| # mypy: allow-untyped-defs |
| import torch |
| from torch import inf |
| from torch.distributions import Categorical, constraints |
| from torch.distributions.binomial import Binomial |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| |
| __all__ = ["Multinomial"] |
| |
| |
| class Multinomial(Distribution): |
| r""" |
| Creates a Multinomial distribution parameterized by :attr:`total_count` and |
| either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of |
| :attr:`probs` indexes over categories. All other dimensions index over batches. |
| |
| Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is |
| called (see example below) |
| |
| .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum, |
| and it will be normalized to sum to 1 along the last dimension. :attr:`probs` |
| will return this normalized value. |
| The `logits` argument will be interpreted as unnormalized log probabilities |
| and can therefore be any real number. It will likewise be normalized so that |
| the resulting probabilities sum to 1 along the last dimension. :attr:`logits` |
| will return this normalized value. |
| |
| - :meth:`sample` requires a single shared `total_count` for all |
| parameters and samples. |
| - :meth:`log_prob` allows different `total_count` for each parameter and |
| sample. |
| |
| Example:: |
| |
| >>> # xdoctest: +SKIP("FIXME: found invalid values") |
| >>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) |
| >>> x = m.sample() # equal probability of 0, 1, 2, 3 |
| tensor([ 21., 24., 30., 25.]) |
| |
| >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) |
| tensor([-4.1338]) |
| |
| Args: |
| total_count (int): number of trials |
| probs (Tensor): event probabilities |
| logits (Tensor): event log probabilities (unnormalized) |
| """ |
| arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} |
| total_count: int |
| |
| @property |
| def mean(self): |
| return self.probs * self.total_count |
| |
| @property |
| def variance(self): |
| return self.total_count * self.probs * (1 - self.probs) |
| |
| def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): |
| if not isinstance(total_count, int): |
| raise NotImplementedError("inhomogeneous total_count is not supported") |
| self.total_count = total_count |
| self._categorical = Categorical(probs=probs, logits=logits) |
| self._binomial = Binomial(total_count=total_count, probs=self.probs) |
| batch_shape = self._categorical.batch_shape |
| event_shape = self._categorical.param_shape[-1:] |
| super().__init__(batch_shape, event_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Multinomial, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.total_count = self.total_count |
| new._categorical = self._categorical.expand(batch_shape) |
| super(Multinomial, new).__init__( |
| batch_shape, self.event_shape, validate_args=False |
| ) |
| new._validate_args = self._validate_args |
| return new |
| |
| def _new(self, *args, **kwargs): |
| return self._categorical._new(*args, **kwargs) |
| |
| @constraints.dependent_property(is_discrete=True, event_dim=1) |
| def support(self): |
| return constraints.multinomial(self.total_count) |
| |
| @property |
| def logits(self): |
| return self._categorical.logits |
| |
| @property |
| def probs(self): |
| return self._categorical.probs |
| |
| @property |
| def param_shape(self): |
| return self._categorical.param_shape |
| |
| def sample(self, sample_shape=torch.Size()): |
| sample_shape = torch.Size(sample_shape) |
| samples = self._categorical.sample( |
| torch.Size((self.total_count,)) + sample_shape |
| ) |
| # samples.shape is (total_count, sample_shape, batch_shape), need to change it to |
| # (sample_shape, batch_shape, total_count) |
| shifted_idx = list(range(samples.dim())) |
| shifted_idx.append(shifted_idx.pop(0)) |
| samples = samples.permute(*shifted_idx) |
| counts = samples.new(self._extended_shape(sample_shape)).zero_() |
| counts.scatter_add_(-1, samples, torch.ones_like(samples)) |
| return counts.type_as(self.probs) |
| |
| def entropy(self): |
| n = torch.tensor(self.total_count) |
| |
| cat_entropy = self._categorical.entropy() |
| term1 = n * cat_entropy - torch.lgamma(n + 1) |
| |
| support = self._binomial.enumerate_support(expand=False)[1:] |
| binomial_probs = torch.exp(self._binomial.log_prob(support)) |
| weights = torch.lgamma(support + 1) |
| term2 = (binomial_probs * weights).sum([0, -1]) |
| |
| return term1 + term2 |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| logits, value = broadcast_all(self.logits, value) |
| logits = logits.clone(memory_format=torch.contiguous_format) |
| log_factorial_n = torch.lgamma(value.sum(-1) + 1) |
| log_factorial_xs = torch.lgamma(value + 1).sum(-1) |
| logits[(value == 0) & (logits == -inf)] = 0 |
| log_powers = (logits * value).sum(-1) |
| return log_factorial_n - log_factorial_xs + log_powers |