| # mypy: allow-untyped-defs |
| from numbers import Number, Real |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.dirichlet import Dirichlet |
| from torch.distributions.exp_family import ExponentialFamily |
| from torch.distributions.utils import broadcast_all |
| from torch.types import _size |
| |
| |
| __all__ = ["Beta"] |
| |
| |
| class Beta(ExponentialFamily): |
| r""" |
| Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) |
| >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 |
| tensor([ 0.1046]) |
| |
| Args: |
| concentration1 (float or Tensor): 1st concentration parameter of the distribution |
| (often referred to as alpha) |
| concentration0 (float or Tensor): 2nd concentration parameter of the distribution |
| (often referred to as beta) |
| """ |
| arg_constraints = { |
| "concentration1": constraints.positive, |
| "concentration0": constraints.positive, |
| } |
| support = constraints.unit_interval |
| has_rsample = True |
| |
| def __init__(self, concentration1, concentration0, validate_args=None): |
| if isinstance(concentration1, Real) and isinstance(concentration0, Real): |
| concentration1_concentration0 = torch.tensor( |
| [float(concentration1), float(concentration0)] |
| ) |
| else: |
| concentration1, concentration0 = broadcast_all( |
| concentration1, concentration0 |
| ) |
| concentration1_concentration0 = torch.stack( |
| [concentration1, concentration0], -1 |
| ) |
| self._dirichlet = Dirichlet( |
| concentration1_concentration0, validate_args=validate_args |
| ) |
| super().__init__(self._dirichlet._batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Beta, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new._dirichlet = self._dirichlet.expand(batch_shape) |
| super(Beta, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| @property |
| def mean(self): |
| return self.concentration1 / (self.concentration1 + self.concentration0) |
| |
| @property |
| def mode(self): |
| return self._dirichlet.mode[..., 0] |
| |
| @property |
| def variance(self): |
| total = self.concentration1 + self.concentration0 |
| return self.concentration1 * self.concentration0 / (total.pow(2) * (total + 1)) |
| |
| def rsample(self, sample_shape: _size = ()) -> torch.Tensor: |
| return self._dirichlet.rsample(sample_shape).select(-1, 0) |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| heads_tails = torch.stack([value, 1.0 - value], -1) |
| return self._dirichlet.log_prob(heads_tails) |
| |
| def entropy(self): |
| return self._dirichlet.entropy() |
| |
| @property |
| def concentration1(self): |
| result = self._dirichlet.concentration[..., 0] |
| if isinstance(result, Number): |
| return torch.tensor([result]) |
| else: |
| return result |
| |
| @property |
| def concentration0(self): |
| result = self._dirichlet.concentration[..., 1] |
| if isinstance(result, Number): |
| return torch.tensor([result]) |
| else: |
| return result |
| |
| @property |
| def _natural_params(self): |
| return (self.concentration1, self.concentration0) |
| |
| def _log_normalizer(self, x, y): |
| return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y) |