| # mypy: allow-untyped-defs |
| import math |
| from numbers import Number |
| |
| import torch |
| from torch import inf, nan |
| from torch.distributions import constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| from torch.types import _size |
| |
| |
| __all__ = ["Cauchy"] |
| |
| |
| class Cauchy(Distribution): |
| r""" |
| Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of |
| independent normally distributed random variables with means `0` follows a |
| Cauchy distribution. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) |
| >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 |
| tensor([ 2.3214]) |
| |
| Args: |
| loc (float or Tensor): mode or median of the distribution. |
| scale (float or Tensor): half width at half maximum. |
| """ |
| arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
| support = constraints.real |
| has_rsample = True |
| |
| def __init__(self, loc, scale, validate_args=None): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.loc.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Cauchy, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| super(Cauchy, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| @property |
| def mean(self): |
| return torch.full( |
| self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device |
| ) |
| |
| @property |
| def mode(self): |
| return self.loc |
| |
| @property |
| def variance(self): |
| return torch.full( |
| self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device |
| ) |
| |
| def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: |
| shape = self._extended_shape(sample_shape) |
| eps = self.loc.new(shape).cauchy_() |
| return self.loc + eps * self.scale |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return ( |
| -math.log(math.pi) |
| - self.scale.log() |
| - (((value - self.loc) / self.scale) ** 2).log1p() |
| ) |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5 |
| |
| def icdf(self, value): |
| return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc |
| |
| def entropy(self): |
| return math.log(4 * math.pi) + self.scale.log() |