| # mypy: allow-untyped-defs |
| import math |
| import warnings |
| from functools import total_ordering |
| from typing import Callable, Dict, Tuple, Type |
| |
| import torch |
| from torch import inf |
| |
| from .bernoulli import Bernoulli |
| from .beta import Beta |
| from .binomial import Binomial |
| from .categorical import Categorical |
| from .cauchy import Cauchy |
| from .continuous_bernoulli import ContinuousBernoulli |
| from .dirichlet import Dirichlet |
| from .distribution import Distribution |
| from .exp_family import ExponentialFamily |
| from .exponential import Exponential |
| from .gamma import Gamma |
| from .geometric import Geometric |
| from .gumbel import Gumbel |
| from .half_normal import HalfNormal |
| from .independent import Independent |
| from .laplace import Laplace |
| from .lowrank_multivariate_normal import ( |
| _batch_lowrank_logdet, |
| _batch_lowrank_mahalanobis, |
| LowRankMultivariateNormal, |
| ) |
| from .multivariate_normal import _batch_mahalanobis, MultivariateNormal |
| from .normal import Normal |
| from .one_hot_categorical import OneHotCategorical |
| from .pareto import Pareto |
| from .poisson import Poisson |
| from .transformed_distribution import TransformedDistribution |
| from .uniform import Uniform |
| from .utils import _sum_rightmost, euler_constant as _euler_gamma |
| |
| |
| _KL_REGISTRY: Dict[ |
| Tuple[Type, Type], Callable |
| ] = {} # Source of truth mapping a few general (type, type) pairs to functions. |
| _KL_MEMOIZE: Dict[ |
| Tuple[Type, Type], Callable |
| ] = {} # Memoized version mapping many specific (type, type) pairs to functions. |
| |
| __all__ = ["register_kl", "kl_divergence"] |
| |
| |
| def register_kl(type_p, type_q): |
| """ |
| Decorator to register a pairwise function with :meth:`kl_divergence`. |
| Usage:: |
| |
| @register_kl(Normal, Normal) |
| def kl_normal_normal(p, q): |
| # insert implementation here |
| |
| Lookup returns the most specific (type,type) match ordered by subclass. If |
| the match is ambiguous, a `RuntimeWarning` is raised. For example to |
| resolve the ambiguous situation:: |
| |
| @register_kl(BaseP, DerivedQ) |
| def kl_version1(p, q): ... |
| @register_kl(DerivedP, BaseQ) |
| def kl_version2(p, q): ... |
| |
| you should register a third most-specific implementation, e.g.:: |
| |
| register_kl(DerivedP, DerivedQ)(kl_version1) # Break the tie. |
| |
| Args: |
| type_p (type): A subclass of :class:`~torch.distributions.Distribution`. |
| type_q (type): A subclass of :class:`~torch.distributions.Distribution`. |
| """ |
| if not isinstance(type_p, type) and issubclass(type_p, Distribution): |
| raise TypeError( |
| f"Expected type_p to be a Distribution subclass but got {type_p}" |
| ) |
| if not isinstance(type_q, type) and issubclass(type_q, Distribution): |
| raise TypeError( |
| f"Expected type_q to be a Distribution subclass but got {type_q}" |
| ) |
| |
| def decorator(fun): |
| _KL_REGISTRY[type_p, type_q] = fun |
| _KL_MEMOIZE.clear() # reset since lookup order may have changed |
| return fun |
| |
| return decorator |
| |
| |
| @total_ordering |
| class _Match: |
| __slots__ = ["types"] |
| |
| def __init__(self, *types): |
| self.types = types |
| |
| def __eq__(self, other): |
| return self.types == other.types |
| |
| def __le__(self, other): |
| for x, y in zip(self.types, other.types): |
| if not issubclass(x, y): |
| return False |
| if x is not y: |
| break |
| return True |
| |
| |
| def _dispatch_kl(type_p, type_q): |
| """ |
| Find the most specific approximate match, assuming single inheritance. |
| """ |
| matches = [ |
| (super_p, super_q) |
| for super_p, super_q in _KL_REGISTRY |
| if issubclass(type_p, super_p) and issubclass(type_q, super_q) |
| ] |
| if not matches: |
| return NotImplemented |
| # Check that the left- and right- lexicographic orders agree. |
| # mypy isn't smart enough to know that _Match implements __lt__ |
| # see: https://github.com/python/typing/issues/760#issuecomment-710670503 |
