance(with_size, Number): |
| with_size = [with_size] * sparse_dims |
| x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) |
| self.assertEqual(i, x._indices()) |
| self.assertEqual(v, x._values()) |
| self.assertEqual(x.ndimension(), len(with_size)) |
| self.assertEqual(x.coalesce()._nnz(), nnz if x.is_coalesced() else nnz // 2) |
| self.assertEqual(list(x.size()), with_size) |
| |
| # Test .indices() and .values() |
| if not coalesced: |
| with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): |
| x.indices() |
| with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): |
| x.values() |
| else: |
| self.assertEqual(x.indices(), x._indices()) |
| self.assertEqual(x.values(), x._values()) |
| |
| test_shape(3, 10, 100) |
| test_shape(3, 10, [100, 100, 100]) |
| test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) |
| test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) |
| |
| # Make sure that coalesce handles duplicate indices correctly |
| i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) |
| v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) |
| self.assertEqual(x.coalesce()._nnz(), 9) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble, torch.bfloat16) |
| @precisionOverride({torch.bfloat16: 1e-2}) |
| @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991") |
| def test_coalesce(self, device, dtype, coalesced): |
| |
| def _test_coalesce(t): |
| tc = t.coalesce() |
| self.assertEqual(tc.to_dense(), t.to_dense()) |
| self.assertTrue(tc.is_coalesced()) |
| # Our code below doesn't work when nnz is 0, because |
| # then it's a 0D tensor, not a 2D tensor. |
| if t._nnz() == 0: |
| self.assertEqual(t._indices(), tc._indices()) |
| self.assertEqual(t._values(), tc._values()) |
| return tc |
| |
| value_map: Dict[Any, Any] = {} |
| for idx, val in zip(t._indices().t(), t._values()): |
| idx_tup = tuple(idx.tolist()) |
| if idx_tup in value_map: |
| value_map[idx_tup] += val |
| else: |
| value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val |
| |
| new_indices = sorted(value_map.keys()) |
| _new_values = [value_map[idx] for idx in new_indices] |
| if t._values().ndimension() < 2: |
| new_values = t._values().new(_new_values) |
| else: |
| new_values = torch.stack(_new_values) |
| |
| new_indices = t._indices().new(new_indices).t() |
| tg = t.new(new_indices, new_values, t.size()) |
| |
| self.assertEqual(tc._indices(), tg._indices()) |
| self.assertEqual(tc._values(), tg._values()) |
| |
| if t.is_coalesced(): |
| self.assertEqual(tc._indices(), t._indices()) |
| self.assertEqual(tc._values(), t._values()) |
| |
| for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3): |
| sparse_size = [] if empty_i else [2, 1] |
| dense_size = [1, 0, 2] if empty_v else [1, 2] |
| nnz = 0 if empty_nnz else 5 |
| |
| t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size, dtype, device, coalesced) |
| _test_coalesce(t) # this tests correctness |
| |
| @dtypes(torch.double) |
| @skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/89395") |
| def test_coalesce_reference_cycle(self, device, dtype): |
| # Test coalesce doesn't create autograd graph cycles (gh-52253) |
| |
| # Sanity check that the helper class works as expected |
| t = torch.rand(2) |
| t_ref = torch._C._WeakTensorRef(t) |
| self.assertFalse(t_ref.expired()) |
| |
| del t |
| self.assertTrue(t_ref.expired()) |
| |
| def test_sparse_sum(): |
| i = torch.tensor([[0], [4]], dtype=torch.long, device=device) |
| v = torch.tensor([[[-0.4567, -1.8797, 0.0380, 1.4316]]], |
| dtype=dtype, device=device) |
| S = torch.sparse_coo_tensor(i, v) |
| S = S.coalesce() |
| S.requires_grad_(True) |
| S2 = S.coalesce() |
| self.assertTrue(S2.is_coalesced()) |
| return torch._C._WeakTensorRef(S2) |
| |
| ref = test_sparse_sum() |
| self.assertTrue(ref.expired()) |
| |
| @dtypes(torch.double) |
| def test_ctor_large_sizes(self, device, dtype): |
| # Test that integer overflow is detected when computing numel |
| # of a sparse tensor with large dimensions (gh-57416). Notice |
| # that numel is computed internally when constructing a |
| # tensor, hence the overflow may appear during the tensor |
| # construction step. |
| N = 100000 |
| indices = torch.tensor([[N, N - 1]] * 4, dtype=torch.int64, device=device) |
| values = torch.tensor([1, 2], dtype=dtype, device=device) |
| self.assertRaises(RuntimeError, |
| lambda: torch.sparse_coo_tensor( |
| indices, values, (N + 1,) * 4, device=device)) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_ctor_size_checks(self, device, dtype): |
| indices = self.index_tensor([ |
| [0, 0, 0], |
| [0, 3, 0], |
| [0, 0, 0], |
| [0, 0, 0], |
| ], device=device) |
| values = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) |
| |
| # indices inconsistent with size |
| self.assertRaises( |
| RuntimeError, |
| lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1]))) |
| |
| # values inconsistent with size |
| values = torch.tensor([ |
| [2, 1, 2, 1], |
| [1, 0, 5, 2], |
| ], dtype=dtype, device=device) |
| self.assertRaises( |
| RuntimeError, |
| lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1]))) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_ctor_is_coalesced_with_gradcheck(self, device, dtype, coalesced): |
| for sparse_size, nnz in (((3, 3), 5), ((2, 3, 1, 5), 11)): |
| t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size, dtype, device, coalesced) |
| self.assertEqual(t.is_coalesced(), coalesced) |
| |
| def func(indices, values, shape, is_coalesced): |
| s = torch.sparse_coo_tensor(indices, values, shape, check_invariants=True, is_coalesced=is_coalesced) |
| self.assertEqual(s.is_coalesced(), is_coalesced) |
| return s.to_dense(masked_grad=False) |
| |
| if coalesced: |
| torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, False)) |
| torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, True)) |
| else: |
| torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, False)) |
| with self.assertRaisesRegex(RuntimeError, |
| "cannot set is_coalesced to true if indices correspond to uncoalesced COO tensor"): |
| torch.autograd.gradcheck(func, (t._indices(), t._values().requires_grad_(True), t.shape, True)) |
| |
| @dtypes(*floating_and_complex_types_and(torch.float16, torch.bfloat16)) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| @gradcheck_semantics() |
| def test_to_dense_with_gradcheck(self, device, dtype, gradcheck): |
| |
| def test_tensor(x, res): |
| x.to_dense() # Tests triple to_dense for memory corruption |
| x.to_dense() |
| x.to_dense() |
| dense_x = x.to_dense() |
| safe_dense_x = self.safeToDense(x) |
| dense_x = dense_x.to(res.dtype) |
| safe_dense_x = safe_dense_x.to(res.dtype) |
| self.assertEqual(res, dense_x) |
| self.assertEqual(res, safe_dense_x) |
| |
| # Only run autograd test for float64 |
| if x.dtype != torch.float64: |
| return |
| |
| def fn(x): |
| return x.to_dense(masked_grad=gradcheck.masked) |
| x.requires_grad_(True) |
| gradcheck(fn, (x,)) |
| |
| for value_type in [torch.double, torch.cdouble]: |
| i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| # we don't have to_dense for half types on CPU because it is implemented |
| # with a slower add_ operation |
| v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) |
| res = torch.tensor([ |
| [[2, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0]], |
| [[1, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0]], |
| [[0, 3, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 0], |
| [0, 0, 0, 0, 4]], |
| ], dtype=dtype, device=device) |
| |
| test_tensor(x, res) |
| test_tensor(res, res) |
| |
| i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| v = torch.empty(4, 0, dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) |
| res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) |
| test_tensor(x, res) |
| |
| @coalescedonoff |
| @dtypes(torch.float16, torch.bfloat16, torch.float64, torch.int, torch.cfloat, torch.cdouble) |
| def test_to_sparse(self, device, dtype, coalesced): |
| shape = [5, 2, 10, 4] |
| max_nnz = 1 |
| for value_type in [torch.double, torch.cdouble]: |
| for dim, dim_sz in enumerate(shape, 1): |
| max_nnz *= dim_sz |
| rnnz = torch.randint(2, max_nnz, (1,)).item() |
| for nnz in [0, 1, rnnz]: |
| expected, _, _ = self._gen_sparse(dim, nnz, shape, dtype=value_type, device=device, |
| coalesced=coalesced) |
| expected = expected.to(dtype) |
| |
| d = expected.to_dense() |
| result = d.to_sparse(dim) |
| self.assertEqual(d, result.to_dense()) |
| self.assertEqual(expected.size(), result.size()) |
| self.assertEqual(dim, result.sparse_dim()) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_sparse_bool(self, device, dtype): |
| a = torch.tensor([True, False], dtype=dtype, device=device).to(torch.bool) |
| b = a.to_sparse().to_dense() |
| self.assertEqual(a, b) |
| |
| @skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/108667") |
| @dtypes(torch.double, torch.cdouble) |
| def test_scalar(self, device, dtype): |
| # tensor with value |
| a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1), 12.3, [], dtype=dtype, device=device) |
| self.assertEqual(1, a._values().numel()) |
| self.assertEqual(a, a.clone()) |
| a_coalesced = a.coalesce() |
| self.assertTrue(a_coalesced.is_coalesced()) |
| self.assertEqual(torch.tensor(12.3, dtype=dtype, device=device), a.to_dense()) |
| self.assertEqual(a, a.to_dense().to_sparse()) |
| |
| # tensor with multiple values |
| a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1).expand(0, 2), |
| [12.3, 12.3], [], dtype=dtype, device=device) |
| self.assertEqual(2, a._values().numel()) |
| self.assertEqual(a, a.clone()) |
| a_coalesced = a.coalesce() |
| self.assertTrue(a_coalesced.is_coalesced()) |
| self.assertEqual(torch.tensor(12.3 * 2, dtype=dtype, device=device), a.to_dense()) |
| self.assertEqual(a.coalesce(), a.coalesce().to_dense().to_sparse()) |
| |
| # tensor without value |
| a = self.sparse_empty((), dtype=dtype, device=device) |
| self.assertEqual(0, a._values().numel()) |
| self.assertEqual(a, a.clone()) |
| a_coalesced = a.coalesce() |
| self.assertTrue(a_coalesced.is_coalesced()) |
| self.assertEqual(torch.tensor(0, dtype=dtype, device=device), a.to_dense()) |
| self.assertEqual(a, a.to_dense().to_sparse()) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_shared(self, device, dtype): |
| i = self.index_tensor([[2]], device=device) |
| v = torch.tensor([5], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3])) |
| v[0] = 6 |
| self.assertEqual(torch.tensor([0, 0, 6], dtype=dtype, device=device), self.safeToDense(x)) |
| i[0][0] = 0 |
| self.assertEqual(torch.tensor([6, 0, 0], dtype=dtype, device=device), self.safeToDense(x)) |
| |
| i = self.index_tensor([[2]], device=device) |
| v = torch.empty((1, 0), dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 0])) |
| i[0][0] = 0 |
| self.assertEqual(torch.empty((3, 0), dtype=dtype, device=device), self.safeToDense(x)) |
| |
| @dtypes(torch.double, torch.cdouble) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| @gradcheck_semantics() |
| def test_to_dense_hybrid(self, device, dtype, gradcheck): |
| |
| def test_tensor(x, res): |
| x.to_dense() # Tests double to_dense for memory corruption |
| x.to_dense() |
| x.to_dense() |
| self.assertEqual(res, x.to_dense()) |
| self.assertEqual(res, self.safeToDense(x)) |
| |
| def fn(x): |
| return x.to_dense(masked_grad=gradcheck.masked) |
| x.requires_grad_(True) |
| gradcheck(fn, (x,)) |
| |
| i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| ], device=device) |
| v = torch.tensor([[2, 3], [1, 2], [3, 4], [4, 5]], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 2])) |
| res = torch.tensor([ |
| [[2, 3], |
| [0, 0], |
| [0, 0], |
| [0, 0]], |
| [[1, 2], |
| [0, 0], |
| [0, 0], |
| [0, 0]], |
| [[3, 4], |
| [0, 0], |
| [0, 0], |
| [4, 5]], |
| ], dtype=dtype, device=device) |
| test_tensor(x, res) |
| |
| i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| ], device=device) |
| v = torch.empty((4, 2, 0), dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0])) |
| res = torch.empty((3, 4, 2, 0), dtype=dtype, device=device) |
| test_tensor(x, res) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_contig(self, device, dtype): |
| def test_tensor(x, exp_i, exp_v): |
| x = x.coalesce() |
| self.assertEqual(exp_i, x._indices()) |
| self.assertEqual(exp_v, x._values()) |
| |
| i = self.index_tensor([ |
| [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], |
| [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], |
| ], device=device) |
| v = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([100, 100])) |
| exp_i = self.index_tensor([ |
| [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], |
| [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], |
| ], device=device) |
| exp_v = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [2, 0, 2, 1], |
| [0, 0, 3, 0], |
| [1, 0, 4, 0], |
| ], device=device) |
| v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) |
| exp_i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| exp_v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [2, 0, 2, 1], |
| [0, 0, 3, 0], |
| [1, 0, 4, 0], |
| ], device=device) |
| v = torch.empty([4, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) |
| exp_i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| exp_v = torch.empty([4, 0], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| # Duplicate indices |
| i = self.index_tensor([ |
| [0, 0, 2, 0], |
| [0, 0, 3, 0], |
| [0, 0, 4, 0], |
| ], device=device) |
| v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) |
| exp_i = self.index_tensor([ |
| [0, 2], |
| [0, 3], |
| [0, 4], |
| ], device=device) |
| exp_v = torch.tensor([6, 4], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [0, 0, 2, 0], |
| [0, 0, 3, 0], |
| [0, 0, 4, 0], |
| ], device=device) |
| v = torch.empty([4, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) |
| exp_i = self.index_tensor([ |
| [0, 2], |
| [0, 3], |
| [0, 4], |
| ], device=device) |
| exp_v = torch.empty([2, 0], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_contig_hybrid(self, device, dtype): |
| def test_tensor(x, exp_i, exp_v): |
| x = x.coalesce() |
| self.assertEqual(exp_i, x._indices()) |
| self.assertEqual(exp_v, x._values()) |
| |
| i = self.index_tensor([ |
| [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], |
| [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], |
| ], device=device) |
| v = torch.tensor([ |
| [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], |
| [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], |
| ], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([100, 100, 2])) |
| exp_i = self.index_tensor([ |
| [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], |
| [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], |
| ], device=device) |
| exp_v = torch.tensor([ |
| [2, 3], [1, 2], [6, 7], [4, 5], [10, 11], |
| [3, 4], [5, 6], [9, 10], [8, 9], [7, 8], |
| ], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [2, 0, 2, 1], |
| [0, 0, 3, 0], |
| [1, 0, 4, 0], |
| ], device=device) |
| v = torch.tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) |
| exp_i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| exp_v = torch.tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [2, 0, 2, 1], |
| [0, 0, 3, 0], |
| [1, 0, 4, 0], |
| ], device=device) |
| v = torch.empty([4, 3, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) |
| exp_i = self.index_tensor([ |
| [0, 1, 2, 2], |
| [0, 0, 0, 3], |
| [0, 0, 1, 4], |
| ], device=device) |
| exp_v = torch.empty([4, 3, 0], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| # Duplicate indices |
| i = self.index_tensor([ |
| [0, 0, 2, 0], |
| [0, 0, 3, 0], |
| [0, 0, 4, 0], |
| ], device=device) |
| v = torch.tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) |
| exp_i = self.index_tensor([ |
| [0, 2], |
| [0, 3], |
| [0, 4], |
| ], device=device) |
| exp_v = torch.tensor([[6, 4, 5], [4, 3, 4]], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| i = self.index_tensor([ |
| [0, 0, 2, 0], |
| [0, 0, 3, 0], |
| [0, 0, 4, 0], |
| ], device=device) |
| v = torch.empty([4, 3, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) |
| exp_i = self.index_tensor([ |
| [0, 2], |
| [0, 3], |
| [0, 4], |
| ], device=device) |
| exp_v = torch.empty([2, 3, 0], dtype=dtype, device=device) |
| test_tensor(x, exp_i, exp_v) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_clone(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, with_size): |
| x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| if not coalesced: |
| self.assertFalse(x.is_coalesced()) |
| y = x.clone() |
| self.assertFalse(y.is_coalesced()) |
| x = x.coalesce() |
| self.assertTrue(x.is_coalesced()) |
| y = x.clone() |
| self.assertTrue(y.is_coalesced()) |
| |
| test_shape(4, 20, 5) |
| test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) |
| test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble, torch.bfloat16) |
| @precisionOverride({torch.bfloat16: 2e-2}) |
| def test_Sparse_to_Sparse_copy_(self, device, dtype, coalesced): |
| # This is for testing torch.copy_(SparseTensor, SparseTensor) |
| sparse_dims = 3 |
| nnz = 10 |
| sizes = [2, 3, 4, 5] # hybrid sparse |
| x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) |
| |
| # test copy |
| x2_dense = x2.to_dense() |
| x1.copy_(x2) |
| self.assertEqual(x2_dense, x1.to_dense()) |
| |
| # test type conversion (when x1.copy_(x2), x1.dtype should stay the same) |
| x1 = x1.to(torch.float32) |
| |
| x2 = x2.to(torch.float16) |
| x1_dtype = x1.dtype |
| x1.copy_(x2) |
| self.assertEqual(x1_dtype, x1.dtype) |
| |
| x2 = x2.to(torch.float64) |
| x1_dtype = x1.dtype |
| x1.copy_(x2) |
| self.assertEqual(x1_dtype, x1.dtype) |
| |
| # test no broadcast |
| self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1))) |
| |
| # test raise error on copy_() between dense and sparse Tensors |
| self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5))) |
| |
| # test autograd |
| x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) |
| x2.requires_grad_(True) |
| x1.copy_(x2) |
| y = x1 * 2 |
| x2_clone = x2.clone() |
| y.backward(x2_clone) |
| expected_grad = x2_clone * 2 |
| self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense()) |
| self.assertEqual(None, x1.grad) |
| |
| @coalescedonoff |
| @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") |
| @dtypes(torch.double, torch.cdouble) |
| def test_Sparse_to_Sparse_copy_multi_gpu(self, device, dtype, coalesced): |
| # This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices |
| sparse_dims = 3 |
| nnz = 10 |
| sizes = [2, 3, 4, 5] # hybrid sparse |
| x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) |
| x1 = x1.to('cuda:0') |
| |
| def test_cross_device(x1, x2): |
| x1_device = x1.device |
| x1.copy_(x2) |
| self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense()) |
| self.assertEqual(x1_device, x1.device) |
| |
| test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices |
| test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu |
| |
| # test autograd |
| x2 = x2.to('cuda:1') |
| x2.requires_grad_(True) |
| x1.copy_(x2) |
| y = x1 * 2 |
| x2_clone = x2.clone().to('cuda:0') |
| y.backward(x2_clone) |
| expected_grad = x2_clone * 2 |
| self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense()) |
| self.assertEqual(None, x1.grad) |
| |
| @onlyCUDA |
| def test_cuda_empty(self, device): |
| def test_tensor(x): |
| y = x.to(device) |
| self.assertEqual(x.sparse_dim(), y.sparse_dim()) |
| self.assertEqual(x.dense_dim(), y.dense_dim()) |
| x = y.cpu() |
| self.assertEqual(y.sparse_dim(), x.sparse_dim()) |
| self.assertEqual(y.dense_dim(), x.dense_dim()) |
| |
| x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float32) |
| test_tensor(x) |
| |
| x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float16) |
| test_tensor(x) |
| |
| x = torch.sparse_coo_tensor((2, 3, 4), dtype=torch.float16) |
| test_tensor(x) |
| |
| x = torch.sparse_coo_tensor((2, 3, 4, 0), dtype=torch.float32) |
| test_tensor(x) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_transpose(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, with_size): |
| x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| y = self.safeToDense(x) |
| |
| for i, j in itertools.combinations(range(4), 2): |
| x = x.transpose_(i, j) |
| y = y.transpose(i, j) |
| self.assertEqual(self.safeToDense(x), y) |
| |
| x = x.transpose(i, j) |
| y = y.transpose(i, j) |
| self.assertEqual(self.safeToDense(x), y) |
| |
| test_shape(4, 6, 3) |
| test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0]) |
| test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0]) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| @gradcheck_semantics() |
| def test_permute(self, device, dtype, coalesced, gradcheck): |
| # trivial checks |
| s = torch.rand(3, 3, 3, device=device, dtype=dtype).to_sparse() |
| with self.assertRaisesRegex(RuntimeError, "does not match the length"): |
| s.permute(dims=(1, 0)) |
| with self.assertRaisesRegex(RuntimeError, "duplicate dims"): |
| s.permute(dims=(1, 1, 1)) |
| # Calling permute on a sparse tensor with an empty tuple used to segfault, |
| # see https://github.com/pytorch/pytorch/issues/116325 |
| x = torch.rand((), device=device, dtype=dtype).to_sparse() |
| x.permute(()) |
| self.assertEqual(len(x.values()), 1) |
| |
| def test_shape(sparse_dims, nnz, with_size): |
| ndim = len(with_size) |
| valid_sparse_dims = torch.arange(-ndim, -ndim + sparse_dims) |
| valid_dense_dims = torch.arange(-ndim + sparse_dims, 0) |
| |
| for dims in itertools.permutations(range(-ndim, 0)): |
| s = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| d = self.safeToDense(s) |
| |
| dims_sparse, _ = torch.tensor(dims[:sparse_dims]).sort() |
| dims_dense, _ = torch.tensor(dims[sparse_dims:]).sort() |
| |
| if (valid_sparse_dims == dims_sparse).all() and (valid_dense_dims == dims_dense).all(): |
| # if valid permutation, test for correctness |
| s_permuted = s.permute(dims) |
| self.assertEqual(s_permuted, d.permute(dims)) |
| |
| # if s is coalesced, and perm does not touch 0-dim, |
| # the result has to be coalesced as well |
| if dims[0] == 0: |
| self.assertEqual(s_permuted.is_coalesced(), s.is_coalesced()) |
| else: |
| self.assertFalse(s_permuted.is_coalesced()) |
| |
| gradcheck(lambda t: t.permute(dims).to_dense(masked_grad=gradcheck.masked), s.requires_grad_()) |
| else: |
| # otherwise check if exception is thrown |
| fail_message = "transpositions between sparse and dense dimensions are not allowed" |
| with self.assertRaisesRegex(RuntimeError, fail_message): |
| s.permute(dims) |
| |
| test_shape(2, 3, [2, 3, 4, 5]) |
| test_shape(2, 3, [2, 2, 0]) |
| # if nnz=0, it is not true that t == t.to_dense().to_sparse() |
| # unless t.sparse_dim == t.dim (i.e. t is not hybrid) |
| test_shape(3, 0, [0, 0, 2]) |
| |
| @coalescedonoff |
| @onlyCPU |
| @dtypes(torch.double) |
| def test_coalesce_transpose_mm(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x, _, _ = self._gen_sparse(2, nnz, [dj, di], dtype, device, coalesced) |
| y = torch.randn(dj, dk, dtype=dtype, device=device) |
| |
| x_coalesced = x.coalesce() |
| self.assertTrue(x_coalesced.is_coalesced()) |
| |
| x_coalesced_t = x_coalesced.t() |
| # Transpose is `colasced`-preserving if the indices tensor is empty. |
| self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0) |
| |
| res = torch.mm(x_coalesced_t, y) |
| expected = torch.mm(self.safeToDense(x_coalesced_t), y) |
| self.assertEqual(res, expected) |
| |
| test_shape(10, 20, 30, 20) |
| test_shape(0, 20, 30, 0) |
| test_shape(10, 0, 30, 0) |
| test_shape(10, 20, 0, 0) |
| test_shape(10, 20, 0, 20) |
| |
| @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166") |
| @dtypes(torch.double, torch.cdouble) |
| def test_t_empty(self, device, dtype): |
| def test_in_place(x): |
| shape_original = x.shape |
| x.t_() |
| self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size()) |
| self.assertEqual(0, x._indices().numel()) |
| self.assertEqual(0, x._values().numel()) |
