| # mypy: allow-untyped-defs |
| """Functions to export models into the ONNX IR format. |
| |
| These models can be loaded with the ONNX library and then |
| converted to models which run on other deep learning frameworks. |
| """ |
| |
| from __future__ import annotations |
| |
| import contextlib |
| import copy |
| import inspect |
| import re |
| import typing |
| import warnings |
| from typing import Any, Callable, cast, Collection, Mapping, Sequence |
| |
| import torch |
| import torch._C._onnx as _C_onnx |
| import torch.jit._trace |
| import torch.serialization |
| from torch import _C |
| from torch.onnx import ( # noqa: F401 |
| _constants, |
| _deprecation, |
| _exporter_states, |
| errors, |
| symbolic_helper, |
| ) |
| from torch.onnx._globals import GLOBALS |
| from torch.onnx._internal import diagnostics, jit_utils, onnx_proto_utils, registration |
| |
| |
| __all__ = [ |
| "is_in_onnx_export", |
| "select_model_mode_for_export", |
| "disable_apex_o2_state_dict_hook", |
| "setup_onnx_logging", |
| "exporter_context", |
| "export", |
| "model_signature", |
| "warn_on_static_input_change", |
| "unpack_quantized_tensor", |
| "export_to_pretty_string", |
| "unconvertible_ops", |
| "register_custom_op_symbolic", |
| "unregister_custom_op_symbolic", |
| ] |
| |
| |
| def is_in_onnx_export() -> bool: |
| """Returns whether it is in the middle of ONNX export.""" |
| return GLOBALS.in_onnx_export |
| |
| |
| # TODO(justinchuby): Remove dependency to this global variable from constant_fold.cpp |
| # Skip check due to cannot import IValue from torch._C |
| _params_dict = {} # type: ignore[var-annotated] |
| |
| |
| @contextlib.contextmanager |
| def select_model_mode_for_export(model, mode: _C_onnx.TrainingMode): |
| r"""A context manager to temporarily set the training mode of ``model`` |
| to ``mode``, resetting it when we exit the with-block. |
| |
| Args: |
| model: Same type and meaning as ``model`` arg to :func:`export`. |
| mode: Same type and meaning as ``training`` arg to :func:`export`. |
| """ |
| if not isinstance(mode, _C_onnx.TrainingMode): |
| raise TypeError( |
| f"'mode' should be a torch.onnx.TrainingMode enum, but got '{type(mode)}'." |
| ) |
| originally_training: bool = False |
| |
| if hasattr(model, "training"): |
| originally_training = model.training |
| |
| # ONNX opset 12 has better support for training amenable models, with updated |
| # versions of the dropout and batch_norm operators |
| if mode == _C_onnx.TrainingMode.TRAINING or ( |
| mode == _C_onnx.TrainingMode.PRESERVE and originally_training |
| ): |
| GLOBALS.export_training = True |
| if GLOBALS.export_onnx_opset_version < 12: |
| warnings.warn( |
| "You are exporting the model in training mode with onnx opset " |
| f"version {GLOBALS.export_onnx_opset_version}. " |
| "Opset versions lower than opset 12 will not be able to export " |
| "nodes such as Dropout and BatchNorm correctly." |
| ) |
| else: |
| GLOBALS.export_training = False |
| |
| GLOBALS.training_mode = mode |
| if mode == _C_onnx.TrainingMode.TRAINING: |
| model.train(True) |
| elif mode == _C_onnx.TrainingMode.EVAL: |
| model.train(False) |
| # else mode == _C_onnx.TrainingMode.PRESERVE, do nothing |
| |
| try: |
| yield |
| finally: |
| if hasattr(model, "training") and not mode == _C_onnx.TrainingMode.PRESERVE: |
| model.train(originally_training) |
| |
| |
| @contextlib.contextmanager |
| def disable_apex_o2_state_dict_hook(model: torch.nn.Module | torch.jit.ScriptFunction): |
| # Apex O2 hook state_dict to return fp16 weights as fp32. |
| # Exporter cannot identify them as same tensors. |
| # Since this hook is only used by optimizer, it is safe to |
| # remove this hook while exporting. |
| if not isinstance(model, torch.jit.ScriptFunction): |
| model_hooks = {} # type: ignore[var-annotated] |
| for module in model.modules(): |
| for key, hook in module._state_dict_hooks.items(): |
| if type(hook).__name__ == "O2StateDictHook": |
| if module not in model_hooks: |
| model_hooks[module] = {} |
| model_hooks[module][key] = hook |
| if module in model_hooks: |
| for key in model_hooks[module]: |
| module._state_dict_hooks.pop(key) |
| try: |
| yield |
| finally: |
| # Add the hooks back |
| for module, m_map in model_hooks.items(): |
| for key, hook in m_map.items(): |
| module._state_dict_hooks[key] = hook |
| else: |
| try: |
| yield |
| finally: |
| pass |
| |
| |
| @contextlib.contextmanager |
| def setup_onnx_logging(verbose: bool): |
| is_originally_enabled = torch.onnx.is_onnx_log_enabled() |
| if is_originally_enabled or verbose: |
| torch.onnx.enable_log() |
| try: |
| yield |
| finally: |
| if not is_originally_enabled: |
| torch.onnx.disable_log() |
| |
| |
| @contextlib.contextmanager |
| def exporter_context(model, mode: _C_onnx.TrainingMode, verbose: bool): |
| with select_model_mode_for_export( |
| model, mode |
| ) as mode_ctx, disable_apex_o2_state_dict_hook( |
| model |
| ) as apex_ctx, setup_onnx_logging( |
| verbose |
| ) as log_ctx, diagnostics.create_export_diagnostic_context() as diagnostic_ctx: |
| yield (mode_ctx, apex_ctx, log_ctx, diagnostic_ctx) |
| |
| |
| def _get_torch_export_args( |
| args: tuple[Any, ...], |
| kwargs: dict[str, Any] | None, |
| ) -> tuple[tuple[Any, ...], dict[str, Any] | None]: |
| """Obtain the arguments for torch.onnx.export from the model and the input arguments.""" |
| if not kwargs and args and isinstance(args[-1], dict): |
| kwargs = args[-1] |
| args = args[:-1] |
| return args, kwargs |
| |
| |
| def export( |
| model: torch.nn.Module | torch.jit.ScriptModule | torch.jit.ScriptFunction, |
| args: tuple[Any, ...] | torch.Tensor, |
| f: str, |
| *, |
| kwargs: dict[str, Any] | None = None, |
| export_params: bool = True, |
| verbose: bool = False, |
| training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL, |
| input_names: Sequence[str] | None = None, |
| output_names: Sequence[str] | None = None, |
| operator_export_type: _C_onnx.OperatorExportTypes = _C_onnx.OperatorExportTypes.ONNX, |
| opset_version: int | None = None, |
| do_constant_folding: bool = True, |
| dynamic_axes: Mapping[str, Mapping[int, str]] |
| | Mapping[str, Sequence[int]] |
| | None = None, |
| keep_initializers_as_inputs: bool | None = None, |
| custom_opsets: Mapping[str, int] | None = None, |
| export_modules_as_functions: bool | Collection[type[torch.nn.Module]] = False, |
| autograd_inlining: bool = True, |
| ) -> None: |
| r"""Exports a model into ONNX format. |
| |
| If ``model`` is not a :class:`torch.jit.ScriptModule` nor a |
| :class:`torch.jit.ScriptFunction`, this runs |
| ``model`` once in order to convert it to a TorchScript graph to be exported |
| (the equivalent of :func:`torch.jit.trace`). Thus this has the same limited support |
| for dynamic control flow as :func:`torch.jit.trace`. |
| |
| Args: |
| model: The model to be exported. |
| args: |
| |
| args can be structured either as: |
| |
| 1. ONLY A TUPLE OF ARGUMENTS:: |
| |
| args = (x, y, z) |
| |
| The tuple should contain model inputs such that ``model(*args)`` is a valid |
| invocation of the model. Any non-Tensor arguments will be hard-coded into the |
| exported model; any Tensor arguments will become inputs of the exported model, |
| in the order they occur in the tuple. |
| |
| 2. A TENSOR:: |
| |
| args = torch.Tensor([1]) |
| |
| This is equivalent to a 1-ary tuple of that Tensor. |
| |
| 3. A TUPLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS:: |
| |
| args = (x, {"y": input_y, "z": input_z}) |
| |
| All but the last element of the tuple will be passed as non-keyword arguments, |
| and named arguments will be set from the last element. If a named argument is |
| not present in the dictionary, it is assigned the default value, or None if a |
| default value is not provided. |
| |
| .. warning:: |
| This behavior will be deprecated in a future release. Please use the |
| kwargs argument instead. |
| |
| .. note:: |
| If a dictionary is the last element of the args tuple, it will be |
| interpreted as containing named arguments. In order to pass a dict as the |
| last non-keyword arg, provide an empty dict as the last element of the args |
| tuple. For example, instead of:: |
| |
| torch.onnx.export( |
| model, |
| ( |
| x, |
| # WRONG: will be interpreted as named arguments |
| {y: z}, |
| ), |
| "test.onnx.pb", |
| ) |
| |
| Write:: |
| |
| torch.onnx.export(model, (x, {y: z}, {}), "test.onnx.pb") |
| |
| f: Path to the output ONNX model file. E.g. "model.onnx". |
| kwargs: Named arguments to the model. |
| export_params: If True, all parameters will |
| be exported. Set this to False if you want to export an untrained model. |
| In this case, the exported model will first take all of its parameters |
| as arguments, with the ordering as specified by ``model.state_dict().values()`` |