| left_p, left_q = min(_Match(*m) for m in matches).types # type: ignore[type-var] |
| right_q, right_p = min(_Match(*reversed(m)) for m in matches).types # type: ignore[type-var] |
| left_fun = _KL_REGISTRY[left_p, left_q] |
| right_fun = _KL_REGISTRY[right_p, right_q] |
| if left_fun is not right_fun: |
| warnings.warn( |
| f"Ambiguous kl_divergence({type_p.__name__}, {type_q.__name__}). " |
| f"Please register_kl({left_p.__name__}, {right_q.__name__})", |
| RuntimeWarning, |
| ) |
| return left_fun |
| |
| |
| def _infinite_like(tensor): |
| """ |
| Helper function for obtaining infinite KL Divergence throughout |
| """ |
| return torch.full_like(tensor, inf) |
| |
| |
| def _x_log_x(tensor): |
| """ |
| Utility function for calculating x log x |
| """ |
| return tensor * tensor.log() |
| |
| |
| def _batch_trace_XXT(bmat): |
| """ |
| Utility function for calculating the trace of XX^{T} with X having arbitrary trailing batch dimensions |
| """ |
| n = bmat.size(-1) |
| m = bmat.size(-2) |
| flat_trace = bmat.reshape(-1, m * n).pow(2).sum(-1) |
| return flat_trace.reshape(bmat.shape[:-2]) |
| |
| |
| def kl_divergence(p: Distribution, q: Distribution) -> torch.Tensor: |
| r""" |
| Compute Kullback-Leibler divergence :math:`KL(p \| q)` between two distributions. |
| |
| .. math:: |
| |
| KL(p \| q) = \int p(x) \log\frac {p(x)} {q(x)} \,dx |
| |
| Args: |
| p (Distribution): A :class:`~torch.distributions.Distribution` object. |
| q (Distribution): A :class:`~torch.distributions.Distribution` object. |
| |
| Returns: |
| Tensor: A batch of KL divergences of shape `batch_shape`. |
| |
| Raises: |
| NotImplementedError: If the distribution types have not been registered via |
| :meth:`register_kl`. |
| """ |
| try: |
| fun = _KL_MEMOIZE[type(p), type(q)] |
| except KeyError: |
| fun = _dispatch_kl(type(p), type(q)) |
| _KL_MEMOIZE[type(p), type(q)] = fun |
| if fun is NotImplemented: |
| raise NotImplementedError( |
| f"No KL(p || q) is implemented for p type {p.__class__.__name__} and q type {q.__class__.__name__}" |
| ) |
| return fun(p, q) |
| |
| |
| ################################################################################ |
| # KL Divergence Implementations |
| ################################################################################ |
| |
| # Same distributions |
| |
| |
| @register_kl(Bernoulli, Bernoulli) |
| def _kl_bernoulli_bernoulli(p, q): |
| t1 = p.probs * ( |
| torch.nn.functional.softplus(-q.logits) |
| - torch.nn.functional.softplus(-p.logits) |
| ) |
| t1[q.probs == 0] = inf |
| t1[p.probs == 0] = 0 |
| t2 = (1 - p.probs) * ( |
| torch.nn.functional.softplus(q.logits) - torch.nn.functional.softplus(p.logits) |
| ) |
| t2[q.probs == 1] = inf |
| t2[p.probs == 1] = 0 |
| return t1 + t2 |
| |
| |
| @register_kl(Beta, Beta) |
| def _kl_beta_beta(p, q): |
| sum_params_p = p.concentration1 + p.concentration0 |
| sum_params_q = q.concentration1 + q.concentration0 |
| t1 = q.concentration1.lgamma() + q.concentration0.lgamma() + (sum_params_p).lgamma() |
| t2 = p.concentration1.lgamma() + p.concentration0.lgamma() + (sum_params_q).lgamma() |
| t3 = (p.concentration1 - q.concentration1) * torch.digamma(p.concentration1) |
| t4 = (p.concentration0 - q.concentration0) * torch.digamma(p.concentration0) |
| t5 = (sum_params_q - sum_params_p) * torch.digamma(sum_params_p) |
| return t1 - t2 + t3 + t4 + t5 |
| |
| |
| @register_kl(Binomial, Binomial) |
| def _kl_binomial_binomial(p, q): |
| # from https://math.stackexchange.com/questions/2214993/ |
| # kullback-leibler-divergence-for-binomial-distributions-p-and-q |
| if (p.total_count < q.total_count).any(): |
| raise NotImplementedError( |
| "KL between Binomials where q.total_count > p.total_count is not implemented" |
| ) |
| kl = p.total_count * ( |
| p.probs * (p.logits - q.logits) + (-p.probs).log1p() - (-q.probs).log1p() |
| ) |
| inf_idxs = p.total_count > q.total_count |
| kl[inf_idxs] = _infinite_like(kl[inf_idxs]) |
| return kl |
| |
| |
| @register_kl(Categorical, Categorical) |