| self.assertEqual(x.sparse_dim(), 2) |
| self.assertEqual(x.dense_dim(), 0) |
| |
| def test_not_in_place(x): |
| shape_original = x.shape |
| y = x.t() |
| self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size()) |
| self.assertEqual(0, y._indices().numel()) |
| self.assertEqual(0, y._values().numel()) |
| self.assertEqual(x.sparse_dim(), 2) |
| self.assertEqual(x.dense_dim(), 0) |
| |
| x = self.sparse_empty(2, 3, dtype=dtype, device=device) |
| test_in_place(x) |
| test_not_in_place(x) |
| |
| x = self.sparse_empty(2, 0, dtype=dtype, device=device) |
| test_in_place(x) |
| test_not_in_place(x) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_add_zeros(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, sizes): |
| x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| zeros = torch.sparse_coo_tensor(sizes, device=x.device) |
| r1 = zeros + x |
| r2 = x + zeros |
| self.assertEqual(r1, x) |
| self.assertEqual(r2, x) |
| |
| test_shape(1, 20, [1]) |
| test_shape(4, 20, [3, 17, 19, 5]) |
| test_shape(2, 20, [3, 17, 19, 5]) |
| test_shape(2, 20, [3, 17, 19, 0]) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_add_sub_nnz(self, device, dtype): |
| # nnz should not grow unbounded (gh-34964) |
| x = torch.randn(10, dtype=dtype, device=device).to_sparse() |
| x.add_(x) |
| x.add_(x) |
| self.assertLessEqual(x._nnz(), 10) |
| |
| x.sub_(2 * x) |
| x.sub_(2 * x) |
| self.assertLessEqual(x._nnz(), 10) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_cat(self, device, dtype, coalesced): |
| # shapes: list of tuples (sparse_dims, nnz, sizes) |
| def test_shapes(shapes, dim, fail_message=None): |
| inputs = [self._gen_sparse(shape[0], shape[1], shape[2], dtype, device, coalesced)[0] |
| for shape in shapes] |
| if fail_message: |
| with self.assertRaisesRegex(RuntimeError, fail_message): |
| torch.cat(inputs, dim) |
| else: |
| result = torch.cat(inputs, dim) |
| dense_result = torch.cat([t.to_dense() for t in inputs], dim) |
| self.assertEqual(dense_result, result.to_dense()) |
| |
| test_shapes( |
| [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1) |
| |
| # mismatched sizes |
| test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0, |
| "All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]") |
| # hybrid sparse/dense |
| test_shapes( |
| [(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1) |
| # cat along dense dim |
| test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2) |
| test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1) |
| test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2) |
| # mismatched dimensions |
| test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0, |
| "All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.") |
| # wrapped dimension |
| test_shapes( |
| [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2) |
| |
| # sparse with dense |
| sp = self._gen_sparse(3, 10, [2, 3, 4], dtype, device, coalesced)[0] |
| dn = sp.to_dense() |
| with self.assertRaisesRegex(RuntimeError, |
| "Concatenating sparse tensors, but a dense tensor was found at position 1."): |
| torch.cat((sp, dn)) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_unsqueeze(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None): |
| x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| if fail_message: |
| with self.assertRaisesRegex(IndexError, fail_message): |
| torch.unsqueeze(x, unsqueeze_dim) |
| else: |
| result = torch.unsqueeze(x, unsqueeze_dim) |
| dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim) |
| self.assertEqual(dense_result, result.to_dense()) |
| |
| # basic case |
| test_shape(3, 10, [5, 7, 11], 0) |
| |
| # hybrid sparse/dense, unsqueeze along sparse dim |
| test_shape(3, 10, [5, 7, 11, 13, 17], 0) |
| test_shape(3, 10, [5, 7, 11, 13, 17], 3) |
| |
| # unsqueeze along dense dimensions |
| test_shape(3, 10, [5, 7, 11, 13, 17], 4) |
| test_shape(3, 10, [5, 7, 11, 13, 17], 5) |
| |
| # wrapped dimensions |
| test_shape(3, 10, [5, 7, 11, 13, 17], -1) |
| test_shape(3, 10, [5, 7, 11, 13, 17], -6) |
| |
| # bounds |
| test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range") |
| test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range") |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_select(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): |
| x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| if fail_message: |
| with self.assertRaisesRegex(IndexError, fail_message): |
| torch.select(x, select_dim, select_index) |
| else: |
| result = torch.select(x, select_dim, select_index) |
| if result.is_sparse: |
| result = result.to_dense() |
| dense_result = torch.select(x.to_dense(), select_dim, select_index) |
| self.assertEqual(dense_result, result) |
| |
| |
| sizes = [5, 7, 11, 13, 17] |
| # hybrid sparse/dense, select sparse dim, result is dense |
| for i in range(sizes[0]): |
| test_shape(1, 10, sizes, 0, i) |
| test_shape(1, 10, sizes, 0, sizes[0] + 1, r'select[(][)][:] index \d out of range.*') |
| |
| # hybrid sparse/dense, select sparse dim, result is sparse |
| for d in range(3): |
| for i in range(sizes[d]): |
| test_shape(3, 10, sizes, d, i) |
| |
| # hybrid sparse/dense, select dense dim, result is sparse |
| for d in range(1, 3): |
| for i in range(sizes[d]): |
| test_shape(1, 10, sizes, d, i) |
| |
| @dtypes(*integral_types()) |
| def test_select_no_type_promotion(self, device, dtype): |
| # see https://github.com/pytorch/pytorch/issues/82150 |
| idx = torch.tensor([[0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1]]) |
| val = torch.ones(6, dtype=dtype) |
| s = torch.sparse_coo_tensor(idx, val, size=(3, 3)) |
| |
| for t in (s, s * torch.tensor(0, dtype=dtype)): |
| # empty checks |
| self.assertEqual(t.dtype, t[2].dtype) |
| self.assertEqual(t.dtype, t[0, 1].dtype) |
| # sum should not promote |
| self.assertEqual(t.dtype, t[0, 0].dtype) |
| self.assertEqual(t.dtype, t[1, 1].dtype) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_index_select(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): |
| if isinstance(select_index, int): |
| select_index = [select_index] |
| if isinstance(select_index, list): |
| select_index = torch.tensor(select_index, device=device, dtype=torch.long) |
| x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) |
| if fail_message: |
| with self.assertRaisesRegex(IndexError, fail_message): |
| torch.index_select(x, select_dim, select_index) |
| else: |
| result = torch.index_select(x, select_dim, select_index) |
| if result.is_sparse: |
| result = result.to_dense() |
| dense_result = torch.index_select(x.to_dense(), select_dim, select_index) |
| self.assertEqual(dense_result, result) |
| |
| sizes = [5, 7, 11, 13, 17] |
| for d in range(len(sizes)): |
| for index in [0, sizes[d] - 1, [0, sizes[d] // 2, sizes[d] - 1]]: |
| test_shape(1, 10, sizes, d, index) |
| test_shape(len(sizes) // 2, 10, sizes, d, index) |
| test_shape(len(sizes), 10, sizes, d, index) |
| |
| def _test_index_select_exhaustive_index(self, sizes, dims, device, dtype, coalesced): |
| t = make_tensor(sizes, dtype=dtype, device=device) |
| t_sparse = t.to_sparse().coalesce() if coalesced else t.to_sparse() |
| t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced) |
| t_small = t_small_sparse.to_dense() |
| for d in dims: |
| # NOTE: indices are negative |
| idx_dim_d_range = list(range(-sizes[d], 0)) |
| for idx_len in range(sizes[d], sizes[d] + 1): |
| # creates all possible valid indices into dim d of lenght idx_len |
| for idx in itertools.product(*itertools.repeat(idx_dim_d_range, idx_len)): |
| t_idx = torch.tensor(idx, dtype=torch.long, device=device) |
| |
| # NOTE: index_select for dense does not support negative indices, |
| # hence + sizes[d]. See https://github.com/pytorch/pytorch/issues/76347 |
| |
| # tests the nnz > sizes[d] branch |
| dense_result = t.index_select(d, t_idx + sizes[d]) |
| sparse_result = t_sparse.index_select(d, t_idx) |
| self.assertEqual(dense_result, sparse_result) |
| |
| # tests the nnz <= sizes[d] branch |
| small_dense_result = t_small.index_select(d, t_idx + sizes[d]) |
| small_sparse_result = t_small_sparse.index_select(d, t_idx) |
| self.assertEqual(small_dense_result, small_sparse_result) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_index_select_exhaustive_index_small(self, device, dtype, coalesced): |
| # will trigger brute-force algo |
| self._test_index_select_exhaustive_index((3, 3, 4), range(3), device, dtype, coalesced) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_index_select_exhaustive_index_large(self, device, dtype, coalesced): |
| # will trigger more sophisticated algos |
| self._test_index_select_exhaustive_index((100, 50, 3, 3), (2, 3), device, dtype, coalesced) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_index_select_empty_and_non_contiguous_index(self, device, dtype, coalesced): |
| # empty index |
| idx_empty = torch.tensor([], dtype=torch.long, device=device) |
| t = make_tensor((5, 5), dtype=dtype, device=device) |
| res_dense = t.index_select(0, idx_empty) |
| res_sparse = t.to_sparse().index_select(0, idx_empty) |
| self.assertEqual(res_dense, res_sparse) |
| |
| # non-contigous index |
| idx = torch.randint(low=0, high=5, size=(10, 2), device=device)[:, 0] |
| |
| def run_test(sizes): |
| # case nnz > size[d] |
| t = make_tensor(sizes, dtype=dtype, device=device) |
| res_dense = t.index_select(0, idx) |
| res_sparse = t.to_sparse().index_select(0, idx) |
| self.assertEqual(res_dense, res_sparse) |
| |
| # case nnz <= size[d] |
| t_small_sparse, _, _ = self._gen_sparse(len(sizes), 2, sizes, dtype, device, coalesced) |
| res_sparse = t_small_sparse.index_select(0, idx) |
| res_dense = t_small_sparse.to_dense().index_select(0, idx) |
| self.assertEqual(res_dense, res_sparse) |
| |
| # brute-force |
| run_test((10, 10)) |
| # more sophisticated algos |
| run_test((10, 100, 100)) |
| |
| @onlyCPU |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_index_select_parallelization(self, device, dtype, coalesced): |
| """ |
| Test with sizes that will trigger parallelization (i.e. with sizes |
| that are >= at::internal::GRAIN_SIZE) |
| """ |
| def run_test(nnz, size): |
| t_sparse, _, _ = self._gen_sparse(1, nnz, (size,), dtype, device, coalesced) |
| t_dense = t_sparse.to_dense() |
| |
| # idx_small to (sort) and (binary) search into t_sparse |
| idx_small = torch.randint(size, (nnz // 2,), device=device) |
| # idx_large to (sort) and (binary) search into idx_large |
| # NOTE: when coalesced=True, the (binary) search will be |
| # done over t_sparse anyway, as it is already sorted. |
| idx_large = torch.randint(size, (nnz * 2,), device=device) |
| for idx in (idx_small, idx_large): |
| res_dense = t_dense.index_select(0, idx) |
| res_sparse = t_sparse.index_select(0, idx) |
| self.assertEqual(res_dense, res_sparse) |
| |
| # NOTE: GRAIN_SIZE = 32768 |
| # case nnz <= size[d] |
| tlen = 70000 # > 2 * GRAIN_SIZE |
| run_test(tlen, tlen) |
| |
| # case nnz > size[d] |
| run_test(tlen, tlen // 2) |
| |
| @onlyCPU |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_mm(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) |
| t = torch.randn(di, dk, dtype=dtype, device=device) |
| y = torch.randn(dj, dk, dtype=dtype, device=device) |
| alpha = random.random() |
| beta = random.random() |
| |
| res = torch.addmm(t, x, y, beta=beta, alpha=alpha) |
| expected = torch.addmm(t, self.safeToDense(x), y, beta=beta, alpha=alpha) |
| self.assertEqual(res, expected) |
| |
| res = torch.addmm(t, x, y) |
| expected = torch.addmm(t, self.safeToDense(x), y) |
| self.assertEqual(res, expected) |
| |
| res = torch.mm(x, y) |
| expected = torch.mm(self.safeToDense(x), y) |
| self.assertEqual(res, expected) |
| |
| test_shape(10, 100, 100, 20) |
| test_shape(100, 1000, 200, 20) |
| test_shape(64, 10000, 300, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(10, 0, 100, 0) |
| test_shape(10, 100, 0, 0) |
| test_shape(10, 100, 0, 20) |
| |
| @unittest.skipIf( |
| IS_WINDOWS and TEST_CUDA, |
| "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" |
| ) |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_bmm(self, device, dtype, coalesced): |
| def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): |
| a_list = [] |
| b_list = [] |
| for mat_idx in range(num_mats): |
| a_mat = self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0] |
| b_mat = torch.randn([dim_j, dim_k], dtype=dtype, device=device) |
| a_list.append(a_mat) |
| b_list.append(b_mat) |
| |
| a = torch.stack(a_list) |
| b = torch.stack(b_list) |
| ab = a.bmm(b) |
| |
| # Compare each matrix against result from mm() |
| for mat_idx in range(num_mats): |
| a_mat = a_list[mat_idx] |
| b_mat = b_list[mat_idx] |
| ab_mat_bmm = ab[mat_idx] |
| ab_mat_mm = a_mat.mm(b_mat) |
| self.assertEqual(ab_mat_bmm, ab_mat_mm) |
| |
| test_shape(10, 10, 100, 99, 20) |
| test_shape(10, 100, 1000, 200, 20) |
| test_shape(10, 64, 10000, 300, 20) |
| test_shape(10, 0, 100, 99, 0) |
| test_shape(10, 10, 0, 100, 0) |
| test_shape(10, 10, 100, 0, 0) |
| test_shape(10, 10, 100, 0, 20) |
| test_shape(10, 10, 100, 0, 20) |
| |
| a = torch.rand([10, 23, 32], dtype=dtype, device=device) |
| a[3] = torch.zeros(23, 32, dtype=dtype, device=device) |
| a[6] = torch.zeros(23, 32, dtype=dtype, device=device) |
| a = a.to_sparse() |
| b = torch.rand([10, 32, 10], dtype=dtype, device=device) |
| b[4] = torch.zeros(32, 10, dtype=dtype, device=device) |
| b[6] = torch.zeros(32, 10, dtype=dtype, device=device) |
| ab = a.bmm(b) |
| for mat_idx in range(ab.size(0)): |
| ab_mat = ab[mat_idx] |
| ab_mat_check = a[mat_idx].mm(b[mat_idx]) |
| self.assertEqual(ab_mat, ab_mat_check) |
| |
| ab_traspose_check = b.transpose(1, 2).to_sparse().bmm( |
| a.transpose(1, 2).to_dense() |
| ).transpose(1, 2) |
| self.assertEqual(ab, ab_traspose_check) |
| |
| @onlyCUDA |
| @coalescedonoff |
| @dtypes(torch.double) |
| @unittest.skipIf( |
| IS_WINDOWS, |
| "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" |
| ) |
| def test_bmm_deterministic(self, device, dtype, coalesced): |
| def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): |
| a_list = [] |
| b_list = [] |
| for mat_idx in range(num_mats): |
| a_list.append(self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0]) |
| b_list.append(torch.randn([dim_j, dim_k], dtype=dtype, device=device)) |
| |
| a = torch.stack(a_list).cuda() |
| b = torch.stack(b_list).cuda() |
| with DeterministicGuard(torch.are_deterministic_algorithms_enabled()): |
| torch.use_deterministic_algorithms(False) |
| ab_nondeterministic = torch.bmm(a, b) |
| torch.use_deterministic_algorithms(True) |
| ab_deterministic = torch.bmm(a, b) |
| diff_abs = (ab_deterministic - ab_nondeterministic).abs() |
| diff_rel = diff_abs / ab_deterministic.abs() |
| diff_rel[torch.isnan(diff_rel)] = 0 |
| |
| # deterministic and non-deterministic results should either be |
| # equal or within a small relative difference |
| equal_abs_or_rel = diff_abs.eq(0).logical_or(diff_rel.lt(0.001)) |
| self.assertTrue(equal_abs_or_rel.all()) |
| |
| test_shape(10, 10, 100, 99, 20) |
| test_shape(10, 100, 1000, 200, 20) |
| test_shape(10, 64, 10000, 300, 20) |
| test_shape(10, 0, 100, 99, 0) |
| test_shape(10, 10, 0, 100, 0) |
| test_shape(10, 10, 100, 0, 0) |
| test_shape(10, 10, 100, 0, 20) |
| test_shape(10, 10, 100, 0, 20) |
| |
| @onlyCUDA |
| @unittest.skipIf( |
| not IS_WINDOWS or not TEST_WITH_ROCM, |
| "this test ensures bmm sparse-dense CUDA gives an error when run on Windows with CUDA < 11.0" |
| ) |
| @dtypes(torch.double) |
| def test_bmm_windows_error(self, device, dtype): |
| a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda() |
| b = torch.rand(2, 2, 2, dtype=dtype).cuda() |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"): |
| ab = a.bmm(b) |
| |
| @onlyCPU |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_saddmm(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] |
| t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] |
| y = torch.randn(dj, dk, dtype=dtype, device=device) |
| alpha = random.random() |
| beta = random.random() |
| |
| res = torch.saddmm(t, x, y, beta=beta, alpha=alpha) |
| expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) |
| self.assertEqual(self.safeToDense(res), expected) |
| |
| res = torch.saddmm(t, x, y) |
| expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) |
| self.assertEqual(self.safeToDense(res), expected) |
| |
| res = torch.smm(x, y) |
| expected = torch.mm(self.safeToDense(x), y) |
| self.assertEqual(self.safeToDense(res), expected) |
| |
| test_shape(7, 5, 3, 20) |
| test_shape(1000, 100, 100, 20) |
| test_shape(3000, 64, 300, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(1000, 0, 100, 0) |
| test_shape(1000, 100, 0, 0) |
| |
| @onlyCPU |
| @coalescedonoff |
| # adding a graph break before self.assertFalse(weight._indices().is_contiguous()) |
| # makes the test pass so some existent sparse related bug |
| @skipIfTorchDynamo("skip") |
| @dtypes(torch.double, torch.cdouble) |
| def test_sspaddmm(self, device, dtype, coalesced): |
| |
| def test_shape(di, dj, dk, nnz): |
| x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] |
| t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] |
| y = torch.randn(dj, dk, dtype=dtype, device=device) |
| alpha = random.random() |
| beta = random.random() |
| |
| res = t.sspaddmm(x, y, beta=beta, alpha=alpha) |
| expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) |
| self.assertEqual(self.safeToDense(res), expected) |
| |
| res = t.sspaddmm(x, y) |
| expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) |
| self.assertEqual(self.safeToDense(res), expected) |
| |
| test_shape(7, 5, 3, 20) |
| test_shape(1000, 100, 100, 20) |
| test_shape(3000, 64, 300, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(1000, 0, 100, 0) |
| test_shape(1000, 100, 0, 0) |
| |
| # Test code from issue https://github.com/pytorch/pytorch/issues/45113 |
| batch_size, input_size, hidden_size = 5, 3, 7 |
| |
| # Create coalesced sparse tensor with non-contiguous indices |
| weight = torch.randn(hidden_size, input_size, dtype=dtype, device=device).to_sparse() |
| self.assertTrue(weight.is_coalesced()) |
| non_contig_indices = weight.indices().mT.contiguous().mT |
| weight = torch.sparse_coo_tensor( |
| indices=non_contig_indices, values=weight.values(), size=weight.shape) |
| weight._coalesced_(True) |
| self.assertFalse(weight._indices().is_contiguous()) |
| # Create un/coalesced sparse tensor |
| bias = torch.randn((hidden_size, 1), dtype=dtype, device=device).to_sparse() |
| bias = torch.cat([bias] * batch_size, dim=1) |
| |
| if coalesced: |
| bias = bias.coalesce() |
| |
| x = torch.randn(input_size, batch_size, dtype=dtype, device=device) |
| res = bias.sspaddmm(weight, x) |
| |
| true_result = (bias.to_dense() + torch.matmul(weight.to_dense(), x)).to_sparse() |
| self.assertEqual(self.safeToDense(res), self.safeToDense(true_result)) |
| |
| @coalescedonoff |
| @precisionOverride({torch.bfloat16: 5e-2, torch.float16: 5e-2}) |
| @dtypes(torch.double, torch.cdouble, torch.bfloat16, torch.float16) |
| def test_sparse_addmm(self, device, dtype, coalesced): |
| if (dtype is torch.bfloat16 or dtype is torch.float16) and device.startswith("cuda"): |
| self.skipTest('addmm_sparse_cuda is not implemented for BFloat16 and Half') |
| |
| |
| def test_shape(m, n, p, nnz, broadcast, alpha_beta=None): |
| if alpha_beta is None: |
| alpha = random.random() |
| beta = random.random() |
| else: |
| alpha, beta = alpha_beta |
| if broadcast: |
| D1 = make_tensor((), dtype=dtype, device=device, requires_grad=True) |
| else: |
| D1 = make_tensor([n, p], dtype=dtype, device=device, requires_grad=True) |
| D2 = make_tensor([m, p], dtype=dtype, device=device, requires_grad=True) |
| S = self._gen_sparse(2, nnz, [n, m], dtype, device, coalesced)[0] |
| S_dense = S.to_dense().requires_grad_(True) |
| S.requires_grad_(True) |
| Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) |
| Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) |
| self.assertEqual(Y, Y_dense) |
| |
| if dtype not in {torch.double, torch.cdouble}: |
| # gradcheck will likely fail with low-precision input dtypes. |
| return |
| |
| def fn(S, D1, D2, beta=beta, alpha=alpha): |
| return torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) |
| gradcheck(fn, (S, D1, D2), masked=True) |
| |
| test_shape(7, 8, 9, 20, False, None) |
| test_shape(7, 8, 9, 20, True, None) |
| test_shape(7, 8, 9, 20, False, (1, 0)) |
| test_shape(7, 8, 9, 20, True, (1, 0)) |
| test_shape(7, 8, 9, 20, False, (1, 1)) |
| test_shape(7, 8, 9, 20, True, (1, 1)) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| def test_sparse_mm(self, device, dtype, coalesced): |
| def test_shape(d1, d2, d3, nnz, transposed): |
| if transposed: |
| D = torch.randn(d3, d2, dtype=dtype, |
| device=device).t_().requires_grad_(True) |
| else: |
| D = torch.randn(d2, d3, dtype=dtype, device=device).requires_grad_(True) |
| S = self._gen_sparse(2, nnz, [d1, d2], dtype, device, coalesced)[0] |
| S_dense = S.to_dense().requires_grad_(True) |
| S.requires_grad_(True) |
| self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) |
| |
| def fn(S, D): |
| return torch.sparse.mm(S, D) |
| gradcheck(fn, (S, D), masked=True) |
| |
| test_shape(7, 8, 9, 20, False) |
| test_shape(7, 8, 9, 20, True) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| @gradcheck_semantics() |
| def test_sparse_mul(self, device, dtype, coalesced, gradcheck): |
| # https://github.com/pytorch/pytorch/issues/79914 |
| a = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True) |
| b = torch.tensor([[0., 1]], dtype=dtype, device=device).to_sparse().requires_grad_(True) |
| gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(masked_grad=gradcheck.masked), [a, b]) |
| |
| def test_shape(sparse_dims, nnz, with_shape): |
| a = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True) |
| b = self._gen_sparse(sparse_dims, nnz, with_shape, dtype, device, coalesced)[0].requires_grad_(True) |
| |
| self.assertEqual((a * b).to_dense(), a.to_dense() * b.to_dense(), masked=True) |
| gradcheck(lambda x, y: (x * y).to_dense(), [a, b]) |
| # Issues with 0-dim indices/values |
| gradcheck(lambda x, y: torch.sparse.sum(x * y).to_dense(), [a, b], masked=True) |
| |
| # TODO: Re-enable these |
| # test_shape(2, 3, [2, 3, 4, 5]) |
| # test_shape(2, 3, [2, 2, 0]) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_dsmm(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] |
| y = self.randn(dj, dk, dtype=dtype, device=device) |
| |
| res = torch.dsmm(x, y) |
| expected = torch.mm(self.safeToDense(x), y) |
| self.assertEqual(res, expected) |
| |
| test_shape(7, 5, 3, 20) |
| test_shape(1000, 100, 100, 20) |
| test_shape(3000, 64, 300, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(1000, 0, 100, 0) |
| test_shape(1000, 100, 0, 0) |
| test_shape(1000, 100, 0, 20) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_hsmm(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] |
| y = self.randn(dj, dk, dtype=dtype, device=device) |
| |
| res = torch.hsmm(x, y) |
| expected = torch.mm(self.safeToDense(x), y) |
| self.assertEqual(res.to_dense(), expected) |
| |
| test_shape(7, 5, 3, 20) |
| test_shape(1000, 100, 100, 20) |
| test_shape(3000, 64, 300, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(1000, 0, 100, 0) |
| test_shape(1000, 100, 0, 0) |
| test_shape(1000, 100, 0, 20) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_spadd(self, device, dtype, coalesced): |
| |
| def _test_spadd_shape(nnz, shape_i, shape_v=None): |
| shape = shape_i + (shape_v or []) |
| x, _, _ = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) |
| y = self.randn(*shape, dtype=dtype, device=device) |
| r = random.random() |
| |
| res = torch.add(y, x, alpha=r) |
| expected = y + r * self.safeToDense(x) |
| |
| self.assertEqual(res, expected) |
| |
| # Non contiguous dense tensor |
| s = list(shape) |
| s[0] = shape[-1] |
| s[-1] = shape[0] |
| y = self.randn(*s, dtype=dtype, device=device) |
| y.transpose_(0, len(s) - 1) |
| r = random.random() |
