Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1 | # -*- coding: utf-8 -*- |
| 2 | # Owner(s): ["module: mps"] |
| 3 | |
| 4 | import sys |
| 5 | import math |
| 6 | import random |
| 7 | import unittest |
| 8 | import warnings |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 9 | import subprocess |
| 10 | import os |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 11 | import torch |
| 12 | import torch.nn as nn |
| 13 | import torch.nn.functional as F |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 14 | import itertools |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 15 | from torch._six import inf |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 16 | from torch.nn import Parameter |
| 17 | from torch.testing._internal.common_utils import run_tests, TestCase, download_file, TEST_WITH_UBSAN |
| 18 | import torch.backends.mps |
Alban Desmaison | 04ac80c | 2022-05-20 20:25:12 +0000 | [diff] [blame] | 19 | from torch.distributions import Uniform |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 20 | |
| 21 | from torch.testing._internal.common_nn import NNTestCase |
| 22 | import numpy as np |
| 23 | import torch |
| 24 | |
| 25 | # Same logic as test_cuda.py |
| 26 | if not torch.backends.mps.is_available(): |
| 27 | print('MPS not available, skipping tests', file=sys.stderr) |
| 28 | TestCase = object # noqa: F811 |
| 29 | NNTestCase = object # noqa: F811 |
| 30 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 31 | class MPSReluTest(TestCase): |
| 32 | def _npRelu(self, np_features): |
| 33 | return np.maximum(np_features, np.zeros(np_features.shape)).astype(np_features.dtype) |
| 34 | |
| 35 | def testNpRelu(self): |
| 36 | torch.testing.assert_allclose( |
| 37 | np.array([[0., 0.7, 0.0, 0.3, 0.0], [0.1, 0.0, 0.5, 0.0, 0.9]]), |
| 38 | self._npRelu( |
| 39 | np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, |
| 40 | 0.9]]))) |
| 41 | |
| 42 | def _testRelu(self, np_features, device): |
| 43 | np_relu = self._npRelu(np_features) |
| 44 | # Convert the numpy array to a PyTorch Tensor, |
| 45 | # and move the Tensor to the CPU/GPU based on the "device" parameter |
| 46 | py_tensor = torch.from_numpy(np_features).to(device) |
| 47 | py_relu = torch.nn.ReLU(inplace=False)(py_tensor) |
| 48 | py_relu_cpu = py_relu.to("cpu") |
| 49 | |
| 50 | torch.testing.assert_allclose(np_relu, py_relu_cpu) |
| 51 | |
| 52 | def _testReluInPlace(self, np_features, device): |
| 53 | np_relu = self._npRelu(np_features) |
| 54 | # Convert the numpy array to a PyTorch Tensor, |
| 55 | # and move the Tensor to the CPU/GPU based on the "device" parameter |
| 56 | py_tensor = torch.from_numpy(np_features).to(device) |
| 57 | py_relu = torch.nn.ReLU(inplace=True)(py_tensor) |
| 58 | py_relu_cpu = py_relu.to("cpu") |
| 59 | |
| 60 | torch.testing.assert_allclose(np_relu, py_relu_cpu) |
| 61 | # Inplace Relu modifies the initial input and it should match the output of Relu |
| 62 | torch.testing.assert_allclose(np_relu, py_tensor.to("cpu")) |
| 63 | |
| 64 | def testNumbersCPU(self): |
| 65 | for t in [np.int32]: |
| 66 | # Force execution on CPU even if a GPU kernel is available for the type. |
| 67 | self._testRelu( |
| 68 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 69 | device="cpu") |
| 70 | self._testReluInPlace( |
| 71 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 72 | device="cpu") |
| 73 | |
| 74 | def testNumbersGPU(self): |
| 75 | for t in [np.float16, np.float32]: |
| 76 | self._testRelu( |
| 77 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 78 | device="mps") |
| 79 | self._testReluInPlace( |
| 80 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 81 | device="mps") |
| 82 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 83 | class MatmulTest(TestCase): |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 84 | def _helper(self, shape_tensor_1, shape_tensor_2, expand_tensor_1_shape=None, expand_tensor_2_shape=None): |
| 85 | if expand_tensor_1_shape: |
| 86 | tensor1_mps = torch.randn(shape_tensor_1, device="mps").expand(expand_tensor_1_shape) |
| 87 | else: |
| 88 | tensor1_mps = torch.randn(shape_tensor_1, device="mps") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 89 | |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 90 | if expand_tensor_2_shape: |
| 91 | tensor2_mps = torch.randn(shape_tensor_2, device="mps").expand(expand_tensor_2_shape) |
| 92 | else: |
| 93 | tensor2_mps = torch.randn(shape_tensor_2, device="mps") |
| 94 | |
| 95 | tensor1_cpu = tensor1_mps.to("cpu") |
| 96 | tensor2_cpu = tensor2_mps.to("cpu") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 97 | |
| 98 | matmul_cpu = torch.matmul(tensor1_cpu, tensor2_cpu) |
| 99 | matmul_mps = torch.matmul(tensor1_mps, tensor2_mps) |
| 100 | |
| 101 | self.assertEqual(matmul_cpu, matmul_mps.to("cpu")) |
| 102 | |
| 103 | def test_vector_x_vector(self): |
| 104 | # uses `dot` |
| 105 | self._helper(3, 3) |
| 106 | |
| 107 | def test_matrix_x_vector(self): |
| 108 | # uses `addmv` |
| 109 | self._helper((3, 4), 4) |
| 110 | |
| 111 | def test_batched_matrix_x_broadcasted_vector(self): |
| 112 | self._helper((10, 3, 4), 4) |
| 113 | |
| 114 | def test_batched_matrix_x_batched_matrix(self): |
| 115 | # uses `bmm.out` |
| 116 | self._helper((10, 3, 4), (10, 4, 5)) |
| 117 | |
| 118 | def test_batched_matrix_x_broadcasted_matrix(self): |
| 119 | self._helper((10, 3, 4), (4, 5)) |
| 120 | |
| 121 | |
| 122 | class MPSLeakyReluTest(TestCase): |
| 123 | def _npLeakyRelu(self, np_features, negative_slope=0.1): |
| 124 | return np.maximum(np_features, negative_slope * np_features).astype(np_features.dtype) |
| 125 | |
| 126 | def testNpLeakyRelu(self): |
| 127 | torch.testing.assert_allclose( |
| 128 | np.array([[-0.09, 0.7, -0.05, 0.3, -0.01], |
| 129 | [0.1, -0.03, 0.5, -0.07, 0.9]]), |
| 130 | self._npLeakyRelu( |
| 131 | np.array([[-0.9, 0.7, -0.5, 0.3, -0.1], [0.1, -0.3, 0.5, -0.7, |
| 132 | 0.9]]), |
| 133 | negative_slope=0.1)) |
| 134 | |
| 135 | def _testLeakyRelu(self, np_features, negative_slope, device): |
| 136 | cpu_x = torch.from_numpy(np_features).requires_grad_() |
| 137 | mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() |
| 138 | relu_op = torch.nn.LeakyReLU(negative_slope) |
| 139 | |
| 140 | cpu_leaky_relu = relu_op(cpu_x) |
| 141 | mps_leaky_relu = relu_op(mps_x) |
| 142 | torch.testing.assert_allclose(cpu_leaky_relu, mps_leaky_relu.to('cpu')) |
| 143 | |
| 144 | # test backward pass |
| 145 | cpu_grad = torch.ones_like(cpu_leaky_relu) |
| 146 | mps_grad = cpu_grad.to('mps') |
| 147 | cpu_leaky_relu.backward(gradient=cpu_grad) |
| 148 | mps_leaky_relu.backward(gradient=mps_grad) |
| 149 | torch.testing.assert_allclose(cpu_x.grad, mps_x.grad.to('cpu')) |
| 150 | |
| 151 | def testNumbersCPU(self): |
| 152 | for t in [np.float32]: |
| 153 | self._testLeakyRelu( |
| 154 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 155 | negative_slope=0.2, |
| 156 | device="cpu") |
| 157 | |
| 158 | |
| 159 | class TestAvgPool(TestCase): |
| 160 | def _sum_pool2d(self, x, kernel_size): |
| 161 | windows = torch.nn.functional.unfold(x, kernel_size=kernel_size, stride=kernel_size) |
| 162 | return torch.sum(windows, dim=1) |
| 163 | |
| 164 | def _sum_pool3d(self, x, kernel_size): |
| 165 | # Because unfold does not support 3D sliding window we will split tensor to multiple tensors and calculate sum |
| 166 | h = kernel_size[0] |
| 167 | splited_x = [t.sum(0) for t in x.split(h) if t.size(0) == h] |
| 168 | # sum_pool2d assumes tensor in (1, 1, n, m) view, so unsqueeze two times |
| 169 | splited_x = [self._sum_pool2d(t.unsqueeze(0).unsqueeze(0), kernel_size[1:]) for t in splited_x] |
| 170 | joined_x = torch.cat(splited_x) |
| 171 | return joined_x.view(1, joined_x.numel()) |
| 172 | |
| 173 | def _avg_pool2d(self, x, kernel_size): |
| 174 | size = reduce((lambda x, y: x * y), kernel_size) |
| 175 | return self._sum_pool2d(x, kernel_size) / size |
| 176 | |
| 177 | def _avg_pool3d(self, x, kernel_size): |
| 178 | size = reduce((lambda x, y: x * y), kernel_size) |
| 179 | return self._sum_pool3d(x, kernel_size) / size |
| 180 | |
| 181 | def test_avg_pool2d_with_zero_divisor(self): |
| 182 | self.assertRaisesRegex(RuntimeError, "divisor must be not zero", |
| 183 | lambda: F.avg_pool2d(torch.zeros(3, 3, 3), (2, 2), divisor_override=0)) |
| 184 | |
| 185 | def test_doubletensor_avg_pool2d_with_divisor(self): |
| 186 | n, m = 3, 3 |
| 187 | input = torch.rand(1, 1, n, m) |
| 188 | for i in range(1, n + 1): |
| 189 | for j in range(1, m + 1): |
| 190 | for divisor in [1, 7, i * j]: |
| 191 | actual = F.avg_pool2d(input[0], (i, j), divisor_override=divisor) |
| 192 | actual = actual.view(1, actual.numel()) |
| 193 | expected = self._sum_pool2d(input, (i, j)) / divisor |
| 194 | self.assertEqual(actual, expected, rtol=0, atol=1e-5) |
| 195 | |
| 196 | def test_avg_pool2d_ceil_mode(self): |
| 197 | # Regression test for gh-36977 |
| 198 | x = 10 * torch.randn((1, 16, 4, 4)) |
| 199 | y = torch.nn.functional.avg_pool2d( |
| 200 | x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), |
| 201 | padding=(0, 1), stride=2) |
| 202 | self.assertTrue(not torch.isnan(y).any()) |
| 203 | y = torch.nn.functional.avg_pool2d( |
| 204 | x.to('mps'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), |
| 205 | padding=(0, 1), stride=2) |
| 206 | self.assertTrue(not torch.isnan(y).any()) |
| 207 | |
| 208 | |
| 209 | class TestMPS(TestCase): |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 210 | def test_exp(self, device="mps", dtype=torch.float): |
| 211 | for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()): |
| 212 | b = torch.arange(18, device="cpu") / 3 * math.pi |
| 213 | a = torch.tensor(v, dtype=dtype, device="cpu") * b |
| 214 | a = a.to(dtype).to("mps") |
| 215 | self.compare_with_numpy(torch.exp, np.exp, a) |
| 216 | |
| 217 | def test_exp1(self, device="mps", dtype=torch.float): |
| 218 | input = torch.tensor([-0.1, 3.0, -0.9]).to('mps') |
| 219 | output = torch.exp(input).to('cpu') |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 220 | |
| 221 | def _testLeakyRelu(self, np_features, negative_slope, device): |
| 222 | cpu_x = torch.from_numpy(np_features).requires_grad_() |
| 223 | mps_x = torch.from_numpy(np_features).to('mps').requires_grad_() |
| 224 | relu_op = torch.nn.LeakyReLU(negative_slope) |
| 225 | |
| 226 | cpu_leaky_relu = relu_op(cpu_x) |
| 227 | mps_leaky_relu = relu_op(mps_x) |
| 228 | torch.testing.assert_allclose(cpu_leaky_relu, mps_leaky_relu.to('cpu')) |
| 229 | |
| 230 | # test backward pass |
| 231 | cpu_grad = torch.ones_like(cpu_leaky_relu) |
| 232 | mps_grad = cpu_grad.to('mps') |
| 233 | cpu_leaky_relu.backward(gradient=cpu_grad) |
| 234 | mps_leaky_relu.backward(gradient=mps_grad) |
| 235 | torch.testing.assert_allclose(cpu_x.grad, mps_x.grad.to('cpu')) |
| 236 | |
| 237 | def testNumbersGPU(self): |
