| # mypy: allow-untyped-defs |
| import warnings |
| from typing import Any, Dict, Optional |
| from typing_extensions import deprecated |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.utils import lazy_property |
| from torch.types import _size |
| |
| |
| __all__ = ["Distribution"] |
| |
| |
| class Distribution: |
| r""" |
| Distribution is the abstract base class for probability distributions. |
| """ |
| |
| has_rsample = False |
| has_enumerate_support = False |
| _validate_args = __debug__ |
| |
| @staticmethod |
| def set_default_validate_args(value: bool) -> None: |
| """ |
| Sets whether validation is enabled or disabled. |
| |
| The default behavior mimics Python's ``assert`` statement: validation |
| is on by default, but is disabled if Python is run in optimized mode |
| (via ``python -O``). Validation may be expensive, so you may want to |
| disable it once a model is working. |
| |
| Args: |
| value (bool): Whether to enable validation. |
| """ |
| if value not in [True, False]: |
| raise ValueError |
| Distribution._validate_args = value |
| |
| def __init__( |
| self, |
| batch_shape: torch.Size = torch.Size(), |
| event_shape: torch.Size = torch.Size(), |
| validate_args: Optional[bool] = None, |
| ): |
| self._batch_shape = batch_shape |
| self._event_shape = event_shape |
| if validate_args is not None: |
| self._validate_args = validate_args |
| if self._validate_args: |
| try: |
| arg_constraints = self.arg_constraints |
| except NotImplementedError: |
| arg_constraints = {} |
| warnings.warn( |
| f"{self.__class__} does not define `arg_constraints`. " |
| + "Please set `arg_constraints = {}` or initialize the distribution " |
| + "with `validate_args=False` to turn off validation." |
| ) |
| for param, constraint in arg_constraints.items(): |
| if constraints.is_dependent(constraint): |
| continue # skip constraints that cannot be checked |
| if param not in self.__dict__ and isinstance( |
| getattr(type(self), param), lazy_property |
| ): |
| continue # skip checking lazily-constructed args |
| value = getattr(self, param) |
| valid = constraint.check(value) |
| if not valid.all(): |
| raise ValueError( |
| f"Expected parameter {param} " |
| f"({type(value).__name__} of shape {tuple(value.shape)}) " |
| f"of distribution {repr(self)} " |
| f"to satisfy the constraint {repr(constraint)}, " |
| f"but found invalid values:\n{value}" |
| ) |
| super().__init__() |
| |
| def expand(self, batch_shape: _size, _instance=None): |
| """ |
| Returns a new distribution instance (or populates an existing instance |
| provided by a derived class) with batch dimensions expanded to |
| `batch_shape`. This method calls :class:`~torch.Tensor.expand` on |
| the distribution's parameters. As such, this does not allocate new |
| memory for the expanded distribution instance. Additionally, |
| this does not repeat any args checking or parameter broadcasting in |
| `__init__.py`, when an instance is first created. |
| |
| Args: |
| batch_shape (torch.Size): the desired expanded size. |
| _instance: new instance provided by subclasses that |
| need to override `.expand`. |
| |
| Returns: |
| New distribution instance with batch dimensions expanded to |
| `batch_size`. |
| """ |
| raise NotImplementedError |
| |
| @property |
| def batch_shape(self) -> torch.Size: |
| """ |
| Returns the shape over which parameters are batched. |
| """ |
| return self._batch_shape |
| |
| @property |
| def event_shape(self) -> torch.Size: |
| """ |
| Returns the shape of a single sample (without batching). |
| """ |
| return self._event_shape |
| |
| @property |
| def arg_constraints(self) -> Dict[str, constraints.Constraint]: |
| """ |
| Returns a dictionary from argument names to |
| :class:`~torch.distributions.constraints.Constraint` objects that |
| should be satisfied by each argument of this distribution. Args that |
| are not tensors need not appear in this dict. |
| """ |
| raise NotImplementedError |
| |
| @property |
| def support(self) -> Optional[Any]: |
| """ |
| Returns a :class:`~torch.distributions.constraints.Constraint` object |
| representing this distribution's support. |
| """ |
| raise NotImplementedError |
| |
| @property |
| def mean(self) -> torch.Tensor: |
| """ |
| Returns the mean of the distribution. |
| """ |
| raise NotImplementedError |
| |
| @property |
| def mode(self) -> torch.Tensor: |
| """ |
| Returns the mode of the distribution. |
| """ |
| raise NotImplementedError(f"{self.__class__} does not implement mode") |
| |
| @property |
| def variance(self) -> torch.Tensor: |
| """ |
| Returns the variance of the distribution. |
| """ |
| raise NotImplementedError |
| |
| @property |
| def stddev(self) -> torch.Tensor: |
| """ |
| Returns the standard deviation of the distribution. |
| """ |
| return self.variance.sqrt() |
| |
| def sample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: |
| """ |
| Generates a sample_shape shaped sample or sample_shape shaped batch of |
| samples if the distribution parameters are batched. |
| """ |
| with torch.no_grad(): |
| return self.rsample(sample_shape) |
| |
| def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: |
| """ |
| Generates a sample_shape shaped reparameterized sample or sample_shape |
| shaped batch of reparameterized samples if the distribution parameters |
| are batched. |
| """ |
| raise NotImplementedError |
| |
| @deprecated( |
| "`sample_n(n)` will be deprecated. Use `sample((n,))` instead.", |