| |
| res = torch.add(y, x, alpha=r) |
| expected = y + r * self.safeToDense(x) |
| |
| self.assertEqual(res, expected) |
| |
| x, i, v = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) |
| nnz = i.size(1) |
| |
| # Non contiguous sparse indices tensor |
| x_ = self.sparse_tensor(i[:, ::2], v[:(nnz + 1) // 2], x.shape, dtype=dtype, device=device) |
| res = torch.add(y, x_, alpha=r) |
| expected = y + r * self.safeToDense(x_) |
| self.assertEqual(res, expected) |
| |
| # Non contiguous sparse values tensor |
| |
| x_ = self.sparse_tensor(i[:, :(nnz + 1) // 2], v[::2], x.shape, dtype=dtype, device=device) |
| res = torch.add(y, x_, alpha=r) |
| expected = y + r * self.safeToDense(x_) |
| self.assertEqual(res, expected) |
| |
| # Non contiguous sparse indices and values tensors |
| x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape, dtype=dtype, device=device) |
| res = torch.add(y, x_, alpha=r) |
| expected = y + r * self.safeToDense(x_) |
| self.assertEqual(res, expected) |
| |
| def _test_spadd(): |
| _test_spadd_shape(10, [5, 6]) |
| _test_spadd_shape(10, [10, 10, 10]) |
| _test_spadd_shape(10, [50, 30, 20]) |
| _test_spadd_shape(10, [5, 5, 5, 5, 5, 5]) |
| _test_spadd_shape(0, [0, 30, 20]) |
| _test_spadd_shape(0, [50, 0, 20]) |
| _test_spadd_shape(0, [50, 30, 0]) |
| |
| def _test_spadd_hybrid(): |
| _test_spadd_shape(10, [5, 6], [2, 3]) |
| _test_spadd_shape(10, [10, 10, 10], [3]) |
| _test_spadd_shape(10, [50, 30, 20], [2]) |
| _test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2]) |
| _test_spadd_shape(0, [0, 30, 20], [2, 0]) |
| _test_spadd_shape(0, [50, 0, 20], [2, 0]) |
| _test_spadd_shape(0, [50, 30, 0], [2, 0]) |
| _test_spadd_shape(10, [50, 30, 20], [2, 0]) |
| |
| _test_spadd() |
| _test_spadd_hybrid() |
| |
| @coalescedonoff |
| @dtypes(torch.float) |
| def test_sparse_add_out_bfloat16(self, device, dtype, coalesced): |
| # fp32 |
| x, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) |
| y, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) |
| res_fp32 = torch.add(x, y) |
| |
| # bfloat16 |
| x = x.bfloat16() |
| y = y.bfloat16() |
| res_bf16 = torch.add(x, y) |
| res_bf16 = res_bf16.float() # to compare with reference |
| self.assertEqual(res_fp32, res_bf16, atol=1e-2, rtol=0) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_norm(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, with_size): |
| x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) |
| y = x.coalesce() |
| self.assertEqual(x.norm(), y._values().norm()) |
| |
| test_shape(3, 10, 100) |
| test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0]) |
| test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0]) |
| |
| # Unsupported arguments should error |
| kwarg_error_pairs = [ |
| ({'keepdim': True}, |
| RuntimeError, r'norm_sparse currently does not support keepdim=True'), |
| ({'dim': 0}, |
| RuntimeError, r'norm_sparse currently only supports full reductions'), |
| ({'dtype': torch.double, 'p': 'fro'}, |
| ValueError, r'dtype argument is not supported in frobenius norm'), |
| ({'dtype': torch.double, 'p': 0}, |
| RuntimeError, r"norm_sparse currently does not support 'dtype' argument") |
| ] |
| x = self._gen_sparse(3, 10, 100, dtype, device, coalesced)[0] |
| for kwargs, err, msg in kwarg_error_pairs: |
| with self.assertRaisesRegex(err, msg): |
| x.norm(**kwargs) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "fallback triggers cuda device error") |
| def test_sparse_sum(self, device, dtype, coalesced): |
| |
| def run_tests(S, td=None): |
| D = S.coalesce().to_dense().detach().requires_grad_(True) |
| if td is None: |
| S_sum = torch.sparse.sum(S) |
| D_sum = D.sum() |
| self.assertEqual(S_sum.item(), D_sum.item()) |
| |
| def fn(S): |
| return torch.sparse.sum(S) |
| gradcheck(fn, (S,), masked=True) |
| else: |
| S_sum = torch.sparse.sum(S, td) |
| D_sum = D.sum(td) |
| self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum) |
| |
| def fn(S): |
| res = torch.sparse.sum(S, td) |
| return res.to_dense(masked_grad=True) |
| gradcheck(fn, (S,), masked=True) |
| |
| nnz = 10 |
| sparse_dims = 2 |
| with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze |
| test_dims = [] |
| for i in range(1, 5): |
| test_dims += itertools.combinations(range(len(with_size)), i) |
| |
| # https://github.com/pytorch/pytorch/issues/16501 |
| x = torch.tensor([[1., 0., 0., 1.], |
| [0., 1., 0., 0.], |
| [0., 1., 1., 0.], |
| [0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse() |
| self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2)) |
| self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense()) |
| |
| S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| |
| # dim out of range |
| self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5)) |
| |
| # dim 0 appears multiple times in the list of dims |
| self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0])) |
| |
| # sum an empty tensor |
| empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device) |
| self.assertEqual(torch.sparse.sum(empty_S, [0]).to_dense(), torch.sum(empty_S.to_dense(), [0])) |
| self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device)) |
| empty_S.requires_grad_(True) |
| empty_S_sum = torch.sparse.sum(empty_S) |
| empty_S_sum.backward() |
| self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense()) |
| |
| # test values().sum() |
| S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| run_tests(S.requires_grad_(True)) |
| |
| for test_dim in test_dims: |
| S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| run_tests(S.requires_grad_(True), test_dim) |
| |
| def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): |
| shape = shape_i + (shape_v) |
| x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) |
| x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) |
| |
| y1 = x1 + x2 |
| y2 = x1.clone() |
| y2.add_(x2) |
| expected = self.safeToDense(x1) + self.safeToDense(x2) |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y1 = x1 - x2 |
| y2 = x1.clone() |
| y2.sub_(x2) |
| expected = self.safeToDense(x1) - self.safeToDense(x2) |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y1 = x1 * x2 |
| y2 = x1.clone() |
| y2.mul_(x2) |
| expected = self.safeToDense(x1) * self.safeToDense(x2) |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y1 = x1 * 37.5 |
| y2 = x1.clone() |
| y2.mul_(37.5) |
| expected = self.safeToDense(x1) * 37.5 |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y1 = x1 / 37.5 |
| y2 = x1.clone() |
| y2.div_(37.5) |
| expected = self.safeToDense(x1) / 37.5 |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y1 = x1 // 37.5 |
| y2 = x1.clone() |
| y2.floor_divide_(37.5) |
| expected = self.safeToDense(x1) // 37.5 |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| # TODO: add back inplace support |
| y1 = x1 ** 2 |
| y2 = x1.clone() |
| y2 = y2.pow(2) |
| expected = self.safeToDense(x1) ** 2 |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| y = x1.clone() |
| y.zero_() |
| expected = torch.zeros(x1.size(), dtype=dtype, device=device) |
| self.assertEqual(self.safeToDense(y), expected) |
| |
| self.assertEqual(x1.is_coalesced(), coalesced) |
| y = x1.coalesce() |
| z = x1.coalesce() |
| self.assertEqual(x1.is_coalesced(), coalesced) |
| self.assertTrue(y.is_coalesced()) |
| y._values().add_(1) |
| if not x1.is_coalesced(): |
| # check that coalesce is out of place if the original tensor is not |
| # coalesced. |
| self.assertEqual(z._values() + 1, y._values()) |
| else: |
| # check that coalesce is in-place if the original tensor is |
| # coalesced. |
| self.assertEqual(z._values(), y._values()) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_basic_ops(self, device, dtype, coalesced): |
| |
| def _test_basic_ops(): |
| self._test_basic_ops_shape(9, 12, [5, 6], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [], [], dtype, device, coalesced) |
| |
| def _test_basic_ops_hybrid(): |
| self._test_basic_ops_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) |
| |
| _test_basic_ops() |
| _test_basic_ops_hybrid() |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_add_dense_sparse_mismatch(self, device, dtype): |
| def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size): |
| x = torch.zeros(dense_size, dtype=dtype, device=device) |
| sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=device), |
| torch.randn(dense_dims_shape, dtype=dtype, device=device), |
| torch.Size(sparse_size)) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "add: expected 'self' and 'other' to have same size"): |
| x + sparse_y |
| |
| test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4]) |
| test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0]) |
| |
| @skipIfTorchDynamo("Not a TorchDynamo suitable test") |
| @dtypes(torch.double, torch.cdouble) |
| def test_add_noncontiguous(self, device, dtype): |
| indices = self.index_tensor([[1, 2], [0, 2]], device=device) |
| values = torch.tensor([1.], dtype=dtype, device=device).expand(2, 3, 4, 5) |
| x = self.sparse_tensor(indices, values, dtype=dtype, device=device) |
| assert not x._values().is_contiguous() |
| y = x + x |
| expected = self.safeToDense(x) + self.safeToDense(x) |
| self.assertEqual(self.safeToDense(y), expected) |
| |
| def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): |
| shape = shape_i + (shape_v or []) |
| x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) |
| x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) |
| |
| y1 = x1 + x2 |
| y2 = x1.clone() |
| y2.add_(x2) |
| expected = self.safeToDense(x1) + self.safeToDense(x2) |
| self.assertEqual(self.safeToDense(y1), expected) |
| self.assertEqual(self.safeToDense(y2), expected) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_sparse_mask(self, device, dtype, coalesced): |
| def _test_sparse_mask_fixed(): |
| i = self.index_tensor([ |
| [1, 3, 0, 4], |
| [2, 1, 2, 3], |
| ], device=device) |
| v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce() |
| dense = torch.tensor([ |
| [1, 2, 3, 4], |
| [5, 6, 7, 8], |
| [9, 10, 11, 12], |
| [13, 14, 15, 16], |
| [17, 18, 19, 20], |
| ], dtype=dtype, device=device) |
| exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device) |
| res_dense_lhs = dense.sparse_mask(x) |
| sparse = dense.to_sparse() |
| res_sparse_lhs = sparse.sparse_mask(x) |
| expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device) |
| self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) |
| # check no side effects for the coalesce flag. |
| self.assertTrue(sparse.is_coalesced()) |
| self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) |
| |
| i = self.index_tensor([ |
| [1, 3, 0, 4], |
| [2, 1, 2, 3], |
| ], device=device) |
| v = torch.empty([4, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce() |
| dense = torch.empty([5, 4, 0], dtype=dtype, device=device) |
| exp_v = torch.empty([4, 0], dtype=dtype, device=device) |
| res_dense_lhs = dense.sparse_mask(x) |
| sparse = dense.to_sparse(2) |
| res_sparse_lhs = sparse.sparse_mask(x) |
| expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device) |
| self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) |
| # check no side effects for the coalesce flag. |
| self.assertTrue(sparse.is_coalesced()) |
| self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) |
| |
| _test_sparse_mask_fixed() |
| |
| self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) |
| |
| # check repetitions and matchings in the intersection |
| lhs = torch.randint(0, 5, (100,), device=device) |
| rhs = torch.randint(0, 5, (100,), device=device).to_sparse() |
| self.assertEqual(lhs.to_sparse().sparse_mask(rhs), lhs.sparse_mask(rhs)) |
| |
| # check coalesce |
| sparse_c = torch.rand(3, 3, device=device).to_sparse() |
| sparse_unc = torch.rand(3, 3, device=device).to_sparse()._coalesced_(False) |
| for lhs, rhs in [(sparse_c, sparse_unc), (sparse_unc, sparse_c)]: |
| res_all_sparse = lhs.sparse_mask(rhs) |
| res_dense_sparse = lhs.to_dense().sparse_mask(rhs) |
| self.assertEqual(res_all_sparse.coalesce(), res_dense_sparse.coalesce()) |
| self.assertEqual(rhs.is_coalesced(), res_all_sparse.is_coalesced()) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_sparse_mask_hybrid(self, device, dtype, coalesced): |
| def _test_sparse_mask_hybrid_fixed(): |
| i = self.index_tensor([ |
| [1, 3, 0, 4], |
| [2, 1, 2, 3], |
| ]) |
| v = torch.tensor([[1, 2], [2, 3], [3, 4], [4, 5]]) |
| # TODO: This is also testing that, if coalesce is a no-op, |
| # the indices don't get permuted. I don't know if we actually |
| # want to give this invariant. |
| x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce() |
| dense = torch.tensor([ |
| [[1, 3], [2, 2], [3, 3], [4, 2]], |
| [[5, 7], [6, 7], [7, 9], [8, 9]], |
| [[9, 2], [10, 4], [11, 1], [12, 3]], |
| [[13, 5], [14, 1], [15, 1], [16, 6]], |
| [[17, 7], [18, 2], [19, 7], [20, 1]], |
| ]) |
| res_dense_lhs = dense.sparse_mask(x) |
| sparse = dense.to_sparse(2) |
| res_sparse_lhs = sparse.sparse_mask(x) |
| exp_v = torch.tensor([[7, 9], [14, 1], [3, 3], [20, 1]]) |
| expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2])) |
| self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) |
| # check no side effects for the coalesce flag |
| self.assertTrue(sparse.is_coalesced()) |
| self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) |
| |
| i = self.index_tensor([ |
| [1, 3, 0, 4], |
| [2, 1, 2, 3], |
| ]) |
| v = torch.empty(4, 2, 0) |
| x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce() |
| dense = torch.empty(5, 4, 2, 0) |
| res_dense_lhs = dense.sparse_mask(x) |
| sparse = dense.to_sparse(2) |
| res_sparse_lhs = sparse.sparse_mask(x) |
| exp_v = torch.empty(4, 2, 0) |
| expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0])) |
| self.assertEqual(res_dense_lhs.coalesce(), expected.coalesce()) |
| # check no side effects for the coalesce flag |
| self.assertTrue(sparse.is_coalesced()) |
| self.assertEqual(res_sparse_lhs.coalesce(), expected.coalesce()) |
| |
| _test_sparse_mask_hybrid_fixed() |
| |
| self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) |
| self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) |
| |
| @dtypes(torch.double, torch.cdouble) |
| @skipIfCrossRef |
| def test_sparse_mask_backward(self, device, dtype): |
| from itertools import product, repeat |
| |
| shape = (5, 5) |
| sparse_dims = len(shape) |
| nnzs = (0, 5, 15, 25) |
| |
| lhs_data = torch.arange(1, 26, device=device).reshape(shape).to(dtype).to_sparse(sparse_dims) |
| rhs_data = lhs_data.clone() |
| |
| for nnz in nnzs: |
| for lhs_is_coalesced, rhs_is_coalesced in product(*repeat((True, False), 2)): |
| lhs = torch.sparse_coo_tensor( |
| lhs_data._indices()[:, :nnz], |
| lhs_data._values()[:nnz], |
| lhs_data.shape |
| ).clone()._coalesced_(lhs_is_coalesced).requires_grad_(True) |
| |
| rhs = torch.sparse_coo_tensor( |
| lhs_data._indices()[:, -nnz:], |
| lhs_data._values()[-nnz:], |
| lhs_data.shape |
| ).clone()._coalesced_(rhs_is_coalesced) |
| |
| # To test masked semantics we need to make sure that |
| # sparsity_pattern(lhs) == sparsity_pattern(lhs.grad). |
| # lhs.sparse_mask(lhs_mask) accomplishes that. |
| lhs_mask = lhs.detach().clone() |
| gradcheck(lambda x: x.sparse_mask(lhs_mask).sparse_mask(rhs).to_dense(masked_grad=True), (lhs,), masked=True) |
| gradcheck(lambda x: x.sparse_mask(rhs).to_dense(masked_grad=False), (lhs,), masked=False) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_zeros(self, device, dtype, coalesced): |
| def _test_zeros(nnzs, shape, out_shape_i, out_shape_v=None): |
| out_shape = out_shape_i + (out_shape_v or []) |
| for nnz in nnzs: |
| out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape, dtype, device, coalesced) |
| torch.zeros(*shape, out=out, dtype=dtype, device=device) |
| self.assertEqual(tuple(out.size()), tuple(shape)) |
| self.assertTrue(out._indices().numel() == out._values().numel() == 0) |
| self.assertEqual(out._nnz(), 0) |
| self.assertEqual(out.sparse_dim(), len(shape)) |
| self.assertEqual(out.dense_dim(), 0) |
| |
| def test_shape(i_shapes, v_shapes, shape, nnzs): |
| for i_dim in range(1, len(i_shapes) + 1): |
| for v_dim in range(len(v_shapes) + 1): |
| _test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim]) |
| test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12]) |
| test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0]) |
| test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12]) |
| test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12]) |
| test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0]) |
| test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12]) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_zeros_like(self, device, dtype, coalesced): |
| def _test_zeros_like(nnzs, template_shape_i, template_shape_v=None): |
| template_shape_v = template_shape_v or [] |
| template_shape = template_shape_i + template_shape_v |
| for nnz in nnzs: |
| t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape, dtype, device, coalesced) |
| res = torch.zeros_like(t) |
| self.assertEqual(tuple(res.size()), tuple(template_shape)) |
| self.assertTrue(res._indices().numel() == res._values().numel() == 0) |
| self.assertEqual(res._nnz(), 0) |
| self.assertEqual(res.sparse_dim(), len(template_shape_i)) |
| self.assertEqual(res.dense_dim(), len(template_shape_v)) |
| |
| def test_shape(i_shapes, v_shapes, nnzs): |
| for i_dim in range(1, len(i_shapes) + 1): |
| for v_dim in range(len(v_shapes) + 1): |
| _test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim]) |
| test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) |
| test_shape([0, 3, 4], [3, 4, 5, 6], [0]) |
| test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) |
| test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) |
| test_shape([0, 3, 4], [3, 4, 5, 6], [0]) |
| test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) |
| |
| sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) |
| data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) |
| mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] |
| for x, mem_format in zip(data, mem_formats): |
| |
| with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): |
| result = torch.zeros_like(x, memory_format=mem_format) |
| |
| result = torch.zeros_like(x, layout=torch.strided, memory_format=mem_format) |
| self.assertTrue(result.layout == torch.strided) |
| |
| dense_tensor = sparse_tensor.to_dense() |
| result = torch.zeros_like(dense_tensor, layout=torch.sparse_coo) |
| self.assertEqual(dense_tensor.shape, result.shape) |
| self.assertEqual(result.layout, torch.sparse_coo) |
| |
| sparse_zeros = torch.sparse_coo_tensor(dense_tensor.shape) |
| self.assertEqual(result._indices().shape, sparse_zeros._indices().shape) |
| self.assertEqual(result._values().shape, sparse_zeros._values().shape) |
| |
| def _assert_sparse_invars(self, t): |
| # SparseTensor has the following invariants: |
| # - sparse_dim + dense_dim = len(SparseTensor.shape) |
| # - SparseTensor._indices().shape = (sparse_dim, nnz) |
| # - SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) |
| self.assertEqual(t.sparse_dim() + t.dense_dim(), len(t.shape)) |
| self.assertEqual(tuple(t._indices().shape), (t.sparse_dim(), t._nnz())) |
| self.assertEqual(tuple(t._values().shape), (t._nnz(), ) + t.shape[t.sparse_dim():]) |
| |
| def _test_empty_like(self, sparse_tensor, dtype, device, coalesced): |
| |
| result = torch.empty_like(sparse_tensor) |
| self.assertTrue(result.is_sparse) |
| self._assert_sparse_invars(result) |
| self.assertEqual(result.shape, sparse_tensor.shape) |
| self.assertEqual(result.dtype, sparse_tensor.dtype) |
| self.assertEqual(result.device, sparse_tensor.device) |
| self.assertEqual(result.sparse_dim(), sparse_tensor.sparse_dim()) |
| self.assertEqual(result.dense_dim(), sparse_tensor.dense_dim()) |
| |
| sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) |
| data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) |
| mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] |
| for x, mem_format in zip(data, mem_formats): |
| |
| with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): |
| result = torch.empty_like(x, memory_format=mem_format) |
| |
| result = torch.empty_like(x, layout=torch.strided, memory_format=mem_format) |
| self.assertTrue(result.layout == torch.strided) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, r"Could not run 'aten::empty_strided' with arguments from the 'Sparse(CPU|CUDA)' backend" |
| ): |
| dense_tensor = sparse_tensor.to_dense() |
| result = torch.empty_like(dense_tensor, layout=torch.sparse_coo) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_empty_like(self, device, dtype, coalesced): |
| # tests https://github.com/pytorch/pytorch/issues/43699 |
| |
| if coalesced: |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0, 1, 2]]), |
| values=torch.tensor([3.0, -4.0, 5.0]), |
| size=[3, ], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_empty_like(input_coalesced, dtype, device, coalesced) |
| |
| # hybrid sparse input |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[1, 3], [2, 4]]), |
| values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), |
| size=[4, 5, 2], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_empty_like(input_coalesced, dtype, device, coalesced) |
| |
| if not coalesced: |
| # test uncoalesced input |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), |
| values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), |
| size=[3, ], |
| dtype=dtype, |
| device=device |
| ) |
| self._test_empty_like(input_uncoalesced, dtype, device, coalesced) |
| |
| # test on empty sparse tensor |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.zeros([2, 0]), |
| values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), |
| size=[0, 0, 5, 5, 5, 5, 5, 5, 0], |
| dtype=dtype, |
| device=device |
| ) |
| self._test_empty_like(input_uncoalesced, dtype, device, coalesced) |
| |
| def _test_narrow(self, input, narrow_args): |
| expected = input.to_dense().narrow(*narrow_args) |
| self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense()) |
| |
| def _all_narrow_combs(self, shape): |
| for dim, dim_sz in enumerate(shape): |
| for start in range(dim_sz): |
| for length in range(dim_sz - start): |
| yield [dim, start, length] |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_narrow(self, device, dtype, coalesced): |
| shape = [3, 3, 4, 2] |
| input, _, _ = self._gen_sparse(4, 19, shape, dtype, device, coalesced) |
| for narrow_args in self._all_narrow_combs(shape): |
| self._test_narrow(input, narrow_args) |
| |
| self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0 |
| self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim() |
| self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim |
| self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim |
| |
| with_dense, _, _ = self._gen_sparse(2, 7, shape, dtype, device, coalesced) |
| for narrow_args in self._all_narrow_combs(shape): |
| self._test_narrow(with_dense, narrow_args) |
| |
| self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim |
| |
| def _test_log1p_tensor(self, sparse_tensor, coalesced): |
| def is_integral(dtype): |
| return dtype in integral_types() |
| |
| dense_tensor = sparse_tensor.to_dense() |
| expected_output = dense_tensor.log1p() |
| is_integral_dtype = is_integral(sparse_tensor.dtype) |
| self.assertEqual(expected_output, sparse_tensor.log1p().to_dense()) |
| if is_integral_dtype: |
| with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): |
| sparse_tensor.coalesce().log1p_() |
| else: |
| self.assertEqual(expected_output, sparse_tensor.coalesce().log1p_().to_dense()) |
| |
| if not coalesced: |
| # test in-place op on uncoalesced input |
| with self.assertRaisesRegex(RuntimeError, "log1p_ requires coalesced input"): |
| sparse_tensor.log1p_() |
| |
| if is_integral_dtype: |
| with self.assertRaisesRegex(RuntimeError, "only Tensors of floating point dtype can require gradients"): |
| sparse_tensor.requires_grad_() |
| |
| @coalescedonoff |