| def _kl_categorical_categorical(p, q): |
| t = p.probs * (p.logits - q.logits) |
| t[(q.probs == 0).expand_as(t)] = inf |
| t[(p.probs == 0).expand_as(t)] = 0 |
| return t.sum(-1) |
| |
| |
| @register_kl(ContinuousBernoulli, ContinuousBernoulli) |
| def _kl_continuous_bernoulli_continuous_bernoulli(p, q): |
| t1 = p.mean * (p.logits - q.logits) |
| t2 = p._cont_bern_log_norm() + torch.log1p(-p.probs) |
| t3 = -q._cont_bern_log_norm() - torch.log1p(-q.probs) |
| return t1 + t2 + t3 |
| |
| |
| @register_kl(Dirichlet, Dirichlet) |
| def _kl_dirichlet_dirichlet(p, q): |
| # From http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions/ |
| sum_p_concentration = p.concentration.sum(-1) |
| sum_q_concentration = q.concentration.sum(-1) |
| t1 = sum_p_concentration.lgamma() - sum_q_concentration.lgamma() |
| t2 = (p.concentration.lgamma() - q.concentration.lgamma()).sum(-1) |
| t3 = p.concentration - q.concentration |
| t4 = p.concentration.digamma() - sum_p_concentration.digamma().unsqueeze(-1) |
| return t1 - t2 + (t3 * t4).sum(-1) |
| |
| |
| @register_kl(Exponential, Exponential) |
| def _kl_exponential_exponential(p, q): |
| rate_ratio = q.rate / p.rate |
| t1 = -rate_ratio.log() |
| return t1 + rate_ratio - 1 |
| |
| |
| @register_kl(ExponentialFamily, ExponentialFamily) |
| def _kl_expfamily_expfamily(p, q): |
| if not type(p) == type(q): |
| raise NotImplementedError( |
| "The cross KL-divergence between different exponential families cannot \ |
| be computed using Bregman divergences" |
| ) |
| p_nparams = [np.detach().requires_grad_() for np in p._natural_params] |
| q_nparams = q._natural_params |
| lg_normal = p._log_normalizer(*p_nparams) |
| gradients = torch.autograd.grad(lg_normal.sum(), p_nparams, create_graph=True) |
| result = q._log_normalizer(*q_nparams) - lg_normal |
| for pnp, qnp, g in zip(p_nparams, q_nparams, gradients): |
| term = (qnp - pnp) * g |
| result -= _sum_rightmost(term, len(q.event_shape)) |
| return result |
| |
| |
| @register_kl(Gamma, Gamma) |
| def _kl_gamma_gamma(p, q): |
| t1 = q.concentration * (p.rate / q.rate).log() |
| t2 = torch.lgamma(q.concentration) - torch.lgamma(p.concentration) |
| t3 = (p.concentration - q.concentration) * torch.digamma(p.concentration) |
| t4 = (q.rate - p.rate) * (p.concentration / p.rate) |
| return t1 + t2 + t3 + t4 |
| |
| |
| @register_kl(Gumbel, Gumbel) |
| def _kl_gumbel_gumbel(p, q): |
| ct1 = p.scale / q.scale |
| ct2 = q.loc / q.scale |
| ct3 = p.loc / q.scale |
| t1 = -ct1.log() - ct2 + ct3 |
| t2 = ct1 * _euler_gamma |
| t3 = torch.exp(ct2 + (1 + ct1).lgamma() - ct3) |
| return t1 + t2 + t3 - (1 + _euler_gamma) |
| |
| |
| @register_kl(Geometric, Geometric) |
| def _kl_geometric_geometric(p, q): |
| return -p.entropy() - torch.log1p(-q.probs) / p.probs - q.logits |
| |
| |
| @register_kl(HalfNormal, HalfNormal) |
| def _kl_halfnormal_halfnormal(p, q): |
| return _kl_normal_normal(p.base_dist, q.base_dist) |
| |
| |
| @register_kl(Laplace, Laplace) |
| def _kl_laplace_laplace(p, q): |
| # From http://www.mast.queensu.ca/~communications/Papers/gil-msc11.pdf |
| scale_ratio = p.scale / q.scale |
| loc_abs_diff = (p.loc - q.loc).abs() |
| t1 = -scale_ratio.log() |
| t2 = loc_abs_diff / q.scale |
| t3 = scale_ratio * torch.exp(-loc_abs_diff / p.scale) |
| return t1 + t2 + t3 - 1 |
| |
| |
| @register_kl(LowRankMultivariateNormal, LowRankMultivariateNormal) |
| def _kl_lowrankmultivariatenormal_lowrankmultivariatenormal(p, q): |
| if p.event_shape != q.event_shape: |
| raise ValueError( |
| "KL-divergence between two Low Rank Multivariate Normals with\ |
| different event shapes cannot be computed" |
| ) |
| |
| term1 = _batch_lowrank_logdet( |
| q._unbroadcasted_cov_factor, q._unbroadcasted_cov_diag, q._capacitance_tril |
| ) - _batch_lowrank_logdet( |
| p._unbroadcasted_cov_factor, p._unbroadcasted_cov_diag, p._capacitance_tril |
| ) |
| term3 = _batch_lowrank_mahalanobis( |
| q._unbroadcasted_cov_factor, |
| q._unbroadcasted_cov_diag, |