| category=FutureWarning, |
| ) |
| def sample_n(self, n: int) -> torch.Tensor: |
| """ |
| Generates n samples or n batches of samples if the distribution |
| parameters are batched. |
| """ |
| return self.sample(torch.Size((n,))) |
| |
| def log_prob(self, value: torch.Tensor) -> torch.Tensor: |
| """ |
| Returns the log of the probability density/mass function evaluated at |
| `value`. |
| |
| Args: |
| value (Tensor): |
| """ |
| raise NotImplementedError |
| |
| def cdf(self, value: torch.Tensor) -> torch.Tensor: |
| """ |
| Returns the cumulative density/mass function evaluated at |
| `value`. |
| |
| Args: |
| value (Tensor): |
| """ |
| raise NotImplementedError |
| |
| def icdf(self, value: torch.Tensor) -> torch.Tensor: |
| """ |
| Returns the inverse cumulative density/mass function evaluated at |
| `value`. |
| |
| Args: |
| value (Tensor): |
| """ |
| raise NotImplementedError |
| |
| def enumerate_support(self, expand: bool = True) -> torch.Tensor: |
| """ |
| Returns tensor containing all values supported by a discrete |
| distribution. The result will enumerate over dimension 0, so the shape |
| of the result will be `(cardinality,) + batch_shape + event_shape` |
| (where `event_shape = ()` for univariate distributions). |
| |
| Note that this enumerates over all batched tensors in lock-step |
| `[[0, 0], [1, 1], ...]`. With `expand=False`, enumeration happens |
| along dim 0, but with the remaining batch dimensions being |
| singleton dimensions, `[[0], [1], ..`. |
| |
| To iterate over the full Cartesian product use |
| `itertools.product(m.enumerate_support())`. |
| |
| Args: |
| expand (bool): whether to expand the support over the |
| batch dims to match the distribution's `batch_shape`. |
| |
| Returns: |
| Tensor iterating over dimension 0. |
| """ |
| raise NotImplementedError |
| |
| def entropy(self) -> torch.Tensor: |
| """ |
| Returns entropy of distribution, batched over batch_shape. |
| |
| Returns: |
| Tensor of shape batch_shape. |
| """ |
| raise NotImplementedError |
| |
| def perplexity(self) -> torch.Tensor: |
| """ |
| Returns perplexity of distribution, batched over batch_shape. |
| |
| Returns: |
| Tensor of shape batch_shape. |
| """ |
| return torch.exp(self.entropy()) |
| |
| def _extended_shape(self, sample_shape: _size = torch.Size()) -> torch.Size: |
| """ |
| Returns the size of the sample returned by the distribution, given |
| a `sample_shape`. Note, that the batch and event shapes of a distribution |
| instance are fixed at the time of construction. If this is empty, the |
| returned shape is upcast to (1,). |
| |
| Args: |
| sample_shape (torch.Size): the size of the sample to be drawn. |
| """ |
| if not isinstance(sample_shape, torch.Size): |
| sample_shape = torch.Size(sample_shape) |
| return torch.Size(sample_shape + self._batch_shape + self._event_shape) |
| |
| def _validate_sample(self, value: torch.Tensor) -> None: |
| """ |
| Argument validation for distribution methods such as `log_prob`, |
| `cdf` and `icdf`. The rightmost dimensions of a value to be |
| scored via these methods must agree with the distribution's batch |
| and event shapes. |
| |
| Args: |
| value (Tensor): the tensor whose log probability is to be |
| computed by the `log_prob` method. |
| Raises |
| ValueError: when the rightmost dimensions of `value` do not match the |
| distribution's batch and event shapes. |
| """ |
| if not isinstance(value, torch.Tensor): |
| raise ValueError("The value argument to log_prob must be a Tensor") |
| |
| event_dim_start = len(value.size()) - len(self._event_shape) |
| if value.size()[event_dim_start:] != self._event_shape: |
| raise ValueError( |
| f"The right-most size of value must match event_shape: {value.size()} vs {self._event_shape}." |
| ) |
| |
| actual_shape = value.size() |
| expected_shape = self._batch_shape + self._event_shape |
| for i, j in zip(reversed(actual_shape), reversed(expected_shape)): |
| if i != 1 and j != 1 and i != j: |
| raise ValueError( |
| f"Value is not broadcastable with batch_shape+event_shape: {actual_shape} vs {expected_shape}." |
| ) |
| try: |
| support = self.support |
| except NotImplementedError: |
| warnings.warn( |
| f"{self.__class__} does not define `support` to enable " |
| + "sample validation. Please initialize the distribution with " |
| + "`validate_args=False` to turn off validation." |
| ) |
| return |
| assert support is not None |
| valid = support.check(value) |
| if not valid.all(): |
| raise ValueError( |
| "Expected value argument " |
| f"({type(value).__name__} of shape {tuple(value.shape)}) " |
| f"to be within the support ({repr(support)}) " |
| f"of the distribution {repr(self)}, " |
| f"but found invalid values:\n{value}" |
| ) |
| |
| def _get_checked_instance(self, cls, _instance=None): |
| if _instance is None and type(self).__init__ != cls.__init__: |
| raise NotImplementedError( |
| f"Subclass {self.__class__.__name__} of {cls.__name__} that defines a custom __init__ method " |
| "must also define a custom .expand() method." |
| ) |
| return self.__new__(type(self)) if _instance is None else _instance |
| |
| def __repr__(self) -> str: |
| param_names = [k for k, _ in self.arg_constraints.items() if k in self.__dict__] |
| args_string = ", ".join( |
| [ |
| f"{p}: {self.__dict__[p] if self.__dict__[p].numel() == 1 else self.__dict__[p].size()}" |
| for p in param_names |
| ] |
| ) |
| return self.__class__.__name__ + "(" + args_string + ")" |