| @dtypes(*all_types()) |
| def test_log1p(self, device, dtype, coalesced): |
| if coalesced: |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0], [1], [2]]).transpose(1, 0), |
| values=torch.tensor([3.0, 4.0, 5.0]), |
| size=[3, ], |
| device=device, |
| dtype=dtype |
| ).coalesce() |
| self._test_log1p_tensor(input_coalesced, coalesced) |
| |
| # hybrid sparse input |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[1, 3], [2, 4]]), |
| values=torch.tensor([[1.0, 3.0], [5.0, 7.0]]), |
| size=[4, 5, 2], |
| device=device, |
| dtype=dtype |
| ).coalesce() |
| self._test_log1p_tensor(input_coalesced, coalesced) |
| |
| if not coalesced: |
| # test uncoalesced input |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), |
| values=torch.tensor([2.0, 3.0, 4.0, 1.0, 1.0, 1.0]), |
| size=[3, ], |
| device=device, |
| dtype=dtype |
| ) |
| self._test_log1p_tensor(input_uncoalesced, coalesced) |
| |
| # test on empty sparse tensor |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.zeros([2, 0]), |
| values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), |
| size=[0, 0, 5, 5, 5, 5, 5, 5, 0], |
| device=device, |
| dtype=dtype |
| ) |
| # empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state |
| input_uncoalesced._coalesced_(False) |
| self._test_log1p_tensor(input_uncoalesced, coalesced) |
| |
| def _test_neg_negative(self, sparse_tensor): |
| dense_tensor = sparse_tensor.to_dense() |
| expected_output = dense_tensor.neg() |
| |
| ops = ( |
| torch.neg, torch.Tensor.neg, torch.Tensor.neg_, |
| torch.negative, torch.Tensor.negative, torch.Tensor.negative_, |
| operator.neg |
| ) |
| for op in ops: |
| sparse_tensor_copy = sparse_tensor.clone() |
| self.assertEqual(expected_output, op(sparse_tensor_copy).to_dense()) |
| |
| if op in (torch.neg, torch.negative): |
| sparse_tensor_out = torch.zeros_like(sparse_tensor) |
| op(sparse_tensor, out=sparse_tensor_out) |
| self.assertEqual(expected_output, sparse_tensor_out.to_dense()) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_neg_negative(self, device, dtype, coalesced): |
| |
| if coalesced: |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0, 1, 2]]), |
| values=torch.tensor([3.0, -4.0, 5.0]), |
| size=[3, ], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_neg_negative(input_coalesced) |
| |
| # hybrid sparse input |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[1, 3], [2, 4]]), |
| values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), |
| size=[4, 5, 2], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_neg_negative(input_coalesced) |
| |
| if not coalesced: |
| # test uncoalesced input |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), |
| values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), |
| size=[3, ], |
| dtype=dtype, |
| device=device |
| ) |
| self._test_neg_negative(input_uncoalesced) |
| |
| # test on empty sparse tensor |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.zeros([2, 0]), |
| values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), |
| size=[0, 0, 5, 5, 5, 5, 5, 5, 0], |
| dtype=dtype, |
| device=device |
| ) |
| self._test_neg_negative(input_uncoalesced) |
| |
| def _test_asin_arcsin(self, sparse_tensor, coalesced): |
| def is_integral(dtype): |
| return dtype in integral_types() |
| is_integral_dtype = is_integral(sparse_tensor.dtype) |
| |
| dense_tensor = sparse_tensor.to_dense() |
| expected_output = dense_tensor.asin() |
| |
| ops = ( |
| torch.asin, torch.Tensor.asin, |
| torch.arcsin, torch.Tensor.arcsin, |
| ) |
| for op in ops: |
| self.assertEqual(expected_output, op(sparse_tensor).to_dense()) |
| if op in (torch.asin, torch.arcsin): |
| sparse_tensor_out = torch.zeros_like(sparse_tensor) |
| if not is_integral_dtype: |
| op(sparse_tensor, out=sparse_tensor_out) |
| self.assertEqual(expected_output, sparse_tensor_out.to_dense()) |
| else: |
| with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): |
| op(sparse_tensor, out=sparse_tensor_out) |
| |
| for op in (torch.Tensor.asin_, torch.Tensor.arcsin_): |
| if is_integral_dtype: |
| # test coalesce on integral dtype tensor |
| with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): |
| op(sparse_tensor.clone().coalesce()).to_dense() |
| else: |
| self.assertEqual(expected_output, op(sparse_tensor.clone().coalesce()).to_dense()) |
| |
| if not coalesced: |
| # test in-place op on uncoalesced input |
| with self.assertRaisesRegex(RuntimeError, "asin_ requires coalesced input"): |
| op(sparse_tensor) |
| |
| @coalescedonoff |
| @dtypes(*all_types()) |
| def test_asin_arcsin(self, device, dtype, coalesced): |
| if coalesced: |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0, 1, 2, 3]]), |
| values=torch.tensor([0.5, -0.5, 0.7, -0.7]), |
| size=[4, ], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_asin_arcsin(input_coalesced, coalesced) |
| |
| # hybrid sparse input |
| input_coalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[1, 3], [2, 4]]), |
| values=torch.tensor([[-0.1, 0.24], [-0.44, 0.1]]), |
| size=[4, 5, 2], |
| dtype=dtype, |
| device=device |
| ).coalesce() |
| self._test_asin_arcsin(input_coalesced, coalesced) |
| |
| if not coalesced: |
| # test uncoalesced input |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), |
| values=torch.tensor([0.3, -0.3, -0.4, 0.3, -0.5, 0.15]), |
| size=[3, ], |
| dtype=dtype, |
| device=device |
| ) |
| self._test_asin_arcsin(input_uncoalesced, coalesced) |
| |
| # test on empty sparse tensor |
| input_uncoalesced = torch.sparse_coo_tensor( |
| indices=torch.zeros([2, 0]), |
| values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), |
| size=[0, 0, 5, 5, 5, 5, 5, 5, 0], |
| dtype=dtype, |
| device=device |
| ) |
| # empty tensors are coalesced at creation (nnz < 2) we must force the uncoalesced state |
| input_uncoalesced._coalesced_(False) |
| self._test_asin_arcsin(input_uncoalesced, coalesced) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_mv(self, device, dtype, coalesced): |
| def test_shape(di, dj, dk, nnz): |
| x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) |
| t = torch.randn(dk, dtype=dtype, device=device) |
| |
| res = x.matmul(t) |
| expected = self.safeToDense(x).matmul(t) |
| self.assertEqual(res, expected) |
| |
| test_shape(10, 100, 100, 20) |
| test_shape(100, 1000, 1000, 20) |
| test_shape(64, 10000, 10000, 20) |
| test_shape(0, 100, 100, 0) |
| test_shape(10, 0, 0, 0) |
| test_shape(10, 100, 100, 0) |
| test_shape(10, 100, 100, 20) |
| |
| with self.assertRaisesRegex(RuntimeError, r"mv: expected self\.size\(-1\) == vec\.size\(-1\)"): |
| test_shape(10, 100, 10, 20) |
| |
| with self.assertRaisesRegex(RuntimeError, "mv: two tensor dim should be 2 and 1"): |
| x, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) |
| y, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) |
| res = x.mv(y) |
| |
| @dtypes(*floating_and_complex_types()) |
| def test_sparse_add_coalesce(self, device, dtype): |
| i = self.index_tensor([[1, 2, 1]], device=device) |
| v = torch.tensor([3, 4, 5], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3])) |
| y = self.sparse_tensor(i, v, torch.Size([3])) |
| z = x + y |
| |
| self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) |
| |
| i = self.index_tensor([[1, 2, 1]], device=device) |
| v = torch.empty([3, 0], dtype=dtype, device=device) |
| x = self.sparse_tensor(i, v, torch.Size([3, 0])) |
| y = self.sparse_tensor(i, v, torch.Size([3, 0])) |
| z = x + y |
| |
| self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) |
| |
| @onlyCUDA |
| def test_storage_not_null(self, device): |
| x = torch.sparse_coo_tensor((2,), dtype=torch.float32, device=device) |
| self.assertNotEqual(x.get_device(), -1) |
| |
| x = torch.sparse_coo_tensor((2, 0), dtype=torch.float32, device=device) |
| self.assertNotEqual(x.get_device(), -1) |
| |
| @onlyCUDA |
| @deviceCountAtLeast(2) |
| def test_same_gpu(self, devices): |
| def check_device(x, device_id): |
| self.assertEqual(x.get_device(), device_id) |
| self.assertEqual(x._values().get_device(), device_id) |
| self.assertEqual(x._indices().get_device(), device_id) |
| |
| dev1, dev2 = devices[0], devices[1] |
| |
| i = self.index_tensor([[2]], device=dev2) |
| v = torch.tensor([5], device=dev2) |
| x = self.sparse_tensor(i, v, torch.Size([3]), device=1) |
| check_device(x, 1) |
| |
| i = self.index_tensor([[2]], device=dev2) |
| v = torch.empty(1, 0, device=dev2) |
| x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1) |
| check_device(x, 1) |
| |
| x = self.sparse_empty(3, device=1) |
| check_device(x, 1) |
| |
| x = self.sparse_empty(3, 0, device=1) |
| check_device(x, 1) |
| |
| def _test_new_device(self, size, device=torch.cuda): |
| with torch.cuda.device(device): |
| x = torch.sparse_coo_tensor(size, device='cuda', dtype=torch.float64) |
| self.assertEqual(x.get_device(), device) |
| x1 = x.new() |
| x2 = x.new(2, 3) |
| self.assertEqual(x1.get_device(), device) |
| self.assertEqual(x2.get_device(), device) |
| |
| @onlyCUDA |
| def test_new_device_single_gpu(self): |
| self._test_new_device((), 0) |
| self._test_new_device((30, 20), 0) |
| self._test_new_device((30, 20, 10), 0) |
| self._test_new_device((30, 20, 10, 0), 0) |
| |
| @onlyCUDA |
| @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected") |
| def test_new_device_multi_gpu(self): |
| self._test_new_device((), 1) |
| self._test_new_device((30, 20), 1) |
| self._test_new_device((30, 20, 10), 1) |
| self._test_new_device((30, 20, 10, 0), 1) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_new(self, device, dtype, coalesced): |
| def test_shape(sparse_dims, nnz, with_size): |
| x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) |
| if not x.is_cuda: |
| # CUDA sparse tensors currently requires the size to be |
| # specified if nDimV > 0 |
| out = x.new(indices, values).coalesce() |
| x_c = x.coalesce() |
| self.assertEqual((out.indices(), out.values()), (x_c.indices(), x_c.values())) |
| self.assertEqual(x.new(indices, values, x.size()), x) |
| |
| test_shape(3, 10, 100) |
| test_shape(3, 0, [100, 100, 0]) |
| |
| @onlyCPU # not really, but we only really want to run this once |
| @dtypes(torch.float64, torch.float32, torch.float16, torch.cfloat, torch.cdouble) |
| def test_factory(self, device, dtype): |
| for test_empty_tensor in [True, False]: |
| if test_empty_tensor: |
| default_size = torch.Size([1, 3, 0]) |
| size = torch.Size([3, 3, 0]) |
| else: |
| default_size = torch.Size([1, 3]) |
| size = torch.Size([3, 3]) |
| for include_size in [True, False]: |
| for use_tensor_idx in [True, False]: |
| for use_tensor_val in [True, False]: |
| for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]): |
| # have to include size with cuda sparse tensors |
| include_size = include_size or use_cuda |
| long_dtype = torch.int64 |
| device = torch.device('cpu') if not use_cuda else \ |
| torch.device(torch.cuda.device_count() - 1) |
| indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2]) |
| if test_empty_tensor: |
| values = torch.empty(1, 0).to(dtype) |
| else: |
| if use_tensor_val: |
| values = torch.tensor([1.], dtype=dtype) |
| else: |
| values = 1. |
| if include_size: |
| sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype, |
| device=device, requires_grad=True) |
| else: |
| sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype, |
| device=device, requires_grad=True) |
| self.assertEqual(indices, sparse_tensor._indices()) |
| self.assertEqual(values, sparse_tensor._values()) |
| self.assertEqual(size if include_size else default_size, sparse_tensor.size()) |
| self.assertEqual(dtype, sparse_tensor.dtype) |
| if use_cuda: |
| self.assertEqual(device, sparse_tensor._values().device) |
| self.assertEqual(True, sparse_tensor.requires_grad) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_factory_size_check(self, device, dtype): |
| indices = self.index_tensor([[1, 2], |
| [0, 2]], device=device) |
| values = torch.tensor([.5, .5], dtype=dtype, device=device) |
| sizes = torch.Size([2, 3]) |
| with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices.fill_(-1) |
| with self.assertRaisesRegex(RuntimeError, "found negative index"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices = self.index_tensor([[1, 2], |
| [0, 2]], device=device) |
| values = torch.empty([2, 1, 0], dtype=dtype, device=device) |
| sizes = torch.Size([2, 3, 1, 0]) |
| with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices = self.index_tensor([[1, 2], |
| [0, 2]], device=device) |
| values = torch.empty([2, 2, 2], dtype=dtype, device=device) |
| sizes = torch.Size([0, 0, 2, 2]) |
| with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices = self.index_tensor([[1, 2], |
| [0, 2]], device=device) |
| values = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=dtype, device=device) |
| sizes = torch.Size([3, 3, 2]) |
| with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices = self.index_tensor([[1, 2], |
| [0, 2]], device=device) |
| values = torch.empty([2, 1, 0], dtype=dtype, device=device) |
| sizes = torch.Size([3, 3, 2, 0]) |
| with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| def test_factory_empty_indices(self, device): |
| tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device) |
| expected_indices = torch.empty((2, 0), dtype=torch.long, device=device) |
| self.assertEqual(tensor._indices(), expected_indices) |
| |
| tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device) |
| expected_indices = torch.empty((3, 0), dtype=torch.long, device=device) |
| self.assertEqual(tensor._indices(), expected_indices) |
| |
| tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device) |
| expected_indices = torch.empty((4, 0), dtype=torch.long, device=device) |
| self.assertEqual(tensor._indices(), expected_indices) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_factory_nnz(self, device, dtype): |
| indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) |
| values = torch.tensor([[1, 1], [1, 1]], dtype=dtype, device=device) # (nnz, ...): (2, 2) |
| sizes = torch.Size([2, 2]) |
| with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) |
| values = torch.empty([2, 0], dtype=dtype, device=device) # (nnz, ...): (2, 0) |
| sizes = torch.Size([2, 0]) |
| with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): |
| torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_factory_nnz_zero(self, device, dtype): |
| def test_shape(i_shape, v_shape, size, expected_size): |
| if size: |
| t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size), |
| dtype=dtype, device=device) |
| else: |
| t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), dtype=dtype, device=device) |
| expected_indices = torch.empty(i_shape, device=device, dtype=torch.int64) |
| expected_values = torch.empty(v_shape, device=device, dtype=dtype) |
| expected_size = torch.Size(expected_size) |
| self.assertEqual(t._indices(), expected_indices) |
| self.assertEqual(t._values(), expected_values) |
| self.assertEqual(t.size(), expected_size) |
| |
| test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0]) |
| test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0]) |
| test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0]) |
| test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0]) |
| test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0]) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_factory_dense_dim(self, device, dtype): |
| indices = self.index_tensor([[0]], device=device) |
| values = torch.tensor([[[1, 1, 1], [1, 1, 1]]], dtype=dtype, device=device) |
| sizes = torch.Size([1, 3, 4]) |
| with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): |
| torch.sparse_coo_tensor(indices, values, sizes) |
| |
| indices = self.index_tensor([[0]], device=device) |
| values = torch.empty([1, 2, 3, 0], dtype=dtype, device=device) |
| sizes = torch.Size([1, 3, 4, 0]) |
| with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): |
| torch.sparse_coo_tensor(indices, values, sizes) |
| |
| @onlyCPU |
| @dtypes(torch.float16, torch.float32, torch.float64, torch.cfloat, torch.cdouble, torch.int64) |
| def test_factory_type_inference(self, device, dtype): |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=dtype)) |
| self.assertEqual(dtype, t.dtype) |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1])) |
| self.assertEqual(torch.int64, t.dtype) |
| |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0)) |
| self.assertEqual(torch.float16, t.dtype) |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0)) |
| self.assertEqual(torch.float32, t.dtype) |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0)) |
| self.assertEqual(torch.float64, t.dtype) |
| t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0)) |
| self.assertEqual(torch.int64, t.dtype) |
| |
| @onlyCUDA |
| def test_factory_device_type_inference(self, device): |
| # both indices/values are CUDA |
| |
| cpu_cuda = ('cpu', 'cuda') |
| cpu_cuda_none = cpu_cuda + (None,) |
| for indices_device, values_device, device in itertools.product(cpu_cuda, |
| cpu_cuda, |
| cpu_cuda_none): |
| indices = torch.tensor(([0], [2]), device=indices_device) |
| values = torch.tensor([1.], device=values_device) |
| empty_values = torch.empty(1, 0).to(values_device) |
| shape = (1, 3) |
| empty_shape = (1, 3, 0) |
| if device is None and indices_device != values_device: |
| with self.assertRaises(RuntimeError): |
| torch.sparse_coo_tensor(indices, values, shape, device=device) |
| with self.assertRaises(RuntimeError): |
| torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) |
| else: |
| t = torch.sparse_coo_tensor(indices, values, shape, device=device) |
| t_empty = torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) |
| should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda')) |
| self.assertEqual(should_be_cuda, t.is_cuda) |
| self.assertEqual(t.is_cuda, t_empty.is_cuda) |
| |
| @onlyCPU |
| def test_factory_copy(self, device): |
| def test_tensor(indices, values, indices_equal, values_equal): |
| sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64, device=device) |
| if indices_equal: |
| self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) |
| else: |
| self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) |
| if values_equal: |
| self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) |
| else: |
| self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) |
| |
| # both correct |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = torch.tensor([1.], dtype=torch.float64) |
| test_tensor(indices, values, True, True) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = torch.DoubleTensor(1, 0) |
| test_tensor(indices, values, True, True) |
| |
| # only indices correct |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = torch.tensor([1.], dtype=torch.float32) |
| test_tensor(indices, values, True, False) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = torch.tensor([1.], dtype=torch.float16) |
| test_tensor(indices, values, True, False) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = torch.FloatTensor(1, 0) |
| test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0 |
| |
| # only values correct |
| indices = torch.tensor(([0], [2]), dtype=torch.int32) |
| values = torch.tensor([1.], dtype=torch.float64) |
| test_tensor(indices, values, False, True) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int32) |
| values = torch.DoubleTensor(1, 0) |
| test_tensor(indices, values, False, True) |
| |
| # neither correct |
| indices = torch.tensor(([0], [2]), dtype=torch.int32) |
| values = torch.tensor([1.], dtype=torch.float32) |
| test_tensor(indices, values, False, False) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int32) |
| values = torch.FloatTensor(1, 0) |
| test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0 |
| |
| # complex support |
| indices = torch.tensor(([0], [2]), dtype=torch.int64) |
| values = make_tensor([1, ], dtype=torch.cdouble, device=device) |
| test_tensor(indices, values, True, False) |
| |
| indices = torch.tensor(([0], [2]), dtype=torch.int32) |
| values = make_tensor([1, 1], dtype=torch.cdouble, device=device) |
| test_tensor(indices, values, False, False) |
| |
| @onlyCPU # just run once, we test both cpu and cuda |
| def test_legacy_new_device(self, device): |
| i = torch.tensor([[0, 1, 1], [2, 0, 2]]) |
| v = torch.tensor([3., 4., 5.]) |
| size = torch.Size([2, 3]) |
| |
| x = torch.sparse_coo_tensor(i, v, size, device='cpu') |
| self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) |
| self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda')) |
| self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda')) |
| self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) |
| |
| if torch.cuda.is_available(): |
| x = torch.sparse_coo_tensor(i, v, size, device='cuda') |
| self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) |
| self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu')) |
| self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu')) |
| self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) |
| |
| def test_legacy_new(self, device): |
| i = torch.tensor([[0, 1, 1], [2, 0, 2]]) |
| v = torch.tensor([3., 4., 5.]) |
| size = torch.Size([2, 3]) |
| s = torch.sparse_coo_tensor(i, v, size) |
| |
| self.assertEqual(torch.sparse_coo, s.new(device='cpu').layout) |
| self.assertRaises(TypeError, lambda: s.new(v.untyped_storage())) |
| self.assertRaises(TypeError, lambda: s.new(v)) |
| self.assertEqual(torch.sparse_coo, s.new(torch.Size([2, 3])).layout) |
| self.assertRaises(TypeError, lambda: s.new([6])) |
| |
| @onlyCPU # not really, but we only really want to run this once |
| def test_dtypes(self, device): |
| all_sparse_dtypes = all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16) |
| do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) |
| if torch.cuda.is_available(): |
| do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0')) |
| |
| def _test_empty_full(self, device, dtype, requires_grad): |
| shape = (2, 3) |
| layout = torch.sparse_coo |
| |
| def check_value(tensor, value=None, dtype=dtype, requires_grad=requires_grad): |
| self.assertEqual(shape, tensor.shape) |
| self.assertIs(dtype, tensor.dtype) |
| self.assertIs(layout, tensor.layout) |
| self.assertEqual(tensor.requires_grad, requires_grad) |
| if tensor.is_cuda and device is not None: |
| self.assertEqual(device, tensor.device) |
| if value is not None: |
| fill = tensor.empty(shape, dtype=dtype).fill_(value) |
| self.assertEqual(tensor, fill) |
| |
| v = torch.sparse_coo_tensor(shape, dtype=dtype, device=device, requires_grad=requires_grad) |
| check_value(v) |
| |
| out = v.new() |
| check_value(torch.zeros(shape, out=out, device=device, requires_grad=requires_grad)) |
| |
| int64_dtype = torch.int64 |
| check_value(v.new_empty(shape), requires_grad=False) |
| check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), |
| dtype=int64_dtype, requires_grad=False) |
| check_value(torch.empty_like(v), requires_grad=False) |
| check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), |
| dtype=int64_dtype, requires_grad=False) |
| |
| @onlyCPU # not really, but we only really want to run this once |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| @parametrize('requires_grad', (True, False)) |
| def test_empty_full(self, device, dtype, requires_grad): |
| if requires_grad and not (dtype.is_floating_point or dtype.is_complex): |
| self.skipTest(f'requires_grad==True requires float or complex dtype, got {dtype}') |
| |
| self._test_empty_full(device, dtype, requires_grad) |
| if torch.cuda.is_available(): |
| self._test_empty_full(None, dtype, requires_grad) |
| self._test_empty_full(torch.device('cuda:0'), dtype, requires_grad) |
| |
| def test_is_sparse(self, device): |
| x = torch.randn(3, 3) |
| self.assertFalse(x.is_sparse) |
| |
| x = torch.randn(3, 3, 0) |
| self.assertFalse(x.is_sparse) |
| |
| x = self.sparse_empty(1, 0, device=device) |
| self.assertTrue(x.is_sparse) |
| |
| def test_resize_as(self, device): |
| def do_test(t): |
| y = t.new().resize_as_(t).zero_() |