| 238 | for t in [np.float32]: |
| 239 | self._testLeakyRelu( |
| 240 | np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), |
| 241 | negative_slope=0.1, |
| 242 | device="mps") |
| 243 | |
| 244 | def test_fill(self): |
| 245 | |
| 246 | def helper(val, shape): |
| 247 | tensor = torch.zeros(shape, device='mps') |
| 248 | tensor_mps = tensor.fill_(val) |
| 249 | tensor_mps = torch.tanh(tensor_mps) |
| 250 | |
| 251 | tensor_0 = torch.zeros(shape, device='cpu') |
| 252 | tensor_cpu = tensor_0.fill_(val) |
| 253 | tensor_cpu = torch.tanh(tensor_cpu) |
| 254 | |
| 255 | self.assertEqual(tensor_mps, tensor_cpu) |
| 256 | |
| 257 | helper(0, [1024]) |
| 258 | helper(0.2, [2, 3]) |
| 259 | |
| 260 | def test_mm(self): |
| 261 | B = torch.ones(5, 6).to("mps") |
| 262 | C = torch.ones(6, 5).to("mps") |
| 263 | D = torch.mm(B, C).cpu() |
| 264 | torch.testing.assert_allclose(D, torch.full((5, 5), 6.0)) |
| 265 | |
| 266 | def test_addmm(self): |
| 267 | A = torch.ones(5, 5).to("mps") |
| 268 | B = torch.ones(5, 6).to("mps") |
| 269 | C = torch.ones(6, 5).to("mps") |
| 270 | D = torch.addmm(A, B, C).to("cpu") |
| 271 | torch.testing.assert_allclose(D, torch.full((5, 5), 7.0)) |
| 272 | |
| 273 | def test_bmm(self): |
| 274 | batch1_cpu = torch.randn(10, 3, 4) |
| 275 | batch2_cpu = torch.randn(10, 4, 5) |
| 276 | |
| 277 | batch1_mps = batch1_cpu.detach().clone().to("mps") |
| 278 | batch2_mps = batch2_cpu.detach().clone().to("mps") |
| 279 | |
| 280 | output_cpu = torch.bmm(batch1_cpu, batch2_cpu) |
| 281 | output_mps = torch.bmm(batch1_mps, batch2_mps) |
| 282 | |
| 283 | self.assertEqual(output_cpu, output_mps) |
| 284 | self.assertEqual(output_cpu.size(), output_mps.size()) |
| 285 | |
| 286 | def test_addbmm(self): |
| 287 | M_cpu = torch.randn(3, 5) |
| 288 | batch1_cpu = torch.randn(10, 3, 4) |
| 289 | batch2_cpu = torch.randn(10, 4, 5) |
| 290 | |
| 291 | M_mps = M_cpu.detach().clone().to("mps") |
| 292 | batch1_mps = batch1_cpu.detach().clone().to("mps") |
| 293 | batch2_mps = batch2_cpu.detach().clone().to("mps") |
| 294 | |
| 295 | output_cpu = torch.addbmm(M_cpu, batch1_cpu, batch2_cpu) |
| 296 | output_mps = torch.addbmm(M_mps, batch1_mps, batch2_mps) |
| 297 | |
| 298 | self.assertEqual(output_cpu, output_mps) |
| 299 | self.assertEqual(output_cpu.size(), output_mps.size()) |
| 300 | |
| 301 | def test_baddbmm(self): |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 302 | def helper(input_shape, batch1_shape, batch2_shape): |
| 303 | M_cpu = torch.randn(input_shape) |
| 304 | batch1_cpu = torch.randn(batch1_shape) |
| 305 | batch2_cpu = torch.randn(batch2_shape) |
| 306 | alpha = 1.2 |
| 307 | beta = 0.8 |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 308 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 309 | M_mps = M_cpu.detach().clone().to("mps") |
| 310 | batch1_mps = batch1_cpu.detach().clone().to("mps") |
| 311 | batch2_mps = batch2_cpu.detach().clone().to("mps") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 312 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 313 | output_cpu = torch.baddbmm(M_cpu, batch1_cpu, batch2_cpu, beta=beta, alpha=alpha) |
| 314 | output_mps = torch.baddbmm(M_mps, batch1_mps, batch2_mps, beta=beta, alpha=alpha) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 315 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 316 | self.assertEqual(output_cpu, output_mps) |
| 317 | self.assertEqual(output_cpu.size(), output_mps.size()) |
Kulin Seth | d63db52 | 2022-05-28 14:41:56 +0000 | [diff] [blame] | 318 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 319 | helper(input_shape=(3, 5), batch1_shape=(10, 3, 4), batch2_shape=(10, 4, 5)) |
| 320 | helper(input_shape=(10, 3, 5), batch1_shape=(10, 3, 4), batch2_shape=(10, 4, 5)) |
| 321 | helper(input_shape=(1, 77, 77), batch1_shape=(8, 77, 64), batch2_shape=(8, 64, 77)) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 322 | |
| 323 | def test_local_scalar_dense_mps(self): |
| 324 | x_cpu = torch.randn(1) |
| 325 | y_mps = x_cpu.to("mps") |
| 326 | torch.testing.assert_allclose(x_cpu.item(), y_mps.item()) |
| 327 | |
| 328 | def _linear_helper(self, in_features, out_features, shape, bias=True, backward_pass=False): |
| 329 | cpu_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="cpu", bias=bias) |
| 330 | mps_linear = torch.nn.Linear(in_features=in_features, out_features=out_features, device="mps", bias=bias) |
| 331 | |
| 332 | # Use the same weights and bias as the ones from the cpu |
| 333 | mps_linear.weight.data = cpu_linear.weight.data.detach().clone().to("mps") |
| 334 | |
| 335 | if bias: |
| 336 | mps_linear.bias.data = cpu_linear.bias.data.detach().clone().to("mps") |
| 337 | |
| 338 | linear_mps_input = torch.randn(shape).to('mps') |
| 339 | linear_cpu_input = linear_mps_input.detach().clone().to('cpu') |
| 340 | |
| 341 | if backward_pass: |
| 342 | linear_mps_input = linear_mps_input.requires_grad_() |
| 343 | linear_cpu_input = linear_cpu_input.requires_grad_() |
| 344 | |
| 345 | linear_cpu_output = cpu_linear(linear_cpu_input) |
| 346 | linear_mps_output = mps_linear(linear_mps_input) |
| 347 | |
| 348 | self.assertEqual(linear_cpu_output, linear_mps_output.to('cpu')) |
| 349 | self.assertEqual(linear_cpu_output.size(), linear_mps_output.size()) |
| 350 | |
| 351 | if backward_pass: |
| 352 | cpu_grad = torch.ones_like(linear_cpu_output) |
| 353 | grad = cpu_grad.to('mps') |
| 354 | |
| 355 | linear_cpu_output.backward(gradient=cpu_grad) |
| 356 | linear_mps_output.backward(gradient=grad) |
| 357 | |
| 358 | self.assertEqual(linear_cpu_input.grad.size(), linear_mps_input.grad.size()) |
| 359 | self.assertEqual(linear_cpu_input.grad, linear_mps_input.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| 360 | |
| 361 | self.assertEqual(cpu_linear.weight.grad.size(), mps_linear.weight.grad.size()) |
| 362 | self.assertEqual(cpu_linear.weight.grad, mps_linear.weight.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| 363 | if bias: |
| 364 | self.assertEqual(cpu_linear.bias.grad.size(), mps_linear.bias.grad.size()) |
| 365 | self.assertEqual(cpu_linear.bias.grad, mps_linear.bias.grad.to("cpu"), atol=8e-04, rtol=10.4e-05) |
| 366 | |
| 367 | def test_linear2D(self): |
| 368 | self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=False) |
| 369 | |
| 370 | def test_linear2D_backward(self): |
| 371 | self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=True, backward_pass=True) |
| 372 | |
| 373 | def test_linear2D_no_bias(self): |
| 374 | self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=False) |
| 375 | |
| 376 | def test_linear2D_no_bias_backward(self): |
| 377 | self._linear_helper(in_features=2, out_features=3, shape=((4, 2)), bias=False, backward_pass=True) |
| 378 | |
| 379 | def test_linear3D(self): |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 380 | self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=False) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 381 | |
Nikita Shulga | 7050826 | 2022-05-25 16:23:10 +0000 | [diff] [blame] | 382 | def test_linear3D_backward(self): |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 383 | self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=True) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 384 | |
| 385 | def test_linear3D_no_bias(self): |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 386 | self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=False) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 387 | |
| 388 | def test_linear3D_no_bias_backward(self): |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 389 | self._linear_helper(in_features=2, out_features=3, shape=((4, 5, 2)), bias=True, backward_pass=True) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 390 | |
| 391 | def test_uniform(self): |
| 392 | low = torch.zeros(5, 5, requires_grad=True) |
| 393 | high = (torch.ones(5, 5) * 3).requires_grad_() |
| 394 | low_1d = torch.zeros(1, requires_grad=True) |
| 395 | high_1d = (torch.ones(1) * 3).requires_grad_() |
| 396 | self.assertEqual(Uniform(low, high).sample().size(), (5, 5)) |
| 397 | self.assertEqual(Uniform(low, high).sample((7,)).size(), (7, 5, 5)) |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 398 | self.assertEqual(Uniform(low_1d, high_1d).sample().size(), (1,)) |
| 399 | self.assertEqual(Uniform(low_1d, high_1d).sample((1,)).size(), (1, 1)) |
| 400 | self.assertEqual(Uniform(0.0, 1.0).sample((1,)).size(), (1,)) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 401 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 402 | # Check log_prob computation when value outside range |
| 403 | uniform = Uniform(low_1d, high_1d, validate_args=False) |
| 404 | above_high = torch.tensor([4.0]) |
| 405 | below_low = torch.tensor([-1.0]) |
| 406 | self.assertEqual(uniform.log_prob(above_high).item(), -inf) |
| 407 | self.assertEqual(uniform.log_prob(below_low).item(), -inf) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 408 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 409 | # check cdf computation when value outside range |
| 410 | self.assertEqual(uniform.cdf(below_low).item(), 0) |
| 411 | self.assertEqual(uniform.cdf(above_high).item(), 1) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 412 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 413 | state = torch.get_rng_state() |
| 414 | rand = low.new(low.size()).uniform_() |
| 415 | torch.set_rng_state(state) |
| 416 | u = Uniform(low, high).rsample() |
| 417 | u.backward(torch.ones_like(u)) |
| 418 | self.assertEqual(low.grad, 1 - rand) |
| 419 | self.assertEqual(high.grad, rand) |
| 420 | low.grad.zero_() |
| 421 | high.grad.zero_() |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 422 | |
| 423 | # Test forward maxpool2d |
| 424 | def test_max_pool2d(self): |
| 425 | def helper(shape, ks, padding=0, dilation=1, ceil_mode=False, return_indices=False, test_ties=False): |
| 426 | |
| 427 | cpu_x = None |
| 428 | if(test_ties): |
| 429 | cpu_x = torch.ones(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 430 | else: |
| 431 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 432 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 433 | |
| 434 | pool = torch.nn.MaxPool2d(kernel_size=ks, padding=padding, dilation=dilation, |
| 435 | ceil_mode=ceil_mode, return_indices=return_indices) |
| 436 | |
| 437 | if(return_indices is False): |
| 438 | y = pool(x) |
| 439 | ref_y = pool(cpu_x) |
| 440 | |
| 441 | cpu_grad = torch.ones_like(ref_y) |
| 442 | grad = cpu_grad.to('mps') |
| 443 | |
| 444 | y.backward(gradient=grad) |
| 445 | ref_y.backward(gradient=cpu_grad) |
| 446 | |
| 447 | self.assertEqual(y, ref_y) |
| 448 | self.assertEqual(x.grad, cpu_x.grad) |
| 449 | else: |
| 450 | y, idx = pool(x) |
| 451 | ref_y, ref_idx = pool(cpu_x) |
| 452 | |
| 453 | cpu_grad = torch.ones_like(ref_y) |
| 454 | grad = cpu_grad.to('mps') |
| 455 | |
| 456 | y.backward(gradient=grad) |