| verbose: if True, prints a description of the |
| model being exported to stdout. In addition, the final ONNX graph will include the |
| field ``doc_string``` from the exported model which mentions the source code locations |
| for ``model``. If True, ONNX exporter logging will be turned on. |
| training: |
| * ``TrainingMode.EVAL``: export the model in inference mode. |
| * ``TrainingMode.PRESERVE``: export the model in inference mode if model.training is |
| False and in training mode if model.training is True. |
| * ``TrainingMode.TRAINING``: export the model in training mode. Disables optimizations |
| which might interfere with training. |
| input_names (list of str, default empty list): names to assign to the |
| input nodes of the graph, in order. |
| output_names (list of str, default empty list): names to assign to the |
| output nodes of the graph, in order. |
| operator_export_type (enum, default OperatorExportTypes.ONNX): |
| |
| .. warning:: |
| This option will be deprecated in a future release. Future exported |
| graphs will always use the default opset domain. |
| |
| * ``OperatorExportTypes.ONNX``: Export all ops as regular ONNX ops |
| (in the default opset domain). |
| * ``OperatorExportTypes.ONNX_FALLTHROUGH``: Try to convert all ops |
| to standard ONNX ops in the default opset domain. If unable to do so |
| (e.g. because support has not been added to convert a particular torch op to ONNX), |
| fall back to exporting the op into a custom opset domain without conversion. Applies |
| to `custom ops <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_ |
| as well as ATen ops. For the exported model to be usable, the runtime must support |
| these non-standard ops. |
| * ``OperatorExportTypes.ONNX_ATEN``: All ATen ops (in the TorchScript namespace "aten") |
| are exported as ATen ops (in opset domain "org.pytorch.aten"). |
| `ATen <https://pytorch.org/cppdocs/#aten>`_ is PyTorch's built-in tensor library, so |
| this instructs the runtime to use PyTorch's implementation of these ops. |
| |
| .. warning:: |
| |
| Models exported this way are probably runnable only by Caffe2. |
| |
| This may be useful if the numeric differences in implementations of operators are |
| causing large differences in behavior between PyTorch and Caffe2 (which is more |
| common on untrained models). |
| |
| * ``OperatorExportTypes.ONNX_ATEN_FALLBACK``: Try to export each ATen op |
| (in the TorchScript namespace "aten") as a regular ONNX op. If we are unable to do so |
| (e.g. because support has not been added to convert a particular torch op to ONNX), |
| fall back to exporting an ATen op. See documentation on OperatorExportTypes.ONNX_ATEN for |
| context. |
| For example:: |
| |
| graph(%0 : Float): |
| %3 : int = prim::Constant[value=0]() |
| # conversion unsupported |
| %4 : Float = aten::triu(%0, %3) |
| # conversion supported |
| %5 : Float = aten::mul(%4, %0) |
| return (%5) |
| |
| Assuming ``aten::triu`` is not supported in ONNX, this will be exported as:: |
| |
| graph(%0 : Float): |
| %1 : Long() = onnx::Constant[value={0}]() |
| # not converted |
| %2 : Float = aten::ATen[operator="triu"](%0, %1) |
| # converted |
| %3 : Float = onnx::Mul(%2, %0) |
| return (%3) |
| |
| .. warning:: |
| |
| Models exported this way are probably runnable only by Caffe2. |
| |
| opset_version (int, default 17): The version of the |
| `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_ |
| to target. Must be >= 7 and <= 17. |
| do_constant_folding: Apply the constant-folding optimization. |
| Constant-folding will replace some of the ops that have all constant inputs |
| with pre-computed constant nodes. |
| dynamic_axes: |
| |
| By default the exported model will have the shapes of all input and output tensors |
| set to exactly match those given in ``args``. To specify axes of tensors as |
| dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema: |
| |
| * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or |
| ``output_names``. |
| * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a |
| list, each element is an axis index. |
| |
| For example:: |
| |
| class SumModule(torch.nn.Module): |
| def forward(self, x): |
| return torch.sum(x, dim=1) |
| |
| |
| torch.onnx.export( |
| SumModule(), |
| (torch.ones(2, 2),), |
| "onnx.pb", |
| input_names=["x"], |
| output_names=["sum"], |
| ) |
| |
| Produces:: |
| |
| input { |
| name: "x" |
| ... |
| shape { |
| dim { |
| dim_value: 2 # axis 0 |
| } |
| dim { |
| dim_value: 2 # axis 1 |
| ... |
| output { |
| name: "sum" |
| ... |
| shape { |
| dim { |
| dim_value: 2 # axis 0 |
| ... |
| |
| While:: |
| |
| torch.onnx.export( |
| SumModule(), |
| (torch.ones(2, 2),), |
| "onnx.pb", |
| input_names=["x"], |
| output_names=["sum"], |
| dynamic_axes={ |
| # dict value: manually named axes |
| "x": {0: "my_custom_axis_name"}, |
| # list value: automatic names |
| "sum": [0], |
| }, |
| ) |
| |
| Produces:: |
| |
| input { |
| name: "x" |
| ... |
| shape { |
| dim { |
| dim_param: "my_custom_axis_name" # axis 0 |
| } |
| dim { |
| dim_value: 2 # axis 1 |
| ... |
| output { |
| name: "sum" |
| ... |
| shape { |
| dim { |
| dim_param: "sum_dynamic_axes_1" # axis 0 |
| ... |
| |
| keep_initializers_as_inputs: If True, all the |
| initializers (typically corresponding to parameters) in the |
| exported graph will also be added as inputs to the graph. If False, |
| then initializers are not added as inputs to the graph, and only |
| the non-parameter inputs are added as inputs. |
| This may allow for better optimizations (e.g. constant folding) by |
| backends/runtimes. |
| |
| If True, `deduplicate_initializers` pass will not be executed. This means |
| initializers with duplicated values will not be deduplicated and |
| will be treated as distinct inputs to the graph. This allows different |
| input initializers to be supplied at the runtime following export. |
| |
| If ``opset_version < 9``, initializers MUST be part of graph |
| inputs and this argument will be ignored and the behavior will be |
| equivalent to setting this argument to True. |
| |
| custom_opsets (dict[str, int], default empty dict): A dict with schema: |
| |
| * KEY (str): opset domain name |
| * VALUE (int): opset version |
| |
| If a custom opset is referenced by ``model`` but not mentioned in this dictionary, |
| the opset version is set to 1. Only custom opset domain name and version should be |
| indicated through this argument. |
| |
| export_modules_as_functions: Flag to enable |
| exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the |
| particular types of modules to export as local functions in ONNX. |
| This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because |
| ``opset_version`` < 15 implies IR version < 8, which means no local function support. |
| Module variables will be exported as function attributes. There are two categories of function |
| attributes. |
| |
| 1. Annotated attributes: class variables that have type annotations via |
| `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ |
| will be exported as attributes. |
| Annotated attributes are not used inside the subgraph of ONNX local function because |
| they are not created by PyTorch JIT tracing, but they may be used by consumers |
| to determine whether or not to replace the function with a particular fused kernel. |
| |
| 2. Inferred attributes: variables that are used by operators inside the module. Attribute names |
| will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from |
| python module annotations. Inferred attributes are used inside the subgraph of ONNX local function. |
| |
| * ``False`` (default): export ``nn.Module`` forward calls as fine grained nodes. |
| * ``True``: export all ``nn.Module`` forward calls as local function nodes. |
| * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes, |
| only if the type of the ``nn.Module`` is found in the set. |
| |
| autograd_inlining: Flag used to control whether to inline autograd functions. |
| Refer to https://github.com/pytorch/pytorch/pull/74765 for more details. |
| |
| Raises: |
| :class:`torch.onnx.errors.CheckerError`: If the ONNX checker detects an invalid ONNX graph. |
| :class:`torch.onnx.errors.UnsupportedOperatorError`: If the ONNX graph cannot be exported because it |
| uses an operator that is not supported by the exporter. |
| :class:`torch.onnx.errors.OnnxExporterError`: Other errors that can occur during export. |
| All errors are subclasses of :class:`errors.OnnxExporterError`. |
| """ |
| if operator_export_type != _C_onnx.OperatorExportTypes.ONNX: |
| warnings.warn( |
| "Setting `operator_export_type` to something other than default is deprecated. " |
| "The option will be removed in a future release.", |
| category=FutureWarning, |
| ) |
| if training == _C_onnx.TrainingMode.TRAINING: |