| self.assertEqual(y.shape, t.shape) |
| # Check that y can be added to t. Currently, this requires that |
| # sparse_dim and dense_dim match. |
| self.assertEqual(t, t + y) |
| |
| do_test(self.sparse_empty([3, 0], device=device)) |
| do_test(self.sparse_empty([3, 3], device=device)) |
| |
| def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size, dtype, device): |
| x_v_numel = torch.zeros(x_v).numel() |
| x = torch.sparse_coo_tensor(torch.zeros(x_i), |
| torch.arange(x_v_numel).resize_(x_v).to(torch.float), |
| torch.Size(x_size), dtype=dtype, device=device) |
| x_dense = x.to_dense() |
| y = torch.sparse_coo_tensor(torch.zeros(y_i), |
| torch.ones(y_v).to(torch.float), |
| torch.Size(y_size), dtype=dtype, device=device) |
| y_dense = y.to_dense() |
| x.resize_as_(y) |
| x_dense.resize_as_(y_dense) |
| self.assertEqual(x.shape, y.shape) |
| self.assertEqual(x.sparse_dim(), y.sparse_dim()) |
| self.assertEqual(x.dense_dim(), y.dense_dim()) |
| self.assertEqual(x.shape, x_dense.shape) |
| self.assertEqual(y.shape, y_dense.shape) |
| # Here we make sure that the original data are preserved after resizing |
| self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v), |
| x_dense.view(-1)[0:x_v_numel].view(x_v)) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_resize(self, device, dtype): |
| # 1. Expand the size of some dense dimensions [Supported] |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 4], [2, 2, 4], |
| dtype=dtype, device=device) |
| |
| self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0], |
| [1, 1], [1, 2, 4], [2, 2, 4], |
| dtype=dtype, device=device) |
| |
| # 2. Expand the size of some sparse dimensions [Supported] |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 3], [4, 2, 3], |
| dtype=dtype, device=device) |
| |
| # 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported] |
| self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], |
| [2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5], |
| dtype=dtype, device=device) |
| |
| self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], |
| [2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0], |
| dtype=dtype, device=device) |
| |
| # 4. Add dims to dense dimensions [Not Supported] |
| with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 3, 4], [2, 2, 3, 4], |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 3, 0], [2, 2, 3, 0], |
| dtype=dtype, device=device) |
| |
| # 5. Remove dims from dense dimensions [Not Supported] |
| with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2], [2, 2], |
| dtype=dtype, device=device) |
| |
| # 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported] |
| with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [2, 1], [1, 2, 3], [1, 2, 2, 3], |
| dtype=dtype, device=device) |
| |
| # 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported] |
| with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 3], [1, 2, 3], |
| dtype=dtype, device=device) |
| |
| # 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported] |
| with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 2], [2, 2, 2], |
| dtype=dtype, device=device) |
| |
| with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): |
| self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], |
| [1, 1], [1, 2, 0], [2, 2, 0], |
| dtype=dtype, device=device) |
| |
| def test_is_nonzero(self, device): |
| self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,), device=device).is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,), device=device).is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1), device=device).is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,), device=device).is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,), device=device).is_nonzero()) |
| |
| # scalar sparse tensor |
| self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, [], device=device).is_nonzero()) |
| with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"): |
| torch.sparse_coo_tensor(([0, 1],), torch.empty(2, 0), (4, 0), device=device).is_nonzero() |
| self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cfloat, device=device) |
| .is_nonzero()) |
| self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cdouble, device=device) |
| .is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cfloat, device=device) |
| .is_nonzero()) |
| self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cdouble, device=device) |
| .is_nonzero()) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_change_tensor_metadata(self, device, dtype): |
| i = self.index_tensor([[0], [1]], device=device) |
| v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) |
| t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]), dtype=dtype, device=device) |
| i.resize_(2, 3) |
| v.resize_(4, 5) |
| self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) |
| self.assertEqual(list(t.coalesce().values().size()), [1, 3]) |
| |
| i = self.index_tensor([[0], [1]], device=device) |
| v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) |
| t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) |
| i.resize_as_(self.index_tensor([0, 1], device=device)) |
| v.resize_as_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) |
| self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) |
| self.assertEqual(list(t.coalesce().values().size()), [1, 3]) |
| |
| i = self.index_tensor([[0], [1]], device=device) |
| v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) |
| t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) |
| i.as_strided_((2, 1), (1, 1)) |
| v.as_strided_((1, 3), (1, 1)) |
| self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) |
| self.assertEqual(list(t.coalesce().values().size()), [1, 3]) |
| |
| i = self.index_tensor([[0], [1]], device=device) |
| v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) |
| t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) |
| i.set_(self.index_tensor([0, 1], device=device)) |
| v.set_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) |
| self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) |
| self.assertEqual(list(t.coalesce().values().size()), [1, 3]) |
| |
| i = self.index_tensor([[0], [1]], device=device) |
| v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) |
| t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) |
| i.transpose_(0, 1) |
| v.transpose_(0, 1) |
| self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) |
| self.assertEqual(list(t.coalesce().values().size()), [1, 3]) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_pickle(self, device, dtype, coalesced): |
| import pickle |
| |
| shape_sparse_dim_nnz = [ |
| ((), 0, 2), |
| ((0,), 0, 10), |
| ((2,), 0, 3), |
| ((100, 3), 1, 3), |
| ((100, 20, 3), 2, 0), |
| ((10, 0, 3), 0, 3), |
| ((10, 0, 3), 0, 0), |
| ] |
| |
| for shape, sparse_dim, nnz in shape_sparse_dim_nnz: |
| indices_shape = torch.Size((sparse_dim, nnz)) |
| values_shape = torch.Size((nnz,) + shape[sparse_dim:]) |
| indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, |
| device=device).view(indices_shape) |
| for d in range(sparse_dim): |
| indices[d].clamp_(max=(shape[d] - 1)) # make it valid index |
| if not coalesced and indices.numel() > 0: |
| indices[:, -1] = indices[:, 0] # make it uncoalesced |
| values_numel = values_shape.numel() |
| values = torch.arange(values_numel, dtype=dtype, |
| device=device).view(values_shape).div_(values_numel / 2.) |
| sp_tensor = self.sparse_tensor(indices, values, shape) |
| serialized = pickle.dumps(sp_tensor) |
| sp_tensor_loaded = pickle.loads(serialized) |
| self.assertEqual(sp_tensor, sp_tensor_loaded) |
| |
| def test_any(self, device): |
| t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]), device=device) |
| t_any = torch.tensor(False) |
| self.assertEqual(torch.any(t), t_any) |
| t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([True, False]), device=device) |
| t_any = torch.tensor(True) |
| self.assertEqual(torch.any(t), t_any) |
| |
| def test_isnan(self, device): |
| t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, 4]), device=device) |
| t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, False]), device=device) |
| self.assertEqual(torch.isnan(t).int(), t_nan.int()) |
| t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([1, float("nan")]), device=device) |
| t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [0, 2])), torch.tensor([False, True]), device=device) |
| self.assertEqual(torch.isnan(t).int(), t_nan.int()) |
| |
| @coalescedonoff |
| @dtypes(torch.float32, torch.float64) |
| def test_div_rounding_mode(self, device, dtype, coalesced): |
| sparse, _, _ = self._gen_sparse(2, 10, (10, 10), dtype, |
| device, coalesced) |
| dense = self.safeToDense(sparse) |
| |
| for mode in (None, 'floor', 'trunc'): |
| actual = sparse.div(-2, rounding_mode=mode) |
| expect = dense.div(-2, rounding_mode=mode) |
| self.assertEqual(self.safeToDense(actual), expect) |
| |
| # Test inplace |
| actual = sparse.clone().div_(-2, rounding_mode=mode) |
| self.assertEqual(self.safeToDense(actual), expect) |
| |
| # Test out argument |
| actual.zero_() |
| torch.div(sparse, -2, rounding_mode=mode, out=actual) |
| self.assertEqual(self.safeToDense(actual), expect) |
| |
| def test_div_by_sparse_error(self, device): |
| self.assertRaisesRegex(RuntimeError, 'Sparse division requires', |
| lambda: torch.tensor(1., device=device).to_sparse() |
| / torch.tensor(1., device=device).to_sparse()) |
| |
| def test_floor_divide_by_sparse_error(self, device): |
| self.assertRaisesRegex(RuntimeError, 'Sparse floor division requires', |
| lambda: torch.tensor(1., device=device).to_sparse() |
| // torch.tensor(1., device=device).to_sparse()) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| @onlyCPU |
| def test_sparse_to_numpy(self, device): |
| t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4])) |
| self.assertRaises(TypeError, lambda: t.numpy()) |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_softmax(self, device, dtype, coalesced): |
| import torch.nn.functional as F |
| |
| def to_dense(sparse, fill_value=None): |
| """ |
| Return dense tensor from a sparse tensor using given fill value. |
| """ |
| if fill_value is None or fill_value == 0: |
| return sparse.to_dense() |
| sparse = sparse.coalesce() |
| dense = torch.full(sparse.shape, fill_value, dtype=sparse.dtype, device=sparse.device) |
| for idx, value in zip(sparse._indices().t(), sparse._values()): |
| dense[tuple(idx)] = value |
| return dense |
| |
| def softmax_to_dense(sparse, dim): |
| """Dense softmax of a sparse tensor. Useful only for testing softmax |
| correctness. |
| |
| When computing softmax of a sparse tensor, the value of |
| unspecified items is negative infinity rather than zero so |
| that |
| |
| softmax(sparse.to_dense(fill_value=-inf), dim) == softmax(sparse, dim).to_dense() |
| |
| holds for non-empty lines. One empty lines, the softmax |
| values are defined as 0 in order to preserve the sparsity |
| of result. |
| |
| Note that in PyTorch, ``to_dense`` method does not |
| implement the ``fill_value`` keyword argument. |
| """ |
| dtype = sparse.dtype |
| device = sparse.device |
| dense = to_dense(sparse, fill_value=-float('inf')) |
| r = F.softmax(dense, dim) |
| # softmax on empty lines results nan, replace with zeros to match the definition |
| r[r != r] = 0 |
| return r |
| |
| def sparse_softmax(sparse, dim): |
| """Pure Python softmax of a sparse tensor. Assuming -inf for |
| unspecified sparse tensor data. This is a prototype of |
| sparse softmax algorithm in Python. |
| """ |
| dtype = sparse.dtype |
| device = sparse.device |
| |
| # softmax is non-linear operation, so sparse tensors must |
| # be coalesced. |
| sparse = sparse.coalesce() |
| inf = float('inf') |
| indices = sparse._indices() |
| values = sparse._values() |
| |
| if dim < sparse.sparse_dim(): |
| nnz = sparse._nnz() |
| |
| # compute pool indices |
| size = sparse.size() |
| strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device) |
| for i in reversed(range(sparse.sparse_dim() - 1)): |
| strides[i, 0] = strides[i + 1, 0] * size[i + 1] |
| strides[dim, 0] = 0 |
| |
| pool = (indices * strides).sum(dim=0) |
| i2p = {} |
| for i in range(nnz): |
| c = int(pool[i]) |
| if c not in i2p: |
| i2p[c] = len(i2p) |
| pool[i] = i2p[c] |
| |
| # compute max |
| dense_size = tuple(size[sparse.sparse_dim():]) |
| mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device) |
| mx[:] = -inf |
| for n in range(nnz): |
| p = pool[n] |
| mx[p] = torch.max(mx[p], values[n]) |
| |
| # apply exp to (v - mx) and sum the results |
| exp_values = torch.empty_like(values) |
| exp_sums = torch.zeros_like(mx) |
| for n in range(nnz): |
| p = pool[n] |
| v = exp_values[n] = (values[n] - mx[p]).exp() |
| exp_sums[p] = exp_sums[p] + v |
| |
| # normalize with the sum of exponents |
| for n in range(nnz): |
| p = pool[n] |
| exp_values[n] = exp_values[n] / exp_sums[p] |
| |
| return torch.sparse_coo_tensor(indices, |
| exp_values, |
| sparse.size(), |
| dtype=dtype, device=device) |
| |
| elif dim < sparse.sparse_dim() + sparse.dense_dim(): |
| return torch.sparse_coo_tensor(indices, |
| F.softmax(values, dim - sparse.sparse_dim() + 1), |
| sparse.size(), |
| dtype=dtype, device=device) |
| else: |
| raise ValueError( |
| f'`dim(={dim})` must be smaller than `sparse_dim(={sparse.sparse_dim()}) + dense_dim(={sparse.dense_dim()})`') |
| |
| def softmax_jacobian_analytic(x, dim): |
| """Return Jacobian of softmax using analytic formula |
| |
| D_jS_i = S_i * (1[i==j] - S_j). |
| |
| where S = softmax(x, dim), x is dense tensor, i,j in |
| range(x.shape[dim]). |
| """ |
| y = F.softmax(x, dim) |
| y[y != y] = 0 # replace nan-s with zeros |
| J = torch.zeros((x.shape[dim],) + tuple(x.shape), dtype=x.dtype, device=x.device) |
| si = [slice(None)] * len(y.shape) |
| sj = [slice(None)] * len(y.shape) |
| s = [slice(None)] * len(J.shape) |
| for i in range(y.shape[dim]): |
| si[dim] = i |
| s[dim + 1] = i |
| yi = y[tuple(si)] |
| for j in range(y.shape[dim]): |
| sj[dim] = j |
| s[0] = j |
| if i == j: |
| J[tuple(s)] = yi * (1 - yi) |
| else: |
| yj = y[tuple(sj)] |
| J[tuple(s)] = - yi * yj |
| sj[dim] = slice(None) |
| si[dim] = slice(None) |
| s[dim + 1] = slice(None) |
| return J |
| |
| def softmax_jacobian_autograd(x, dim, log=False): |
| """Return Jacobian of softmax using PyTorch autograd feature. |
| |
| x can be dense or sparse tensor. |
| """ |
| import itertools |
| |
| if x.is_sparse: |
| x = x.coalesce() |
| |
| dtype = x.dtype |
| device = x.device |
| shape = tuple(x.shape) |
| J = torch.zeros((shape[dim],) + shape, dtype=dtype, device=device) |
| for i in range(shape[dim]): |
| if x.is_sparse: |
| sparse_dim = x.sparse_dim() |
| dense_dim = x.dense_dim() |
| if dim < sparse_dim: |
| ranges = [] |
| for j, sz in enumerate(shape[:sparse_dim]): |
| if dim == j: |
| ranges.append([i]) |
| else: |
| ranges.append(list(range(sz))) |
| indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() |
| values = torch.ones((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) |
| else: |
| ranges = [] |
| for j, sz in enumerate(shape[:sparse_dim]): |
| ranges.append(list(range(sz))) |
| indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() |
| values = torch.zeros((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) |
| sv = [slice(None)] * (dense_dim + 1) |
| sv[dim - sparse_dim + 1] = i |
| values[tuple(sv)] = 1 |
| v = torch.sparse_coo_tensor(indices, values, shape, dtype=dtype, device=device) |
| else: |
| v = torch.zeros_like(x) |
| sv = [slice(None)] * len(v.shape) |
| sv[dim] = i |
| v[tuple(sv)] = 1 |
| x_ = x.clone() |
| x_.requires_grad_(True) |
| |
| if log: |
| if x_.is_sparse: |
| y = torch.sparse.log_softmax(x_, dim) |
| else: |
| y = F.log_softmax(x_, dim) |
| else: |
| if x_.is_sparse: |
| y = torch.sparse.softmax(x_, dim) |
| else: |
| y = F.softmax(x_, dim) |
| # replace nan-s with zeros |
| y.data[y != y] = 0 |
| y.backward(v) |
| g = x_.grad |
| if not g.is_sparse: |
| # replace nan-s with zeros |
| g.data[g != g] = 0 |
| J[i] = g.to_dense() if g.is_sparse else g |
| return J |
| |
| @skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1166") |
| def test_op(sparse_dims, nnz, with_size, coalesced): |
| if isinstance(with_size, Number): |
| with_size = [with_size] * sparse_dims |
| |
| x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) |
| |
| def sparse_log(x): |
| return torch.sparse_coo_tensor(x._indices(), x._values().log(), |
| x.size(), dtype=x.dtype, device=x.device) |
| |
| # Check dim out of bounds |
| with self.assertRaisesRegex(IndexError, r"Dimension out of range"): |
| torch.sparse.softmax(x, x.dim()) |
| with self.assertRaisesRegex(IndexError, r"Dimension out of range"): |
| torch.sparse.softmax(x, -x.dim() - 1) |
| |
| for dim in range(x.dim()): |
| # Check sparse softmax definition |
| |
| # check Python sparse softmax |
| y = sparse_softmax(x, dim) |
| r1 = softmax_to_dense(x, dim) |
| r2 = y.to_dense() |
| self.assertEqual(r1, r2) |
| |
| # check C++ sparse softmax |
| for d in (dim, dim - x.dim()): |
| y1 = torch.sparse.softmax(x, d) |
| self.assertEqual(y, y1) |
| |
| # check C++ sparse log_softmax |
| ly1 = torch.sparse.log_softmax(x, d) |
| self.assertEqual(ly1, sparse_log(y1)) |
| |
| # Check autograd support on sparse softmax |
| |
| # check softmax Jacobian definition for dense input |
| x1 = to_dense(x, fill_value=float('-inf')) |
| J = softmax_jacobian_analytic(x1, dim) |
| assert J.shape[0] == x.shape[dim] |
| assert J.shape[dim + 1] == x.shape[dim] |
| |
| # check softmax Jacobian from autograd, dense input |
| J2 = softmax_jacobian_autograd(x1, dim) |
| self.assertEqual(J, J2) |
| |
| # check softmax Jacobian from autograd, sparse input |
| J3 = softmax_jacobian_autograd(x, dim) |
| self.assertEqual(J, J3) |
| |
| ''' |
| y = softmax(x, dim) |
| z = log(y) = log_softmax(x, dim) |
| Dy/Dx = J |
| Dz/Dx = Dz/Dy Dy/Dx = 1/y * J |
| => J = J_log * y |
| ''' |
| # log_softmax Jacobian from autograd, dense input |
| J2_log = softmax_jacobian_autograd(x1, dim, log=True) |
| |
| # log_softmax Jacobian from autograd, sparse input |
| J3_log = softmax_jacobian_autograd(x, dim, log=True) |
| |
| J = J.transpose(0, dim + 1) |
| J2_log = J2_log.transpose(0, dim + 1) |
| J3_log = J3_log.transpose(0, dim + 1) |
| self.assertEqual(J, J2_log * r1) |
| self.assertEqual(J, J3_log * r1) |
| |
| if dim == 0: |
| # check dtype argument |
| other_dtype = torch.float32 |
| y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) |
| self.assertEqual(y2.dtype, other_dtype) |
| self.assertEqual(y2, y1.type(other_dtype)) |
| |
| ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) |
| self.assertEqual(ly2.dtype, other_dtype) |
| self.assertEqual(ly2, ly1.type(other_dtype)) |
| |
| test_op(1, 10, [3], coalesced) |
| test_op(1, 10, [2, 3], coalesced) |
| test_op(1, 10, [3, 2], coalesced) |
| test_op(2, 10, [2, 3, 4], coalesced) |
| test_op(2, 10, [3, 4], coalesced) |
| test_op(2, 5, [5, 4], coalesced) |
| test_op(2, 10, [3, 4, 2], coalesced) |
| test_op(3, 10, [3, 4, 2], coalesced) |
| test_op(3, 100, [3, 4, 2], coalesced) |
| test_op(3, 100, [3, 4, 2, 3], coalesced) |
| test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced) |
| test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced) |
| |
| |
| def _check_zero_nnz_softmax_op(self, func, ndim, device, dtype): |
| # create a sparse tensor with shape (0,..., 3) it has no materialize values |
| t = torch.sparse_coo_tensor([[] for _ in range(ndim)], [], (0,) * (ndim - 1) + (3,), device=device, dtype=dtype) |
| out = func(t, 0) |
| self.assertEqual(out, torch.zeros_like(t)) |
| |
| # gradient |
| t = t.requires_grad_() |
| gradcheck(lambda x: func(x, 0).to_dense(), (t,), masked=True) |
| |
| |
| @dtypes(torch.double, torch.float) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| def test_softmax_zero_nnz(self, device, dtype): |
| self._check_zero_nnz_softmax_op(torch.sparse.softmax, 1, device, dtype) |
| self._check_zero_nnz_softmax_op(torch.sparse.softmax, 10, device, dtype) |
| |
| @dtypes(torch.double, torch.float) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "generator unsupport triggers assertion error") |
| def test_log_softmax_zero_nnz(self, device, dtype): |
| self._check_zero_nnz_softmax_op(torch.sparse.log_softmax, 1, device, dtype) |
| self._check_zero_nnz_softmax_op(torch.sparse.log_softmax, 10, device, dtype) |
| |
| # TODO: Check after why ROCm's cusparseXcsrgemm2Nnz function doesn't return the same nnz value as CUDA |
| @skipIfRocm |
| @coalescedonoff |
| @dtypes(*floating_and_complex_types()) |
| @dtypesIfCUDA(*floating_types_and(*[torch.half] if SM53OrLater else [], |
| *[torch.bfloat16] if SM80OrLater else [], |
| torch.complex64, |
| *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else [])) |
| @unittest.skipIf(TEST_WITH_CROSSREF, "not working with fake tensor") |
| @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2, torch.complex64: 1e-2, torch.float32: 1e-2}) |
| def test_sparse_matmul(self, device, dtype, coalesced): |
| """ |
| This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. |
| """ |
| |
| def ref_sparse_mm(a, b): |
| return a.to_dense() @ b.to_dense() |
| |
| def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): |
| def test_grad_dense(a_s, b_s, g_s): |
| a = a_s.to_dense().detach() |
| b = b_s.to_dense().detach() |
| g = g_s.to_dense().detach() |
| |
| a.requires_grad_(True) |
| b.requires_grad_(True) |
| c = a @ b |
| c.backward(g) |
| return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) |
| |
| a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) |
| b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) |
| a.requires_grad_(True) |
| b.requires_grad_(True) |
| |
| c = torch.sparse.mm(a, b) |
| c2 = c.to_dense().detach() |
| c2 = torch.rand_like(c2) |
| g = c2.sparse_mask(c.coalesce()) |
| |
| c.backward(g) |
| |
| a_grad, b_grad = test_grad_dense(a, b, g) |
| |
| # We convert grad to dense since dense and sparse mm |
| # implementations handle materialized zeroes differently. |
| self.assertEqual(a.grad.to_dense(), a_grad.to_dense()) |
| self.assertEqual(b.grad.to_dense(), b_grad.to_dense()) |
| |
| def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): |
| a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) |
| b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) |
| |
| # dense implementation |
| r1 = ref_sparse_mm(a, b) |
| |
| # cpp implementation |
| r2 = torch.sparse.mm(a, b) |
| self.assertEqual(r1, r2.to_dense()) |
| |
| # Check result is truly coalesced |
| self.assertTrue(r2.is_coalesced() and is_coalesced_indices(r2)) |
| |
| if dtype in [torch.double, torch.cdouble]: |
| a.requires_grad_(True) |
| b.requires_grad_(True) |
| |
| # check autograd support on sparse matmul |
| def fn(D1, D2): |
| return torch.sparse.mm(D1, D2).to_dense() |
| |
| if a.is_cuda: |
| # For cuda, `nondet_tol` is set with `1e-5` |
| # This is because cuSparse sometimes returns approximate zero values like `~e-323` |
| # TODO: Check this cuSparse issue. |
| # This happens when you do chain multiplication `torch.sparse.mm` operations |
| gradcheck(fn, (a, b), nondet_tol=1e-5, masked=True) |
| else: |
| gradcheck(fn, (a, b), masked=True) |
| grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b) |
| |
| def test_error_cases(): |
| def fn(sparse_dims, nnz, shape_a, shape_b): |
| a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) |
| b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) |
| r2 = torch.sparse.mm(a, b) |
| |
| # This is not a matrix |
| self.assertRaises(RuntimeError, lambda: fn(3, 4, [2, 2, 2], [2, 2, 2])) |
| |
| # Shapes does not |
| self.assertRaisesRegex(RuntimeError, |
| r"mat1 and mat2 shapes cannot be multiplied \(2x3 and 4x2\)", |
| lambda: fn(2, 10, [2, 3], [4, 2])) |
| |
| def different_dtypes(): |
| a, i_a, v_a = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) |
| b, i_b, v_b = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) |
| r2 = torch.sparse.mm(a.to(torch.float64), a.to(torch.float32)) |