| 457 | ref_y.backward(gradient=cpu_grad) |
| 458 | |
| 459 | self.assertEqual(y, ref_y) |
| 460 | self.assertEqual(idx, ref_idx) |
| 461 | self.assertEqual(x.grad, cpu_x.grad) |
| 462 | |
| 463 | # Test with no batch dimension |
| 464 | helper((8, 4, 4), ks=2) |
| 465 | helper((2, 8, 4, 4), ks=2) |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 466 | helper((1, 1000, 32, 32), ks=4) |
| 467 | helper((1, 1000, 1, 4), ks=(1, 4)) # test for max_pool1d |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 468 | # Test padding |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 469 | helper((1, 1000, 32, 32), ks=4, padding=1) |
| 470 | helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 1)) # test for max_pool1d |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 471 | # Test dilation |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 472 | helper((1, 1000, 32, 32), ks=4, dilation=2) |
| 473 | helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 2)) # test for max_pool1d |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 474 | # Test ceil mode |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 475 | helper((1, 1000, 32, 32), ks=4, ceil_mode=True) |
| 476 | helper((1, 1000, 1, 4), ks=(1, 4), ceil_mode=True) # test for max_pool1d |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 477 | |
| 478 | # Test return indices |
| 479 | for test_ties in [False, True]: |
| 480 | # Test with no batch dimension |
| 481 | helper((8, 4, 4), ks=2, return_indices=True, test_ties=test_ties) |
| 482 | helper((2, 8, 4, 4), ks=2, return_indices=True, test_ties=test_ties) |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 483 | helper((1, 1000, 32, 32), ks=4, return_indices=True, test_ties=test_ties) |
| 484 | helper((1, 1000, 1, 4), ks=(1, 4), return_indices=True, test_ties=test_ties) # test for max_pool1d |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 485 | # Test padding |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 486 | helper((1, 1000, 32, 32), ks=4, padding=1, return_indices=True, test_ties=test_ties) |
| 487 | helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 1), |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 488 | return_indices=True, test_ties=test_ties) # test for max_pool1d |
| 489 | # Test dilation |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 490 | helper((1, 1000, 32, 32), ks=4, dilation=2, return_indices=True, test_ties=test_ties) |
| 491 | helper((1, 1000, 1, 4), ks=(1, 4), padding=(0, 2), |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 492 | return_indices=True, test_ties=test_ties) # test for max_pool1d |
| 493 | # Test ceil mode |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 494 | helper((1, 1000, 32, 32), ks=4, ceil_mode=True, return_indices=True, test_ties=test_ties) |
| 495 | helper((1, 1000, 1, 4), ks=(1, 4), ceil_mode=True, |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 496 | return_indices=True, test_ties=test_ties) # test for max_pool1d |
| 497 | |
| 498 | def test_adaptive_avg_pool2d_output_size_one(self): |
| 499 | def helper(size, memory_format): |
| 500 | x = torch.randint(1, 10, size, dtype=torch.float, device='mps', requires_grad=True) |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 501 | if memory_format == 'non_contiguous': |
| 502 | x = x[::2, ::2, ::2, ::2] |
| 503 | else: |
| 504 | x = x.to(memory_format=memory_format) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 505 | |
| 506 | net = torch.nn.AdaptiveAvgPool2d((1, 1)) |
| 507 | out = net(x) |
| 508 | ref_out = x.contiguous().mean((-1, -2)).view((x.size(0), x.size(1), 1, 1)) |
| 509 | |
| 510 | out.sum().backward() # make sure it doesn't crash |
| 511 | |
| 512 | self.assertEqual(out, ref_out) |
| 513 | if memory_format == torch.channels_last: |
| 514 | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) |
| 515 | c = out.size(1) |
| 516 | self.assertEqual(out.stride(), [c, 1, c, c]) |
| 517 | else: |
| 518 | self.assertTrue(out.is_contiguous()) |
| 519 | c = out.size(1) |
| 520 | self.assertEqual(out.stride(), [c, 1, 1, 1]) |
| 521 | |
| 522 | helper((2, 3, 6, 6), torch.contiguous_format) |
| 523 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 524 | def test_masked_fill(self): |
| 525 | device = "mps" |
| 526 | dtype = torch.float32 |
| 527 | mask_dtype = torch.bool |
| 528 | |
| 529 | with warnings.catch_warnings(record=True) as w: |
| 530 | warnings.simplefilter("always") |
| 531 | num_dest = 10 |
| 532 | dst = torch.zeros(num_dest, dtype=dtype, device=device) |
| 533 | mask = torch.randint(2, (num_dest,), dtype=mask_dtype, device=device) |
| 534 | val = random.random() |
| 535 | dst2 = torch.zeros(num_dest, dtype=dtype) |
| 536 | mask_cpu = mask.to("cpu") |
| 537 | |
| 538 | dst.masked_fill_(mask, val) |
| 539 | for i in range(num_dest): |
| 540 | if mask_cpu[i]: |
| 541 | dst2[i] = val |
| 542 | self.assertEqual(dst.to("cpu"), dst2, atol=0, rtol=0) |
| 543 | |
| 544 | # test non-contiguous case |
| 545 | dst = ((torch.randn(num_dest, num_dest, num_dest) * 10).to(dtype)).permute((2, 0, 1)) |
| 546 | dst2 = dst.contiguous() |
| 547 | if dtype.is_complex: |
| 548 | mask = dst.abs() > 0 |
| 549 | else: |
| 550 | mask = dst > 0 |
| 551 | self.assertTrue(not dst.is_contiguous()) |
| 552 | self.assertTrue(dst2.is_contiguous()) |
| 553 | dst.masked_fill_(mask.to(mask_dtype), val) |
| 554 | dst2.masked_fill_(mask.to(mask_dtype), val) |
| 555 | self.assertEqual(dst, dst2, atol=0, rtol=0) |
| 556 | |
| 557 | if mask_dtype == torch.uint8: |
| 558 | self.assertEqual(len(w), 3) |
| 559 | |
| 560 | warn = 'masked_fill_ received a mask with dtype torch.uint8,' |
| 561 | for wi in w: |
| 562 | self.assertEqual(str(wi.message)[0:52], str(warn)) |
| 563 | else: |
| 564 | self.assertEqual(len(w), 0) |
| 565 | |
| 566 | def test_nhwc_operation(self): |
| 567 | def helper(shape, channels_last=False): |
| 568 | import numpy as np |
| 569 | np.random.seed(332) |
| 570 | arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| 571 | cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| 572 | if(channels_last): |
| 573 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 574 | cpu_x.retain_grad() |
| 575 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 576 | |
| 577 | # This passes |
| 578 | self.assertEqual(x, cpu_x) |
| 579 | |
| 580 | helper((2, 2, 2, 2), True) |
| 581 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 582 | # Test forward batch norm |
| 583 | def test_batch_norm(self): |
| 584 | def helper(shape, eps=1, momentum=0.1, wts=False, training=False, channels_last=False, |
| 585 | track_running_stats=True, test_module=False): |
| 586 | |
| 587 | import numpy as np |
| 588 | np.random.seed(332) |
| 589 | arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| 590 | cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| 591 | if(channels_last): |
| 592 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 593 | cpu_x.retain_grad() |
| 594 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 595 | |
| 596 | mean_shape = [shape[1]] |
| 597 | cpu_running_mean = None |
| 598 | cpu_running_var = None |
| 599 | running_mean = None |
| 600 | running_var = None |
| 601 | if(track_running_stats): |
| 602 | mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140 |
| 603 | cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float) |
| 604 | var_arr = 32 * np.random.random_sample(size=mean_shape) |
| 605 | cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float) |
| 606 | running_mean = cpu_running_mean.detach().clone().to('mps') |
| 607 | running_var = cpu_running_var.detach().clone().to('mps') |
| 608 | |
| 609 | weight = None |
| 610 | cpu_weight = None |
| 611 | bias = None |
| 612 | cpu_bias = None |
| 613 | if(wts): |
| 614 | cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 615 | weight = cpu_weight.detach().clone().to('mps').requires_grad_() |
| 616 | cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 617 | bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| 618 | |
| 619 | y = None |
| 620 | ref_y = None |
| 621 | |
| 622 | if(not test_module): |
| 623 | y = torch.nn.functional.batch_norm(x, running_mean, running_var, |
| 624 | weight=weight, |
| 625 | bias=bias, |
| 626 | training=training, |
| 627 | momentum=momentum, eps=eps) |
| 628 | ref_y = torch.nn.functional.batch_norm(cpu_x, cpu_running_mean, cpu_running_var, |
| 629 | weight=cpu_weight, |
| 630 | bias=cpu_bias, |
| 631 | training=training, |
| 632 | momentum=momentum, eps=eps) |
| 633 | |
| 634 | else: |
| 635 | |
| 636 | batchnorm_op = None |
| 637 | mps_batchnorm_op = None |
| 638 | |
| 639 | if(len(shape) == 3): |
| 640 | batchnorm_op = torch.nn.BatchNorm1d(shape[1], |
| 641 | eps=eps, |
| 642 | momentum=momentum, |
| 643 | affine=wts, |
| 644 | track_running_stats=track_running_stats, |
| 645 | device='cpu') |
| 646 | mps_batchnorm_op = torch.nn.BatchNorm1d(shape[1], |
| 647 | eps=eps, |
| 648 | momentum=momentum, |
| 649 | affine=wts, |
| 650 | track_running_stats=track_running_stats, |
| 651 | device='mps') |
| 652 | elif(len(shape) == 4): |
| 653 | batchnorm_op = torch.nn.BatchNorm2d(shape[1], |
| 654 | eps=eps, |
| 655 | momentum=momentum, |
| 656 | affine=wts, |
| 657 | track_running_stats=track_running_stats, |
| 658 | device='cpu') |
| 659 | mps_batchnorm_op = torch.nn.BatchNorm2d(shape[1], |
| 660 | eps=eps, |
| 661 | momentum=momentum, |
| 662 | affine=wts, |
| 663 | track_running_stats=track_running_stats, |
| 664 | device='mps') |
| 665 | elif(len(shape) == 5): |
| 666 | batchnorm_op = torch.nn.BatchNorm3d(shape[1], |
| 667 | eps=eps, |
| 668 | momentum=momentum, |
| 669 | affine=wts, |
| 670 | track_running_stats=track_running_stats, |
| 671 | device='cpu') |
| 672 | mps_batchnorm_op = torch.nn.BatchNorm3d(shape[1], |
| 673 | eps=eps, |
| 674 | momentum=momentum, |
| 675 | affine=wts, |
| 676 | track_running_stats=track_running_stats, |
| 677 | device='mps') |
| 678 | |
| 679 | if(track_running_stats): |
| 680 | batchnorm_op.running_mean = cpu_running_mean |
| 681 | batchnorm_op.running_var = cpu_running_var |
| 682 | mps_batchnorm_op.running_mean = running_mean |
| 683 | mps_batchnorm_op.running_var = running_var |
| 684 | if(wts): |
| 685 | batchnorm_op.weight = torch.nn.Parameter(cpu_weight) |
| 686 | batchnorm_op.bias = torch.nn.Parameter(cpu_bias) |
| 687 | mps_batchnorm_op.weight = torch.nn.Parameter(weight) |
| 688 | mps_batchnorm_op.bias = torch.nn.Parameter(bias) |
| 689 | |
| 690 | ref_y = batchnorm_op(cpu_x) |
| 691 | y = mps_batchnorm_op(x) |
| 692 | |
| 693 | self.assertEqual(y, ref_y) |
| 694 | if(not test_module): |
| 695 | self.assertEqual(running_mean, cpu_running_mean) |
| 696 | self.assertEqual(running_var, cpu_running_var) |
| 697 | else: |
| 698 | self.assertEqual(mps_batchnorm_op.running_mean, batchnorm_op.running_mean) |
| 699 | self.assertEqual(mps_batchnorm_op.running_var, batchnorm_op.running_var) |