| q.loc - p.loc, |
| q._capacitance_tril, |
| ) |
| # Expands term2 according to |
| # inv(qcov) @ pcov = [inv(qD) - inv(qD) @ qW @ inv(qC) @ qW.T @ inv(qD)] @ (pW @ pW.T + pD) |
| # = [inv(qD) - A.T @ A] @ (pD + pW @ pW.T) |
| qWt_qDinv = q._unbroadcasted_cov_factor.mT / q._unbroadcasted_cov_diag.unsqueeze(-2) |
| A = torch.linalg.solve_triangular(q._capacitance_tril, qWt_qDinv, upper=False) |
| term21 = (p._unbroadcasted_cov_diag / q._unbroadcasted_cov_diag).sum(-1) |
| term22 = _batch_trace_XXT( |
| p._unbroadcasted_cov_factor * q._unbroadcasted_cov_diag.rsqrt().unsqueeze(-1) |
| ) |
| term23 = _batch_trace_XXT(A * p._unbroadcasted_cov_diag.sqrt().unsqueeze(-2)) |
| term24 = _batch_trace_XXT(A.matmul(p._unbroadcasted_cov_factor)) |
| term2 = term21 + term22 - term23 - term24 |
| return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) |
| |
| |
| @register_kl(MultivariateNormal, LowRankMultivariateNormal) |
| def _kl_multivariatenormal_lowrankmultivariatenormal(p, q): |
| if p.event_shape != q.event_shape: |
| raise ValueError( |
| "KL-divergence between two (Low Rank) Multivariate Normals with\ |
| different event shapes cannot be computed" |
| ) |
| |
| term1 = _batch_lowrank_logdet( |
| q._unbroadcasted_cov_factor, q._unbroadcasted_cov_diag, q._capacitance_tril |
| ) - 2 * p._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) |
| term3 = _batch_lowrank_mahalanobis( |
| q._unbroadcasted_cov_factor, |
| q._unbroadcasted_cov_diag, |
| q.loc - p.loc, |
| q._capacitance_tril, |
| ) |
| # Expands term2 according to |
| # inv(qcov) @ pcov = [inv(qD) - inv(qD) @ qW @ inv(qC) @ qW.T @ inv(qD)] @ p_tril @ p_tril.T |
| # = [inv(qD) - A.T @ A] @ p_tril @ p_tril.T |
| qWt_qDinv = q._unbroadcasted_cov_factor.mT / q._unbroadcasted_cov_diag.unsqueeze(-2) |
| A = torch.linalg.solve_triangular(q._capacitance_tril, qWt_qDinv, upper=False) |
| term21 = _batch_trace_XXT( |
| p._unbroadcasted_scale_tril * q._unbroadcasted_cov_diag.rsqrt().unsqueeze(-1) |
| ) |
| term22 = _batch_trace_XXT(A.matmul(p._unbroadcasted_scale_tril)) |
| term2 = term21 - term22 |
| return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) |
| |
| |
| @register_kl(LowRankMultivariateNormal, MultivariateNormal) |
| def _kl_lowrankmultivariatenormal_multivariatenormal(p, q): |
| if p.event_shape != q.event_shape: |
| raise ValueError( |
| "KL-divergence between two (Low Rank) Multivariate Normals with\ |
| different event shapes cannot be computed" |
| ) |
| |
| term1 = 2 * q._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum( |
| -1 |
| ) - _batch_lowrank_logdet( |
| p._unbroadcasted_cov_factor, p._unbroadcasted_cov_diag, p._capacitance_tril |
| ) |
| term3 = _batch_mahalanobis(q._unbroadcasted_scale_tril, (q.loc - p.loc)) |
| # Expands term2 according to |
| # inv(qcov) @ pcov = inv(q_tril @ q_tril.T) @ (pW @ pW.T + pD) |
| combined_batch_shape = torch._C._infer_size( |
| q._unbroadcasted_scale_tril.shape[:-2], p._unbroadcasted_cov_factor.shape[:-2] |
| ) |
| n = p.event_shape[0] |
| q_scale_tril = q._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) |
| p_cov_factor = p._unbroadcasted_cov_factor.expand( |
| combined_batch_shape + (n, p.cov_factor.size(-1)) |
| ) |
| p_cov_diag = torch.diag_embed(p._unbroadcasted_cov_diag.sqrt()).expand( |
| combined_batch_shape + (n, n) |
| ) |
| term21 = _batch_trace_XXT( |
| torch.linalg.solve_triangular(q_scale_tril, p_cov_factor, upper=False) |
| ) |
| term22 = _batch_trace_XXT( |
| torch.linalg.solve_triangular(q_scale_tril, p_cov_diag, upper=False) |
| ) |
| term2 = term21 + term22 |
| return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) |
| |
| |
| @register_kl(MultivariateNormal, MultivariateNormal) |
| def _kl_multivariatenormal_multivariatenormal(p, q): |
| # From https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence |
| if p.event_shape != q.event_shape: |
| raise ValueError( |
| "KL-divergence between two Multivariate Normals with\ |
| different event shapes cannot be computed" |
| ) |
| |