| |
| self.assertRaisesRegex(RuntimeError, 'mat1 dtype Double does not match mat2 dtype Float', different_dtypes) |
| |
| def test_backward_noncontiguous(): |
| # Sparse.mm backward used to wrong with non-contiguous grads, |
| # see https://github.com/pytorch/pytorch/issues/102493. |
| n_reps = 7 |
| for _ in range(n_reps): |
| A = torch.eye(5).to_sparse().requires_grad_(True) |
| B = torch.eye(5).to_sparse() |
| out = torch.sparse.mm(A, B) |
| out.coalesce().values().sum().backward() |
| self.assertEqual(A.grad, A) |
| |
| for n in range(2, 5): |
| for m in range(2, 8): |
| for p in range(2, 8): |
| test_sparse_matmul(2, 10, [n, m], [m, p]) |
| |
| test_sparse_matmul(2, 0, [0, 0], [0, 0]) |
| test_sparse_matmul(2, 0, [0, 10], [10, 0]) |
| test_error_cases() |
| test_backward_noncontiguous() |
| |
| @coalescedonoff |
| @dtypes(torch.double) |
| def test_assign(self, device, dtype, coalesced): |
| def assign_to(): |
| a, i_a, v_a = self._gen_sparse(2, 5, [2, 3], dtype, device, coalesced) |
| a[0] = 100 |
| |
| self.assertRaises(TypeError, assign_to) |
| |
| @dtypes(torch.double, torch.cdouble) |
| def test_full_broadcast_to(self, device, dtype): |
| def can_broadcast(s0, s1): |
| s0 = tuple(reversed(s0)) |
| s1 = tuple(reversed(s1)) |
| for i in range(len(s0)): |
| if s0[i] != 1 and s0[i] != s1[i]: |
| return False |
| return True |
| sizes = ( |
| (), (1,), (2,), (1, 1), (3, 1), (3, 2), (4, 1, 1), (4, 3, 2) |
| ) |
| for s0, s1 in itertools.combinations(sizes, r=2): |
| t = make_tensor(s0, dtype=dtype, device=device, low=-9, high=9) |
| for sparse_dims in range(1, len(s0) + 1): |
| s = t.to_sparse(sparse_dims) |
| if can_broadcast(s0, s1): |
| t_res = torch.broadcast_to(t, s1) |
| s_res = torch._sparse_broadcast_to(s, s1) |
| torch._validate_sparse_coo_tensor_args(s_res._indices(), s_res._values(), s_res.shape) |
| if s_res.is_coalesced(): |
| # ensure that is_coalesced is estimated correctly |
| self.assertEqual(s_res, torch.sparse_coo_tensor(s_res._indices(), s_res._values(), s_res.shape).coalesce()) |
| self.assertEqual(s_res.to_dense(), t_res) |
| else: |
| with self.assertRaisesRegex(RuntimeError, |
| r"The expanded size of the tensor \(\d\) " |
| r"must match the existing size \(\d\)"): |
| torch._sparse_broadcast_to(s, s1) |
| |
| @coalescedonoff |
| @dtypes(torch.double, torch.cdouble) |
| def test_sparse_broadcast_to(self, device, dtype, coalesced): |
| def test(sparse_dims, nnz, with_size, new_size): |
| x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] |
| y = self.safeToDense(x) |
| x1 = torch._sparse_broadcast_to(x, new_size) |
| y1 = y.broadcast_to(new_size) |
| self.assertEqual(self.safeToDense(x1), y1) |
| |
| test(4, 6, [7, 3, 1, 3, 0], [7, 3, 4, 3, 0]) |
| test(4, 6, [7, 3, 1, 3, 0], [2, 7, 3, 1, 3, 0]) |
| test(4, 6, [7, 3, 1, 3, 1, 3], [7, 3, 1, 3, 2, 3]) |
| test(4, 6, [7, 3, 1, 3, 2, 1], [7, 3, 1, 3, 2, 3]) |
| |
| def _test_mul_skips(self, device, dtype, coalesced): |
| skipTestIfUncoalesced = False |
| # This case always coalesce inputs and that could lead to loss of precision, |
| # hence it is inhibited for float16/bfloat16 by providing already coalesced tensors. |
| if not coalesced and dtype in {torch.float16, torch.bfloat16}: |
| skipTestIfUncoalesced = True |
| # to_dense is problematic for boolean non-coalesced CUDA tensors |
| # see https://github.com/pytorch/pytorch/issues/81648 |
| if not coalesced and dtype == torch.bool and torch.device(device).type == "cuda": |
| skipTestIfUncoalesced = True |
| |
| if skipTestIfUncoalesced: |
| self.skipTest(f"Test with dtype={dtype}, device={device} runs only with coalesced inputs") |
| |
| @coalescedonoff |
| # NOTE: addcmul_out is not implemented for bool. |
| @dtypes(*all_types_and_complex_and(torch.bfloat16, torch.float16)) |
| @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) |
| def test_sparse_sparse_mul(self, device, dtype, coalesced): |
| self._test_mul_skips(device, dtype, coalesced) |
| |
| shape = (2, 3, 4, 10) |
| nnz = 10 |
| |
| def check(self, x, y): |
| res_sparse = x * y |
| res_dense = x.to_dense() * y.to_dense() |
| self.assertEqual(res_sparse.to_dense(), res_dense) |
| |
| def check_empty(sparse_shape, nnz, dense_shape, coalesce): |
| from itertools import product |
| for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))): |
| empty_sparse_shape = sparse_shape + shape_suffix |
| empty_dense_shape = dense_shape + shape_suffix |
| x = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0] |
| check(self, x, x) |
| |
| # TODO: uncomment once backward is implemented for sparse tensors that broadcast in dense dims. |
| # def check_autograd(x, y): |
| # if dtype in {torch.double, torch.cdouble}: |
| # xa = x.detach().clone().requires_grad_(True) |
| # ya = y.detach().clone().requires_grad_(True) |
| # gradcheck(lambda a, b: (a * b).to_dense(), (xa, ya), masked=True) |
| # gradcheck(lambda a, b: (a * b).to_dense(), (ya, xa), masked=True) |
| |
| for dim in range(len(shape) + 1): |
| sub_shape = shape[dim:] |
| sparse_dim = len(sub_shape) // 2 |
| |
| check_empty(sub_shape, nnz, shape, coalesced) |
| |
| x = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] |
| y = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] |
| check(self, x, y) |
| # TODO: uncomment once supported |
| # check_autograd(x, y) |
| |
| # check broadcasting in dense dims |
| for d in range(sparse_dim, len(sub_shape)): |
| new_shape = sub_shape[:d] + (1,) + sub_shape[d + 1:] |
| y = self._gen_sparse(sparse_dim, nnz, new_shape, dtype, device, coalesced)[0] |
| check(self, x, y) |
| # TODO: uncomment once supported |
| # check_autograd(x, y) |
| |
| @coalescedonoff |
| @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)) |
| @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2}) |
| def test_sparse_dense_mul(self, device, dtype, coalesced): |
| self._test_mul_skips(device, dtype, coalesced) |
| |
| shape = (2, 3, 4, 10) |
| nnz = 10 |
| |
| def check(self, s, d): |
| res = d * s |
| |
| # check commutativity |
| self.assertEqual(res, s * d) |
| |
| # check correctness |
| self.assertEqual(res.to_dense(), s.to_dense() * d) |
| |
| # check in-placeness for dense |
| if d.dim() >= s.dim(): |
| dc = d.clone() |
| self.assertEqual(d.mul_(s), dc.mul_(s.to_dense())) |
| |
| # check in-placeness for sparse |
| if s.dim() >= d.dim(): |
| # for sparse |
| sc = s.clone() |
| self.assertEqual(s.mul_(d).to_dense(), sc.to_dense().mul_(d)) |
| |
| for dim in range(len(shape) + 1): |
| sub_shape = shape[dim:] |
| sparse_dim = len(sub_shape) // 2 |
| |
| def check_empty(sparse_shape, nnz, dense_shape, coalesce): |
| from itertools import product |
| for nnz_val, shape_suffix in product((nnz, 0), ((), (0,))): |
| empty_sparse_shape = sparse_shape + shape_suffix |
| empty_dense_shape = dense_shape + shape_suffix |
| s = self._gen_sparse(sparse_dim, nnz_val, empty_sparse_shape, dtype, device, coalesce)[0] |
| d = make_tensor(empty_dense_shape, dtype=dtype, device=device) |
| check(self, s, d) |
| |
| # check scalar multiplication |
| s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] |
| for scalar in (True, 1, 1.0): |
| res_sparse_right = s * scalar |
| res_sparse_left = scalar * s |
| res_dense = s.to_dense() * scalar |
| # check correctness and dtype |
| self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right) |
| self.assertEqual(res_sparse_right, res_sparse_left) |
| self.assertEqual(res_sparse_right.dtype, res_dense.dtype) |
| self.assertEqual(res_sparse_left.dtype, res_dense.dtype) |
| # check scalar as 0-dim sparse tensor |
| tscalar = torch.tensor(scalar, device=device) |
| sscalar = tscalar.to_sparse() |
| res_sparse_right = s * sscalar |
| res_sparse_left = sscalar * s |
| self.assertEqual(res_sparse_right, res_sparse_left) |
| self.assertEqual(s.to(res_sparse_right.dtype), res_sparse_right) |
| |
| # check non-coalesced 0-dim scalar |
| # we skip torch.bool because for such tensors |
| # coalesce.to_dense != to_dense |
| if dtype == torch.bool: |
| return |
| |
| for scalar_dtype in (int, float): |
| scalar = scalar_dtype(1) |
| idx = torch.tensor([], device=device).reshape(0, 2) |
| val = torch.tensor([scalar, scalar], device=device) |
| sscalar = torch.sparse_coo_tensor(idx, val, ()) |
| res_dense = s.to_dense() * sscalar.to_dense() |
| self.assertEqual((s * sscalar).to_dense(), res_dense) |
| self.assertEqual((sscalar * s).to_dense(), res_dense) |
| |
| # Case 1: sparse broadcasts over dense |
| s = self._gen_sparse(sparse_dim, nnz, sub_shape, dtype, device, coalesced)[0] |
| d = make_tensor(shape, dtype=dtype, device=device) |
| check(self, s, d) |
| check_empty(sub_shape, nnz, shape, coalesced) |
| |
| # Case 2: dense broadcasts over sparse |
| s = self._gen_sparse(3, nnz, shape, dtype, device, coalesced)[0] |
| d = make_tensor(sub_shape, dtype=dtype, device=device) |
| check(self, s, d) |
| check_empty(shape, nnz, sub_shape, coalesced) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy is not available") |
| @onlyCPU |
| @dtypes(*all_types_and_complex_and(torch.bool)) |
| def test_sparse_spdiags(self, device, dtype): |
| |
| make_diags = functools.partial(make_tensor, dtype=dtype, device=device) |
| make_offsets = functools.partial(torch.tensor, dtype=torch.long, device=device) |
| |
| if TEST_SCIPY: |
| def reference(diags, offsets, shape): |
| return scipy.sparse.spdiags(diags, offsets, *shape).toarray() |
| |
| else: |
| def reference(diags, offsets, shape): |
| result = torch.zeros(shape, dtype=dtype, device=device) |
| for i, off in enumerate(offsets): |
| res_view = result.diagonal(off) |
| data = diags[i] |
| if off > 0: |
| data = data[off:] |
| |
| m = min(res_view.shape[0], data.shape[0]) |
| res_view[:m] = data[:m] |
| return result |
| |
| def check_valid(diags, offsets, shape, layout=None): |
| ref_out = reference(diags, offsets, shape) |
| out = torch.sparse.spdiags(diags, offsets, shape, layout=layout) |
| if layout is None: |
| ex_layout = torch.sparse_coo |
| else: |
| ex_layout = layout |
| out_dense = out.to_dense() |
| self.assertTrue(out.layout == ex_layout, f"Output layout {out.layout} expected {ex_layout}") |
| self.assertEqual(out_dense, ref_out, f"Result:\n{out_dense} does not match reference:\n{ref_out}") |
| |
| def check_invalid(args, error): |
| with self.assertRaisesRegex(RuntimeError, error): |
| torch.sparse.spdiags(*args) |
| |
| def valid_cases(): |
| # some normal cases |
| yield (make_diags((1, 5)), make_offsets([0]), (5, 5)) |
| yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4)) |
| # noncontigous diags |
| yield (make_diags((5, 4), noncontiguous=True), make_offsets([-1, 1, 0, 2, -2]), (5, 5)) |
| # noncontigous offsets |
| yield (make_diags((3, 4)), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5)) |
| # noncontigous diags + offsets |
| yield (make_diags((3, 4), noncontiguous=True), make_offsets([1, -1, 0, -2, 2])[::2], (5, 5)) |
| # correct dimensionality, 2d, 2d , and shapes match, but the number of diagonals is zero |
| yield (make_diags((0, 3)), make_offsets([]), (3, 3)) |
| # forward rotation of upper diagonals |
| yield (make_diags((3, 8)), make_offsets([1, 2, 3]), (4, 4)) |
| # rotation exausts input space to read from |
| yield (make_diags((2, 3)), make_offsets([2, 1]), (3, 3)) |
| # Simple cases repeated with special output format |
| yield (make_diags((1, 5)), make_offsets([0]), (5, 5), torch.sparse_csc) |
| yield (make_diags((3, 3)), make_offsets([-1, 0, 1]), (4, 4), torch.sparse_csr) |
| # vector diags |
| yield (make_diags((3, )), make_offsets([1]), (4, 4)) |
| # Scalar offset |
| yield (make_diags((1, 3)), make_offsets(2), (4, 4)) |
| # offsets out of range |
| yield (make_diags((1, 3)), make_offsets([3]), (3, 3)) |
| yield (make_diags((1, 3)), make_offsets([-3]), (3, 3)) |
| |
| for case in valid_cases(): |
| check_valid(*case) |
| |
| def invalid_cases(): |
| yield (make_diags((1, 3)), make_offsets([0]), (3, 2, 3)), "Output shape must be 2d" |
| yield (make_diags((2, 3)), make_offsets([[1, 2], [0, 3]]), (3, 3)), "Offsets must be scalar or vector" |
| yield (make_diags((3, 2, 3)), make_offsets([0, 1, 2]), (4, 4)), "Diagonals must be vector or matrix" |
| yield (make_diags((3, 3)), make_offsets([-1, 0]), (3, 3)), \ |
| r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)" |
| yield (make_diags((5,)), make_offsets([0, 1, 2, 3, 4]), (3, 3)), \ |
| r"Number of diagonals \(\d\) does not match the number of offsets \(\d\)" |
| yield (make_diags((2, 2)), make_offsets([-1, 0]), (2, 3), torch.strided), \ |
| r"Only output layouts \(\w+, \w+, \w+\) are supported, got \w+" |
| yield (make_diags((2, 5)), make_offsets([0, 0]), (5, 5)), "Offset tensor contains duplicate values" |
| yield (make_diags((1, 5)), make_offsets([0]).to(torch.int32), (5, 5)), r"Offset Tensor must have dtype Long but got \w+" |
| |
| |
| for case, error_regex in invalid_cases(): |
| check_invalid(case, error_regex) |
| |
| def test_small_nnz_coalesced(self): |
| # creating a coo tensor with nnz == 0 is always coalesced |
| self.assertTrue(torch.sparse_coo_tensor([[], []], [], (2, 2)).is_coalesced()) |
| # same for a coo tensor with only 1 nnz |
| self.assertTrue(torch.sparse_coo_tensor([[0], [0]], [1], (2, 2)).is_coalesced()) |
| # two or more nnz coalesced is false as it can't be verified without an expensive check |
| self.assertFalse(torch.sparse_coo_tensor([[0, 0], [0, 0]], [1, 2], (2, 2)).is_coalesced()) |
| # even if there are no duplicates |
| self.assertFalse(torch.sparse_coo_tensor([[0, 1], [0, 1]], [1, 2], (2, 2)).is_coalesced()) |
| |
| @coalescedonoff |
| @dtypes(*all_types_and_complex_and(torch.bool)) |
| def test_sum(self, device, dtype, coalesced): |
| def run_test(shape, nnz): |
| a = self._gen_sparse(2, nnz, shape, dtype, device, coalesced)[0] |
| self.assertEqual(a.sum(), a._values().sum()) |
| if dtype.is_floating_point or dtype.is_complex: |
| a.requires_grad_(True) |
| a_inter = a.sum() |
| a_inter.abs().backward() |
| with torch.no_grad(): |
| self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device) * torch.sgn(a_inter)) |
| for shape in [(10, 5), (10, 10)]: |
| run_test(shape, 0) |
| run_test(shape, max(shape)) |
| run_test(shape, shape[0] * shape[1]) |
| |
| |
| class TestSparseOneOff(TestCase): |
| @unittest.skipIf(not TEST_CUDA, 'CUDA not available') |
| def test_cuda_from_cpu(self): |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): |
| torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), |
| torch.randn(4, 4, 4), |
| [3, 4, 4]) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): |
| torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), |
| torch.randn(4, 4, 4, 0), |
| [3, 4, 4, 0]) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!"): |
| torch.sparse_coo_tensor(torch.empty(1, 0).long().cuda(), |
| torch.randn(0, 4, 4, 0), |
| [0, 4, 4, 0]) |
| |
| @unittest.skipIf(not TEST_CUDA, 'CUDA not available') |
| def test_cuda_sparse_cpu_dense_add(self): |
| x = torch.zeros(3, 4, 4) |
| sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), |
| torch.randn(4, 4, 4).cuda(), |
| [3, 4, 4]) |
| with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): |
| x + sparse_y |
| |
| x = torch.zeros(3, 4, 4, 0) |
| sparse_y = torch.sparse_coo_tensor(torch.zeros(1, 4).long().cuda(), |
| torch.randn(4, 4, 4, 0).cuda(), |
| [3, 4, 4, 0]) |
| with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): |
| x + sparse_y |
| |
| x = torch.zeros(0, 4, 4, 0) |
| sparse_y = torch.sparse_coo_tensor(torch.empty(1, 0).long().cuda(), |
| torch.randn(0, 4, 4, 0).cuda(), |
| [0, 4, 4, 0]) |
| with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): |
| x + sparse_y |
| |
| |
| def _sparse_to_dense(tensor): |
| if tensor.dtype != torch.bool: |
| return tensor.to_dense(masked_grad=True) |
| |
| # to_dense uses coalesce which isn't implemented for bool |
| return tensor.to(torch.int8).to_dense().to(torch.bool) |
| |
| |
| _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, |
| allowed_dtypes=all_types_and_complex()) |
| class TestSparseUnaryUfuncs(TestCase): |
| exact_dtype = True |
| |
| |
| @_sparse_unary_ops |
| def test_sparse_consistency(self, device, dtype, op): |
| sample = first_sample(self, op.sample_inputs(device, dtype)) |
| assert isinstance(sample.input, torch.Tensor) |
| |
| expected = op(sample.input, *sample.args, **sample.kwargs) |
| assert torch.is_tensor(expected) |
| output = op(sample.input.to_sparse(), *sample.args, **sample.kwargs) |
| assert torch.is_tensor(output) |
| self.assertEqual(_sparse_to_dense(output), expected) |
| |
| @_sparse_unary_ops |
| def test_out(self, device, dtype, op): |
| if not op.supports_out: |
| self.skipTest("Skipped! Out not supported") |
| |
| sample = first_sample(self, op.sample_inputs(device, dtype)) |
| sample.input = sample.input.to_sparse() |
| expect = op(sample.input, *sample.args, **sample.kwargs) |
| |
| out = torch.sparse_coo_tensor(sample.input.shape, device=device, |
| dtype=expect.dtype) |
| op(sample.input, *sample.args, **sample.kwargs, out=out) |
| self.assertEqual(out, expect) |
| |
| @_sparse_unary_ops |
| def test_inplace(self, device, dtype, op): |
| if op.inplace_variant is None: |
| self.skipTest("Skipped! Out not supported") |
| |
| sample = first_sample(self, op.sample_inputs(device, dtype)) |
| sample.input = sample.input.to_sparse().coalesce() |
| expect = op(sample.input, *sample.args, **sample.kwargs) |
| |
| if not torch.can_cast(expect.dtype, dtype): |
| with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): |
| op.inplace_variant(sample.input, *sample.args, **sample.kwargs) |
| return |
| |
| actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) |
| self.assertIs(actual, sample.input) |
| self.assertEqual(actual, expect) |
| |
| @_sparse_unary_ops |
| def test_sparse_zero_dims(self, device, dtype, op): |
| # test 0x0 sparse_coo_tensor |
| indices = torch.empty(2, 0, dtype=torch.int64) |
| values = torch.empty(0, dtype=dtype) |
| sparse_0x0 = torch.sparse_coo_tensor(indices, values, (0, 0)) |
| expected = torch.sparse_coo_tensor(indices, op(values), (0, 0)) |
| actual = op(sparse_0x0) |
| self.assertEqual(expected, actual) |
| |
| @_sparse_unary_ops |
| def test_sparse_zeros(self, device, dtype, op): |
| samples = op.sample_inputs(device, dtype) |
| |
| zero_input = torch.zeros((), device=device, dtype=dtype) |
| sparse_input = torch.sparse_coo_tensor((), dtype=dtype, device=device) |
| |
| expect = op(zero_input) |
| actual = op(sparse_input) |
| self.assertEqual(expect, _sparse_to_dense(actual)) |
| |
| @ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, |
| allowed_dtypes=[torch.double, torch.cdouble]) |
| def test_sparse_fn_grad(self, device, dtype, op): |
| if not op.supports_autograd: |
| self.skipTest("Skipped! Op doesn't support autograd") |
| |
| for sample in op.sample_inputs(device, dtype): |
| sparse_input = sample.input.to_sparse().detach().requires_grad_(True) |
| |
| def fn(x): |
| return _sparse_to_dense( |
| op(x, *sample.args, **sample.kwargs)) |
| |
| self.assertTrue(gradcheck( |
| fn, |
| (sparse_input,), |
| check_batched_grad=False, |
| check_grad_dtypes=True, |
| nondet_tol=op.gradcheck_nondet_tol, |
| fast_mode=op.gradcheck_fast_mode, |
| masked=True)) |
| |
| |
| class TestSparseMaskedReductions(TestCase): |
| exact_dtype = True |
| |
| fp16_low_precision_list = { |
| 'masked.prod', |
| } |
| |
| @ops(sparse_masked_reduction_ops) |
| def test_future_empty_dim(self, device, dtype, op): |
| """Currently, `dim=()` in reductions operations means "reduce over |
| all dimensions" while in future, it will read "no reduce". See |
| https://github.com/pytorch/pytorch/issues/29137 |
| |
| For sparse masked reductions, we'll implement the current behavior. |
| |
| For testing, we'll use samples with `dim=0` and map it to |
| `dim=()` until |
| torch.testing._internal.common_methods_invocations._generate_reduction_kwargs |
| is made to generate samples with `dim=()` for non-scalar |
| inputs. With this and after gh-29137 is resolved, this test |
| can be deleted. See also `torch.masked._canonical_dim` |
| implementation about changing the `dim=()` behavior. |
| """ |
| |
| samples = op.sample_inputs_func(op, device, dtype, requires_grad=False) |
| op_name = op.name.replace('masked.', '') |
| for sample_input in samples: |
| if sample_input.kwargs.get('dim') != 0: |
| continue |
| sample_input_kwargs = dict(sample_input.kwargs) |
| sample_input_kwargs['dim'] = () # reduce over all dimensions |
| |
| t = sample_input.input |
| mask = sample_input_kwargs.get('mask') |
| if mask is None and op_name in {'prod', 'amax', 'amin'}: |
| # FIXME: for now reductions with non-zero reduction identity and |
| # unspecified mask are not supported for sparse COO |
| # tensors, see torch.masked.prod implementation |
| # for details. |
| continue |
| sparse_op_kwargs = dict(sample_input_kwargs) |
| actual = op(t.to_sparse(), *sample_input.args, **sample_input_kwargs) |
| self.assertEqual(actual.layout, torch.sparse_coo) |
| |
| expected = op(t, *sample_input.args, **sample_input_kwargs).to_sparse() |
| atol = None |
| rtol = None |
| if op.name in self.fp16_low_precision_list and dtype == torch.half: |
| atol = 1e-5 |
| rtol = 2e-3 |
| self.assertEqual(actual, expected, atol=atol, rtol=rtol) |
| |
| |
| class TestSparseMeta(TestCase): |
| exact_dtype = True |
| |
| def _test_meta_sparse_coo(self, dtype): |
| r = torch.empty(4, 4, layout=torch.sparse_coo, device='meta', dtype=dtype) |
| self.assertTrue(r.is_meta) |
| self.assertEqual(r.device.type, "meta") |
| r2 = torch.empty_like(r) |
| self.assertTrue(r2.is_meta) |
| self.assertEqual(r, r2) |
| r3 = torch.sparse_coo_tensor(size=(4, 4), device='meta', dtype=dtype) |
| self.assertTrue(r3.is_meta) |
| self.assertEqual(r, r3) |
| r.sparse_resize_((4, 4), 1, 1) |
| r.sparse_resize_and_clear_((4, 4, 4), 2, 1) |
| self.assertEqual(r.sparse_dim(), 2) |
| self.assertEqual(r.dense_dim(), 1) |
| self.assertEqual(r._dimV(), 1) |
| self.assertEqual(r._nnz(), 0) |
| # nnz zero sparse tensors should always be coalesced at creation |
| self.assertEqual(r.is_coalesced(), True) |
| # but we can force them into the uncoalesed state |
| r._coalesced_(False) |
| self.assertEqual(r.is_coalesced(), False) |
| # return the coalesced state for indices/values access |
| r._coalesced_(True) |
| # TODO: this sort of aliasing will need to be handled by |
| # functionalization |
| self.assertEqual(r._indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) |
| self.assertEqual(r._values(), torch.empty(0, 4, device='meta', dtype=dtype)) |
| self.assertEqual(r.indices(), torch.empty(2, 0, device='meta', dtype=torch.int64)) |
| self.assertEqual(r.values(), torch.empty(0, 4, device='meta', dtype=dtype)) |
| |
| def _test_meta_sparse_compressed(self, dtype, layout, batchsize, densesize): |
| index_dtype = torch.int64 |
| blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () |
| sparsesize = (4, 6) |
| nnz = 0 |
| |
| shape = (*batchsize, *sparsesize, *densesize) |
| compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1 |
| nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize |
| else sparsesize[compressed_dim] + 1) |
| compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype) |
| plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype) |
| |
| values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype) |
| r = torch.sparse_compressed_tensor( |
| compressed_indices, |
| plain_indices, |
| values, |
| shape, |
| layout=layout |
| ) |
| self.assertTrue(r.is_meta) |
| self.assertEqual(r.device.type, "meta") |
| |
| self.assertEqual(r.sparse_dim(), 2) |
| self.assertEqual(r.dense_dim(), len(densesize)) |
| self.assertEqual(r._nnz(), nnz) |
| batch_dims = r.ndim - r.sparse_dim() - r.dense_dim() |
| r_blocksize = r.values().shape[batch_dims + 1: batch_dims + 1 + len(blocksize)] |
| self.assertEqual(r_blocksize, blocksize) |
| |
| r_compressed_indices = r.crow_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.ccol_indices() |
| r_plain_indices = r.col_indices() if layout in {torch.sparse_csr, torch.sparse_bsr} else r.row_indices() |