| warnings.warn( |
| "Setting `training` to something other than default is deprecated. " |
| "The option will be removed in a future release. Please set the training mode " |
| "before exporting the model.", |
| category=FutureWarning, |
| ) |
| |
| args = (args,) if isinstance(args, torch.Tensor) else args |
| if kwargs is not None: |
| args = args + (kwargs,) |
| |
| _export( |
| model, |
| args, |
| f, |
| export_params, |
| verbose, |
| training, |
| input_names, |
| output_names, |
| operator_export_type=operator_export_type, |
| opset_version=opset_version, |
| do_constant_folding=do_constant_folding, |
| dynamic_axes=dynamic_axes, |
| keep_initializers_as_inputs=keep_initializers_as_inputs, |
| custom_opsets=custom_opsets, |
| export_modules_as_functions=export_modules_as_functions, |
| autograd_inlining=autograd_inlining, |
| ) |
| |
| return None |
| |
| |
| def _is_constant_tensor_list(node): |
| if node.kind() != "prim::Constant": |
| return False |
| output_type = node.output().type() |
| if output_type.isSubtypeOf(_C.ListType.ofTensors()): |
| return True |
| if output_type.isSubtypeOf(_C.ListType(_C.OptionalType.ofTensor())): |
| return True |
| |
| |
| # ONNX can't handle constants that are lists of tensors, which can |
| # get generated in constant prop. So we split them back into prim::ListConstructs |
| |
| |
| def _split_tensor_list_constants(g, block): |
| for node in block.nodes(): |
| for subblock in node.blocks(): |
| _split_tensor_list_constants(g, subblock) |
| if _is_constant_tensor_list(node): |
| inputs = [] |
| for val in node.output().toIValue(): |
| input = g.insertConstant(val) |
| input.node().moveBefore(node) |
| input.node().copyMetadata(node) |
| inputs.append(input) |
| |
| lc = ( |
| g.create("prim::ListConstruct", inputs) |
| .insertBefore(node) |
| .output() |
| .setType(_C.ListType.ofTensors()) |
| ) |
| lc.node().copyMetadata(node) |
| node.output().replaceAllUsesWith(lc) |
| |
| |
| def _optimize_graph( |
| graph: _C.Graph, |
| operator_export_type: _C_onnx.OperatorExportTypes, |
| _disable_torch_constant_prop: bool = False, |
| fixed_batch_size: bool = False, |
| params_dict=None, |
| dynamic_axes=None, |
| input_names=None, |
| module=None, |
| ): |
| if params_dict is None: |
| params_dict = {} |
| |
| # Inline everything |
| _C._jit_pass_inline(graph) |
| |
| # Remove fork/wait nodes |
| _C._jit_pass_inline_fork_wait(graph) |
| _C._jit_pass_lint(graph) |
| if GLOBALS.autograd_inlining: |
| _C._jit_pass_onnx_autograd_function_process(graph) |
| _C._jit_pass_lower_all_tuples(graph) |
| |
| # we now record some ops like ones/zeros |
| # into a trace where we previously recorded constants. |
| # use constant prop to maintain our current level of onnx support |
| # without implementing symbolics for all of them |
| if _disable_torch_constant_prop is False: |
| _C._jit_pass_constant_propagation(graph) |
| |
| _split_tensor_list_constants(graph, graph) |
| # run dce to eliminate dead parts of the graph that might have been |
| # left behind by things like symbolic_override |
| _C._jit_pass_dce(graph) |
| _C._jit_pass_lint(graph) |
| |
| # CSE should improve perf when Autocast is used with disabled cache |
| # Autocast is disabled due to a limitation on tracer as described at https://github.com/pytorch/pytorch/issues/84092 |
| # Must run before _C._jit_pass_erase_number_types to prevent type substitution |
| if _C._jit_pass_cse(graph): |
| _C._jit_pass_onnx_lint(graph) |
| |
| _C._jit_pass_canonicalize_graph_fuser_ops(graph) |
| _C._jit_pass_lint(graph) |
| _C._jit_pass_peephole(graph, True) |
| _C._jit_pass_fuse_addmm(graph) |
| _C._jit_pass_lint(graph) |
| |
| _C._jit_pass_peephole(graph, True) |
| _C._jit_pass_lower_all_tuples(graph) |
| # in _jit_pass_onnx, symbolic functions are called for each node for conversion. |
| # However, there are nodes that cannot be converted without additional context. |
| # For example, the number of outputs from split (and whether it is static or dynamic) is unknown |
| # until the point where it is unpacked by listUnpack node. |
| # This pass does a preprocess, and prepares the nodes such that enough context can be received |
| # by the symbolic function. |
| _C._jit_pass_onnx_remove_inplace_ops_for_onnx(graph, module) |
| _C._jit_pass_onnx_preprocess(graph) |
| |
| # onnx does not support tuples, so try to remove them |
| _C._jit_pass_lint(graph) |
| |
| # onnx only supports tensors, but 1 / 2 = 0.5 and tensor(1) / tensor(2) = 0 |
| _C._jit_pass_prepare_division_for_onnx(graph) |
| |
| _C._jit_pass_onnx_remove_print(graph) |
| _C._jit_pass_onnx_preprocess_caffe2(graph) |
| |
| symbolic_helper._quantized_ops.clear() |
| # Unpack quantized weights for conv and linear ops and insert into graph. |
| _C._jit_pass_onnx_unpack_quantized_weights(graph, params_dict) |
| # onnx only supports tensors, so we turn all out number types into tensors |
| _C._jit_pass_erase_number_types(graph) |
| if GLOBALS.onnx_shape_inference: |
| input_names = [] if input_names is None else input_names |
| dynamic_axes = {} if dynamic_axes is None else dynamic_axes |
| _C._jit_pass_onnx_set_dynamic_input_shape(graph, dynamic_axes, input_names) |
| _C._jit_pass_onnx_lint(graph) |
| |
| graph = _C._jit_pass_onnx(graph, operator_export_type) |
| _C._jit_pass_onnx_lint(graph) |
| _C._jit_pass_lint(graph) |
| |
| _C._jit_pass_onnx_scalar_type_analysis( |
| graph, True, GLOBALS.export_onnx_opset_version |
| ) |
| _C._jit_pass_lint(graph) |
| |
| _C._jit_pass_onnx_peephole( |
| graph, GLOBALS.export_onnx_opset_version, fixed_batch_size |
| ) |
| _C._jit_pass_lint(graph) |
| |
| # graph is not a valid jit graph anymore because types have been replaced |
| # (e.g. int with Tensor), so it now contains operators that don't actually |
| # exist. We can't run normal dead code elimination because it'd fail trying |
| # to look up if an operator has side effects, but we can run a dead code |
| # elimination variant that doesn't need to look up if an op has side effects. |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) |
| _C._jit_pass_lint(graph) |
| graph = _C._jit_pass_canonicalize(graph) |
| _C._jit_pass_lint(graph) |
| if GLOBALS.onnx_shape_inference: |
| _C._jit_pass_onnx_graph_shape_type_inference( |
| graph, params_dict, GLOBALS.export_onnx_opset_version |
| ) |
| |
| return graph |
| |
| |
| def warn_on_static_input_change(input_states): |
| """Warns that changes to input dictionaries and strings won't take effect in the traced ONNX graph. |
| |
| We accept dictionaries and strings as ONNX inputs, but they should be only for |
| configuration use. we detect here if these inputs are modified, and if so we warn |
| the user that the changes won't take effect in the traced ONNX graph. |
| """ |
| for input, traced_input in zip(input_states[0], input_states[1]): |
| if isinstance(input, dict): |
| if list(input.keys()) != list(traced_input.keys()): |
| warning = ( |
| "We detected that you are modifying a dictionary that is an input to your " |
| "model. " |
| "Note that dictionaries are allowed as inputs in ONNX but they should be " |
| "handled with care. " |
| "Usages of dictionaries is not recommended, and should not be used except " |
| "for configuration use. " |
| "Also note that the order and values of the keys must remain the same. " |
| ) |
| warnings.warn(warning) |
| elif isinstance(input, str): |
| if input != traced_input: |
| warning = ( |
| "The model seems to have string inputs/outputs. " |
| "Note that strings will not appear as inputs/outputs of the ONNX graph. " |
| ) |
| warnings.warn(warning) |
| |
| |
| def _resolve_args_by_export_type(arg_name, arg_value, operator_export_type): |
| """Resolves the arguments that are ignored when export_type != operator_export_type.ONNX.""" |
| return arg_value |
| |
| |
| def _decide_keep_init_as_input( |
| keep_initializers_as_inputs: bool | None, |
| operator_export_type: _C_onnx.OperatorExportTypes, |
| opset_version: int, |
| ): |
| """Decides whether the initializers in the graph should be listed as ONNX graph inputs. |
| |
| This method encapsulates the logic to decide whether the initializers in the graph |
| should be listed as ONNX graph inputs (i.e., whether to choose ONNX IR v3 or v4). |
| If keep_initializers_as_inputs is not specified (None), then we decide whether to keep |
| initializers as graph inputs (val_keep_init_as_ip) based on export type. If export type |
| is ONNX, then do not keep initializers as input (val_keep_init_as_ip=False). For all other |
| export types keep initializers as input (val_keep_init_as_ip=True). |
| If keep_initializers_as_inputs is specified, then respect it. Unless opset version <= 8, |
| in which case it must be ignored because for opset version <= 8, all initializers MUST be |