| half_term1 = q._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum( |
| -1 |
| ) - p._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) |
| combined_batch_shape = torch._C._infer_size( |
| q._unbroadcasted_scale_tril.shape[:-2], p._unbroadcasted_scale_tril.shape[:-2] |
| ) |
| n = p.event_shape[0] |
| q_scale_tril = q._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) |
| p_scale_tril = p._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) |
| term2 = _batch_trace_XXT( |
| torch.linalg.solve_triangular(q_scale_tril, p_scale_tril, upper=False) |
| ) |
| term3 = _batch_mahalanobis(q._unbroadcasted_scale_tril, (q.loc - p.loc)) |
| return half_term1 + 0.5 * (term2 + term3 - n) |
| |
| |
| @register_kl(Normal, Normal) |
| def _kl_normal_normal(p, q): |
| var_ratio = (p.scale / q.scale).pow(2) |
| t1 = ((p.loc - q.loc) / q.scale).pow(2) |
| return 0.5 * (var_ratio + t1 - 1 - var_ratio.log()) |
| |
| |
| @register_kl(OneHotCategorical, OneHotCategorical) |
| def _kl_onehotcategorical_onehotcategorical(p, q): |
| return _kl_categorical_categorical(p._categorical, q._categorical) |
| |
| |
| @register_kl(Pareto, Pareto) |
| def _kl_pareto_pareto(p, q): |
| # From http://www.mast.queensu.ca/~communications/Papers/gil-msc11.pdf |
| scale_ratio = p.scale / q.scale |
| alpha_ratio = q.alpha / p.alpha |
| t1 = q.alpha * scale_ratio.log() |
| t2 = -alpha_ratio.log() |
| result = t1 + t2 + alpha_ratio - 1 |
| result[p.support.lower_bound < q.support.lower_bound] = inf |
| return result |
| |
| |
| @register_kl(Poisson, Poisson) |
| def _kl_poisson_poisson(p, q): |
| return p.rate * (p.rate.log() - q.rate.log()) - (p.rate - q.rate) |
| |
| |
| @register_kl(TransformedDistribution, TransformedDistribution) |
| def _kl_transformed_transformed(p, q): |
| if p.transforms != q.transforms: |
| raise NotImplementedError |
| if p.event_shape != q.event_shape: |
| raise NotImplementedError |
| return kl_divergence(p.base_dist, q.base_dist) |
| |
| |
| @register_kl(Uniform, Uniform) |
| def _kl_uniform_uniform(p, q): |
| result = ((q.high - q.low) / (p.high - p.low)).log() |
| result[(q.low > p.low) | (q.high < p.high)] = inf |
| return result |
| |
| |
| # Different distributions |
| @register_kl(Bernoulli, Poisson) |
| def _kl_bernoulli_poisson(p, q): |
| return -p.entropy() - (p.probs * q.rate.log() - q.rate) |
| |
| |
| @register_kl(Beta, ContinuousBernoulli) |
| def _kl_beta_continuous_bernoulli(p, q): |
| return ( |
| -p.entropy() |
| - p.mean * q.logits |
| - torch.log1p(-q.probs) |
| - q._cont_bern_log_norm() |
| ) |
| |
| |
| @register_kl(Beta, Pareto) |
| def _kl_beta_infinity(p, q): |
| return _infinite_like(p.concentration1) |
| |
| |
| @register_kl(Beta, Exponential) |
| def _kl_beta_exponential(p, q): |
| return ( |
| -p.entropy() |
| - q.rate.log() |
| + q.rate * (p.concentration1 / (p.concentration1 + p.concentration0)) |
| ) |
| |
| |
| @register_kl(Beta, Gamma) |
| def _kl_beta_gamma(p, q): |
| t1 = -p.entropy() |
| t2 = q.concentration.lgamma() - q.concentration * q.rate.log() |
| t3 = (q.concentration - 1) * ( |
| p.concentration1.digamma() - (p.concentration1 + p.concentration0).digamma() |
| ) |
| t4 = q.rate * p.concentration1 / (p.concentration1 + p.concentration0) |
| return t1 + t2 - t3 + t4 |
| |
| |
| # TODO: Add Beta-Laplace KL Divergence |
| |
| |
| @register_kl(Beta, Normal) |
| def _kl_beta_normal(p, q): |
| E_beta = p.concentration1 / (p.concentration1 + p.concentration0) |
| var_normal = q.scale.pow(2) |
| t1 = -p.entropy() |
| t2 = 0.5 * (var_normal * 2 * math.pi).log() |
| t3 = ( |
| E_beta * (1 - E_beta) / (p.concentration1 + p.concentration0 + 1) |
| + E_beta.pow(2) |
| ) * 0.5 |
| t4 = q.loc * E_beta |
| t5 = q.loc.pow(2) * 0.5 |
| return t1 + t2 + (t3 - t4 + t5) / var_normal |
| |
| |
| @register_kl(Beta, Uniform) |
| def _kl_beta_uniform(p, q): |
| result = -p.entropy() + (q.high - q.low).log() |
| result[(q.low > p.support.lower_bound) | (q.high < p.support.upper_bound)] = inf |
| return result |
| |
| |
