| # mypy: allow-untyped-defs |
| from typing import Iterable, List, Union |
| |
| import torch |
| from torch import Tensor |
| |
| from . import _lazy_call, _lazy_init, current_device, device_count |
| |
| |
| __all__ = [ |
| "get_rng_state", |
| "get_rng_state_all", |
| "set_rng_state", |
| "set_rng_state_all", |
| "manual_seed", |
| "manual_seed_all", |
| "seed", |
| "seed_all", |
| "initial_seed", |
| ] |
| |
| |
| def get_rng_state(device: Union[int, str, torch.device] = "cuda") -> Tensor: |
| r"""Return the random number generator state of the specified GPU as a ByteTensor. |
| |
| Args: |
| device (torch.device or int, optional): The device to return the RNG state of. |
| Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device). |
| |
| .. warning:: |
| This function eagerly initializes CUDA. |
| """ |
| _lazy_init() |
| if isinstance(device, str): |
| device = torch.device(device) |
| elif isinstance(device, int): |
| device = torch.device("cuda", device) |
| idx = device.index |
| if idx is None: |
| idx = current_device() |
| default_generator = torch.cuda.default_generators[idx] |
| return default_generator.get_state() |
| |
| |
| def get_rng_state_all() -> List[Tensor]: |
| r"""Return a list of ByteTensor representing the random number states of all devices.""" |
| results = [] |
| for i in range(device_count()): |
| results.append(get_rng_state(i)) |
| return results |
| |
| |
| def set_rng_state( |
| new_state: Tensor, device: Union[int, str, torch.device] = "cuda" |
| ) -> None: |
| r"""Set the random number generator state of the specified GPU. |
| |
| Args: |
| new_state (torch.ByteTensor): The desired state |
| device (torch.device or int, optional): The device to set the RNG state. |
| Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device). |
| """ |
| with torch._C._DisableFuncTorch(): |
| new_state_copy = new_state.clone(memory_format=torch.contiguous_format) |
| if isinstance(device, str): |
| device = torch.device(device) |
| elif isinstance(device, int): |
| device = torch.device("cuda", device) |
| |
| def cb(): |
| idx = device.index |
| if idx is None: |
| idx = current_device() |
| default_generator = torch.cuda.default_generators[idx] |
| default_generator.set_state(new_state_copy) |
| |
| _lazy_call(cb) |
| |
| |
| def set_rng_state_all(new_states: Iterable[Tensor]) -> None: |
| r"""Set the random number generator state of all devices. |
| |
| Args: |
| new_states (Iterable of torch.ByteTensor): The desired state for each device. |
| """ |
| for i, state in enumerate(new_states): |
| set_rng_state(state, i) |
| |
| |
| def manual_seed(seed: int) -> None: |
| r"""Set the seed for generating random numbers for the current GPU. |
| |
| It's safe to call this function if CUDA is not available; in that |
| case, it is silently ignored. |
| |
| Args: |
| seed (int): The desired seed. |
| |
| .. warning:: |
| If you are working with a multi-GPU model, this function is insufficient |
| to get determinism. To seed all GPUs, use :func:`manual_seed_all`. |
| """ |
| seed = int(seed) |
| |
| def cb(): |
| idx = current_device() |
| default_generator = torch.cuda.default_generators[idx] |
| default_generator.manual_seed(seed) |
| |
| _lazy_call(cb, seed=True) |
| |
| |
| def manual_seed_all(seed: int) -> None: |
| r"""Set the seed for generating random numbers on all GPUs. |
| |
| It's safe to call this function if CUDA is not available; in that |
| case, it is silently ignored. |
| |
| Args: |
| seed (int): The desired seed. |
| """ |
| seed = int(seed) |
| |
| def cb(): |
| for i in range(device_count()): |
| default_generator = torch.cuda.default_generators[i] |
| default_generator.manual_seed(seed) |
| |
| _lazy_call(cb, seed_all=True) |
| |
| |
| def seed() -> None: |
| r"""Set the seed for generating random numbers to a random number for the current GPU. |
| |
| It's safe to call this function if CUDA is not available; in that |
| case, it is silently ignored. |
| |
| .. warning:: |
| If you are working with a multi-GPU model, this function will only initialize |
| the seed on one GPU. To initialize all GPUs, use :func:`seed_all`. |
| """ |
| |
| def cb(): |
| idx = current_device() |
| default_generator = torch.cuda.default_generators[idx] |
| default_generator.seed() |
| |
| _lazy_call(cb) |
| |
| |
| def seed_all() -> None: |
| r"""Set the seed for generating random numbers to a random number on all GPUs. |
| |
| It's safe to call this function if CUDA is not available; in that |
| case, it is silently ignored. |
| """ |
| |
| def cb(): |
| random_seed = 0 |
| seeded = False |
| for i in range(device_count()): |
| default_generator = torch.cuda.default_generators[i] |
| if not seeded: |
| default_generator.seed() |
| random_seed = default_generator.initial_seed() |
| seeded = True |
| else: |
| default_generator.manual_seed(random_seed) |
| |
| _lazy_call(cb) |
| |
| |
| def initial_seed() -> int: |
| r"""Return the current random seed of the current GPU. |
| |
| .. warning:: |
| This function eagerly initializes CUDA. |
| """ |
| _lazy_init() |
| idx = current_device() |
| default_generator = torch.cuda.default_generators[idx] |
| return default_generator.initial_seed() |