| part of graph input (only ONNX IR v3 is allowed), i.e. val_keep_init_as_ip=True. |
| |
| Special handling is needed for opset version 8 or lower, because irrespective |
| of user input for keep_initializers_as_inputs, the graph must follow ONNX IR v3 |
| semantics, i.e. all initializers must be listed as ONNX graph input. |
| """ |
| |
| if opset_version < 9: |
| if keep_initializers_as_inputs is False: |
| warnings.warn( |
| "Setting 'keep_initializers_as_inputs=False' for opset version" |
| "8 or lower would lead to an invalid ONNX graph. Therefore, " |
| "'keep_initializers_as_inputs=False' is ignored during export." |
| "Exported model will have initializers as graph inputs (compliant " |
| " to ONNX IR v3)." |
| ) |
| return True # i.e. True == initializers are part of graph input (ONNX IR v3) |
| val_keep_init_as_ip = ( |
| True if keep_initializers_as_inputs is None else keep_initializers_as_inputs |
| ) |
| if ( |
| keep_initializers_as_inputs is None |
| and operator_export_type is _C_onnx.OperatorExportTypes.ONNX |
| ): |
| val_keep_init_as_ip = False |
| return val_keep_init_as_ip |
| |
| |
| def _decide_add_node_names(add_node_names, operator_export_type): |
| return _resolve_args_by_export_type( |
| "add_node_names", add_node_names, operator_export_type |
| ) |
| |
| |
| def _decide_constant_folding(do_constant_folding, operator_export_type, training): |
| do_constant_folding = _resolve_args_by_export_type( |
| "do_constant_folding", do_constant_folding, operator_export_type |
| ) |
| if do_constant_folding and ( |
| training is not None and training is not _C_onnx.TrainingMode.EVAL |
| ): |
| warnings.warn( |
| "It is recommended that constant folding be turned off ('do_constant_folding=False') " |
| "when exporting the model in training-amenable mode, i.e. with 'training=TrainingMode.TRAIN' " |
| "or 'training=TrainingMode.PRESERVE' (when model is in training mode). Otherwise, some " |
| "learnable model parameters may not translate correctly in the exported ONNX model " |
| "because constant folding mutates model parameters. Please consider " |
| "turning off constant folding or setting the training=TrainingMode.EVAL." |
| ) |
| return do_constant_folding |
| |
| |
| def _signature(model) -> inspect.Signature: |
| should_be_callable = getattr(model, "forward", model) |
| if callable(should_be_callable): |
| return inspect.signature(should_be_callable) |
| raise ValueError("model has no forward method and is not callable") |
| |
| |
| def _decide_input_format(model, args): |
| try: |
| sig = _signature(model) |
| except ValueError as e: |
| warnings.warn(f"{e}, skipping _decide_input_format") |
| return args |
| try: |
| ordered_list_keys = list(sig.parameters.keys()) |
| if ordered_list_keys[0] == "self": |
| ordered_list_keys = ordered_list_keys[1:] |
| args_dict: dict = {} |
| if isinstance(args, list): |
| args_list = args |
| elif isinstance(args, tuple): |
| args_list = list(args) |
| else: |
| args_list = [args] |
| if isinstance(args_list[-1], dict): |
| args_dict = args_list[-1] |
| args_list = args_list[:-1] |
| n_nonkeyword = len(args_list) |
| for optional_arg in ordered_list_keys[n_nonkeyword:]: |
| if optional_arg in args_dict: |
| args_list.append(args_dict[optional_arg]) |
| # Check if this arg has a default value |
| else: |
| param = sig.parameters[optional_arg] |
| if param.default != param.empty: |
| args_list.append(param.default) |
| args = args_list if isinstance(args, list) else tuple(args_list) |
| # Cases of models with no input args |
| except IndexError: |
| warnings.warn("No input args, skipping _decide_input_format") |
| except Exception as e: |
| warnings.warn(f"Skipping _decide_input_format\n {e.args[0]}") |
| return args |
| |
| |
| def _from_dynamic_axes_to_dynamic_shapes( |
| model, |
| dynamic_axes: Mapping[str, Mapping[int, str]] |
| | Mapping[str, Sequence[int]] |
| | None = None, |
| input_names: Sequence[str] | None = None, |
| ) -> dict[str, Any] | None: |
| """ |
| |
| dynamic_axes examples: |
| (1) dynamic_axes = {"x": {0: "my_custom_axis_name_1"}, "y": {1: "my_custom_axis_name_2"}} |
| (2) dynamic_axes = {"x": [0], "y": [1]} |
| |
| these will be converted to dynamic_shapes respectively: |
| (1) dynamic_shapes = {"x": {0: Dim("my_custom_axis_name_1")}, "y": {1: Dim("my_custom_axis_name_2")}} |
| (2) dynamic_shapes = {"x": {0: Dim("x_dim_0")}, "y": {1: Dim("y_dim_1")}} # auto-generated dim names |
| |
| """ |
| if dynamic_axes is None: |
| return None |
| |
| if input_names is None: |
| input_names_set = set() |
| else: |
| input_names_set = set(input_names) |
| |
| dynamic_shapes: dict[str, Any | None] = {} |
| for input_name, axes in dynamic_axes.items(): |
| if input_name in input_names_set: |
| raise ValueError( |
| "Assinging new input names is not supported yet. Please use model forward signature " |
| "to specify input names in dynamix_axes." |
| ) |
| if isinstance(axes, dict): |
| dynamic_shapes[input_name] = { |
| k: torch.export.Dim(v) for k, v in axes.items() |
| } |
| elif isinstance(axes, list): |
| dynamic_shapes[input_name] = { |
| k: torch.export.Dim(f"{input_name}_dim_{k}") for k in axes |
| } |
| else: |
| raise TypeError( |
| f"dynamic_axes value must be either a dict or a list, but got {type(axes)}" |
| ) |
| # torch.export.export needs static dim to present in dynamic_shapes |
| # for all input tensors, so we need to add them with None |
| try: |
| sig = _signature(model) |
| except ValueError as e: |
| warnings.warn(f"{e}, skipping auto filling None on static axes...") |
| return dynamic_shapes |
| for input_name in sig.parameters.keys(): |
| if input_name not in dynamic_shapes: |
| dynamic_shapes[input_name] = None |
| return dynamic_shapes |
| |
| |
| def _trace(func, args, operator_export_type, return_outs=False): |
| # Special case for common case of passing a single Tensor |
| if isinstance(args, torch.Tensor): |
| args = (args,) |
| |
| trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph( |
| func, |
| args, |
| strict=False, |
| _force_outplace=False, |
| _return_inputs_states=True, |
| ) |
| warn_on_static_input_change(inputs_states) |
| |
| trace_graph = _optimize_graph(trace_graph, operator_export_type, params_dict={}) |
| if return_outs: |
| return trace_graph, torch_out |
| return trace_graph |
| |
| |
| def _trace_and_get_graph_from_model(model, args): |
| # A basic sanity check: make sure the state_dict keys are the same |
| # before and after running the model. Fail fast! |
| orig_state_dict_keys = torch.jit._unique_state_dict(model).keys() |
| |
| # Disable Autocast cache because it replaces kernel's weight and bias |
| # by (undesired) constants. |
| # No perf impact for when there are reused weights since https://github.com/pytorch/pytorch/pull/85665 |
| prev_autocast_cache_enabled = torch.is_autocast_cache_enabled() |
| torch.set_autocast_cache_enabled(False) |
| trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph( |
| model, |
| args, |
| strict=False, |
| _force_outplace=False, |
| _return_inputs_states=True, |
| ) |
| torch.set_autocast_cache_enabled(prev_autocast_cache_enabled) |
| |
| warn_on_static_input_change(inputs_states) |
| |
| if orig_state_dict_keys != torch.jit._unique_state_dict(model).keys(): |
| raise RuntimeError( |
| "state_dict changed after running the tracer; " |
| "something weird is happening in your model!" |
| ) |
| |
| return trace_graph, torch_out |
| |
| |
| def _get_param_count_list(method_graph, args_params): |
| param_count_list = [] |
| for input_, arg_params_ in zip(method_graph.inputs(), args_params): |
| if "PackedParams" in str(input_.type()): |
| in_vars, _ = torch.jit._flatten(arg_params_) |
| param_count_list.append(len(in_vars)) |
| else: |
| param_count_list.append(arg_params_ is not None) |
| |
| return param_count_list |
| |
| |
| def _check_flatten_did_not_remove(original, jit_flattened): |
| """torch.jit._flatten removes None. Check if it did so in this case.""" |
| |
| def flatten(x): |
| if isinstance(x, (list, tuple)): |
| for inner in x: |
| yield from flatten(inner) |
| elif isinstance(x, dict): |
| for inner in x.values(): |
| yield from flatten(inner) |
| else: |
| yield x |
| |
| flattened_with_none = list(flatten(original)) |
| num_none = len(flattened_with_none) - len(jit_flattened) |
| assert num_none >= 0 |
| if num_none: |
| raise ValueError( |
| f"args contained {num_none} None's after flattening. " |
| "When exporting a ScriptModule or ScriptFunction, no args may " |
| "be None because that breaks type propagation." |
| ) |
| |
| |
| def _create_jit_graph( |
| model: torch.nn.Module | torch.jit.ScriptFunction, args: Sequence[Any] |
| ) -> tuple[_C.Graph, list[_C.IValue], Any | None, _C.ScriptModule | None]: |
| if isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)): |
| flattened_args = tuple(torch.jit._flatten(tuple(args))[0]) |