| # Note that the KL between a ContinuousBernoulli and Beta has no closed form |
| |
| |
| @register_kl(ContinuousBernoulli, Pareto) |
| def _kl_continuous_bernoulli_infinity(p, q): |
| return _infinite_like(p.probs) |
| |
| |
| @register_kl(ContinuousBernoulli, Exponential) |
| def _kl_continuous_bernoulli_exponential(p, q): |
| return -p.entropy() - torch.log(q.rate) + q.rate * p.mean |
| |
| |
| # Note that the KL between a ContinuousBernoulli and Gamma has no closed form |
| # TODO: Add ContinuousBernoulli-Laplace KL Divergence |
| |
| |
| @register_kl(ContinuousBernoulli, Normal) |
| def _kl_continuous_bernoulli_normal(p, q): |
| t1 = -p.entropy() |
| t2 = 0.5 * (math.log(2.0 * math.pi) + torch.square(q.loc / q.scale)) + torch.log( |
| q.scale |
| ) |
| t3 = (p.variance + torch.square(p.mean) - 2.0 * q.loc * p.mean) / ( |
| 2.0 * torch.square(q.scale) |
| ) |
| return t1 + t2 + t3 |
| |
| |
| @register_kl(ContinuousBernoulli, Uniform) |
| def _kl_continuous_bernoulli_uniform(p, q): |
| result = -p.entropy() + (q.high - q.low).log() |
| return torch.where( |
| torch.max( |
| torch.ge(q.low, p.support.lower_bound), |
| torch.le(q.high, p.support.upper_bound), |
| ), |
| torch.ones_like(result) * inf, |
| result, |
| ) |
| |
| |
| @register_kl(Exponential, Beta) |
| @register_kl(Exponential, ContinuousBernoulli) |
| @register_kl(Exponential, Pareto) |
| @register_kl(Exponential, Uniform) |
| def _kl_exponential_infinity(p, q): |
| return _infinite_like(p.rate) |
| |
| |
| @register_kl(Exponential, Gamma) |
| def _kl_exponential_gamma(p, q): |
| ratio = q.rate / p.rate |
| t1 = -q.concentration * torch.log(ratio) |
| return ( |
| t1 |
| + ratio |
| + q.concentration.lgamma() |
| + q.concentration * _euler_gamma |
| - (1 + _euler_gamma) |
| ) |
| |
| |
| @register_kl(Exponential, Gumbel) |
| def _kl_exponential_gumbel(p, q): |
| scale_rate_prod = p.rate * q.scale |
| loc_scale_ratio = q.loc / q.scale |
| t1 = scale_rate_prod.log() - 1 |
| t2 = torch.exp(loc_scale_ratio) * scale_rate_prod / (scale_rate_prod + 1) |
| t3 = scale_rate_prod.reciprocal() |
| return t1 - loc_scale_ratio + t2 + t3 |
| |
| |
| # TODO: Add Exponential-Laplace KL Divergence |
| |
| |
| @register_kl(Exponential, Normal) |
| def _kl_exponential_normal(p, q): |
| var_normal = q.scale.pow(2) |
| rate_sqr = p.rate.pow(2) |
| t1 = 0.5 * torch.log(rate_sqr * var_normal * 2 * math.pi) |
| t2 = rate_sqr.reciprocal() |
| t3 = q.loc / p.rate |
| t4 = q.loc.pow(2) * 0.5 |
| return t1 - 1 + (t2 - t3 + t4) / var_normal |
| |
| |
| @register_kl(Gamma, Beta) |
| @register_kl(Gamma, ContinuousBernoulli) |
| @register_kl(Gamma, Pareto) |
| @register_kl(Gamma, Uniform) |
| def _kl_gamma_infinity(p, q): |
| return _infinite_like(p.concentration) |
| |
| |
| @register_kl(Gamma, Exponential) |
| def _kl_gamma_exponential(p, q): |
| return -p.entropy() - q.rate.log() + q.rate * p.concentration / p.rate |
| |
| |
| @register_kl(Gamma, Gumbel) |
| def _kl_gamma_gumbel(p, q): |
| beta_scale_prod = p.rate * q.scale |
| loc_scale_ratio = q.loc / q.scale |
| t1 = ( |
| (p.concentration - 1) * p.concentration.digamma() |
| - p.concentration.lgamma() |
| - p.concentration |
| ) |
| t2 = beta_scale_prod.log() + p.concentration / beta_scale_prod |
| t3 = ( |
| torch.exp(loc_scale_ratio) |
| * (1 + beta_scale_prod.reciprocal()).pow(-p.concentration) |
| - loc_scale_ratio |
| ) |
| return t1 + t2 + t3 |
| |
| |
| # TODO: Add Gamma-Laplace KL Divergence |
| |
| |
| @register_kl(Gamma, Normal) |
| def _kl_gamma_normal(p, q): |
| var_normal = q.scale.pow(2) |
| beta_sqr = p.rate.pow(2) |
| t1 = ( |
| 0.5 * torch.log(beta_sqr * var_normal * 2 * math.pi) |
| - p.concentration |
| - p.concentration.lgamma() |
| ) |
| t2 = 0.5 * (p.concentration.pow(2) + p.concentration) / beta_sqr |
| t3 = q.loc * p.concentration / p.rate |
| t4 = 0.5 * q.loc.pow(2) |
| return ( |
| t1 |
| + (p.concentration - 1) * p.concentration.digamma() |
| + (t2 - t3 + t4) / var_normal |
| ) |
| |
| |
| @register_kl(Gumbel, Beta) |