| 700 | |
| 701 | cpu_grad = torch.randn(ref_y.shape) |
| 702 | grad = cpu_grad.to('mps') |
| 703 | ref_y.backward(gradient=cpu_grad) |
| 704 | y.backward(gradient=grad) |
| 705 | |
| 706 | self.assertEqual(x.grad, cpu_x.grad) |
| 707 | if(wts): |
| 708 | if(not test_module): |
| 709 | self.assertEqual(weight.grad, cpu_weight.grad) |
| 710 | self.assertEqual(bias.grad, cpu_bias.grad) |
| 711 | else: |
| 712 | self.assertEqual(mps_batchnorm_op.weight.grad, batchnorm_op.weight.grad) |
| 713 | self.assertEqual(mps_batchnorm_op.bias.grad, batchnorm_op.bias.grad) |
| 714 | |
| 715 | for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]: |
| 716 | for test_module in [False, True]: |
| 717 | for track_running_stats in [True, False]: |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 718 | for channels_last in [False]: |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 719 | if(channels_last and len(shape) != 4): |
| 720 | continue |
| 721 | # Running stats must be tracked in eval mode |
| 722 | if(track_running_stats): |
| 723 | helper(shape, eps=0, momentum=1, channels_last=channels_last, |
| 724 | track_running_stats=track_running_stats, test_module=test_module) |
| 725 | helper(shape, channels_last=channels_last, |
| 726 | track_running_stats=track_running_stats, test_module=test_module) |
| 727 | helper(shape, eps=1e-05, momentum=0.1, wts=False, training=False, channels_last=channels_last, |
| 728 | track_running_stats=track_running_stats, test_module=test_module) |
| 729 | helper(shape, eps=0, momentum=1.0, wts=False, training=False, channels_last=channels_last, |
| 730 | track_running_stats=track_running_stats, test_module=test_module) |
| 731 | helper(shape, eps=1, momentum=1, wts=True, training=False, channels_last=channels_last, |
| 732 | track_running_stats=track_running_stats, test_module=test_module) |
| 733 | helper(shape, eps=3, momentum=0.67, wts=True, training=False, channels_last=channels_last, |
| 734 | track_running_stats=track_running_stats, test_module=test_module) |
| 735 | helper(shape, eps=1e-05, momentum=0.1, wts=False, training=True, channels_last=channels_last, |
| 736 | track_running_stats=track_running_stats, test_module=test_module) |
| 737 | helper(shape, eps=0, momentum=1.0, wts=False, training=True, channels_last=channels_last, |
| 738 | track_running_stats=track_running_stats, test_module=test_module) |
| 739 | helper(shape, eps=1, momentum=1, wts=True, training=True, channels_last=channels_last, |
| 740 | track_running_stats=track_running_stats, test_module=test_module) |
| 741 | helper(shape, eps=3, momentum=0.67, wts=True, training=True, channels_last=channels_last, |
| 742 | track_running_stats=track_running_stats, test_module=test_module) |
| 743 | |
| 744 | # Test forward instance norm |
| 745 | def test_instance_norm(self): |
| 746 | def helper(shape, eps=1, momentum=0.1, wts=False, channels_last=False, track_running_stats=True, test_module=False): |
| 747 | |
| 748 | import numpy as np |
| 749 | np.random.seed(332) |
| 750 | arr = (256 - 128) * np.random.random_sample(size=shape) + 128 |
| 751 | cpu_x = torch.tensor(arr, device='cpu', dtype=torch.float, requires_grad=True) |
| 752 | if(channels_last): |
| 753 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 754 | cpu_x.retain_grad() |
| 755 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 756 | |
| 757 | mean_shape = [shape[1]] |
| 758 | cpu_running_mean = None |
| 759 | cpu_running_var = None |
| 760 | running_mean = None |
| 761 | running_var = None |
| 762 | if(track_running_stats): |
| 763 | mean_arr = (240 - 140) * np.random.random_sample(size=mean_shape) + 140 |
| 764 | cpu_running_mean = torch.tensor(mean_arr, device='cpu', dtype=torch.float) |
| 765 | var_arr = 32 * np.random.random_sample(size=mean_shape) |
| 766 | cpu_running_var = torch.tensor(var_arr, device='cpu', dtype=torch.float) |
| 767 | running_mean = cpu_running_mean.detach().clone().to('mps') |
| 768 | running_var = cpu_running_var.detach().clone().to('mps') |
| 769 | |
| 770 | weight = None |
| 771 | cpu_weight = None |
| 772 | bias = None |
| 773 | cpu_bias = None |
| 774 | if(wts): |
| 775 | cpu_weight = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 776 | weight = cpu_weight.detach().clone().to('mps').requires_grad_() |
| 777 | cpu_bias = torch.randn(mean_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 778 | bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| 779 | |
| 780 | y = None |
| 781 | ref_y = None |
| 782 | |
| 783 | if(not test_module): |
| 784 | ref_y = torch.nn.functional.instance_norm(cpu_x, cpu_running_mean, cpu_running_var, |
| 785 | weight=cpu_weight, |
| 786 | bias=cpu_bias, |
| 787 | momentum=momentum, eps=eps) |
| 788 | y = torch.nn.functional.instance_norm(x, running_mean, running_var, |
| 789 | weight=weight, |
| 790 | bias=bias, |
| 791 | momentum=momentum, eps=eps) |
| 792 | |
| 793 | else: |
| 794 | |
| 795 | instancenorm_op = None |
| 796 | mps_instancenorm_op = None |
| 797 | |
| 798 | if(len(shape) == 3): |
| 799 | instancenorm_op = torch.nn.InstanceNorm1d(shape[1], |
| 800 | eps=eps, |
| 801 | momentum=momentum, |
| 802 | affine=wts, |
| 803 | track_running_stats=track_running_stats, |
| 804 | device='cpu') |
| 805 | mps_instancenorm_op = torch.nn.InstanceNorm1d(shape[1], |
| 806 | eps=eps, |
| 807 | momentum=momentum, |
| 808 | affine=wts, |
| 809 | track_running_stats=track_running_stats, |
| 810 | device='mps') |
| 811 | elif(len(shape) == 4): |
| 812 | instancenorm_op = torch.nn.InstanceNorm2d(shape[1], |
| 813 | eps=eps, |
| 814 | momentum=momentum, |
| 815 | affine=wts, |
| 816 | track_running_stats=track_running_stats, |
| 817 | device='cpu') |
| 818 | mps_instancenorm_op = torch.nn.InstanceNorm2d(shape[1], |
| 819 | eps=eps, |
| 820 | momentum=momentum, |
| 821 | affine=wts, |
| 822 | track_running_stats=track_running_stats, |
| 823 | device='mps') |
| 824 | elif(len(shape) == 5): |
| 825 | instancenorm_op = torch.nn.InstanceNorm3d(shape[1], |
| 826 | eps=eps, |
| 827 | momentum=momentum, |
| 828 | affine=wts, |
| 829 | track_running_stats=track_running_stats, |
| 830 | device='cpu') |
| 831 | mps_instancenorm_op = torch.nn.InstanceNorm3d(shape[1], |
| 832 | eps=eps, |
| 833 | momentum=momentum, |
| 834 | affine=wts, |
| 835 | track_running_stats=track_running_stats, |
| 836 | device='mps') |
| 837 | |
| 838 | if(track_running_stats): |
| 839 | instancenorm_op.running_mean = cpu_running_mean |
| 840 | instancenorm_op.running_var = cpu_running_var |
| 841 | mps_instancenorm_op.running_mean = running_mean |
| 842 | mps_instancenorm_op.running_var = running_var |
| 843 | if(wts): |
| 844 | instancenorm_op.weight = torch.nn.Parameter(cpu_weight) |
| 845 | instancenorm_op.bias = torch.nn.Parameter(cpu_bias) |
| 846 | mps_instancenorm_op.weight = torch.nn.Parameter(weight) |
| 847 | mps_instancenorm_op.bias = torch.nn.Parameter(bias) |
| 848 | |
| 849 | ref_y = instancenorm_op(cpu_x) |
| 850 | y = mps_instancenorm_op(x) |
| 851 | |
| 852 | self.assertEqual(y, ref_y) |
| 853 | if(not test_module): |
| 854 | self.assertEqual(running_mean, cpu_running_mean) |
| 855 | self.assertEqual(running_var, cpu_running_var) |
| 856 | else: |
| 857 | self.assertEqual(mps_instancenorm_op.running_mean, instancenorm_op.running_mean) |
| 858 | self.assertEqual(mps_instancenorm_op.running_var, instancenorm_op.running_var) |
| 859 | |
| 860 | cpu_grad = torch.randn(ref_y.shape) |
| 861 | grad = cpu_grad.to('mps') |
| 862 | ref_y.backward(gradient=cpu_grad) |
| 863 | y.backward(gradient=grad) |
| 864 | |
| 865 | self.assertEqual(x.grad, cpu_x.grad) |
| 866 | if(wts): |
| 867 | if(not test_module): |
| 868 | self.assertEqual(weight.grad, cpu_weight.grad) |
| 869 | self.assertEqual(bias.grad, cpu_bias.grad) |
| 870 | else: |
| 871 | self.assertEqual(mps_instancenorm_op.weight.grad, instancenorm_op.weight.grad) |
| 872 | self.assertEqual(mps_instancenorm_op.bias.grad, instancenorm_op.bias.grad) |
| 873 | |
| 874 | for shape in [(2, 3, 2, 2), (2, 3, 2, 2, 2), (2, 3, 2)]: |
| 875 | for test_module in [False, True]: |
| 876 | for track_running_stats in [True, False]: |
| 877 | for channels_last in [False]: |
| 878 | if(channels_last and len(shape) != 4): |
| 879 | continue |
| 880 | # Running stats must be tracked in eval mode |
| 881 | if(track_running_stats): |
| 882 | helper(shape, eps=0, momentum=1, channels_last=channels_last, |
| 883 | track_running_stats=track_running_stats, test_module=test_module) |
| 884 | helper(shape, channels_last=channels_last, |
| 885 | track_running_stats=track_running_stats, test_module=test_module) |
| 886 | helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last, |
| 887 | track_running_stats=track_running_stats, test_module=test_module) |
| 888 | helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last, |
| 889 | track_running_stats=track_running_stats, test_module=test_module) |
| 890 | helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last, |
| 891 | track_running_stats=track_running_stats, test_module=test_module) |
| 892 | helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last, |
| 893 | track_running_stats=track_running_stats, test_module=test_module) |
| 894 | helper(shape, eps=1e-05, momentum=0.1, wts=False, channels_last=channels_last, |
| 895 | track_running_stats=track_running_stats, test_module=test_module) |
| 896 | helper(shape, eps=0, momentum=1.0, wts=False, channels_last=channels_last, |
| 897 | track_running_stats=track_running_stats, test_module=test_module) |
| 898 | helper(shape, eps=1, momentum=1, wts=True, channels_last=channels_last, |
| 899 | track_running_stats=track_running_stats, test_module=test_module) |
| 900 | helper(shape, eps=3, momentum=0.67, wts=True, channels_last=channels_last, |
| 901 | track_running_stats=track_running_stats, test_module=test_module) |
| 902 | |
| 903 | # Test conv2d |
| 904 | def test_conv2d_unit(self): |
| 905 | def helper(input_shape, wt_shape, |
| 906 | stride=1, padding=0, |
| 907 | dilation=1, groups=1, |
| 908 | bias_shape=None): |
| 909 | |
| 910 | cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 911 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 912 | |
| 913 | cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 914 | wt = cpu_wt.detach().clone().to('mps').requires_grad_() |
| 915 | |
| 916 | cpu_bias = None |
| 917 | bias = None |
| 918 | |
| 919 | if(bias_shape is not None): |
| 920 | cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 921 | bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| 922 | |
| 923 | y = torch.nn.functional.conv2d(x, wt, bias=bias, stride=stride, |
| 924 | padding=padding, dilation=dilation, groups=groups) |
| 925 | ref_y = torch.nn.functional.conv2d(cpu_x, cpu_wt, bias=cpu_bias, stride=stride, |
| 926 | padding=padding, dilation=dilation, groups=groups) |
| 927 | |
| 928 | cpu_grad = torch.ones_like(ref_y) |