| _check_flatten_did_not_remove(args, flattened_args) |
| torch_out = None |
| |
| if isinstance(model, torch.jit.ScriptModule): |
| try: |
| graph = model.forward.graph # type: ignore[attr-defined] |
| except AttributeError as e: |
| raise RuntimeError("'forward' method must be a script method") from e |
| _C._jit_pass_onnx_function_substitution(graph) |
| freezed_module = _C._freeze_module( |
| cast(_C.ScriptModule, model._c), preserveParameters=True |
| ) |
| module, params = _C._jit_onnx_list_model_parameters(freezed_module) |
| method_graph = module._get_method("forward").graph |
| args_params = tuple(args) + tuple(params) |
| param_count_list = _get_param_count_list(method_graph, args_params) |
| in_vars, _ = torch.jit._flatten(args_params) |
| graph = _C._propagate_and_assign_input_shapes( |
| method_graph, tuple(in_vars), param_count_list, False, False |
| ) |
| return graph, params, torch_out, module |
| |
| # torch.jit.ScriptFunction |
| params = [] |
| graph = model.graph |
| _C._jit_pass_onnx_function_substitution(graph) |
| param_count_list = _get_param_count_list(graph, args) |
| graph = _C._propagate_and_assign_input_shapes( |
| graph, flattened_args, param_count_list, False, False |
| ) |
| return graph, params, torch_out, None |
| |
| graph, torch_out = _trace_and_get_graph_from_model(model, args) |
| _C._jit_pass_onnx_lint(graph) |
| state_dict = torch.jit._unique_state_dict(model) |
| params = list(state_dict.values()) |
| graph_inputs = list(graph.inputs()) |
| user_input_num = len(graph_inputs) - len(state_dict) |
| param_names = list(state_dict.keys()) |
| for i, inp in enumerate(graph_inputs): |
| if i >= user_input_num: |
| inp.setDebugName(param_names[i - user_input_num]) |
| _C._jit_pass_onnx_function_substitution(graph) |
| return graph, params, torch_out, None |
| |
| |
| def _get_named_param_dict(graph, params): |
| input_and_param_names = [val.debugName() for val in graph.inputs()] |
| param_names = input_and_param_names[len(input_and_param_names) - len(params) :] |
| _params_dict = dict(zip(param_names, params)) |
| return _params_dict |
| |
| |
| def _get_example_outputs(model, args): |
| input_args = copy.deepcopy(args) |
| input_kwargs = {} |
| if input_args and isinstance(input_args[-1], dict): |
| input_kwargs = input_args[-1] |
| input_args = input_args[:-1] |
| |
| example_outputs = model(*input_args, **input_kwargs) |
| if isinstance(example_outputs, list): |
| example_outputs = [example_outputs] |
| elif not isinstance(example_outputs, tuple): |
| example_outputs = (example_outputs,) |
| |
| return example_outputs |
| |
| |
| _qtype_vtype_map = { |
| torch.quint8: torch.uint8, |
| torch.qint8: torch.int8, |
| torch.qint32: torch.int32, |
| torch.quint4x2: torch.int8, |
| } |
| |
| |
| def unpack_quantized_tensor(value, cast_onnx_accepted=True): |
| if isinstance(value, torch.Tensor) and value.dtype in _qtype_vtype_map: |
| q_value_dequantize = value.dequantize() |
| q_scale = ( |
| torch.tensor(value.q_scale(), dtype=torch.double) |
| if cast_onnx_accepted |
| else torch.tensor(value.q_scale(), dtype=torch.float32) |
| ) |
| q_zero_point = ( |
| torch.tensor(value.q_zero_point(), dtype=torch.int64) |
| if cast_onnx_accepted |
| else torch.tensor(value.q_zero_point(), dtype=_qtype_vtype_map[value.dtype]) |
| ) |
| q_value = q_value_dequantize / q_scale + q_zero_point |
| q_value = q_value.to(dtype=_qtype_vtype_map[value.dtype]) |
| return q_value, q_scale, q_zero_point |
| else: |
| return (value,) |
| |
| |
| def _pre_trace_quant_model(model, args): |
| r"""Returns `torch.jit.trace(model, args)` if model is quantized. Otherwise do nothing and return |
| original model. |
| |
| This is due to https://github.com/pytorch/pytorch/issues/75761. |
| """ |
| if any( |
| hasattr(m, "_packed_params") for m in getattr(model, "modules", list)() |
| ) or any(getattr(arg, "is_quantized", False) for arg in args): |
| return torch.jit.trace(model, args) |
| return model |
| |
| |
| def _model_to_graph( |
| model, |
| args, |
| verbose=False, |
| input_names=None, |
| output_names=None, |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, |
| do_constant_folding=True, |
| _disable_torch_constant_prop=False, |
| fixed_batch_size=False, |
| training=_C_onnx.TrainingMode.EVAL, |
| dynamic_axes=None, |
| ) -> tuple[ |
| _C.Graph, |
| dict[str, torch.Tensor], |
| torch.Tensor |
| | tuple[torch.Tensor, ...] |
| | list[torch.Tensor] |
| | dict[str, torch.Tensor] |
| | Any |
| | None, |
| ]: |
| """Converts model into an ONNX graph. |
| |
| Returns: |
| graph: A TorchScript IR Graph with ONNX nodes. |
| params_dict: Dict from input param name to param value. |
| torch_out: The output tensors resulting from the trace of ``model``. |
| If ``model`` is a :class:`torch.jit.ScriptModule` or :class:`torch.jit.ScriptFunction`, |
| this will be None, since we are not doing any tracing. |
| """ |
| # TODO: can we simplify this to always return a tuple of Tensor or None? |
| |
| # Special case for common case of passing a single Tensor |
| if isinstance(args, (torch.Tensor, int, float, bool)): |
| args = (args,) |
| |
| model = _pre_trace_quant_model(model, args) |
| graph, params, torch_out, module = _create_jit_graph(model, args) |
| params_dict = _get_named_param_dict(graph, params) |
| |
| try: |
| graph = _optimize_graph( |
| graph, |
| operator_export_type, |
| _disable_torch_constant_prop=_disable_torch_constant_prop, |
| fixed_batch_size=fixed_batch_size, |
| params_dict=params_dict, |
| dynamic_axes=dynamic_axes, |
| input_names=input_names, |
| module=module, |
| ) |
| except Exception as e: |
| torch.onnx.log("Torch IR graph at exception: ", graph) |
| raise |
| |
| is_script = isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)) |
| if is_script: |
| example_outputs = _get_example_outputs(model, args) |
| example_outputs_final = () |
| for example_output in example_outputs: |
| example_outputs_final += unpack_quantized_tensor(example_output) |
| out_vars, desc = torch.jit._flatten(example_outputs_final) |
| _C._jit_pass_onnx_assign_output_shape( |
| graph, |
| out_vars, |
| desc, |
| GLOBALS.onnx_shape_inference, |
| is_script, |
| GLOBALS.export_onnx_opset_version, |
| ) |
| |
| # NB: ONNX requires complete information about output types, which might be |
| # erased by some optimizations, so we need to set it explicitly again. |
| else: |
| if not isinstance(torch_out, (list, tuple)): |
| output_wrapped = [torch_out] |
| else: |
| output_wrapped = torch_out # type: ignore[assignment] |
| |
| output_tensors, out_desc = torch.jit._flatten(tuple(output_wrapped)) |
| # assign_output_shape pass is not compatible with quantized outputs. |
| # Quantized outputs are flattened to 3 values in ONNX, while packed as |
| # single value in PyTorch. |
| if not any(getattr(out, "is_quantized", False) for out in output_tensors): |
| _C._jit_pass_onnx_assign_output_shape( |
| graph, |
| output_tensors, |
| out_desc, |
| GLOBALS.onnx_shape_inference, |
| is_script, |
| GLOBALS.export_onnx_opset_version, |
| ) |
| |
| _set_input_and_output_names(graph, input_names, output_names) |
| params_dict = _get_named_param_dict(graph, params) |
| |
| if ( |
| do_constant_folding |
| and GLOBALS.export_onnx_opset_version |
| >= _constants.ONNX_CONSTANT_FOLDING_MIN_OPSET |
| ): |
| if training is None or training == _C_onnx.TrainingMode.EVAL: |
| params_dict = _C._jit_pass_onnx_eval_peephole(graph, params_dict) |
| |
| params_dict = _C._jit_pass_onnx_constant_fold( |
| graph, params_dict, GLOBALS.export_onnx_opset_version |
| ) |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) |
| |
| if GLOBALS.onnx_shape_inference: |
| _C._jit_pass_onnx_graph_shape_type_inference( |
| graph, params_dict, GLOBALS.export_onnx_opset_version |
| ) |
| |
| params_dict = _C._jit_pass_onnx_eliminate_unused_items(graph, params_dict) |
| |
| # For ONNX opset < 9, constants only have three data types: float16, float, double. |
| # In this pass transform constants of other data types to float/double + cast operator. |
| if GLOBALS.export_onnx_opset_version < 9: |
| _C._jit_pass_onnx_cast_all_constant_to_floating(graph) |
| |
| params_dict = _C._jit_pass_filter_non_tensor_arguments(params_dict) |
| _C._jit_decay_packed_param_input_types(graph) |
| |
| # If output names lack a proper name and are identified only by their unique |
| # give them a legible name for debugging purposes |
| _apply_friendly_debug_names(graph, params_dict) |
| |
| return graph, params_dict, torch_out |
| |
| |
| @torch._disable_dynamo |
| @_deprecation.deprecated("2.5", "the future", "use onnx.printer.to_text() instead") |
| def export_to_pretty_string( |
| model, |
| args, |
| export_params=True, |
| verbose=False, |
| training=_C_onnx.TrainingMode.EVAL, |
| input_names=None, |
