| # mypy: allow-untyped-defs |
| import torch |
| from torch.distributions import constraints |
| from torch.distributions.exponential import Exponential |
| from torch.distributions.gumbel import euler_constant |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import AffineTransform, PowerTransform |
| from torch.distributions.utils import broadcast_all |
| |
| |
| __all__ = ["Weibull"] |
| |
| |
| class Weibull(TransformedDistribution): |
| r""" |
| Samples from a two-parameter Weibull distribution. |
| |
| Example: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) |
| >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 |
| tensor([ 0.4784]) |
| |
| Args: |
| scale (float or Tensor): Scale parameter of distribution (lambda). |
| concentration (float or Tensor): Concentration parameter of distribution (k/shape). |
| """ |
| arg_constraints = { |
| "scale": constraints.positive, |
| "concentration": constraints.positive, |
| } |
| support = constraints.positive |
| |
| def __init__(self, scale, concentration, validate_args=None): |
| self.scale, self.concentration = broadcast_all(scale, concentration) |
| self.concentration_reciprocal = self.concentration.reciprocal() |
| base_dist = Exponential( |
| torch.ones_like(self.scale), validate_args=validate_args |
| ) |
| transforms = [ |
| PowerTransform(exponent=self.concentration_reciprocal), |
| AffineTransform(loc=0, scale=self.scale), |
| ] |
| super().__init__(base_dist, transforms, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(Weibull, _instance) |
| new.scale = self.scale.expand(batch_shape) |
| new.concentration = self.concentration.expand(batch_shape) |
| new.concentration_reciprocal = new.concentration.reciprocal() |
| base_dist = self.base_dist.expand(batch_shape) |
| transforms = [ |
| PowerTransform(exponent=new.concentration_reciprocal), |
| AffineTransform(loc=0, scale=new.scale), |
| ] |
| super(Weibull, new).__init__(base_dist, transforms, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| @property |
| def mean(self): |
| return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) |
| |
| @property |
| def mode(self): |
| return ( |
| self.scale |
| * ((self.concentration - 1) / self.concentration) |
| ** self.concentration.reciprocal() |
| ) |
| |
| @property |
| def variance(self): |
| return self.scale.pow(2) * ( |
| torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) |
| - torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)) |
| ) |
| |
| def entropy(self): |
| return ( |
| euler_constant * (1 - self.concentration_reciprocal) |
| + torch.log(self.scale * self.concentration_reciprocal) |
| + 1 |
| ) |