| # mypy: allow-untyped-defs |
| from numbers import Number |
| |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.exp_family import ExponentialFamily |
| from torch.distributions.utils import broadcast_all |
| from torch.types import _size |
| |
| |
| __all__ = ["Exponential"] |
| |
| |
| class Exponential(ExponentialFamily): |
| r""" |
| Creates a Exponential distribution parameterized by :attr:`rate`. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Exponential(torch.tensor([1.0])) |
| >>> m.sample() # Exponential distributed with rate=1 |
| tensor([ 0.1046]) |
| |
| Args: |
| rate (float or Tensor): rate = 1 / scale of the distribution |
| """ |
| arg_constraints = {"rate": constraints.positive} |
| support = constraints.nonnegative |
| has_rsample = True |
| _mean_carrier_measure = 0 |
| |
| @property |
| def mean(self): |
| return self.rate.reciprocal() |
| |
| @property |
| def mode(self): |
| return torch.zeros_like(self.rate) |
| |
| @property |
| def stddev(self): |
| return self.rate.reciprocal() |
| |
| @property |
| def variance(self): |
| return self.rate.pow(-2) |
| |
| def __init__(self, rate, validate_args=None): |
| (self.rate,) = broadcast_all(rate) |
| batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Exponential, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.rate = self.rate.expand(batch_shape) |
| super(Exponential, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: |
| shape = self._extended_shape(sample_shape) |
| return self.rate.new(shape).exponential_() / self.rate |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return self.rate.log() - self.rate * value |
| |
| def cdf(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| return 1 - torch.exp(-self.rate * value) |
| |
| def icdf(self, value): |
| return -torch.log1p(-value) / self.rate |
| |
| def entropy(self): |
| return 1.0 - torch.log(self.rate) |
| |
| @property |
| def _natural_params(self): |
| return (-self.rate,) |
| |
| def _log_normalizer(self, x): |
| return -torch.log(-x) |