| output_names=None, |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, |
| export_type=None, |
| google_printer=False, |
| opset_version=None, |
| keep_initializers_as_inputs=None, |
| custom_opsets=None, |
| add_node_names=True, |
| do_constant_folding=True, |
| dynamic_axes=None, |
| ): |
| """Similar to :func:`export`, but returns a text representation of the ONNX model. |
| |
| Only differences in args listed below. All other args are the same |
| as :func:`export`. |
| |
| Args: |
| add_node_names (bool, default True): Whether or not to set |
| NodeProto.name. This makes no difference unless |
| ``google_printer=True``. |
| google_printer (bool, default False): If False, will return a custom, |
| compact representation of the model. If True will return the |
| protobuf's `Message::DebugString()`, which is more verbose. |
| |
| Returns: |
| A UTF-8 str containing a human-readable representation of the ONNX model. |
| """ |
| if opset_version is None: |
| opset_version = _constants.ONNX_DEFAULT_OPSET |
| if custom_opsets is None: |
| custom_opsets = {} |
| GLOBALS.export_onnx_opset_version = opset_version |
| GLOBALS.operator_export_type = operator_export_type |
| |
| with exporter_context(model, training, verbose): |
| val_keep_init_as_ip = _decide_keep_init_as_input( |
| keep_initializers_as_inputs, operator_export_type, opset_version |
| ) |
| val_add_node_names = _decide_add_node_names( |
| add_node_names, operator_export_type |
| ) |
| val_do_constant_folding = _decide_constant_folding( |
| do_constant_folding, operator_export_type, training |
| ) |
| args = _decide_input_format(model, args) |
| graph, params_dict, torch_out = _model_to_graph( |
| model, |
| args, |
| verbose, |
| input_names, |
| output_names, |
| operator_export_type, |
| val_do_constant_folding, |
| training=training, |
| dynamic_axes=dynamic_axes, |
| ) |
| |
| return graph._pretty_print_onnx( # type: ignore[attr-defined] |
| params_dict, |
| opset_version, |
| False, |
| operator_export_type, |
| google_printer, |
| val_keep_init_as_ip, |
| custom_opsets, |
| val_add_node_names, |
| ) |
| |
| |
| @_deprecation.deprecated("2.5", "the future", "avoid using this function") |
| def unconvertible_ops( |
| model, |
| args, |
| training: _C_onnx.TrainingMode = _C_onnx.TrainingMode.EVAL, |
| opset_version: int | None = None, |
| ) -> tuple[_C.Graph, list[str]]: |
| """Returns an approximated list of all ops that are yet supported by :mod:`torch.onnx`. |
| |
| The list is approximated because some ops may be removed during the conversion |
| process and don't need to be converted. Some other ops may have partial support |
| that will fail conversion with particular inputs. Please open a Github Issue |
| for op support requests. |
| |
| Args: |
| model: Same as the `model` parameter in :func:`torch.onnx.export`. |
| args: Same as the `args` parameter in :func:`torch.onnx.export`. |
| training: Same as the `training` parameter in :func:`torch.onnx.export`. |
| opset_version: Same as the `opset_version` parameter in :func:`torch.onnx.export`. |
| |
| Returns: |
| The JIT graph and a list of unconvertible ops in the format of "domain::op". |
| """ |
| |
| opset_version = opset_version or _constants.ONNX_DEFAULT_OPSET |
| GLOBALS.export_onnx_opset_version = opset_version |
| |
| try: |
| with exporter_context(model, training, verbose=False): |
| # Create a mostly clean JIT graph that contains the plain aten and |
| # other ops we can check with the symbolic registry. |
| # NOTE: We don't want to actually convert any ops to ONNX or run any |
| # symbolic functions because there is a higher chance that a pass |
| # fails or an unconvertible op messes up the graph during ONNX conversion. |
| # This way we can always generate a list just by looking at the names |
| # of the ops in the graph. |
| args = _decide_input_format(model, args) |
| model = _pre_trace_quant_model(model, args) |
| graph, _, _, module = _create_jit_graph(model, args) |
| _C._jit_pass_inline(graph) |
| _C._jit_pass_onnx_remove_inplace_ops_for_onnx(graph, module) |
| _C._jit_pass_erase_number_types(graph) |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) |
| except Exception as e: |
| raise errors.OnnxExporterError( |
| "Failed to discover unconvertible ops because of errors during the JIT graph " |
| "generation process." |
| ) from e |
| |
| unsupported_ops = [] |
| for node in graph.nodes(): |
| domain_op = node.kind() |
| if domain_op.startswith(("onnx::", "prim::")): |
| # We consider onnx and prim ops as supported ops, even though some "prim" |
| # ops are not implemented as symbolic functions, because they may be |
| # eliminated in the conversion passes. Users may still see errors caused |
| # by prim ops even though they don't show up in the list. |
| continue |
| if not registration.registry.is_registered_op( |
| domain_op.rstrip("_"), opset_version |
| ): |
| # We consider all registered ops supported, even though some of them are |
| # only partially supported, because there is not yet a good way to check |
| # if an op is fully supported. |
| # TODO(justinchuby): Create a way to check if an op is fully supported. |
| unsupported_ops.append(domain_op) |
| return graph, unsupported_ops |
| |
| |
| def _setup_trace_module_map( |
| model: torch.nn.Module | torch.jit.ScriptModule, |
| export_modules_as_functions: bool | Collection[type[torch.nn.Module]], |
| ) -> set[str]: |
| def __register_attribute_hook(): |
| attr_name = "_onnx_attrs" |
| |
| def _track_module_attributes_forward_pre_hook(module, input): |
| setattr(module, attr_name, _get_module_attributes(module)) |
| |
| def _track_module_attributes_forward_hook(module, input, output): |
| tracing_state = _C._get_tracing_state() |
| if not tracing_state: |
| return |
| |
| graph = tracing_state.graph() |
| onnx_attrs = {} |
| if hasattr(module, attr_name): |
| onnx_attrs = getattr(module, attr_name) |
| delattr(module, attr_name) |
| |
| _C._jit_pass_onnx_track_scope_attributes(graph, onnx_attrs) |
| |
| for m in model.modules(): |
| m.register_forward_hook(_track_module_attributes_forward_hook) |
| m.register_forward_pre_hook(_track_module_attributes_forward_pre_hook) |
| |
| def _unqualified_variable_name(qualified_name: str) -> str: |
| """ |
| Parse qualified variable name and return the unqualified version. |
| |
| Pure numeric atoms are considered inadequate, so this function will look past them, |
| and start from the first non-numeric atom. |
| |
| Example: |
| >>> _unqualified_variable_name("__main__.Foo.bar") |
| 'bar' |
| >>> _unqualified_variable_name("__main__.Foo.bar.0") |
| 'bar.0' |
| """ |
| name_atoms = qualified_name.split(".") |
| for i, atom in reversed(list(enumerate(name_atoms))): |
| if not atom.isnumeric(): |
| return ".".join(name_atoms[i:]) |
| return qualified_name |
| |
| trace_module_map = { |
| _m: torch._C._jit_onnx_create_full_scope_name( |
| torch.typename(type(_m)), _unqualified_variable_name(_n) |
| ) |
| for _n, _m in model.named_modules() |
| } |
| torch.jit._trace._trace_module_map = trace_module_map |
| if isinstance(export_modules_as_functions, bool) and export_modules_as_functions: |
| module_typenames = {torch.typename(type(module)) for module in trace_module_map} |
| elif isinstance(export_modules_as_functions, set) and export_modules_as_functions: |
| |
| def _find_typename(v): |
| if isinstance(v, type): |
| return torch.typename(v) |
| else: |
| raise RuntimeError( |
| "Only type of the `nn.Module` should be " |
| "passed in the set for argument `export_modules_as_functions`. " |
| f"Got `{type(v).__name__}`." |
| ) |
| |
| module_typenames = {_find_typename(v) for v in export_modules_as_functions} |
| else: |
| module_typenames = set() |
| |
| if module_typenames: |
| __register_attribute_hook() |
| |
| return module_typenames |
| |
| |
| def _reset_trace_module_map(): |
| torch.jit._trace._trace_module_map = None |
| _C._jit_pass_onnx_clear_scope_records() |
| |
| |
| def _get_module_attributes(module): |
| annotations = typing.get_type_hints(type(module)) |
| base_m_annotations = typing.get_type_hints(torch.nn.Module) |
| [annotations.pop(k, None) for k in base_m_annotations] |
| # Check whether module attributes can be accessed. Some classes |
| # define attributes but don't provide access to them in their |
| # constructor. |
| # |
| # For example, torch.nn.Embedding has the `freeze` variable and its |
| # type specified in the class but the attribute is not created in the |
| # constructor. In other words, there is no `self.freeze = <True | False>` |
| # in the constructor. |
| # |
| # Reference: https://github.com/pytorch/pytorch/blob/92de1d322223fb5584e384971b32c46b93bc2f4b/torch/nn/modules/sparse.py#L120 |
| attrs = {} |
| for k in annotations: |
| try: |
| attrs[k] = getattr(module, k) |
| except AttributeError: |