| 929 | grad = cpu_grad.to('mps') |
| 930 | |
| 931 | y.backward(gradient=grad) |
| 932 | ref_y.backward(gradient=cpu_grad) |
| 933 | |
| 934 | self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04) |
| 935 | self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05) |
| 936 | self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05) |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 937 | if(bias_shape is not None): |
| 938 | self.assertEqual(bias.grad, cpu_bias.grad, atol=8e-04, rtol=10.4e-05) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 939 | |
| 940 | N = 1 |
| 941 | C_in = 3 |
| 942 | C_out = 64 |
| 943 | H = 64 |
| 944 | W = 64 |
| 945 | kH = 4 |
| 946 | kW = 4 |
| 947 | stride = 2 |
| 948 | padding = 1 |
| 949 | |
| 950 | helper((N, C_in, H, W), (C_out, C_in, kH, kW), stride=stride, padding=padding) |
| 951 | |
| 952 | N = 4 |
| 953 | C_in = 16 |
| 954 | H = 32 |
| 955 | W = 32 |
| 956 | |
| 957 | C_out = 8 |
| 958 | kH = 3 |
| 959 | kW = 3 |
| 960 | |
| 961 | for groups in [1, 2, 4]: |
| 962 | helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups) |
| 963 | helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), groups=groups) |
| 964 | |
| 965 | helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups) |
| 966 | helper((N, C_in, H, W), (C_out, C_in // groups, kH, kW), bias_shape=(C_out), groups=groups) |
| 967 | |
| 968 | helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups) |
| 969 | helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, kH + 2, kW + 2), groups=groups) |
| 970 | |
| 971 | helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, |
| 972 | kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups) |
| 973 | helper((N, C_in * 2, H * 2, W * 2), (C_out * 2, (C_in * 2) // groups, |
| 974 | kH + 2, kW + 2), bias_shape=(C_out * 2), groups=groups) |
| 975 | |
| 976 | # Test conv transpose 2d |
| 977 | def test_conv_transpose2d(self): |
| 978 | def helper(input_shape, wt_shape, |
| 979 | stride=1, padding=0, |
| 980 | output_padding=0, |
| 981 | dilation=1, groups=1, |
| 982 | bias_shape=None): |
| 983 | |
| 984 | cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 985 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 986 | |
| 987 | cpu_wt = torch.randn(wt_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 988 | wt = cpu_wt.detach().clone().to('mps').requires_grad_() |
| 989 | |
| 990 | cpu_bias = None |
| 991 | bias = None |
| 992 | |
| 993 | if(bias_shape is not None): |
| 994 | cpu_bias = torch.randn(bias_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 995 | bias = cpu_bias.detach().clone().to('mps').requires_grad_() |
| 996 | |
| 997 | y = torch.nn.functional.conv_transpose2d( |
| 998 | x, wt, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation) |
| 999 | ref_y = torch.nn.functional.conv_transpose2d( |
| 1000 | cpu_x, cpu_wt, bias=cpu_bias, stride=stride, padding=padding, |
| 1001 | output_padding=output_padding, groups=groups, dilation=dilation) |
| 1002 | |
| 1003 | cpu_grad = torch.randn(ref_y.shape) |
| 1004 | grad = cpu_grad.to('mps') |
| 1005 | |
| 1006 | y.backward(gradient=grad) |
| 1007 | ref_y.backward(gradient=cpu_grad) |
| 1008 | |
| 1009 | self.assertEqual(y, ref_y, rtol=2.6e-05, atol=2e-04) |
| 1010 | self.assertEqual(x.grad, cpu_x.grad, rtol=2.6e-06, atol=2e-05) |
| 1011 | self.assertEqual(wt.grad, cpu_wt.grad, atol=8e-04, rtol=10.4e-05) |
| 1012 | |
| 1013 | # if(bias_shape is not None): |
| 1014 | # print(cpu_bias.grad) |
| 1015 | # print(bias.grad.to('cpu')) |
| 1016 | # self.assertEqual(bias.grad, cpu_bias.grad) |
| 1017 | |
| 1018 | N = 4 |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 1019 | C_in = 2 |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1020 | H = 32 |
| 1021 | W = 32 |
| 1022 | |
| 1023 | C_out = 8 |
| 1024 | groups = 1 |
| 1025 | kH = 3 |
| 1026 | kW = 3 |
| 1027 | |
| 1028 | for stride in [1, 2, 3]: |
| 1029 | for padding in [0, 1, 2]: |
| 1030 | for output_padding in [0, 1, 2]: |
| 1031 | for dilation in [1, 2]: |
| 1032 | if(output_padding >= stride or output_padding >= dilation): |
| 1033 | continue |
| 1034 | helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride, |
| 1035 | padding=padding, output_padding=output_padding, dilation=dilation) |
| 1036 | helper((N, C_out, H, W), (C_out, C_in, kH, kW), stride=stride, |
| 1037 | padding=padding, output_padding=output_padding, dilation=dilation) |
| 1038 | |
| 1039 | helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride, |
| 1040 | padding=padding, output_padding=output_padding, dilation=dilation) |
| 1041 | helper((N, C_out, H, W), (C_out, C_in, kH, kW), bias_shape=(C_in), stride=stride, |
| 1042 | padding=padding, output_padding=output_padding, dilation=dilation) |
| 1043 | |
| 1044 | # Test sigmoid |
| 1045 | def test_sigmoid(self): |
| 1046 | def helper(shape): |
| 1047 | |
| 1048 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 1049 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 1050 | |
| 1051 | sigmoid_op = torch.nn.Sigmoid() |
| 1052 | |
| 1053 | y = sigmoid_op(x) |
| 1054 | ref_y = sigmoid_op(cpu_x) |
| 1055 | |
| 1056 | cpu_grad = torch.ones_like(ref_y) |
| 1057 | grad = cpu_grad.to('mps') |
| 1058 | |
| 1059 | y.backward(gradient=grad) |
| 1060 | ref_y.backward(gradient=cpu_grad) |
| 1061 | |
| 1062 | self.assertEqual(y, ref_y) |
| 1063 | self.assertEqual(x.grad, cpu_x.grad) |
| 1064 | |
| 1065 | helper((2, 3, 4, 5)) |
| 1066 | helper((2, 3, 4)) |
| 1067 | helper((2, 8, 4, 5)) |
| 1068 | |
| 1069 | # Test tanh |
| 1070 | def test_tanh(self): |
| 1071 | def helper(shape): |
| 1072 | |
| 1073 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 1074 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 1075 | |
| 1076 | tanh_op = torch.nn.Tanh() |
| 1077 | |
| 1078 | y = tanh_op(x) |
| 1079 | ref_y = tanh_op(cpu_x) |
| 1080 | |
| 1081 | cpu_grad = torch.ones_like(ref_y) |
| 1082 | grad = cpu_grad.to('mps') |
| 1083 | |
| 1084 | y.backward(gradient=grad) |
| 1085 | ref_y.backward(gradient=cpu_grad) |
| 1086 | |
| 1087 | self.assertEqual(y, ref_y) |
| 1088 | self.assertEqual(x.grad, cpu_x.grad) |
| 1089 | |
| 1090 | helper((2, 3, 4, 5)) |
| 1091 | helper((2, 3, 4)) |
| 1092 | helper((2, 8, 4, 5)) |
| 1093 | |
| 1094 | def test_threshold(self): |
| 1095 | def helper(threshold, value, num_elems, inplace=False, requires_grad=True): |
| 1096 | m = nn.Threshold(threshold=threshold, value=value, inplace=inplace) |
| 1097 | |
| 1098 | input_cpu = torch.randn(num_elems, requires_grad=requires_grad, dtype=torch.float) |
| 1099 | input_mps = input_cpu.detach().clone().to('mps').requires_grad_(requires_grad) |
| 1100 | |
| 1101 | output_cpu = m(input_cpu) |
| 1102 | output_mps = m(input_mps) |
| 1103 | |
| 1104 | cpu_grad = torch.ones_like(output_cpu) |
| 1105 | mps_grad = cpu_grad.to('mps') |
| 1106 | |
| 1107 | self.assertEqual(output_cpu, output_mps) |
| 1108 | |
| 1109 | if requires_grad: |
| 1110 | output_cpu.backward(gradient=cpu_grad) |
| 1111 | output_mps.backward(gradient=mps_grad) |
| 1112 | |
| 1113 | self.assertEqual(input_cpu.grad, input_mps.grad) |
| 1114 | |
| 1115 | helper(threshold=0.1, value=20, num_elems=2) |
| 1116 | helper(threshold=-0.1, value=10, num_elems=10) |
| 1117 | helper(threshold=0.5, value=-15, num_elems=100) |
| 1118 | helper(threshold=1, value=10, num_elems=100, inplace=True, requires_grad=False) |
| 1119 | |
| 1120 | # Test pow |
| 1121 | def test_pow(self): |
| 1122 | def helper(shape): |
| 1123 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1124 | x = cpu_x.detach().clone().to('mps') |
| 1125 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1126 | y = cpu_y.detach().clone().to('mps') |
| 1127 | z = torch.pow(x, y) |
| 1128 | ref_z = torch.pow(cpu_x, cpu_y) |
| 1129 | |
| 1130 | self.assertEqual(z, ref_z) |
| 1131 | |
| 1132 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1133 | x = cpu_x.detach().clone().to('mps') |
| 1134 | exp = random.random() |
| 1135 | z = torch.pow(x, exp) |
| 1136 | ref_z = torch.pow(cpu_x, exp) |
| 1137 | |
| 1138 | self.assertEqual(z, ref_z) |
| 1139 | |
| 1140 | helper((2, 8, 4, 5)) |
| 1141 | |
| 1142 | # Test addcmul |
| 1143 | def test_addcmul(self): |
| 1144 | def helper(shape, value): |
| 1145 | |
| 1146 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1147 | x = cpu_x.detach().clone().to('mps') |
| 1148 | |
| 1149 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1150 | y = cpu_y.detach().clone().to('mps') |
| 1151 | |
| 1152 | cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1153 | z = cpu_z.detach().clone().to('mps') |
| 1154 | |
| 1155 | y = torch.addcmul(x, y, z, value=value) |
| 1156 | ref_y = torch.addcmul(cpu_x, cpu_y, cpu_z, value=value) |
| 1157 | |
| 1158 | self.assertEqual(y, ref_y) |
| 1159 | |
| 1160 | helper((2, 3, 4, 5), 0.1) |
| 1161 | helper((2, 8, 4, 5), 0.1) |
| 1162 | helper((2, 3, 4, 5), 0.2) |
| 1163 | helper((2, 8, 4, 5), 0.2) |
| 1164 | |
| 1165 | # Test addcdiv |
| 1166 | def test_addcdiv(self): |
| 1167 | def helper(shape, value): |
| 1168 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1169 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1170 | # clamp to avoid division by 0 |
| 1171 | cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False).clamp_min_(0.1) |
| 1172 | cpu_out = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1173 | |
| 1174 | mps_x = cpu_x.detach().clone().to('mps') |
| 1175 | mps_y = cpu_y.detach().clone().to('mps') |
| 1176 | mps_z = cpu_z.detach().clone().to('mps') |
| 1177 | mps_out = cpu_out.detach().clone().to('mps') |
| 1178 | |
| 1179 | result_div_mps = torch.addcdiv(mps_x, mps_y, mps_z, value=value) |
| 1180 | result_div_cpu = torch.addcdiv(cpu_x, cpu_y, cpu_z, value=value) |
| 1181 | self.assertEqual(result_div_mps, result_div_cpu) |
| 1182 | # test .out variant |
| 1183 | self.assertEqual(torch.addcdiv(mps_x, mps_y, mps_z, out=mps_out, value=value), result_div_cpu) |
| 1184 | |
| 1185 | helper((2, 3, 4, 5), 0.1) |
| 1186 | helper((2, 8, 4, 5), 0.2) |
| 1187 | helper((2, 3, 4, 5), 1.0) # value of 1 should be ignored internally |
| 1188 | |
Ramin Azarmehr | aa62b3e | 2022-05-31 19:15:45 +0000 | [diff] [blame^] | 1189 | def test_buffer_size_match(self): |
| 1190 | # this test shouldn't cause any crash |
| 1191 | size = 16 |
| 1192 | cpu_A = torch.rand(size, device='cpu') |
| 1193 | cpu_F = torch.rand(size, size, size, device='cpu') |
| 1194 | |
| 1195 | mps_A = cpu_A.to('mps') |
| 1196 | mps_F = cpu_F.to('mps') |
| 1197 | self.assertEqual(cpu_A @ cpu_F, mps_A @ mps_F) |
| 1198 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1199 | def test_transpose_inplace(self): |
| 1200 | values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| 1201 | cpu_x = torch.tensor(values, device='cpu') |
| 1202 | mps_x = torch.tensor(values, device='mps') |
| 1203 | |
| 1204 | cpu_x.transpose_(0, 1) |
| 1205 | mps_x.transpose_(0, 1) |