| @register_kl(Gumbel, ContinuousBernoulli) |
| @register_kl(Gumbel, Exponential) |
| @register_kl(Gumbel, Gamma) |
| @register_kl(Gumbel, Pareto) |
| @register_kl(Gumbel, Uniform) |
| def _kl_gumbel_infinity(p, q): |
| return _infinite_like(p.loc) |
| |
| |
| # TODO: Add Gumbel-Laplace KL Divergence |
| |
| |
| @register_kl(Gumbel, Normal) |
| def _kl_gumbel_normal(p, q): |
| param_ratio = p.scale / q.scale |
| t1 = (param_ratio / math.sqrt(2 * math.pi)).log() |
| t2 = (math.pi * param_ratio * 0.5).pow(2) / 3 |
| t3 = ((p.loc + p.scale * _euler_gamma - q.loc) / q.scale).pow(2) * 0.5 |
| return -t1 + t2 + t3 - (_euler_gamma + 1) |
| |
| |
| @register_kl(Laplace, Beta) |
| @register_kl(Laplace, ContinuousBernoulli) |
| @register_kl(Laplace, Exponential) |
| @register_kl(Laplace, Gamma) |
| @register_kl(Laplace, Pareto) |
| @register_kl(Laplace, Uniform) |
| def _kl_laplace_infinity(p, q): |
| return _infinite_like(p.loc) |
| |
| |
| @register_kl(Laplace, Normal) |
| def _kl_laplace_normal(p, q): |
| var_normal = q.scale.pow(2) |
| scale_sqr_var_ratio = p.scale.pow(2) / var_normal |
| t1 = 0.5 * torch.log(2 * scale_sqr_var_ratio / math.pi) |
| t2 = 0.5 * p.loc.pow(2) |
| t3 = p.loc * q.loc |
| t4 = 0.5 * q.loc.pow(2) |
| return -t1 + scale_sqr_var_ratio + (t2 - t3 + t4) / var_normal - 1 |
| |
| |
| @register_kl(Normal, Beta) |
| @register_kl(Normal, ContinuousBernoulli) |
| @register_kl(Normal, Exponential) |
| @register_kl(Normal, Gamma) |
| @register_kl(Normal, Pareto) |
| @register_kl(Normal, Uniform) |
| def _kl_normal_infinity(p, q): |
| return _infinite_like(p.loc) |
| |
| |
| @register_kl(Normal, Gumbel) |
| def _kl_normal_gumbel(p, q): |
| mean_scale_ratio = p.loc / q.scale |
| var_scale_sqr_ratio = (p.scale / q.scale).pow(2) |
| loc_scale_ratio = q.loc / q.scale |
| t1 = var_scale_sqr_ratio.log() * 0.5 |
| t2 = mean_scale_ratio - loc_scale_ratio |
| t3 = torch.exp(-mean_scale_ratio + 0.5 * var_scale_sqr_ratio + loc_scale_ratio) |
| return -t1 + t2 + t3 - (0.5 * (1 + math.log(2 * math.pi))) |
| |
| |
| @register_kl(Normal, Laplace) |
| def _kl_normal_laplace(p, q): |
| loc_diff = p.loc - q.loc |
| scale_ratio = p.scale / q.scale |
| loc_diff_scale_ratio = loc_diff / p.scale |
| t1 = torch.log(scale_ratio) |
| t2 = ( |
| math.sqrt(2 / math.pi) * p.scale * torch.exp(-0.5 * loc_diff_scale_ratio.pow(2)) |
| ) |
| t3 = loc_diff * torch.erf(math.sqrt(0.5) * loc_diff_scale_ratio) |
| return -t1 + (t2 + t3) / q.scale - (0.5 * (1 + math.log(0.5 * math.pi))) |
| |
| |
| @register_kl(Pareto, Beta) |
| @register_kl(Pareto, ContinuousBernoulli) |
| @register_kl(Pareto, Uniform) |
| def _kl_pareto_infinity(p, q): |
| return _infinite_like(p.scale) |
| |
| |
| @register_kl(Pareto, Exponential) |
| def _kl_pareto_exponential(p, q): |
| scale_rate_prod = p.scale * q.rate |
| t1 = (p.alpha / scale_rate_prod).log() |
| t2 = p.alpha.reciprocal() |
| t3 = p.alpha * scale_rate_prod / (p.alpha - 1) |
| result = t1 - t2 + t3 - 1 |
| result[p.alpha <= 1] = inf |
| return result |
| |
| |
| @register_kl(Pareto, Gamma) |
| def _kl_pareto_gamma(p, q): |
| common_term = p.scale.log() + p.alpha.reciprocal() |
| t1 = p.alpha.log() - common_term |
| t2 = q.concentration.lgamma() - q.concentration * q.rate.log() |
| t3 = (1 - q.concentration) * common_term |
| t4 = q.rate * p.alpha * p.scale / (p.alpha - 1) |
| result = t1 + t2 + t3 + t4 - 1 |
| result[p.alpha <= 1] = inf |
| return result |
| |
| |
| # TODO: Add Pareto-Laplace KL Divergence |
| |
| |
| @register_kl(Pareto, Normal) |
| def _kl_pareto_normal(p, q): |
| var_normal = 2 * q.scale.pow(2) |
| common_term = p.scale / (p.alpha - 1) |
| t1 = (math.sqrt(2 * math.pi) * q.scale * p.alpha / p.scale).log() |
| t2 = p.alpha.reciprocal() |
| t3 = p.alpha * common_term.pow(2) / (p.alpha - 2) |
| t4 = (p.alpha * common_term - q.loc).pow(2) |
| result = t1 - t2 + (t3 + t4) / var_normal - 1 |
| result[p.alpha <= 2] = inf |
| return result |
| |
| |
| @register_kl(Poisson, Bernoulli) |
| @register_kl(Poisson, Binomial) |