| torch.onnx.log(f"Skipping module attribute '{k}'") |
| continue |
| return attrs |
| |
| |
| def _export( |
| model, |
| args, |
| f, |
| export_params=True, |
| verbose=False, |
| training=_C_onnx.TrainingMode.EVAL, |
| input_names=None, |
| output_names=None, |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, |
| export_type=None, |
| opset_version=None, |
| do_constant_folding=True, |
| dynamic_axes=None, |
| keep_initializers_as_inputs=None, |
| fixed_batch_size=False, |
| custom_opsets=None, |
| add_node_names=True, |
| onnx_shape_inference=True, |
| export_modules_as_functions: Any = False, |
| autograd_inlining=True, |
| ): |
| assert GLOBALS.in_onnx_export is False |
| |
| if export_type is None: |
| export_type = _exporter_states.ExportTypes.PROTOBUF_FILE |
| |
| if isinstance(model, torch.nn.DataParallel): |
| raise ValueError( |
| "torch.nn.DataParallel is not supported by ONNX " |
| "exporter, please use 'attribute' module to " |
| "unwrap model from torch.nn.DataParallel. Try " |
| "torch.onnx.export(model.module, ...)" |
| ) |
| |
| GLOBALS.onnx_shape_inference = onnx_shape_inference |
| |
| if opset_version is None: |
| opset_version = _constants.ONNX_DEFAULT_OPSET |
| |
| # torch.onnx.export does not support opset versions >=18 |
| if opset_version > _constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET: |
| # We do not want to fail because we should still allow users to create |
| # custom symbolic functions for opset>17 |
| warnings.warn( |
| f"Exporting to ONNX opset version {opset_version} is not supported. " |
| f"by 'torch.onnx.export()'. " |
| f"The highest opset version supported is {_constants.ONNX_TORCHSCRIPT_EXPORTER_MAX_OPSET}. " |
| f"To use a newer opset version, consider 'torch.onnx.export(..., dynamo=True)'. ", |
| category=errors.OnnxExporterWarning, |
| ) |
| |
| if export_modules_as_functions and opset_version < 15: |
| raise ValueError( |
| "`export_modules_as_functions` is not supported for `opset_version` < 15." |
| "This is because `opset_version` < 15 implies IR version < 8, which means " |
| "no local function support. " |
| ) |
| if not operator_export_type: |
| operator_export_type = _C_onnx.OperatorExportTypes.ONNX |
| |
| # By default, training=TrainingMode.EVAL, |
| # which is good because running a model in training mode could result in |
| # internal buffers getting updated, dropout getting applied, etc. |
| # If you really know what you're doing, you can turn |
| # training=TrainingMode.TRAINING or training=TrainingMode.PRESERVE, |
| # (to preserve whatever the original training mode was.) |
| GLOBALS.export_onnx_opset_version = opset_version |
| GLOBALS.operator_export_type = operator_export_type |
| |
| try: |
| GLOBALS.in_onnx_export = True |
| _autograd_inlining_previous = GLOBALS.autograd_inlining |
| GLOBALS.autograd_inlining = autograd_inlining |
| |
| module_typenames_to_export_as_functions: set[str] = set() |
| if isinstance(model, (torch.nn.Module, torch.jit.ScriptModule)): |
| module_typenames_to_export_as_functions = _setup_trace_module_map( |
| model, export_modules_as_functions |
| ) |
| |
| with exporter_context(model, training, verbose): |
| val_keep_init_as_ip = _decide_keep_init_as_input( |
| keep_initializers_as_inputs, |
| operator_export_type, |
| opset_version, |
| ) |
| val_add_node_names = _decide_add_node_names( |
| add_node_names, operator_export_type |
| ) |
| val_do_constant_folding = _decide_constant_folding( |
| do_constant_folding, operator_export_type, training |
| ) |
| # Normally f can be a file-like object, but for large models, the external data format requires a |
| # valid `model_file_location`. Code in export.cpp will enforce this. |
| if isinstance(f, str): |
| model_file_location = f |
| else: |
| model_file_location = "" |
| args = _decide_input_format(model, args) |
| if dynamic_axes is None: |
| dynamic_axes = {} |
| _validate_dynamic_axes(dynamic_axes, model, input_names, output_names) |
| |
| graph, params_dict, torch_out = _model_to_graph( |
| model, |
| args, |
| verbose, |
| input_names, |
| output_names, |
| operator_export_type, |
| val_do_constant_folding, |
| fixed_batch_size=fixed_batch_size, |
| training=training, |
| dynamic_axes=dynamic_axes, |
| ) |
| |
| # TODO: Don't allocate a in-memory string for the protobuf |
| defer_weight_export = ( |
| export_type is not _exporter_states.ExportTypes.PROTOBUF_FILE |
| ) |
| if custom_opsets is None: |
| custom_opsets = {} |
| |
| _C._jit_pass_dce_allow_deleting_nodes_with_side_effects(graph) |
| node_attr_to_name = {} # type: ignore[var-annotated] |
| if module_typenames_to_export_as_functions: |
| # NOTE: cannot call DCE after this pass. DCE will remove function definition nodes. |
| node_attr_to_name = _C._jit_pass_onnx_function_extraction( |
| graph, |
| module_typenames_to_export_as_functions, |
| list(params_dict.keys()), |
| ) |
| |
| if keep_initializers_as_inputs is not True: |
| params_dict = _C._jit_pass_onnx_deduplicate_initializers( # type: ignore[assignment] |
| graph, |
| params_dict, # type: ignore[arg-type] |
| getattr(model, "training", False), # type: ignore[arg-type] |
| ) |
| _C._jit_pass_onnx_assign_scoped_names_for_node_and_value(graph) |
| if export_params: |
| ( |
| proto, |
| export_map, |
| val_use_external_data_format, |
| node_names, |
| ) = graph._export_onnx( # type: ignore[attr-defined] |
| params_dict, |
| opset_version, |
| dynamic_axes, |
| defer_weight_export, |
| operator_export_type, |
| not verbose, |
| val_keep_init_as_ip, |
| custom_opsets, |
| val_add_node_names, |
| model_file_location, |
| node_attr_to_name, |
| ) |
| else: |
| ( |
| proto, |
| export_map, |
| val_use_external_data_format, |
| node_names, |
| ) = graph._export_onnx( # type: ignore[attr-defined] |
| {}, |
| opset_version, |
| dynamic_axes, |
| False, |
| operator_export_type, |
| not verbose, |
| val_keep_init_as_ip, |
| custom_opsets, |
| val_add_node_names, |
| model_file_location, |
| node_attr_to_name, |
| ) |
| # insert function_proto into model_proto. |
| proto = onnx_proto_utils._add_onnxscript_fn( |
| proto, |
| custom_opsets, |
| ) |
| if verbose: |
| torch.onnx.log("Exported graph: ", graph) |
| onnx_proto_utils._export_file(proto, f, export_type, export_map) |
| finally: |
| assert GLOBALS.in_onnx_export |
| GLOBALS.in_onnx_export = False |
| GLOBALS.autograd_inlining = _autograd_inlining_previous |
| _reset_trace_module_map() |
| |
| return torch_out |
| |
| |
| def _apply_friendly_debug_names(graph, params): |
| for n in graph.nodes(): |
| for v in n.inputs(): |
| old_name = v.debugName() |
| if old_name != str(v.unique()): |
| continue |
| new_name = f"{n.kind()}_{v.unique()}" |
| v.setDebugName(new_name) |
| if old_name in params: |
| params[new_name] = params.pop(old_name) |
| |
| |
| def _set_input_and_output_names(graph, input_names, output_names): |
| def set_names(node_list, name_list, descriptor): |
| if name_list is None: |
| return |
| if len(name_list) > len(node_list): |
| raise RuntimeError( |
| "number of %s names provided (%d) exceeded number of %ss (%d)" |
| % (descriptor, len(name_list), descriptor, len(node_list)) |
| ) |
| |
| # Mark if the output node DebugName is set before. |
| output_node_set = set() |
| for i, (name, node) in enumerate(zip(name_list, node_list)): |
| # Duplicated output node, insert onnx::Identity to avoid setting the same DebugName after setDebugName(). |
| if descriptor == "output": |
| if node in output_node_set: |
| identity_node = graph.create("onnx::Identity") |
| identity_node.insertAfter(node.node()) |
| identity_node.addInput(node) |
| identity_node.output().setType(node.type()) |
| graph.return_node().replaceInput(i, identity_node.output()) |
| node = identity_node.output() |
| output_node_set.add(node) |
| |
| if node.debugName() != name: |
| node.setDebugName(name) |
| |
| set_names(list(graph.inputs()), input_names, "input") |
| set_names(list(graph.outputs()), output_names, "output") |
| |
| |
| def _run_symbolic_method(g, op_name, symbolic_fn, args): |
| r""" |
| This trampoline function gets invoked for every symbolic method |
| call from C++. |
| """ |
| try: |
| graph_context = jit_utils.GraphContext( |
| graph=g, |
| block=g.block(), |
| opset=GLOBALS.export_onnx_opset_version, |
| original_node=None, # type: ignore[arg-type] |
| params_dict=_params_dict, |
| env={}, |
| values_in_env=set(), |
| new_nodes=[], |
| ) |
| return symbolic_fn(graph_context, *args) |
| except TypeError as e: |
| # Handle the specific case where we didn't successfully dispatch |
| # to symbolic_fn. Otherwise, the backtrace will have the clues |
| # you need. |
| e.args = (f"{e.args[0]} (occurred when translating {op_name})",) |
| raise |
| |
| |
| def _add_block(node: _C.Node) -> _C.Block: |
| return node.addBlock() |
| |
| |
| def _add_input_to_block(block: _C.Block): |