| 1206 | self.assertEqual(cpu_x, mps_x.to('cpu')) |
| 1207 | |
| 1208 | def test_slice(self): |
| 1209 | values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| 1210 | cpu_x = torch.tensor(values, device='cpu') |
| 1211 | mps_x = (torch.tensor(values, device='mps', dtype=torch.float)) |
| 1212 | |
| 1213 | cpu_slice1 = cpu_x[:2, :] |
| 1214 | mps_slice1 = mps_x[:2, :] |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1215 | self.assertEqual(cpu_slice1, mps_slice1) |
| 1216 | |
| 1217 | cpu_slice2 = cpu_x[:, :1] |
| 1218 | mps_slice2 = mps_x[:, :1] |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1219 | self.assertEqual(cpu_slice2, mps_slice2) |
| 1220 | |
| 1221 | cpu_slice3 = cpu_x[1:2, :] |
| 1222 | mps_slice3 = mps_x[1:2, :] |
| 1223 | self.assertEqual(cpu_slice3, mps_slice3.to('cpu')) |
| 1224 | |
| 1225 | cpu_slice4 = cpu_x[1, :] |
| 1226 | mps_slice4 = mps_x[1, :].to('cpu') |
| 1227 | self.assertEqual(cpu_slice4, mps_slice4) |
| 1228 | |
Kulin Seth | d63db52 | 2022-05-28 14:41:56 +0000 | [diff] [blame] | 1229 | def test_slice_contiguous_view(self): |
| 1230 | # https://github.com/pytorch/pytorch/issues/77750 |
| 1231 | |
| 1232 | def helper(operator): |
| 1233 | t_mps = torch.tensor([1, 2, 3, 4], device="mps") |
| 1234 | t_cpu = torch.tensor([1, 2, 3, 4], device="cpu") |
| 1235 | |
| 1236 | # contiguous view |
| 1237 | x_mps = t_mps[2:] # 3, 4 |
| 1238 | y_mps = t_mps[:2] # 1, 2 |
| 1239 | |
| 1240 | x_cpu = t_cpu[2:] |
| 1241 | y_cpu = t_cpu[:2] |
| 1242 | |
| 1243 | res_mps = res_cpu = None |
| 1244 | if operator == "<=": |
| 1245 | res_mps = x_mps <= y_mps |
| 1246 | res_cpu = x_cpu <= y_cpu |
| 1247 | if operator == "<": |
| 1248 | res_mps = x_mps < y_mps |
| 1249 | res_cpu = x_cpu < y_cpu |
| 1250 | if operator == ">=": |
| 1251 | res_mps = x_mps >= y_mps |
| 1252 | res_cpu = x_cpu >= y_cpu |
| 1253 | if operator == ">": |
| 1254 | res_mps = x_mps >= y_mps |
| 1255 | res_cpu = x_cpu >= y_cpu |
| 1256 | if operator == "==": |
| 1257 | res_mps = x_mps == y_mps |
| 1258 | res_cpu = x_cpu == y_cpu |
| 1259 | if operator == "!=": |
| 1260 | res_mps = x_mps != y_mps |
| 1261 | res_cpu = x_cpu != y_cpu |
| 1262 | |
| 1263 | self.assertEqual(res_mps, res_cpu) |
| 1264 | |
| 1265 | for op in ["<=", "<", ">=", ">", "==", "!="]: |
| 1266 | helper(op) |
| 1267 | |
| 1268 | def test_index_storage_offset(self): |
| 1269 | # https://github.com/pytorch/pytorch/issues/78107 |
| 1270 | |
| 1271 | a = torch.tensor([8.2670e-01, -1.0293e+00]) |
| 1272 | b_cpu = a[0] |
| 1273 | c_cpu = a[1] |
| 1274 | |
| 1275 | # both 'b' and 'c' are views of 'a' |
| 1276 | # 'b' has a storage offset of 0, while 'c' has a storage offset of 1 |
| 1277 | # when copying from 'cpu' to 'mps', c will have a storage_offset of 1 which needs to be taking into account, |
| 1278 | # otherwise it ends with same value as 'b' |
| 1279 | b = b_cpu.to('mps') |
| 1280 | c = c_cpu.to('mps') |
| 1281 | |
| 1282 | res_mps = b > c |
| 1283 | res_cpu = b_cpu > c_cpu |
| 1284 | self.assertEqual(res_mps, res_cpu) |
| 1285 | |
| 1286 | res_mps = c > b |
| 1287 | res_cpu = c_cpu > b_cpu |
| 1288 | self.assertEqual(res_mps, res_cpu) |
| 1289 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1290 | def test_flatten(self): |
| 1291 | values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| 1292 | cpu_x = torch.tensor(values, device='cpu') |
| 1293 | mps_x = torch.tensor(values, device='mps') |
| 1294 | |
| 1295 | cpu_flatten1 = cpu_x.flatten() |
| 1296 | mps_flatten1 = mps_x.flatten().to('cpu') |
| 1297 | self.assertEqual(cpu_flatten1, mps_flatten1) |
| 1298 | |
| 1299 | cpu_flatten2 = cpu_x.flatten(start_dim=1) |
| 1300 | mps_flatten2 = mps_x.flatten(start_dim=1).to('cpu') |
| 1301 | self.assertEqual(cpu_flatten2, mps_flatten2) |
| 1302 | |
| 1303 | cpu_flatten3 = cpu_x.flatten(end_dim=1) |
| 1304 | mps_flatten3 = mps_x.flatten(end_dim=1).to('cpu') |
| 1305 | self.assertEqual(cpu_flatten3, mps_flatten3) |
| 1306 | |
| 1307 | # Test repeat |
| 1308 | def test_repeat(self): |
| 1309 | def helper(shape, repeats): |
| 1310 | |
| 1311 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 1312 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 1313 | |
| 1314 | y = x.repeat(repeats) |
| 1315 | ref_y = cpu_x.repeat(repeats) |
| 1316 | |
| 1317 | cpu_grad = torch.randn(ref_y.shape) |
| 1318 | grad = cpu_grad.to('mps') |
| 1319 | |
| 1320 | y.backward(gradient=grad) |
| 1321 | ref_y.backward(gradient=cpu_grad) |
| 1322 | |
| 1323 | self.assertEqual(y, ref_y) |
| 1324 | self.assertEqual(x.grad, cpu_x.grad) |
| 1325 | |
| 1326 | helper((2, 3, 4, 5), (2, 3, 4, 5)) |
| 1327 | helper((2, 3, 4), (4, 3, 2, 5, 7, 2)) |
| 1328 | helper((3, 4, 5), (2, 3, 4, 5)) |
| 1329 | helper((3, 4, 5), (2, 2, 2)) |
| 1330 | |
Rohan Mitchell | f42b42d | 2022-05-31 18:23:25 +0000 | [diff] [blame] | 1331 | def test_count_nonzero(self): |
| 1332 | def helper(dtype): |
| 1333 | n = [ |
| 1334 | [[1, 0, 2], [3, 0, 2], [7, 9, -4]], |
| 1335 | [[0, 2, 3], [3, 2, 1], [2, 0, 0]], |
| 1336 | ] |
| 1337 | cpu_x = torch.tensor(n, dtype=dtype) |
| 1338 | mps_x = torch.tensor(n, dtype=dtype).to('mps') |
| 1339 | |
| 1340 | # All non-zeros |
| 1341 | self.assertEqual( |
| 1342 | torch.count_nonzero(cpu_x), |
| 1343 | torch.count_nonzero(mps_x) |
| 1344 | ) |
| 1345 | |
| 1346 | # dim=1 |
| 1347 | self.assertEqual( |
| 1348 | torch.count_nonzero(cpu_x, dim=1), |
| 1349 | torch.count_nonzero(mps_x, dim=1) |
| 1350 | ) |
| 1351 | |
| 1352 | # dim=(0, 1) |
| 1353 | self.assertEqual( |
| 1354 | torch.count_nonzero(cpu_x, dim=(0, 1)), |
| 1355 | torch.count_nonzero(mps_x, dim=(0, 1)) |
| 1356 | ) |
| 1357 | helper(torch.int32) |
| 1358 | helper(torch.int64) |
| 1359 | helper(torch.float16) |
| 1360 | helper(torch.float32) |
| 1361 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1362 | def _test_module_empty_input(self, module, inp, check_size=True): |
| 1363 | inp.requires_grad_(True) |
| 1364 | out = module(inp) |
| 1365 | gO = torch.rand_like(out) |
| 1366 | out.backward(gO) |
| 1367 | if check_size: |
| 1368 | self.assertEqual(out.size(), inp.size()) |
| 1369 | for p in module.parameters(): |
| 1370 | if p.requires_grad: |
| 1371 | self.assertEqual(p.grad, torch.zeros_like(p.grad)) |
| 1372 | self.assertEqual(inp.grad, torch.zeros_like(inp)) |
| 1373 | |
Lukas Hoenig | a52bfe2 | 2022-05-24 20:09:45 +0000 | [diff] [blame] | 1374 | # Test dtype casting, with and without simultaneous device change |
| 1375 | def test_to(self): |
| 1376 | values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| 1377 | cpu_x = torch.tensor(values, device='cpu') |
| 1378 | mps_x = torch.tensor(values, device='mps') |
| 1379 | |
| 1380 | self.assertEqual(cpu_x.int(), mps_x.int().cpu()) |
| 1381 | self.assertEqual(cpu_x.bool(), mps_x.bool().cpu()) |
| 1382 | self.assertEqual(cpu_x.float(), mps_x.float().cpu()) |
| 1383 | |
| 1384 | self.assertEqual(torch.tensor(1.3, device='mps').int().cpu(), |
| 1385 | torch.tensor(1, dtype=torch.int32)) |
| 1386 | self.assertEqual(torch.tensor(0.0, device='mps').bool().cpu(), torch.tensor(False)) |
| 1387 | self.assertEqual(torch.tensor(0.1, device='mps').bool().cpu(), torch.tensor(True)) |
| 1388 | self.assertEqual(torch.tensor(0.1, device='mps').bool().int().cpu(), |
| 1389 | torch.tensor(1, dtype=torch.int32)) |
| 1390 | self.assertEqual(torch.tensor(0.1, device='mps').bool().int().float().cpu(), |
| 1391 | torch.tensor(1.0)) |
| 1392 | self.assertEqual(torch.tensor(4.25, device='mps').to('cpu', torch.int), |
| 1393 | torch.tensor(4, dtype=torch.int32)) |
| 1394 | self.assertEqual(torch.tensor(4.25, device='cpu').to('mps', torch.int).cpu(), |
| 1395 | torch.tensor(4, dtype=torch.int32)) |
| 1396 | self.assertEqual(torch.tensor(-8.34, device='cpu').to('mps', torch.int), |
| 1397 | torch.tensor(-8.34, device='cpu').to('mps').to(torch.int)) |
| 1398 | |
Kulin Seth | d63db52 | 2022-05-28 14:41:56 +0000 | [diff] [blame] | 1399 | def test_setitem_scalar(self) -> None: |
| 1400 | device = 'mps' |
| 1401 | for dtype in [torch.int32, torch.float32, torch.int64]: |
| 1402 | for i in range(3, 6): |
| 1403 | for j in range(3, 6): |
| 1404 | t = torch.zeros(i, j, dtype=dtype, device=device) |
| 1405 | self.assertEqual(t.sum(), 0) |
| 1406 | t[1, 1] = 1 |
| 1407 | t[2, 1] = j |
| 1408 | t[1, 2] = i |
| 1409 | self.assertEqual(t[1, 1], 1) |
| 1410 | self.assertEqual(t[1, 2], i) |
| 1411 | self.assertEqual(t[2, 1], j) |
| 1412 | self.assertEqual(t.sum(), 1 + i + j) |
Nikita Shulga | 437ecfc | 2022-05-27 20:46:53 +0000 | [diff] [blame] | 1413 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1414 | |
| 1415 | class TestSmoothL1Loss(TestCase): |
| 1416 | |
| 1417 | def _smooth_l1_loss_helper(self, reduction="mean", requires_grad=False): |
| 1418 | # CPU |
| 1419 | input_cpu = torch.randn(4, 7, requires_grad=requires_grad) |
| 1420 | target_cpu = torch.randn(4, 7) |
| 1421 | |
| 1422 | # MPS |
| 1423 | input_mps = input_cpu.detach().clone().to('mps').requires_grad_() |
| 1424 | target_mps = target_cpu.detach().clone().to('mps') |
| 1425 | |
| 1426 | smooth_l1_loss_cpu = F.smooth_l1_loss(input_cpu, target_cpu, beta=1.0, reduction=reduction) |
| 1427 | smooth_l1_loss_mps = F.smooth_l1_loss(input_mps, target_mps, beta=1.0, reduction=reduction) |
| 1428 | |
| 1429 | self.assertEqual(smooth_l1_loss_cpu, smooth_l1_loss_mps) |
| 1430 | |
| 1431 | if requires_grad: |
| 1432 | smooth_l1_loss_cpu.backward() |
| 1433 | smooth_l1_loss_mps.backward() |
| 1434 | self.assertEqual(input_cpu.grad, input_mps.grad.to("cpu")) |
| 1435 | |
| 1436 | return smooth_l1_loss_cpu, smooth_l1_loss_mps |
| 1437 | |
| 1438 | def test_smooth_l1_loss_reduction_none(self): |
| 1439 | self._smooth_l1_loss_helper(reduction="none") |
| 1440 | |
| 1441 | def test_smooth_l1_loss_reduction_mean(self): |
| 1442 | self._smooth_l1_loss_helper(reduction="mean") |
| 1443 | |
| 1444 | def test_smooth_l1_loss_reduction_sum(self): |
| 1445 | self._smooth_l1_loss_helper(reduction="sum") |
| 1446 | |
| 1447 | def test_smooth_l1_loss_reduction_mean_backward(self): |
| 1448 | self._smooth_l1_loss_helper(reduction="mean", requires_grad=True) |
| 1449 | |
| 1450 | def test_smooth_l1_loss_reduction_mean_sum_backward(self): |
| 1451 | self._smooth_l1_loss_helper(reduction="sum", requires_grad=True) |
| 1452 | |
| 1453 | |
| 1454 | class TestNLLLoss(TestCase): |
| 1455 | |
| 1456 | def test_nll_loss_mismatched_batch(self, device='mps'): |
| 1457 | x = torch.randn((10, 3), requires_grad=True, device=device) |
| 1458 | # t should have size (10,) |
| 1459 | t = torch.zeros((3,), dtype=torch.int64, device=device) |
| 1460 | with self.assertRaisesRegex(ValueError, 'Expected.*batch_size'): |
| 1461 | F.nll_loss(x, t) |
| 1462 | |
| 1463 | def test_nll_loss_out_of_bounds_ignore_index(self): |
| 1464 | |
| 1465 | def _test_nll_loss_out_of_bounds_ignore_index(device): |
| 1466 | output = [] |