| def _kl_poisson_infinity(p, q): |
| return _infinite_like(p.rate) |
| |
| |
| @register_kl(Uniform, Beta) |
| def _kl_uniform_beta(p, q): |
| common_term = p.high - p.low |
| t1 = torch.log(common_term) |
| t2 = ( |
| (q.concentration1 - 1) |
| * (_x_log_x(p.high) - _x_log_x(p.low) - common_term) |
| / common_term |
| ) |
| t3 = ( |
| (q.concentration0 - 1) |
| * (_x_log_x(1 - p.high) - _x_log_x(1 - p.low) + common_term) |
| / common_term |
| ) |
| t4 = ( |
| q.concentration1.lgamma() |
| + q.concentration0.lgamma() |
| - (q.concentration1 + q.concentration0).lgamma() |
| ) |
| result = t3 + t4 - t1 - t2 |
| result[(p.high > q.support.upper_bound) | (p.low < q.support.lower_bound)] = inf |
| return result |
| |
| |
| @register_kl(Uniform, ContinuousBernoulli) |
| def _kl_uniform_continuous_bernoulli(p, q): |
| result = ( |
| -p.entropy() |
| - p.mean * q.logits |
| - torch.log1p(-q.probs) |
| - q._cont_bern_log_norm() |
| ) |
| return torch.where( |
| torch.max( |
| torch.ge(p.high, q.support.upper_bound), |
| torch.le(p.low, q.support.lower_bound), |
| ), |
| torch.ones_like(result) * inf, |
| result, |
| ) |
| |
| |
| @register_kl(Uniform, Exponential) |
| def _kl_uniform_exponetial(p, q): |
| result = q.rate * (p.high + p.low) / 2 - ((p.high - p.low) * q.rate).log() |
| result[p.low < q.support.lower_bound] = inf |
| return result |
| |
| |
| @register_kl(Uniform, Gamma) |
| def _kl_uniform_gamma(p, q): |
| common_term = p.high - p.low |
| t1 = common_term.log() |
| t2 = q.concentration.lgamma() - q.concentration * q.rate.log() |
| t3 = ( |
| (1 - q.concentration) |
| * (_x_log_x(p.high) - _x_log_x(p.low) - common_term) |
| / common_term |
| ) |
| t4 = q.rate * (p.high + p.low) / 2 |
| result = -t1 + t2 + t3 + t4 |
| result[p.low < q.support.lower_bound] = inf |
| return result |
| |
| |
| @register_kl(Uniform, Gumbel) |
| def _kl_uniform_gumbel(p, q): |
| common_term = q.scale / (p.high - p.low) |
| high_loc_diff = (p.high - q.loc) / q.scale |
| low_loc_diff = (p.low - q.loc) / q.scale |
| t1 = common_term.log() + 0.5 * (high_loc_diff + low_loc_diff) |
| t2 = common_term * (torch.exp(-high_loc_diff) - torch.exp(-low_loc_diff)) |
| return t1 - t2 |
| |
| |
| # TODO: Uniform-Laplace KL Divergence |
| |
| |
| @register_kl(Uniform, Normal) |
| def _kl_uniform_normal(p, q): |
| common_term = p.high - p.low |
| t1 = (math.sqrt(math.pi * 2) * q.scale / common_term).log() |
| t2 = (common_term).pow(2) / 12 |
| t3 = ((p.high + p.low - 2 * q.loc) / 2).pow(2) |
| return t1 + 0.5 * (t2 + t3) / q.scale.pow(2) |
| |
| |
| @register_kl(Uniform, Pareto) |
| def _kl_uniform_pareto(p, q): |
| support_uniform = p.high - p.low |
| t1 = (q.alpha * q.scale.pow(q.alpha) * (support_uniform)).log() |
| t2 = (_x_log_x(p.high) - _x_log_x(p.low) - support_uniform) / support_uniform |
| result = t2 * (q.alpha + 1) - t1 |
| result[p.low < q.support.lower_bound] = inf |
| return result |
| |
| |
| @register_kl(Independent, Independent) |
| def _kl_independent_independent(p, q): |
| if p.reinterpreted_batch_ndims != q.reinterpreted_batch_ndims: |
| raise NotImplementedError |
| result = kl_divergence(p.base_dist, q.base_dist) |
| return _sum_rightmost(result, p.reinterpreted_batch_ndims) |
| |
| |
| @register_kl(Cauchy, Cauchy) |
| def _kl_cauchy_cauchy(p, q): |
| # From https://arxiv.org/abs/1905.10965 |
| t1 = ((p.scale + q.scale).pow(2) + (p.loc - q.loc).pow(2)).log() |
| t2 = (4 * p.scale * q.scale).log() |
| return t1 - t2 |
| |
| |
| def _add_kl_info(): |
| """Appends a list of implemented KL functions to the doc for kl_divergence.""" |
| rows = [ |
| "KL divergence is currently implemented for the following distribution pairs:" |
| ] |
| for p, q in sorted( |
| _KL_REGISTRY, key=lambda p_q: (p_q[0].__name__, p_q[1].__name__) |
| ): |
| rows.append( |
| f"* :class:`~torch.distributions.{p.__name__}` and :class:`~torch.distributions.{q.__name__}`" |
| ) |
| kl_info = "\n\t".join(rows) |
| if kl_divergence.__doc__: |
| kl_divergence.__doc__ += kl_info # type: ignore[operator] |