| return block.addInputToBlock() # type: ignore[attr-defined] |
| |
| |
| def _add_output_to_block(block: _C.Block, value: _C.Value) -> int: |
| return block.registerOutput(value) |
| |
| |
| def _should_aten_fallback( |
| name: str, opset_version: int, operator_export_type: _C_onnx.OperatorExportTypes |
| ): |
| # For all builds, if domain=="aten" and operator_export_type==ONNX_ATEN, |
| # an aten::ATen operator is created regardless of symbolics existence |
| |
| is_exportable_aten_op = registration.registry.is_registered_op(name, opset_version) |
| is_onnx_aten_export = operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN |
| is_aten_fallback_export = ( |
| operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK |
| ) |
| |
| if not name.startswith("aten::"): |
| return False |
| |
| if is_onnx_aten_export or (is_aten_fallback_export and not is_exportable_aten_op): |
| return True |
| |
| return False |
| |
| |
| def _get_aten_op_overload_name(n: _C.Node) -> str: |
| # Returns `overload_name` attribute to ATen ops on non-Caffe2 builds |
| schema = n.schema() |
| if not schema.startswith("aten::"): |
| return "" |
| return _C.parse_schema(schema).overload_name |
| |
| |
| def _run_symbolic_function( |
| graph: _C.Graph, |
| block: _C.Block, |
| node: _C.Node, |
| inputs: Any, |
| env: dict[_C.Value, _C.Value], |
| values_in_env: set[_C.Value], |
| new_nodes: list[_C.Node], |
| operator_export_type=_C_onnx.OperatorExportTypes.ONNX, |
| ) -> _C.Value | Sequence[_C.Value | None] | None: |
| """Runs a symbolic function. |
| |
| The function is used in C++ to export the node to ONNX. |
| |
| Returns: |
| A single or a tuple of Values. |
| None when the node gets cloned as is into the new graph. |
| """ |
| |
| opset_version = GLOBALS.export_onnx_opset_version |
| |
| # See Note [Export inplace] |
| node_kind = node.kind() |
| if node_kind.endswith("_"): |
| # Treat relu_ -> relu; add_ -> add etc. |
| ns_op_name = node_kind[:-1] |
| else: |
| ns_op_name = node_kind |
| |
| namespace, op_name = jit_utils.parse_node_kind(ns_op_name) |
| |
| graph_context = jit_utils.GraphContext( |
| graph=graph, |
| block=block, |
| opset=opset_version, |
| original_node=node, |
| params_dict=_params_dict, |
| env=env, |
| values_in_env=values_in_env, |
| new_nodes=new_nodes, |
| ) |
| |
| # Direct ATen export requested |
| if _should_aten_fallback(ns_op_name, opset_version, operator_export_type): |
| attrs = { |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) |
| for k in node.attributeNames() |
| } |
| outputs = node.outputsSize() |
| attrs["outputs"] = outputs |
| return graph_context.aten_op( |
| op_name, |
| *inputs, |
| overload_name=_get_aten_op_overload_name(node), |
| **attrs, |
| ) |
| |
| try: |
| domain = namespace |
| symbolic_function_name = f"{domain}::{op_name}" |
| |
| symbolic_function_group = registration.registry.get_function_group( |
| symbolic_function_name |
| ) |
| if symbolic_function_group is not None: |
| symbolic_fn = symbolic_function_group.get(opset_version) |
| if symbolic_fn is not None: |
| # TODO Wrap almost identical attrs assignment or comment the difference. |
| attrs = { |
| k: symbolic_helper._node_get(node, k) for k in node.attributeNames() |
| } |
| return symbolic_fn(graph_context, *inputs, **attrs) |
| |
| attrs = { |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) |
| for k in node.attributeNames() |
| } |
| if namespace == "onnx": |
| # Clone node to trigger ONNX shape inference |
| return graph_context.op( |
| op_name, *inputs, **attrs, outputs=node.outputsSize() |
| ) # type: ignore[attr-defined] |
| |
| raise errors.UnsupportedOperatorError( |
| symbolic_function_name, |
| opset_version, |
| symbolic_function_group.get_min_supported() |
| if symbolic_function_group |
| else None, |
| ) |
| |
| except RuntimeError: |
| if operator_export_type == _C_onnx.OperatorExportTypes.ONNX_FALLTHROUGH: |
| return None |
| elif operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK: |
| # Emit ATen op for non-Caffe2 builds when `operator_export_type==ONNX_ATEN_FALLBACK` |
| attrs = { |
| k + "_" + node.kindOf(k)[0]: symbolic_helper._node_get(node, k) |
| for k in node.attributeNames() |
| } |
| return graph_context.aten_op( |
| op_name, |
| *inputs, |
| overload_name=_get_aten_op_overload_name(node), |
| **attrs, |
| ) |
| raise |
| except TypeError as e: |
| # Handle the specific case where we didn't successfully dispatch. |
| # Otherwise, the backtrace will have the clues you need. |
| e.args = (f"{e.args[0]} \n(Occurred when translating {op_name}).",) |
| raise |
| |
| |
| def _verify_custom_op_name(symbolic_name: str): |
| if not re.match(r"^[a-zA-Z0-9-_]+::[a-zA-Z-_]+[a-zA-Z0-9-_]*$", symbolic_name): |
| raise errors.OnnxExporterError( |
| f"Failed to register operator {symbolic_name}. " |
| "The symbolic name must match the format domain::name, " |
| "and should start with a letter and contain only " |
| "alphanumerical characters" |
| ) |
| |
| ns, _ = jit_utils.parse_node_kind(symbolic_name) |
| if ns == "onnx": |
| raise ValueError( |
| f"Failed to register operator {symbolic_name}. {ns} domain cannot be modified." |
| ) |
| |
| |
| def register_custom_op_symbolic( |
| symbolic_name: str, |
| symbolic_fn: Callable, |
| opset_version: int, |
| ): |
| """Registers a symbolic function for a custom operator. |
| |
| When the user registers symbolic for custom/contrib ops, |
| it is highly recommended to add shape inference for that operator via setType API, |
| otherwise the exported graph may have incorrect shape inference in some extreme cases. |
| An example of setType is `test_aten_embedding_2` in `test_operators.py`. |
| |
| See "Custom Operators" in the module documentation for an example usage. |
| |
| Args: |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" |
| format. |
| symbolic_fn (Callable): A function that takes in the ONNX graph and |
| the input arguments to the current operator, and returns new |
| operator nodes to add to the graph. |
| opset_version (int): The ONNX opset version in which to register. |
| """ |
| if symbolic_name.startswith("::"): |
| symbolic_name = f"aten{symbolic_name}" |
| |
| _verify_custom_op_name(symbolic_name) |
| |
| registration.custom_onnx_symbolic(symbolic_name, opset_version)(symbolic_fn) |
| |
| |
| def unregister_custom_op_symbolic(symbolic_name: str, opset_version: int): |
| """Unregisters ``symbolic_name``. |
| |
| See "Custom Operators" in the module documentation for an example usage. |
| |
| Args: |
| symbolic_name (str): The name of the custom operator in "<domain>::<op>" |
| format. |
| opset_version (int): The ONNX opset version in which to unregister. |
| """ |
| if symbolic_name.startswith("::"): |
| symbolic_name = f"aten{symbolic_name}" |
| |
| _verify_custom_op_name(symbolic_name) |
| |
| registration.registry.unregister(symbolic_name, opset_version) |
| |
| |
| def _validate_dynamic_axes(dynamic_axes, model, input_names, output_names): |
| """Ensures dynamic axes argument is follows the expected format.""" |
| if len(dynamic_axes) == 0: |
| return |
| |
| if hasattr(model, "graph"): |
| # Extracting set of valid input/output names that shall be used for dynamic_axes |
| if (input_names is None) or len(input_names) == 0: |
| input_names = [x.debugName() for x in model.graph.inputs()] |
| if (output_names is None) or len(output_names) == 0: |
| output_names = [y.debugName() for y in model.graph.outputs()] |
| |
| valid_names = set((input_names or []) + (output_names or [])) |
| |
| # If dynamic axes are provided as a list rather than dictionary, they should |
| # first get converted to a dictionary in expected format. If desired axes names |
| # are not provided for dynamic axes, automatic names shall be generated for |
| # provided dynamic axes of specified input/output |
| for key, value in dynamic_axes.items(): |
| if key not in valid_names: |
| warnings.warn( |
| f"Provided key {key} for dynamic axes is not a valid input/output name" |
| ) |
| if isinstance(value, list): |
| warnings.warn( |
| "No names were found for specified dynamic axes of provided input." |
| f"Automatically generated names will be applied to each dynamic axes of input {key}" |
| ) |
| |
| value_dict = {} |
| for i, x in enumerate(value): |
| if not isinstance(x, int): |
| raise ValueError( |
| "The type of axis index is expected to be an integer" |
| ) |
| if x in value_dict: |
| warnings.warn( |
| f"Duplicate dynamic axis index {x} was provided for input {key}." |
| ) |
| else: |
| value_dict[x] = str(key) + "_dynamic_axes_" + str(i + 1) |
| dynamic_axes[key] = value_dict |
| |
| |
| def model_signature(model: torch.nn.Module | Callable) -> inspect.Signature: |
| return inspect.signature( |
| model.forward if isinstance(model, torch.nn.Module) else model |
| ) |