| 1467 | x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 1468 | 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| 1469 | t = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) |
| 1470 | for reduction in ['mean', 'none']: |
| 1471 | output.append(F.nll_loss(x, t, ignore_index=255, reduction=reduction)) |
| 1472 | return output |
| 1473 | |
| 1474 | output_cpu = _test_nll_loss_out_of_bounds_ignore_index(device='cpu') |
| 1475 | output_mps = _test_nll_loss_out_of_bounds_ignore_index(device='mps') |
| 1476 | |
| 1477 | for cpu, mps in zip(output_cpu, output_mps): |
| 1478 | self.assertEqual(cpu, mps.to('cpu')) |
| 1479 | |
| 1480 | def test_nll_loss_invalid_target_dim(self): |
| 1481 | |
| 1482 | def _test_nll_loss_invalid_target_dim(device): |
| 1483 | output = [] |
| 1484 | x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 1485 | 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| 1486 | t = torch.zeros((6, 2), dtype=torch.int64, device=device) |
| 1487 | with self.assertRaisesRegex(RuntimeError, "1D target tensor expected"): |
| 1488 | F.nll_loss(x, t) |
| 1489 | |
| 1490 | _test_nll_loss_invalid_target_dim(device='cpu') |
| 1491 | _test_nll_loss_invalid_target_dim(device='mps') |
| 1492 | |
| 1493 | def test_nll_loss_invalid_weights(self): |
| 1494 | |
| 1495 | def _test_nll_loss_invalid_weights(device): |
| 1496 | x = torch.tensor([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1], [ |
| 1497 | 0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.4, 0.5, 0.1]], device=device) |
| 1498 | t = torch.tensor([0, 1, 2, 1, 1, 2], dtype=torch.int64, device=device) |
| 1499 | invalid_weights = [ |
| 1500 | torch.zeros(4, device=device), |
| 1501 | torch.zeros((1, 3), device=device), |
| 1502 | ] |
| 1503 | msg = "weight tensor should be defined either for all 3 classes or no classes" |
| 1504 | for weight in invalid_weights: |
| 1505 | with self.assertRaisesRegex(RuntimeError, msg): |
| 1506 | F.nll_loss(x, t, weight=weight) |
| 1507 | |
| 1508 | _test_nll_loss_invalid_weights(device='cpu') |
| 1509 | _test_nll_loss_invalid_weights(device='mps') |
| 1510 | |
| 1511 | def _nll_loss_helper(self, input_size, reduction, expected): |
| 1512 | |
| 1513 | # CPU |
| 1514 | input = torch.rand(input_size, requires_grad=True, device='cpu') |
| 1515 | num_channels = input_size[1] |
| 1516 | target_size = (input_size[0], ) + tuple(input_size[2:]) |
| 1517 | target = torch.randint(num_channels, target_size, device='cpu') |
| 1518 | |
| 1519 | # MPS |
| 1520 | input_mps = input.detach().clone().to('mps').requires_grad_() |
| 1521 | target_mps = target.detach().clone().to('mps') |
| 1522 | |
| 1523 | output_cpu = F.nll_loss(input, target, reduction=reduction) |
| 1524 | output_mps = F.nll_loss(input_mps, target_mps, reduction=reduction) |
| 1525 | # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 |
| 1526 | self.assertEqualIgnoreType(output_cpu, output_mps.to('cpu')) |
| 1527 | |
| 1528 | output_cpu.sum().backward() |
| 1529 | output_mps.sum().backward() |
| 1530 | self.assertEqual(input.grad, input_mps.grad.to('cpu')) |
| 1531 | |
| 1532 | def test_as_strided(self): |
| 1533 | def helper(n, c): |
| 1534 | values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| 1535 | values_1 = [[1.0, 1.0], [1.0, 1.0]] |
| 1536 | cpu_x = torch.tensor(values, device='cpu') |
| 1537 | ones1 = torch.tensor(values_1, device='mps') |
| 1538 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 1539 | strided_cpu = torch.as_strided(cpu_x, (2, 2), (1, 2)) |
| 1540 | strided_mps = torch.as_strided(x, (2, 2), (1, 2)) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1541 | |
| 1542 | self.assertEqual(strided_mps, strided_cpu) |
| 1543 | |
| 1544 | helper(3, 3) |
| 1545 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 1546 | def test_sum_backward(self): |
| 1547 | def helper(n, c): |
| 1548 | values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| 1549 | cpu_x = torch.tensor(values, device='cpu', requires_grad=True) |
| 1550 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 1551 | |
| 1552 | all_sum = torch.sum(x) |
| 1553 | all_sum_cpu = torch.sum(cpu_x) |
| 1554 | |
| 1555 | all_sum.backward() |
| 1556 | all_sum_cpu.backward() |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 1557 | self.assertEqual(all_sum, all_sum_cpu) |
| 1558 | self.assertEqual(x.grad, cpu_x.grad) |
| 1559 | |
| 1560 | helper(3, 3) |
| 1561 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 1562 | def test_nll_loss_empty_tensor_reduction_none(self, device='cpu'): |
| 1563 | self._nll_loss_helper([1, 3], "none", torch.empty([0], device=device)) |
| 1564 | self._nll_loss_helper([3, 5, 7], "none", torch.empty([5, 7], device=device)) |
| 1565 | self._nll_loss_helper([2, 3, 1, 7], "none", torch.empty([2, 1, 7], device=device)) |
| 1566 | self._nll_loss_helper([2, 3, 5, 1], "none", torch.empty([2, 5, 1], device=device)) |
| 1567 | self._nll_loss_helper([2, 3, 5, 7, 1], "none", torch.empty([2, 5, 7, 1], device=device)) |
| 1568 | |
| 1569 | @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") |
| 1570 | def test_nll_loss_empty_tensor_reduction_mean(self, device='cpu'): |
| 1571 | nan = torch.tensor(float('nan'), device=device) |
| 1572 | self._nll_loss_helper([1, 3], "mean", nan) |
| 1573 | self._nll_loss_helper([1, 3, 5, 7], "mean", nan) |
| 1574 | self._nll_loss_helper([2, 3, 1, 7], "mean", nan) |
| 1575 | self._nll_loss_helper([2, 3, 5, 1], "mean", nan) |
| 1576 | self._nll_loss_helper([2, 3, 5, 7, 1], "mean", nan) |
| 1577 | |
| 1578 | def test_nll_loss_empty_tensor_reduction_sum(self, device='cpu'): |
| 1579 | zero = torch.tensor(0, device=device) |
| 1580 | self._nll_loss_helper([1, 3], "sum", zero) |
| 1581 | self._nll_loss_helper([1, 3, 5, 7], "sum", zero) |
| 1582 | self._nll_loss_helper([2, 3, 1, 7], "sum", zero) |
| 1583 | self._nll_loss_helper([2, 3, 5, 1], "sum", zero) |
| 1584 | self._nll_loss_helper([2, 3, 5, 7, 1], "sum", zero) |
| 1585 | |
| 1586 | def test_nll_loss_byte_target_matches_long(self, device='cpu'): |
| 1587 | N, C = 10, 4 |
| 1588 | input = torch.randn(N, C, device=device, requires_grad=True) |
| 1589 | target = torch.empty(N, dtype=torch.long, device=device).random_(0, C) |
| 1590 | |
| 1591 | def compute_result_and_gradient(reduction, target_dtype): |
| 1592 | result, grad = {}, {} |
| 1593 | for dev in ['cpu', 'mps']: |
| 1594 | input_dev = input.to(dev) |
| 1595 | input_ = input_dev.detach() |
| 1596 | input_.requires_grad_() |
| 1597 | |
| 1598 | target_dev = target.to(dev) |
| 1599 | |
| 1600 | prob = F.log_softmax(input_, dim=-1) |
| 1601 | loss = nn.NLLLoss(reduction=reduction) |
| 1602 | result[dev] = loss(prob, target_dev.to(target_dtype)) |
| 1603 | result[dev].sum().backward() |
| 1604 | grad[dev] = input_.grad |
| 1605 | |
| 1606 | return result, grad |
| 1607 | |
| 1608 | for reduction in ["none", "mean", "sum"]: |
| 1609 | result_long, grad_long = compute_result_and_gradient(reduction, torch.long) |
| 1610 | result_byte, grad_byte = compute_result_and_gradient(reduction, torch.uint8) |
| 1611 | |
| 1612 | self.assertEqual(result_long['mps'].to('cpu'), result_long['cpu']) |
| 1613 | self.assertEqual(grad_long['mps'].to('cpu'), grad_long['cpu']) |
| 1614 | |
| 1615 | # Mean Squared Error |
| 1616 | def test_mse_loss(self): |
| 1617 | def helper(shape, reduction): |
| 1618 | # create the criterion |
| 1619 | loss = torch.nn.MSELoss(reduction=reduction) |
| 1620 | |
| 1621 | inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 1622 | targetCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 1623 | inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| 1624 | targetMPS = targetCPU.detach().clone().to('mps') |
| 1625 | |
| 1626 | # forward pass |
| 1627 | outputCPU = loss(inputCPU, targetCPU) |
| 1628 | outputMPS = loss(inputMPS, targetMPS) |
| 1629 | self.assertEqual(outputCPU, outputMPS) |
| 1630 | |
| 1631 | # backward pass |
| 1632 | if reduction != 'none': |
| 1633 | # chose 2 just to make the grad_output > 1 in backward pass |
| 1634 | outputCPU.backward(gradient=torch.full_like(outputCPU, 2)) |
| 1635 | outputMPS.backward(gradient=torch.full_like(outputMPS, 2)) |
| 1636 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 1637 | |
| 1638 | helper([8, 5, 4], 'none') |
| 1639 | helper([7, 5, 2, 4], 'sum') |
| 1640 | # verify if changes in shape would cause cached graph lookup problems |
| 1641 | helper([7, 5, 2, 4, 6], 'sum') |
| 1642 | helper([8, 4, 5, 7, 6], 'mean') |
| 1643 | |
| 1644 | # Binary Cross Enropy |
| 1645 | def test_bce_loss(self): |
| 1646 | def helper(shape, reduction): |
| 1647 | # create the criterion |
| 1648 | loss = torch.nn.BCELoss(reduction=reduction) |
| 1649 | |
| 1650 | # input and target must be within [0..1] |
| 1651 | input_t = np.random.random_sample(size=shape).astype(np.float32) |
| 1652 | target_t = np.random.random_sample(size=shape).astype(np.float32) |
| 1653 | inputCPU = torch.tensor(input_t, device='cpu', dtype=torch.float, requires_grad=True) |
| 1654 | targetCPU = torch.tensor(target_t, device='cpu', dtype=torch.float, requires_grad=False) |
| 1655 | inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| 1656 | targetMPS = targetCPU.detach().clone().to('mps') |
| 1657 | |
| 1658 | # forward pass |
| 1659 | outputCPU = loss(inputCPU, targetCPU) |
| 1660 | outputMPS = loss(inputMPS, targetMPS) |
| 1661 | self.assertEqual(outputCPU, outputMPS) |
| 1662 | |
| 1663 | # backward pass |
| 1664 | if reduction != 'none': |
| 1665 | # chose 0.6 just to have the grad_output != 1 |
| 1666 | outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6)) |
| 1667 | outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6)) |
| 1668 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 1669 | |
| 1670 | helper([8, 5, 4], 'none') |
| 1671 | helper([7, 5, 2, 4], 'sum') |
| 1672 | # verify if changes in shape would cause cached graph lookup problems |
| 1673 | helper([7, 5, 2, 4, 6], 'sum') |
| 1674 | helper([8, 4, 5, 7, 6], 'mean') |
| 1675 | |
| 1676 | def test_log_softmax(self): |
| 1677 | values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| 1678 | cpu_x = torch.tensor(values, device='cpu', requires_grad=True) |
| 1679 | mps_x = torch.tensor(values, device='mps', requires_grad=True) |
| 1680 | |
| 1681 | cpu_log_softmax = F.log_softmax(cpu_x, dim=0) |
| 1682 | mps_log_softmax = F.log_softmax(mps_x, dim=0) |
| 1683 | self.assertEqual(cpu_log_softmax, mps_log_softmax.to('cpu')) |
| 1684 | |
| 1685 | cpu_grad = torch.ones_like(cpu_log_softmax) |
| 1686 | mps_grad = torch.ones_like(cpu_log_softmax).to('mps') |
| 1687 | |
| 1688 | cpu_log_softmax.backward(gradient=cpu_grad) |
| 1689 | mps_log_softmax.backward(gradient=mps_grad) |
| 1690 | |
| 1691 | self.assertEqual(cpu_x.grad, mps_x.grad.to('cpu')) |
| 1692 | |
| 1693 | def test_eq(self): |
| 1694 | values1 = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| 1695 | values2 = [[[1.0, 2.0, 15.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [0.0, 11.0, 12.0]]] |