| |
| self.assertEqual(r_compressed_indices, |
| torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype)) |
| self.assertEqual(r_plain_indices, torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype)) |
| self.assertEqual(r.values(), torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype)) |
| |
| r2 = torch.empty_like(r) |
| self.assertTrue(r2.is_meta) |
| self.assertEqual(r2, r) |
| |
| if layout in {torch.sparse_csr, torch.sparse_csc}: |
| r3 = torch.empty((*batchsize, *sparsesize), dtype=dtype, layout=layout, device="meta") |
| self.assertTrue(r3.is_meta) |
| if not densesize: |
| # dense dimensions cannot be specified for torch.empty |
| self.assertEqual(r3, r) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_meta(self, dtype, layout): |
| if layout is torch.sparse_coo: |
| self._test_meta_sparse_coo(dtype) |
| else: |
| for batchsize, densesize in itertools.product([(), (2,)], [(), (3,)]): |
| self._test_meta_sparse_compressed(dtype, layout, batchsize, densesize) |
| |
| def _test_print_meta_data(self, dtype, layout, batchsize, sparsesize, densesize): |
| index_dtype = torch.int64 |
| nnz = 0 |
| blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else () |
| shape = (*batchsize, *sparsesize, *densesize) |
| values = torch.empty((*batchsize, nnz, *blocksize, *densesize), device='meta', dtype=dtype) |
| if layout is torch.sparse_coo: |
| indices = torch.empty((len(sparsesize), nnz), device='meta', dtype=index_dtype) |
| x = torch.sparse_coo_tensor(indices, values, shape) |
| else: |
| compressed_dim = 0 if layout in {torch.sparse_csr, torch.sparse_bsr} else 1 |
| nof_compressed_indices = (sparsesize[compressed_dim] // blocksize[compressed_dim] + 1 if blocksize |
| else sparsesize[compressed_dim] + 1) |
| compressed_indices = torch.empty((*batchsize, nof_compressed_indices), device='meta', dtype=index_dtype) |
| plain_indices = torch.empty((*batchsize, nnz), device='meta', dtype=index_dtype) |
| x = torch.sparse_compressed_tensor( |
| compressed_indices, |
| plain_indices, |
| values, |
| shape, |
| layout=layout |
| ) |
| |
| printed = [] |
| printed.append(f"########## {dtype}/{index_dtype}/size={batchsize}+{sparsesize}+{blocksize}+{densesize} ##########") |
| printed.append("# sparse meta tensor") |
| printed.append(str(x)) |
| |
| return printed |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_print_meta(self, dtype, layout): |
| printed = [] |
| for batchsize, sparsesize, densesize in itertools.product( |
| [(), (2,)], [(4, 6), (3, 5, 7)], [(), (3,)] |
| ): |
| if layout is torch.sparse_coo and batchsize: |
| # COO tensors don't have batch dimensions |
| continue |
| if layout is not torch.sparse_coo and len(sparsesize) != 2: |
| # CSR/CSC/BSR/BSC tensors must have 2 sparse dimensions |
| continue |
| printed += self._test_print_meta_data(dtype, layout, batchsize, sparsesize, densesize) |
| |
| orig_maxDiff = self.maxDiff |
| self.maxDiff = None |
| try: |
| self.assertExpected('\n'.join(printed)) |
| self.maxDiff = orig_maxDiff |
| except Exception: |
| self.maxDiff = orig_maxDiff |
| raise |
| |
| def assertEqualMeta(self, x, y, expected_nnz): |
| self.assertEqual(x.layout, y.layout) |
| self.assertEqual(x.shape, y.shape) |
| self.assertEqual(x.dtype, y.dtype) |
| self.assertEqual(x.sparse_dim(), y.sparse_dim()) |
| self.assertEqual(x.dense_dim(), y.dense_dim()) |
| |
| def assertEqualAttrs(x, y, expected_shape): |
| self.assertEqual(x.shape, expected_shape) |
| self.assertEqual(x.dtype, y.dtype) |
| self.assertEqual(x.layout, y.layout) |
| if not x.is_meta: |
| self.assertEqual(x.device, y.device) |
| |
| if x.layout is torch.sparse_coo: |
| assertEqualAttrs(x._indices(), y._indices(), (*y._indices().shape[:-1], expected_nnz)) |
| assertEqualAttrs(x._values(), y._values(), (expected_nnz, *y._values().shape[1:])) |
| elif x.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| assertEqualAttrs(x.crow_indices(), y.crow_indices(), y.crow_indices().shape) |
| assertEqualAttrs(x.col_indices(), y.col_indices(), (*y.col_indices().shape[:-1], expected_nnz)) |
| batch_dim = x.col_indices().ndim - 1 |
| values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) |
| self.assertEqual(x.values().layout, y.values().layout) |
| self.assertEqual(x.values().dtype, y.values().dtype) |
| self.assertEqual(x.values().shape, values_shape) |
| elif x.layout in {torch.sparse_csc, torch.sparse_bsc}: |
| assertEqualAttrs(x.ccol_indices(), y.ccol_indices(), y.ccol_indices().shape) |
| assertEqualAttrs(x.row_indices(), y.row_indices(), (*y.row_indices().shape[:-1], expected_nnz)) |
| batch_dim = x.row_indices().ndim - 1 |
| values_shape = (*y.values().shape[:batch_dim], expected_nnz, *y.values().shape[batch_dim + 1:]) |
| self.assertEqual(x.values().layout, y.values().layout) |
| self.assertEqual(x.values().dtype, y.values().dtype) |
| self.assertEqual(x.values().shape, values_shape) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_to_meta(self, dtype, layout): |
| index_dtype = torch.int64 |
| device = 'cpu' |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| m = t.to(device="meta") |
| self.assertEqual(m.device.type, "meta") |
| self.assertEqualMeta(m, t, 0) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_zeros_like_meta(self, dtype, layout): |
| index_dtype = torch.int64 |
| device = 'cpu' |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| m = torch.zeros_like(t, device="meta") |
| self.assertEqual(m.device.type, "meta") |
| self.assertEqualMeta(m, t, 0) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_fake(self, dtype, layout): |
| from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor |
| fake_mode = FakeTensorMode() |
| index_dtype = torch.int64 |
| device = 'cpu' |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| f = FakeTensor.from_tensor(t, fake_mode) |
| self.assertIsInstance(f, FakeTensor) |
| self.assertEqualMeta(f, t, 0) |
| |
| d = f.detach() |
| self.assertIsInstance(d, FakeTensor) |
| self.assertEqualMeta(d, t, 0) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_zeros_like_fake(self, dtype, layout): |
| from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor |
| from torch.utils._mode_utils import no_dispatch |
| fake_mode = FakeTensorMode() |
| index_dtype = torch.int64 |
| device = 'cpu' |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| f = FakeTensor.from_tensor(t, fake_mode) |
| expected = torch.zeros_like(t) |
| with no_dispatch(): |
| result = torch.zeros_like(f, device=f.fake_device) |
| self.assertEqual(result, expected) |
| self.assertEqualMeta(result, expected, 0) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_sum_meta(self, dtype, layout): |
| device = 'cpu' |
| index_dtype = torch.int64 |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| m = t.to(device='meta') |
| r = torch.sum(m) |
| expected = torch.sum(t).to(device="meta") |
| self.assertTrue(r.is_meta) |
| self.assertEqualMeta(r, expected, 0) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("dtype", [torch.float64]) |
| def test_add_meta(self, dtype, layout): |
| device = 'cpu' |
| index_dtype = torch.int64 |
| for t in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| expected = torch.add(t, t).to(device='meta') |
| m = t.to(device='meta') |
| r = torch.add(m, m) |
| self.assertEqualMeta(r, expected, 0) |
| |
| |
| class _SparseDataset(torch.utils.data.Dataset): |
| # An utility class used in TestSparseAny.test_dataloader method. |
| |
| def __init__(self, sparse_tensors): |
| self.sparse_tensors = sparse_tensors |
| |
| def __len__(self): |
| return len(self.sparse_tensors) |
| |
| def __getitem__(self, index): |
| return self.sparse_tensors[index] |
| |
| |
| class TestSparseAny(TestCase): |
| |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=False) |
| @torch.sparse.check_sparse_tensor_invariants(enable=False) |
| def test_check_sparse_tensor_invariants(self, layout): |
| |
| if layout is torch.sparse_coo: |
| |
| def create_invalid_tensor(check_invariants=None): |
| shape = (2, 2) |
| invalid_indices = torch.tensor([[0], [3]]) # column index is out of range |
| values = torch.tensor([1]) |
| if check_invariants is None: |
| return torch.sparse_coo_tensor(invalid_indices, values, shape) |
| else: |
| return torch.sparse_coo_tensor(invalid_indices, values, shape, check_invariants=check_invariants) |
| |
| expected_exception_message = 'size is inconsistent with indices: for dim 1, size is 2 but found index 3' |
| |
| elif layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: |
| |
| def create_invalid_tensor(check_invariants=None): |
| shape = (2, 2) |
| compressed_indices = torch.tensor([0, 0, 1]) |
| invalid_plain_indices = torch.tensor([3]) # index is out of range |
| if layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| values = torch.tensor([[[1]]]) |
| else: |
| values = torch.tensor([1]) |
| if check_invariants is None: |
| return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout) |
| else: |
| return torch.sparse_compressed_tensor(compressed_indices, invalid_plain_indices, values, shape, layout=layout, |
| check_invariants=check_invariants) |
| |
| if layout in {torch.sparse_csr, torch.sparse_bsr}: |
| expected_exception_message = r'`0 <= col_indices < ncols` is not satisfied.' |
| else: |
| expected_exception_message = r'`0 <= row_indices < nrows` is not satisfied.' |
| |
| else: |
| raise NotImplementedError(layout) |
| |
| # First, consider the case where invariant checks are disabled |
| # "globally" (read: within the context of this test method |
| # caller) as defined by check_sparse_tensor_invariants(False) |
| # decorator: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Enable the invariant checks in a local context: |
| with torch.sparse.check_sparse_tensor_invariants(): |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Leaving the local context must restore the "global" state of |
| # the invariant check feature: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Since invariant checks are disabled by default, we can |
| # create an invalid sparse tensor without raising an |
| # exception: |
| r = create_invalid_tensor() |
| self.assertEqual(r.layout, layout) |
| |
| # Or, when disabling the invariants check explicitly: |
| r = create_invalid_tensor(check_invariants=False) |
| self.assertEqual(r.layout, layout) |
| |
| # Enabling invariant check via constructor's optional argument |
| # will raise an exception when sparse tensor invariants are |
| # violated: |
| with self.assertRaisesRegex(RuntimeError, expected_exception_message): |
| create_invalid_tensor(check_invariants=True) |
| |
| # Check that the global invariant check flag has been restored |
| # after raising the exception above: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Next, consider the case where invariant checks are enabled |
| # within a local context: |
| with torch.sparse.check_sparse_tensor_invariants(): |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Since invariant checks are now enabled by default, an |
| # attempt to create an invalid sparse tensor will lead to |
| # an exception: |
| with self.assertRaisesRegex(RuntimeError, expected_exception_message): |
| create_invalid_tensor() |
| |
| # Similarly, when enabling the invariant checks |
| # explicitly, invalid sparse tensor construction will lead |
| # to an exception: |
| with self.assertRaisesRegex(RuntimeError, expected_exception_message): |
| create_invalid_tensor(check_invariants=True) |
| |
| # However, invariants check can be disabled via |
| # constructor's optional argument so that the invalid |
| # tensor is succesfully constructed: |
| r = create_invalid_tensor(check_invariants=False) |
| self.assertEqual(r.layout, layout) |
| |
| # Check that the invariant check flag has been restored |
| # when leaving the constructor: |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Double-check restoring the global state when leaving the |
| # local context: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Test nesting of pre-defined context managers |
| check_ctx = torch.sparse.check_sparse_tensor_invariants(True) |
| no_check_ctx = torch.sparse.check_sparse_tensor_invariants(False) |
| with check_ctx: |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| with no_check_ctx: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| # Test an attempt to re-use an activate context manager instance |
| check_ctx2 = torch.sparse.check_sparse_tensor_invariants(True) |
| with check_ctx: |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| with no_check_ctx: |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| with self.assertRaisesRegex(RuntimeError, "This context manager instance is already activated." |
| " Use a different context manager instance for context nesting"): |
| with check_ctx: |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| with check_ctx2: |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertTrue(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| self.assertFalse(torch.sparse.check_sparse_tensor_invariants.is_enabled()) |
| |
| def test_generate_simple_inputs(self): |
| layouts = [torch.strided, torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc] |
| |
| tested_combinations = set() |
| for tensors in zip(*map(self.generate_simple_inputs, layouts)): |
| for i, t in enumerate(tensors): |
| self.assertEqual(t.layout, layouts[i]) |
| |
| # all layouts must produce semantically the same tensors |
| self.assertEqual(t, tensors[0]) |
| |
| if t.layout is torch.strided: |
| is_hybrid = None |
| else: |
| is_hybrid = t.dense_dim() > 0 |
| if t.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| is_batch = t.crow_indices().ndim > 1 |
| elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: |
| is_batch = t.ccol_indices().ndim > 1 |
| else: |
| is_batch = None |
| if t.layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| blocksize = t.values().shape[1:3] |
| nontrivial_blocksize = 1 not in blocksize |
| else: |
| nontrivial_blocksize = None |
| if t.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| contiguous_indices = t.crow_indices().is_contiguous() and t.col_indices().is_contiguous() |
| contiguous_values = t.values().is_contiguous() |
| elif t.layout in {torch.sparse_csc, torch.sparse_bsc}: |
| contiguous_indices = t.ccol_indices().is_contiguous() and t.row_indices().is_contiguous() |
| contiguous_values = t.values().is_contiguous() |
| elif t.layout is torch.sparse_coo: |
| contiguous_indices = t._indices().is_contiguous() |
| contiguous_values = t._values().is_contiguous() |
| else: |
| contiguous_indices = None |
| contiguous_values = t.is_contiguous() |
| |
| tested_combinations.add((t.layout, is_hybrid, is_batch, nontrivial_blocksize, |
| contiguous_indices, contiguous_values)) |
| |
| # Ensure that the inputs generation covers all layout, |
| # non-hybrid/hybrid, non-batch/batch, and contiguity |
| # combinations: |
| untested_combinations = set() |
| for layout in layouts: |
| for is_hybrid in [False, True]: |
| if layout is torch.strided: |
| is_hybrid = None |
| for is_batch in [False, True]: |
| if layout in {torch.sparse_coo, torch.strided}: |
| is_batch = None |
| for nontrivial_blocksize in [False, True]: |
| if layout not in {torch.sparse_bsr, torch.sparse_bsc}: |
| nontrivial_blocksize = None |
| for contiguous_indices in [False, True]: |
| if layout is torch.strided: |
| contiguous_indices = None |
| elif not is_batch: |
| # indices are contiguous per-patch |
| contiguous_indices = True |
| for contiguous_values in [False, True]: |
| key = (layout, is_hybrid, is_batch, nontrivial_blocksize, |
| contiguous_indices, contiguous_values) |
| if key not in tested_combinations: |
| untested_combinations.add( |
| f'layout={layout}, is_hybrid={is_hybrid}, is_batch={is_batch},' |
| f' nontrivial_blocksize={nontrivial_blocksize},' |
| f' contiguous_indices{contiguous_indices}, contiguous_values={contiguous_values}') |
| assert not untested_combinations, untested_combinations |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_constructor_autograd(self, device, layout): |
| |
| def specific_constructor(*args, **kwargs): |
| if layout is torch.sparse_csr: |
| return torch.sparse_csr_tensor(*args, **kwargs) |
| elif layout is torch.sparse_csc: |
| return torch.sparse_csc_tensor(*args, **kwargs) |
| elif layout is torch.sparse_bsc: |
| return torch.sparse_bsc_tensor(*args, **kwargs) |
| elif layout is torch.sparse_bsr: |
| return torch.sparse_bsr_tensor(*args, **kwargs) |
| elif layout is torch.sparse_coo: |
| return torch.sparse_coo_tensor(*args, **kwargs) |
| else: |
| raise NotImplementedError(layout) |
| |
| def generic_constructor(*args, **kwargs): |
| if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: |
| kwargs.update(layout=layout) |
| return torch.sparse_compressed_tensor(*args, **kwargs) |
| elif layout is torch.sparse_coo: |
| return torch.sparse_coo_tensor(*args, **kwargs) |
| else: |
| raise NotImplementedError(layout) |
| |
| if layout is torch.sparse_coo: |
| constructors = (specific_constructor,) |
| else: |
| constructors = (specific_constructor, generic_constructor) |
| |
| for args, kwargs in self.generate_simple_inputs( |
| layout, device=device, dtype=torch.float64, |
| enable_batch=False, # TODO: remove after gh-104868 is resolved |
| output_tensor=False): |
| values_offset = 1 if layout is torch.sparse_coo else 2 |
| |
| for cnstr in constructors: |
| for requires_grad in (False, True): |
| values = args[values_offset].detach().requires_grad_(requires_grad) |
| args = (*args[:values_offset], values, *args[values_offset + 1:]) |
| kwargs_ = dict(kwargs) |
| args_ = args + (kwargs_.pop('size'),) |
| |
| sparse = cnstr(*args, **kwargs) |
| |
| self.assertEqual(sparse.requires_grad, requires_grad) |
| |
| if requires_grad: |
| for masked in (False, True): |
| if layout is torch.sparse_coo: |
| torch.autograd.gradcheck( |
| lambda i, v: cnstr(i, v, **kwargs).to_dense(masked_grad=masked), |
| args, masked=masked) |
| torch.autograd.gradcheck( |
| lambda i, v, sz: cnstr(i, v, sz, **kwargs_).to_dense(masked_grad=masked), |
| args_, masked=masked) |
| else: |
| if layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and 0: |
| # TODO: remove this if-block after gh-107370 is resolved |
| continue |
| torch.autograd.gradcheck( |
| lambda ci, pi, v: cnstr(ci, pi, v, **kwargs).to_dense(masked_grad=masked), |
| args, masked=masked) |
| torch.autograd.gradcheck( |
| lambda ci, pi, v, sz: cnstr(ci, pi, v, sz, **kwargs_).to_dense(masked_grad=masked), |
| args_, masked=masked) |
| |
| @all_sparse_layouts('from_layout', include_strided=False) |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| def test_to_dense(self, from_layout, device, dtype, index_dtype): |
| """ |
| This test tests conversion from any layout to strided layout. |
| """ |
| for t in self.generate_simple_inputs( |
| from_layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| r = t.to_dense() |
| self.assertEqual(r.layout, torch.strided) |
| self.assertEqual(r, t) |
| |
| @all_sparse_layouts('from_layout', include_strided=False) |
| @dtypes(torch.float64, torch.complex128) |
| @parametrize("index_dtype", [torch.int64]) |
| @gradcheck_semantics() |
| def test_gradcheck_to_dense(self, from_layout, device, dtype, index_dtype, gradcheck): |
| for t in self.generate_simple_inputs( |
| from_layout, device=device, dtype=dtype, index_dtype=index_dtype): |
| batch_dim = t.dim() - t.dense_dim() - t.sparse_dim() |
| if batch_dim > 0: |
| # TODO: implement batch support in _convert_indices_from_csr_to_coo |
| continue |
| t = t.clone().detach().requires_grad_(True) |
| r = gradcheck(lambda x: torch.Tensor.to_dense(x, masked_grad=gradcheck.masked), t) |
| self.assertTrue(r) |
| |
| @all_sparse_layouts('from_layout', include_strided=True) |
| @all_sparse_layouts('to_layout', include_strided=False) |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| @parametrize("index_dtype", [torch.int32, torch.int64]) |
| def test_to_sparse(self, from_layout, to_layout, device, dtype, index_dtype): |
| """ |
| This test tests conversion from any layout to any sparse layout. |
| """ |
| for t in self.generate_simple_inputs( |
| from_layout, device=device, dtype=dtype, index_dtype=index_dtype, |
| enable_hybrid=( |
| # TODO: to support conversion strided->hybrid |
| # CSR/CSC/BSR/BSC, to_sparse() requires extra keyword |
| # argument, either nof_batch_dims or |
| # nof_dense_dims |
| not (from_layout is torch.strided and to_layout in |
| {torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc}))): |
| |
| if to_layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| if from_layout == torch.sparse_bsr: |
| batch_ndim = t.crow_indices().dim() - 1 |
| blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] |
| elif from_layout == torch.sparse_bsc: |
| batch_ndim = t.ccol_indices().dim() - 1 |
| blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] |
| else: |
| blocksize = (1, 1) |
| else: |
| blocksize = None |
| |
| if from_layout is torch.strided: |
| is_batch = None |
| is_hybrid = None |
| else: |
| is_batch = t.dim() > (t.sparse_dim() + t.dense_dim()) |
| is_hybrid = t.dense_dim() > 0 |
| |
| def explicit_to_sparse(x): |
| # Used to check that the explicit conversion methods |
| # are consistent with the `to_sparse(*, layout, |
| # blocksize)` method. |
| if to_layout is torch.sparse_coo: |
| return x.to_sparse_coo() |
| elif to_layout is torch.sparse_csr: |
| return x.to_sparse_csr() |
| elif to_layout is torch.sparse_csc: |
| return x.to_sparse_csc() |
| elif to_layout is torch.sparse_bsr: |
| return x.to_sparse_bsr(blocksize) |
| elif to_layout is torch.sparse_bsc: |
| return x.to_sparse_bsc(blocksize) |
| else: |
| assert 0 # unreachable |
| |
| # TODO: The following exception cases all correspond to |
| # not implemented conversions |
| if from_layout in { |
| torch.sparse_csr, torch.sparse_csc} and to_layout in {torch.sparse_bsr, torch.sparse_bsc} and is_batch: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"): |
| t.to_sparse(layout=to_layout, blocksize=blocksize) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"conversion from Sparse(Csr|Csc) to Sparse(Bsr|Bsc) for batched inputs is not supported"): |
| explicit_to_sparse(t) |
| continue |
| elif from_layout is torch.sparse_coo and to_layout in { |
| torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and t.sparse_dim() != 2: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"): |
| t.to_sparse(layout=to_layout, blocksize=blocksize) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"conversion from Sparse to .* for input tensors with sparse_dim\(\)!=2 is not supported"): |
| explicit_to_sparse(t) |
| continue |
| elif (from_layout, to_layout) in {(torch.sparse_bsc, torch.sparse_csr), (torch.sparse_bsc, torch.sparse_csc), |
| (torch.sparse_bsr, torch.sparse_csr), (torch.sparse_bsr, torch.sparse_csc)}: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" |
| " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): |
| t.to_sparse(layout=to_layout, blocksize=blocksize) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"sparse_compressed_to_sparse_(csr|csc|bsr|bsc): expected\s*(Sparse(Csc|Csr)[,]|)\s*Sparse(Csr|Bsr)" |
| " or Sparse(Csc|Bsc) layout but got Sparse(Csr|Csc|Bsr|Bsc)"): |
| explicit_to_sparse(t) |
| self.skipTest('NOT IMPL') |
| else: |
| r = t.to_sparse(layout=to_layout, blocksize=blocksize) |
| |
| self.assertEqual(r.layout, to_layout) |
| |
| # to_sparse method uses unsafe construction of sparse |
| # tensors. Here we explicitly validate the results to |
| # make sure that the sparse tensors are consistent |
| # with the corresponding sparse tensor invariants. |
| if r.layout in {torch.sparse_csr, torch.sparse_bsr, torch.sparse_csc, torch.sparse_bsc}: |
| if r.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| compressed_indices, plain_indices = r.crow_indices(), r.col_indices() |
| else: |
| compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), |
| r.shape, r.layout) |
| if from_layout in {torch.strided, torch.sparse_coo}: |
| self.assertEqual(compressed_indices.dtype, torch.int64) |
| self.assertEqual(plain_indices.dtype, torch.int64) |
| else: |
| self.assertEqual(compressed_indices.dtype, index_dtype) |
| self.assertEqual(plain_indices.dtype, index_dtype) |
| self.assertEqual(r.values().dtype, dtype) |
| elif r.layout is torch.sparse_coo: |
| if t.layout is torch.sparse_coo: |
| self.assertEqual(t.is_coalesced(), r.is_coalesced()) |
| |
| # Check r is truly coalesced when r.is_coalesced == True |
| if r.is_coalesced(): |
| self.assertTrue(is_coalesced_indices(r)) |
| |
| torch._validate_sparse_coo_tensor_args(r._indices(), r._values(), r.shape) |
| self.assertEqual(r._indices().dtype, torch.int64) |
| self.assertEqual(r._values().dtype, dtype) |
| else: |
| assert 0 # unreachable |
| |
| # Finally, we'll test tensor equality: |
| self.assertEqual(r, t) |
| |
| # Also, check consistency with explicit conversion methods: |
| r2 = explicit_to_sparse(t) |
| self.assertEqual(r2, r) |
| |
| # Check inverse conversion from sparse compressed block tensors |
| if from_layout == torch.sparse_bsr: |
| batch_ndim = t.crow_indices().dim() - 1 |
| from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] |
| elif from_layout == torch.sparse_bsc: |
| batch_ndim = t.ccol_indices().dim() - 1 |
| from_blocksize = t.values().shape[batch_ndim + 1:batch_ndim + 3] |
| else: |
| continue |
| if r.ndim != 2: |
| continue |
| |
| t2 = r.to_sparse(layout=from_layout, blocksize=from_blocksize) |
| self.assertEqual(t2, t) |
| |
| # extra tests |
| if (from_layout, to_layout) == (torch.sparse_csr, torch.sparse_bsr): |
| # See gh-90910 |
| t = torch.tensor([[0, 0, 1, 0], [0, 1, 0, 0]], dtype=dtype, device=device).to_sparse_csr() |
| r = t.to_sparse_bsr((2, 2)) |
| torch._validate_sparse_compressed_tensor_args(r.crow_indices(), r.col_indices(), r.values(), r.shape, r.layout) |
| self.assertEqual(r, t) |
| |
| if (from_layout, to_layout) in {(torch.sparse_csr, torch.sparse_csc), |
| (torch.sparse_csc, torch.sparse_csr)}: |
| # See gh-91007 |
| compressed_indices = torch.tensor([0, 4, 8, 8, 12, 16, 20], dtype=index_dtype, device=device) |
| plain_indices = torch.tensor([0, 1, 2, 3] * 5, dtype=index_dtype, device=device) |
| t = torch.sparse_compressed_tensor(compressed_indices, plain_indices, range(20), |
| dtype=dtype, device=device, layout=from_layout) |
| r = t.to_sparse(layout=to_layout) |
| if r.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| compressed_indices, plain_indices = r.crow_indices(), r.col_indices() |
| else: |
| compressed_indices, plain_indices = r.ccol_indices(), r.row_indices() |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, r.values(), r.shape, r.layout) |
| self.assertEqual(r, t) |
| |
| @onlyNativeDeviceTypes |
| @suppress_warnings |
| @ops(reduction_ops_with_sparse_support) |
| @precisionOverride({torch.bfloat16: 5e-4, torch.float16: 5e-3}) |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_reductions(self, layout, device, dtype, op): |
| count = 0 |
| for sample in op.sample_inputs_sparse(layout, device, dtype): |
| count += 1 |
| |
| t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs |
| result = op.op(t_inp, *t_args, **t_kwargs) |
| |
| # Checking invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...) |
| dense = op.op(t_inp.to_dense(), *t_args, **t_kwargs) |
| self.assertEqual(result, dense) |
| |
| if count == 0: |
| # we count samples to avoid false-positive test reports |
| self.skipTest('no sample inputs') |
| |
| @onlyNativeDeviceTypes |
| @suppress_warnings |
| @ops(reduction_ops_with_sparse_support, allowed_dtypes=(torch.float32, torch.float64, torch.complex64, torch.complex128)) |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_reductions_backward(self, layout, device, dtype, op): |
| count = 0 |
| for sample in op.sample_inputs_sparse(layout, device, dtype, requires_grad=True): |
| t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs |
| r = op.op(t_inp, *t_args, **t_kwargs) |
| if r.numel() != 0: |
| r = r.sum() |
| |
| if op.name == 'sum': |
| count += 1 |
| r.abs().backward() |
| self.assertEqual(t_inp.grad, torch.ones(t_inp.shape, dtype=dtype, device=device) * torch.sgn(r)) |
| else: |
| self.skipTest('NOT IMPL') |
| |
| if count == 0: |
| # we count samples to avoid false-positive test reports |
| self.skipTest('no sample inputs') |
| |
| @onlyNativeDeviceTypes |
| @suppress_warnings |
| @parametrize("mth", [subtest(mth, name=mth.__name__) |
| for mth in [torch.Tensor.is_coalesced, |
| torch.Tensor.coalesce, |
| torch.Tensor.indices, |
| torch.Tensor.values, |
| torch.Tensor.crow_indices, |
| torch.Tensor.col_indices, |
| torch.Tensor.ccol_indices, |
| torch.Tensor.row_indices, |
| ]]) |
| @all_sparse_layouts('layout', include_strided=True) |
| def test_unsupported_backend_error_message(self, mth, layout, device): |
| inp = torch.tensor([[1, 2], [3, 4]], device=device).to_sparse( |
| layout=layout, |
| blocksize=(1, 1) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None) |
| assert inp.layout is layout |
| |
| expected_behaviour = dict( |
| # <mth name> = (<supported layouts>, <exception message on other layouts>) |
| is_coalesced=({torch.sparse_coo}, |
| "is_coalesced expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), |
| coalesce=({torch.sparse_coo}, |
| "coalesce expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), |
| indices=({torch.sparse_coo}, |
| "indices expected sparse coordinate tensor layout but got (Sparse(Csr|Csc|Bsr|Bsc)|Strided)"), |
| values=({torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}, |
| "values expected sparse tensor layout but got Strided"), |
| crow_indices=({torch.sparse_csr, torch.sparse_bsr}, |
| "crow_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), |
| col_indices=({torch.sparse_csr, torch.sparse_bsr}, |
| "col_indices expected sparse row compressed tensor layout but got (Sparse(Csc|Bsc|)|Strided)"), |
| ccol_indices=({torch.sparse_csc, torch.sparse_bsc}, |
| "ccol_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), |
| row_indices=({torch.sparse_csc, torch.sparse_bsc}, |
| "row_indices expected sparse column compressed tensor layout but got (Sparse(Csr|Bsr|)|Strided)"), |
| )[mth.__name__] |
| |
| if layout in expected_behaviour[0]: |
| mth(inp) |
| else: |
| with self.assertRaisesRegex(RuntimeError, expected_behaviour[1]): |
| mth(inp) |
| |
| @onlyNativeDeviceTypes |
| @all_sparse_layouts('layout', include_strided=not True) |
| @dtypes(torch.float64, torch.cdouble) |
| @parametrize("masked", [subtest(False, name='sparse'), subtest(True, name='masked')]) |
| @parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')]) |
| def test_gradcheck_mm(self, layout, dtype, device, masked, fast_mode): |
| # This function does not check the following cases: |
| # - batch or hybrid tensors because addmm does not support |
| # such inputs yet |
| # - check_forward_ad=True because of the lack of sparse tensor |
| # support in aten::view_as_real, torch._VF._make_dual, etc. |
| |
| ref_x = torch.tensor([[1, 2, 0, 0], |
| [0, 6, 0, 0], |
| [0, 0, 0, 0], |
| [13, 14, 0, 15]], dtype=dtype, device=device) |
| ref_y = torch.tensor([[11, 12, 13, 14], |
| [21, 22, 23, 24], |
| [31, 32, 33, 34], |
| [41, 42, 43, 44]], |
| dtype=dtype, device=device) |
| |
| mm = torch.sparse.mm if masked else torch.mm |
| |
| blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else None |
| x = ref_x.to_sparse(layout=layout, blocksize=blocksize).requires_grad_(True) |
| y = ref_y.requires_grad_(True) |
| |
| if layout is torch.sparse_bsr and not masked or layout is torch.sparse_bsc: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"addmm: computation on (CPU|CUDA) is not implemented for Strided \+ Sparse(Bsr|Bsc) @ Strided"): |
| torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) |
| self.skipTest('NOT IMPL') |
| elif layout in {torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} and masked: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"(sparse_addmm_sparse_backward: unsupported combination of layouts," |
| r" grad: Strided, mat1: Sparse(Csc|Bsr|Bsc), mat2: Strided" |
| r"|addmm: computation on (CPU|CUDA) is not implemented for " |
| r"Strided \+ Sparse(Csc|Bsr|Bsc) @ Strided without MKL)"): |
| torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) |
| self.skipTest('NOT IMPL') |
| else: |
| torch.autograd.gradcheck(mm, (x, y), fast_mode=fast_mode, masked=masked) |
| |
| @onlyNativeDeviceTypes |
| @suppress_warnings |
| @ops(binary_ufuncs_with_sparse_support) |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_binary_operation(self, layout, device, dtype, op): |
| if not op.supports_sparse_layout(layout): |
| self.skipTest(f'{layout} is not supported in `{op.name}` OpInfo definition. Skipping!') |
| |
| for sample in op.sample_inputs_sparse(layout, device, dtype): |
| if validate_sample_input_sparse(op, sample, check_validate=False) is not sample: |
| # that is, the validation returns the sparse sample |
| # wrapped within ErrorInput instance |
| continue |
| t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs |
| batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim() |
| result = op.op(t_inp, *t_args, **t_kwargs) |
| |
| # Check rop(inp, ...).shape == inp.shape |
| self.assertEqual(result.shape, t_inp.shape) |
| |
| # Check rop(inp, ...).sparse_dim() == inp.sparse_dim() |
| self.assertEqual(result.sparse_dim(), t_inp.sparse_dim()) |
| |
| # Check rop(inp, ...).dense_dim() == inp.dense_dim() |
| self.assertEqual(result.dense_dim(), t_inp.dense_dim()) |
| |
| # Check invariant rop(inp, ...).to_dense() == rop(inp.to_dense(), ...) |
| try: |
| dense = op.op(t_inp.to_dense(), *(t_args[0].to_dense(), *t_args[1:]), **t_kwargs) |
| except Exception as msg: |
| # this is strided op issue, so skipping the sample silently here |
| if "\"cpublas_axpy_impl\" not implemented for 'ComplexHalf'" in str(msg): |
| continue |
| raise |
| self.assertEqual(result, dense) |
| |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=True) |
| @dtypes(torch.double) |
| def test_to_sparse_identity(self, device, layout, dtype): |
| for dense_dim in range(4): |
| x_dense = torch.eye(dense_dim, dtype=dtype, device=device) |
| for sparse_dim_in in range(1, dense_dim): |
| x_sparse = x_dense.to_sparse(sparse_dim_in) |
| for sparse_dim_out in range(0, dense_dim): |
| if sparse_dim_out == sparse_dim_in: |
| self.assertTrue(x_sparse.to_sparse(sparse_dim_out).sparse_dim() == sparse_dim_out) |
| else: |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"to_sparse: conversion from Sparse to Sparse with sparse_dim argument !=self.sparse_dim\(\)" |
| " is not supported"): |
| x_sparse.to_sparse(sparse_dim_out) |
| |
| |
| @onlyNativeDeviceTypes |
| @suppress_warnings |
| @ops(like_fns_with_sparse_support) |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_like_fns(self, layout, device, dtype, op): |
| |
| for sample in op.sample_inputs_sparse(layout, device, dtype): |
| t_inp, t_args, t_kwargs = sample.input, sample.args, sample.kwargs |
| batch_dim = t_inp.dim() - t_inp.dense_dim() - t_inp.sparse_dim() |
| if t_inp.layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| expected_blocksize = t_inp.values().shape[batch_dim + 1:batch_dim + 3] |
| else: |
| expected_blocksize = None |
| expected_dtype = t_kwargs.get('dtype', dtype) |
| expected_device = torch.device(t_kwargs.get('device', device)) |
| expected_layout = t_kwargs.get('layout', layout) |
| |
| result = op.op(t_inp, *t_args, **t_kwargs) |
| |
| self.assertEqual(result.dtype, expected_dtype) |
| self.assertEqual(result.device.type, expected_device.type) |
| self.assertEqual(result.layout, expected_layout) |
| |
| if result.layout in {torch.sparse_bsr, torch.sparse_bsc}: |
| result_batch_dim = result.dim() - result.dense_dim() - result.sparse_dim() |
| blocksize = result.values().shape[result_batch_dim + 1:result_batch_dim + 3] |
| self.assertEqual(blocksize, expected_blocksize) |
| |
| # Check op(inp).shape == inp.shape |
| self.assertEqual(result.shape, t_inp.shape) |
| |
| if expected_layout is torch.strided: |
| self.assertEqual(result.sparse_dim(), 0) |
| # Check op(inp, layout=torch.strided).dense_dim() == inp.dim() |
| self.assertEqual(result.dense_dim(), t_inp.dim()) |
| elif expected_layout is torch.sparse_coo: |
| # Check op(inp, layout=torch.sparse_coo).sparse_dim() == batch_dim + inp.sparse_dim() |
| self.assertEqual(result.sparse_dim(), batch_dim + t_inp.sparse_dim()) |
| # Check op(inp, layout=torch.sparse_coo).dense_dim() == inp.dense_dim() |
| self.assertEqual(result.dense_dim(), t_inp.dense_dim()) |
| |
| torch._validate_sparse_coo_tensor_args(result._indices(), result._values(), result.shape) |
| else: |
| # Check op(inp).sparse_dim() == inp.sparse_dim() |
| self.assertEqual(result.sparse_dim(), t_inp.sparse_dim()) |
| # Check op(inp).dense_dim() == inp.dense_dim() |
| self.assertEqual(result.dense_dim(), t_inp.dense_dim()) |
| |
| if result.layout in {torch.sparse_csr, torch.sparse_bsr}: |
| compressed_indices, plain_indices = result.crow_indices(), result.col_indices() |
| else: |
| compressed_indices, plain_indices = result.ccol_indices(), result.row_indices() |
| |
| torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(), |
| result.shape, result.layout) |
| |
| @all_sparse_layouts('mask_layout', include_strided=False) |
| @onlyNativeDeviceTypes |
| @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16)) |
| def test_sparse_mask(self, mask_layout, device, dtype): |
| input_layout = torch.strided |
| mask_dtype = torch.bool |
| for mask in self.generate_simple_inputs(mask_layout, dtype=mask_dtype, device=device, |
| enable_hybrid=False, enable_batch=False): |
| |
| x = make_tensor(mask.shape, dtype=dtype, device=device).to_sparse(layout=input_layout) |
| |
| result = x.sparse_mask(mask) |
| |
| # Check invariant `x.sparse_mask(mask).<indices> == mask.<indices>` |
| if mask_layout is torch.sparse_coo: |
| self.assertEqual(result._indices(), mask._indices()) |
| ones = torch.sparse_coo_tensor(mask._indices(), |
| torch.ones_like(mask._values(), dtype=x.dtype), |
| mask.shape, |
| is_coalesced=mask.is_coalesced()) |
| elif mask_layout in {torch.sparse_csr, torch.sparse_bsr}: |
| self.assertEqual(result.crow_indices(), mask.crow_indices()) |
| self.assertEqual(result.col_indices(), mask.col_indices()) |
| ones = torch.sparse_compressed_tensor(mask.crow_indices(), mask.col_indices(), |
| torch.ones_like(mask.values(), dtype=x.dtype), |
| mask.shape, layout=mask.layout) |
| else: |
| self.assertEqual(result.ccol_indices(), mask.ccol_indices()) |
| self.assertEqual(result.row_indices(), mask.row_indices()) |
| ones = torch.sparse_compressed_tensor(mask.ccol_indices(), mask.row_indices(), |
| torch.ones_like(mask.values(), dtype=x.dtype), |
| mask.shape, layout=mask.layout) |
| |
| # Check invariant: |
| # x.sparse_mask(mask).to_dense() == x.mul(sparse_xyz_tensor(<mask indices>, |
| # ones_like(<mask values>)).to_dense()) |
| expected = x.mul(ones.to_dense()) |
| |
| self.assertEqual(result.to_dense(), expected) |
| |
| # Check invariant `mask.to_dense().sparse_mask(mask) == mask` |
| result = mask.to_dense().sparse_mask(mask) |
| self.assertEqual(result, mask) |
| |
| @all_sparse_layouts('layout', include_strided=False) |
| @parametrize("masked", [subtest(False, name='nonmasked'), subtest(True, name='masked')]) |
| @parametrize("fast_mode", [subtest(False, name='slow'), subtest(True, name='fast')]) |
| def test_as_sparse_gradcheck(self, layout, device, masked, fast_mode): |
| gradcheck = torch.sparse.as_sparse_gradcheck(torch.autograd.gradcheck) |
| sparse_compressed_layouts = {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} |
| |
| def identity(x): |
| return x |
| |
| for func in (torch.Tensor.to_dense, |
| torch.Tensor.sum, |
| identity, |
| torch.Tensor.to_sparse, |
| torch.Tensor.values, |
| ): |
| for x in self.generate_simple_inputs( |
| layout, |
| device=device, |
| dtype=torch.float64, |
| # TODO: fix gh-104868 to enable batched samples: |
| enable_batch=layout not in sparse_compressed_layouts, |
| enable_hybrid=not ( |
| layout in sparse_compressed_layouts and ( |
| # FIXME: RuntimeError: sparse_mask(): the |
| # number of sparse dimensions in `self` |
| # should match that of the `mask`. Got |
| # `self.sparse_dim() == 3` != |
| # `mask.sparse_dim() == 2 |
| func.__name__ == 'sum' |
| # FIXME: RuntimeError: expected |
| # col_indices to be a contiguous tensor |
| # per batch |
| or func.__name__ == 'to_sparse' |
| ))): |
| if layout is torch.sparse_coo and func.__name__ == 'values': |
| x = x.coalesce() |
| |
| gradcheck(func, x.requires_grad_(True), masked=masked, fast_mode=fast_mode) |
| |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=False) |
| @dtypes(torch.double) |
| def test_dataloader(self, device, layout, dtype): |
| |
| data = list(self.generate_simple_inputs(layout, device=device, dtype=dtype)) |
| |
| dataset = _SparseDataset(data) |
| loader = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=2) |
| |
| loaded_data = list(loader) |
| self.assertEqual(data, loaded_data) |
| |
| @onlyCPU |
| def test_invalid_blocksize(self): |
| # Blocksize should be a tuple/list/torch.Size containing two values |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): |
| torch.randn(1).to_sparse(blocksize=(1,)) |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): |
| torch.randn(1).to_sparse(blocksize=[1]) |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 1"): |
| torch.randn(1).to_sparse(blocksize=torch.Size((1,))) |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): |
| torch.randn(1).to_sparse(blocksize=(1, 1, 1)) |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): |
| torch.randn(1).to_sparse(blocksize=[1, 1, 1]) |
| with self.assertRaisesRegex(RuntimeError, ".*blocksize.*, but got 3"): |
| torch.randn(1).to_sparse(blocksize=torch.Size((1, 1, 1))) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=True) |
| def test_constructor_pin_memory(self, device, layout): |
| """Tests sparse_xyz_tensor(indices, values, pin_memory=True) |
| """ |
| self.assertEqual(device, "cpu") |
| for t in self.generate_simple_inputs( |
| layout, device=device, dtype=torch.float64, |
| enable_zero_sized=False, # pinning zero-sized tensors is a no-op |
| pin_memory=True, |
| enable_batch=False, # TODO: remove after gh-104868 is resolved |
| ): |
| if layout is torch.sparse_coo: |
| self.assertTrue(t._indices().is_pinned()) |
| self.assertTrue(t._values().is_pinned()) |
| elif layout in {torch.sparse_csr, torch.sparse_bsr}: |
| self.assertTrue(t.crow_indices().is_pinned()) |
| self.assertTrue(t.col_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| elif layout in {torch.sparse_csc, torch.sparse_bsc}: |
| self.assertTrue(t.ccol_indices().is_pinned()) |
| self.assertTrue(t.row_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| elif layout is torch.strided: |
| pass |
| else: |
| assert 0 # unreachable |
| self.assertTrue(t.is_pinned()) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=True) |
| def test_method_pin_memory(self, device, layout): |
| """Tests sparse_xyz_tensor(indices, values, pin_memory=False).pin_memory() |
| """ |
| |
| for t_ in self.generate_simple_inputs( |
| layout, device=device, dtype=torch.float64, |
| enable_zero_sized=False, # pinning zero-sized tensors is a no-op |
| pin_memory=False, # no pinning |
| enable_batch=False, # TODO: remove after gh-104868 is resolved |
| ): |
| t = t_.pin_memory() |
| self.assertTrue(t.is_pinned()) |
| |
| # registering a non-pinned tensor with CUDA memory is a |
| # clone operation |
| self.assertFalse(t_.is_pinned()) |
| |
| # registering already pinned tensor with CUDA memory is an |
| # identity operation: |
| t2 = t.pin_memory() |
| self.assertTrue(t2 is t) |
| |
| if layout is torch.sparse_coo: |
| self.assertTrue(t._indices().is_pinned()) |
| self.assertTrue(t._values().is_pinned()) |
| self.assertFalse(t_._indices().is_pinned()) |
| self.assertFalse(t_._values().is_pinned()) |
| elif layout in {torch.sparse_csr, torch.sparse_bsr}: |
| self.assertTrue(t.crow_indices().is_pinned()) |
| self.assertTrue(t.col_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| self.assertFalse(t_.crow_indices().is_pinned()) |
| self.assertFalse(t_.col_indices().is_pinned()) |
| self.assertFalse(t_.values().is_pinned()) |
| elif layout in {torch.sparse_csc, torch.sparse_bsc}: |
| self.assertTrue(t.ccol_indices().is_pinned()) |
| self.assertTrue(t.row_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| self.assertFalse(t_.ccol_indices().is_pinned()) |
| self.assertFalse(t_.row_indices().is_pinned()) |
| self.assertFalse(t_.values().is_pinned()) |
| elif layout is torch.strided: |
| pass |
| else: |
| assert 0 # unreachable |
| |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=True) |
| def test_constructor_pinned_memory(self, device, layout): |
| """Tests sparse_xyz_tensor(indices.pin_memory(device), values.pin_memory(device)) |
| """ |
| pin_memory_device = "cuda" |
| for t in self.generate_simple_inputs( |
| layout, device=device, dtype=torch.float64, |
| enable_zero_sized=False, # pinning zero-sized tensors is a no-op |
| pin_memory=None, # constructor does not specify pin_memory=... |
| members_pin_memory=True, # indices and values are pinned |
| enable_batch=False, # TODO: remove after gh-104868 is resolved |
| ): |
| if layout is torch.sparse_coo: |
| self.assertTrue(t._indices().is_pinned()) |
| self.assertTrue(t._values().is_pinned()) |
| elif layout in {torch.sparse_csr, torch.sparse_bsr}: |
| self.assertTrue(t.crow_indices().is_pinned()) |
| self.assertTrue(t.col_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| elif layout in {torch.sparse_csc, torch.sparse_bsc}: |
| self.assertTrue(t.ccol_indices().is_pinned()) |
| self.assertTrue(t.row_indices().is_pinned()) |
| self.assertTrue(t.values().is_pinned()) |
| elif layout is torch.strided: |
| pass |
| else: |
| assert 0 # unreachable |
| self.assertTrue(t.is_pinned()) |
| |
| @unittest.skipIf(not torch.cuda.is_available(), 'requires cuda') |
| @onlyCPU |
| @all_sparse_layouts('layout', include_strided=False) |
| def test_constructor_mismatched_pinned_memory(self, device, layout): |
| """Test the failure to construct sparse tensor from indices and values |
| that have different pinning states. |
| """ |
| def generic_constructor(*args, **kwargs): |
| if layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc}: |
| kwargs.update(layout=layout) |
| return torch.sparse_compressed_tensor(*args, **kwargs) |
| elif layout is torch.sparse_coo: |
| return torch.sparse_coo_tensor(*args, **kwargs) |
| else: |
| raise NotImplementedError(layout) |
| |
| for args, kwargs in self.generate_simple_inputs( |
| layout, device=device, dtype=torch.float64, |
| enable_zero_sized=False, # pinning zero-sized tensors is a no-op |
| enable_batch=False, # TODO: remove after gh-104868 is resolved |
| output_tensor=False): |
| |
| # indices are pinned, values is a non-pinned tensor |
| args1 = (args[0].pin_memory(), *args[1:]) |
| |
| # indices are non-pinned, values is a pinned tensor |
| args2 = (*args[:-1], args[-1].pin_memory()) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, r"memory pinning of \w*indices \(=1\) must match memory pinning of values \(=0\)"): |
| generic_constructor(*args1, **kwargs) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, r"memory pinning of \w*indices \(=0\) must match memory pinning of values \(=1\)"): |
| generic_constructor(*args2, **kwargs) |
| |
| |
| # e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA |
| instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta') |
| |
| instantiate_device_type_tests(TestSparseMaskedReductions, globals(), except_for='meta') |
| |
| # e.g., TestSparseCPU and TestSparseCUDA |
| instantiate_device_type_tests(TestSparse, globals(), except_for='meta') |
| |
| instantiate_device_type_tests(TestSparseAny, globals(), except_for='meta') |
| |
| instantiate_parametrized_tests(TestSparseMeta) |
| |
| instantiate_parametrized_tests(TestSparseLegacyAndDeprecation) |
| |
| if __name__ == '__main__': |
| run_tests() |