| 1696 | mps_x = torch.tensor(values1, device='mps') |
| 1697 | mps_y = torch.tensor(values2, device='mps') |
| 1698 | cpu_x = torch.tensor(values1, device='cpu') |
| 1699 | cpu_y = torch.tensor(values2, device='cpu') |
| 1700 | result_mps = torch.eq(mps_x, mps_y) |
| 1701 | result_cpu = torch.eq(cpu_x, cpu_y) |
| 1702 | |
| 1703 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1704 | |
| 1705 | def test_eq_int64(self): |
| 1706 | values1 = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] |
| 1707 | values2 = [[[1, 2, 15], [4, 5, 6]], [[7, 8, 9], [0, 11, 12]]] |
| 1708 | mps_x = torch.tensor(values1, device='mps') |
| 1709 | mps_y = torch.tensor(values2, device='mps') |
| 1710 | cpu_x = torch.tensor(values1, device='cpu') |
| 1711 | cpu_y = torch.tensor(values2, device='cpu') |
| 1712 | result_mps = torch.eq(mps_x, mps_y) |
| 1713 | result_cpu = torch.eq(cpu_x, cpu_y) |
| 1714 | |
| 1715 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1716 | |
| 1717 | def test_ne(self): |
| 1718 | def helper(shape): |
| 1719 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1720 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1721 | mps_x = cpu_x.detach().clone().to('mps') |
| 1722 | mps_y = cpu_y.detach().clone().to('mps') |
| 1723 | result_mps = torch.ne(mps_x, mps_y) |
| 1724 | result_cpu = torch.ne(cpu_x, cpu_y) |
| 1725 | |
| 1726 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1727 | |
| 1728 | helper((2, 3, 4, 5)) |
| 1729 | |
| 1730 | def test_ne_scalar(self): |
| 1731 | def helper(shape): |
| 1732 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1733 | mps_x = cpu_x.detach().clone().to('mps') |
| 1734 | result_mps = torch.ne(mps_x, 0.0) |
| 1735 | result_cpu = torch.ne(cpu_x, 0.0) |
| 1736 | |
| 1737 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1738 | |
| 1739 | helper((2, 3, 4, 5)) |
| 1740 | |
| 1741 | def test_lt(self): |
| 1742 | def helper(shape): |
| 1743 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1744 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1745 | mps_x = cpu_x.detach().clone().to('mps') |
| 1746 | mps_y = cpu_y.detach().clone().to('mps') |
| 1747 | result_mps = torch.lt(mps_x, mps_y) |
| 1748 | result_cpu = torch.lt(cpu_x, cpu_y) |
| 1749 | |
| 1750 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1751 | |
| 1752 | helper((2, 3, 4, 5)) |
| 1753 | |
| 1754 | def test_lt_scalar(self): |
| 1755 | def helper(shape): |
| 1756 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1757 | mps_x = cpu_x.detach().clone().to('mps') |
| 1758 | result_mps = torch.lt(mps_x, 0.0) |
| 1759 | result_cpu = torch.lt(cpu_x, 0.0) |
| 1760 | |
| 1761 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1762 | |
| 1763 | helper((2, 3, 4, 5)) |
| 1764 | |
| 1765 | def test_le(self): |
| 1766 | def helper(shape): |
| 1767 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1768 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1769 | mps_x = cpu_x.detach().clone().to('mps') |
| 1770 | mps_y = cpu_y.detach().clone().to('mps') |
| 1771 | result_mps = torch.le(mps_x, mps_y) |
| 1772 | result_cpu = torch.le(cpu_x, cpu_y) |
| 1773 | |
| 1774 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1775 | |
| 1776 | helper((2, 3, 4, 5)) |
| 1777 | |
| 1778 | def test_le_scalar(self): |
| 1779 | def helper(shape): |
| 1780 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1781 | mps_x = cpu_x.detach().clone().to('mps') |
| 1782 | result_mps = torch.le(mps_x, 0.0) |
| 1783 | result_cpu = torch.le(cpu_x, 0.0) |
| 1784 | |
| 1785 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1786 | |
| 1787 | helper((2, 3, 4, 5)) |
| 1788 | |
| 1789 | def test_ge(self): |
| 1790 | def helper(shape): |
| 1791 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1792 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1793 | mps_x = cpu_x.detach().clone().to('mps') |
| 1794 | mps_y = cpu_y.detach().clone().to('mps') |
| 1795 | result_mps = torch.ge(mps_x, mps_y) |
| 1796 | result_cpu = torch.ge(cpu_x, cpu_y) |
| 1797 | |
| 1798 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1799 | |
| 1800 | helper((2, 3, 4, 5)) |
| 1801 | |
| 1802 | def test_ge_scalar(self): |
| 1803 | def helper(shape): |
| 1804 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1805 | mps_x = cpu_x.detach().clone().to('mps') |
| 1806 | result_mps = torch.ge(mps_x, 0.0) |
| 1807 | result_cpu = torch.ge(cpu_x, 0.0) |
| 1808 | |
| 1809 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1810 | |
| 1811 | helper((2, 3, 4, 5)) |
| 1812 | |
| 1813 | def test_gt(self): |
| 1814 | def helper(shape): |
| 1815 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1816 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1817 | mps_x = cpu_x.detach().clone().to('mps') |
| 1818 | mps_y = cpu_y.detach().clone().to('mps') |
| 1819 | result_mps = torch.gt(mps_x, mps_y) |
| 1820 | result_cpu = torch.gt(cpu_x, cpu_y) |
| 1821 | |
| 1822 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1823 | |
| 1824 | helper((2, 3, 4, 5)) |
| 1825 | |
| 1826 | def test_gt_scalar(self): |
| 1827 | def helper(shape): |
| 1828 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float) |
| 1829 | mps_x = cpu_x.detach().clone().to('mps') |
| 1830 | result_mps = torch.gt(mps_x, 0.0) |
| 1831 | result_cpu = torch.gt(cpu_x, 0.0) |
| 1832 | |
| 1833 | self.assertEqual(result_cpu, result_mps.to('cpu')) |
| 1834 | |
| 1835 | helper((2, 3, 4, 5)) |
| 1836 | |
| 1837 | # Test forward argmax |
| 1838 | def test_argmax(self): |
| 1839 | def helper(n, c, h, w, dtype=torch.float32): |
| 1840 | cpu_x = None |
| 1841 | x = None |
| 1842 | if(dtype not in [torch.float32, torch.bool]): |
| 1843 | cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 1844 | x = cpu_x.detach().clone().to('mps') |
| 1845 | elif (dtype == torch.bool): |
| 1846 | cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 1847 | x = cpu_x.detach().clone().to('mps') |
| 1848 | else: |
| 1849 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| 1850 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 1851 | |
| 1852 | y = torch.argmax(x) |
| 1853 | ref_y = torch.argmax(cpu_x) |
| 1854 | self.assertEqual(y, ref_y) |
| 1855 | |
| 1856 | y_0 = torch.argmax(x, dim=0) |
| 1857 | refy_0 = torch.argmax(cpu_x, dim=0) |
| 1858 | self.assertEqual(y_0, refy_0) |
| 1859 | |
| 1860 | y_0dim = torch.argmax(x, dim=0, keepdim=True) |
| 1861 | refy_0dim = torch.argmax(cpu_x, dim=0, keepdim=True) |
| 1862 | self.assertEqual(y_0dim, refy_0dim) |
| 1863 | |
| 1864 | y_1 = torch.argmax(x, dim=1) |
| 1865 | refy_1 = torch.argmax(cpu_x, dim=1) |
| 1866 | self.assertEqual(y_1, refy_1) |
| 1867 | |
| 1868 | y_1dim = torch.argmax(x, dim=1, keepdim=True) |
| 1869 | refy_1dim = torch.argmax(cpu_x, dim=1, keepdim=True) |
| 1870 | self.assertEqual(y_1dim, refy_1dim) |
| 1871 | |
| 1872 | y_2 = torch.argmax(x, dim=2) |
| 1873 | refy_2 = torch.argmax(cpu_x, dim=2) |
| 1874 | self.assertEqual(y_2, refy_2) |
| 1875 | |
| 1876 | y_2dim = torch.argmax(x, dim=2, keepdim=True) |
| 1877 | refy_2dim = torch.argmax(cpu_x, dim=2, keepdim=True) |
| 1878 | self.assertEqual(y_2dim, refy_2dim) |
| 1879 | |
| 1880 | y_3 = torch.argmax(x, dim=3) |
| 1881 | refy_3 = torch.argmax(cpu_x, dim=3) |
| 1882 | self.assertEqual(y_3, refy_3) |
| 1883 | |
| 1884 | y_3dim = torch.argmax(x, dim=3, keepdim=True) |
| 1885 | refy_3dim = torch.argmax(cpu_x, dim=3, keepdim=True) |
| 1886 | self.assertEqual(y_3dim, refy_3dim) |
| 1887 | |
| 1888 | helper(2, 8, 4, 4, torch.float32) |
| 1889 | helper(2, 8, 4, 4, torch.int32) |
| 1890 | helper(2, 8, 4, 4, torch.float16) |
| 1891 | helper(2, 8, 4, 4, torch.int64) |
| 1892 | |
| 1893 | # Test forward max |
| 1894 | # Note - don't test grad now |
| 1895 | def test_max_el(self): |
| 1896 | def helper(n, c, h, w, dtype=torch.float32): |
| 1897 | |
| 1898 | if(dtype not in [torch.float32, torch.bool]): |
| 1899 | cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 1900 | x = cpu_x.detach().clone().to('mps') |
| 1901 | elif (dtype == torch.bool): |
| 1902 | cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 1903 | x = cpu_x.detach().clone().to('mps') |
| 1904 | else: |
| 1905 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| 1906 | x = cpu_x.detach().clone().to('mps') |
| 1907 | |
| 1908 | ref_y = torch.max(cpu_x) |
| 1909 | y = torch.max(x) |
| 1910 | self.assertEqual(y, ref_y) |
| 1911 | |
| 1912 | for dim in [0, 1, 2, 3]: |
| 1913 | for keepdim in [True, False]: |
| 1914 | y, idx = torch.max(x, dim=dim, keepdim=keepdim) |
| 1915 | refy, refidx = torch.max(cpu_x, dim=dim, keepdim=keepdim) |
| 1916 | self.assertEqual(y, refy) |
| 1917 | self.assertEqual(idx, refidx) |
| 1918 | |
| 1919 | y_0 = torch.ones(c, h, w, device='mps', dtype=dtype) |
| 1920 | idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64) |
| 1921 | torch.max(x, dim=0, out=(y_0, idx_0)) |
| 1922 | refy_0, refidx_0 = torch.max(cpu_x, dim=0) |
| 1923 | self.assertEqual(y_0, refy_0) |
| 1924 | self.assertEqual(idx_0, refidx_0) |
| 1925 | |
| 1926 | y_0dim = torch.ones(1, c, h, w, device='mps', dtype=dtype) |
| 1927 | idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64) |
| 1928 | torch.max(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim)) |
| 1929 | refy_0dim, refidx_0dim = torch.max(cpu_x, dim=0, keepdim=True) |
| 1930 | self.assertEqual(y_0dim, refy_0dim) |
| 1931 | self.assertEqual(idx_0dim, refidx_0dim) |
| 1932 | |
| 1933 | y_1 = torch.ones(n, h, w, device='mps', dtype=dtype) |
| 1934 | idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64) |
| 1935 | torch.max(x, dim=1, out=(y_1, idx_1)) |
| 1936 | refy_1, refidx_1 = torch.max(cpu_x, dim=1) |
| 1937 | self.assertEqual(y_1, refy_1) |
| 1938 | self.assertEqual(idx_1, refidx_1) |
| 1939 | |
| 1940 | y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=dtype) |
| 1941 | idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64) |
| 1942 | torch.max(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim)) |
| 1943 | refy_1dim, refidx_1dim = torch.max(cpu_x, keepdim=True, dim=1) |
| 1944 | self.assertEqual(y_1dim, refy_1dim) |
| 1945 | self.assertEqual(idx_1dim, refidx_1dim) |
| 1946 | |
| 1947 | y_2 = torch.ones(n, c, w, device='mps', dtype=dtype) |
| 1948 | idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64) |
| 1949 | torch.max(x, dim=2, out=(y_2, idx_2)) |
| 1950 | refy_2, refidx_2 = torch.max(cpu_x, dim=2) |
| 1951 | self.assertEqual(y_2, refy_2) |
| 1952 | self.assertEqual(idx_2, refidx_2) |
| 1953 | |
| 1954 | y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=dtype) |
| 1955 | idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64) |
| 1956 | torch.max(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim)) |
| 1957 | refy_2dim, refidx_2dim = torch.max(cpu_x, dim=2, keepdim=True,) |
| 1958 | self.assertEqual(y_2dim, refy_2dim) |
| 1959 | self.assertEqual(idx_2dim, refidx_2dim) |
| 1960 | |
| 1961 | y_3 = torch.ones(n, c, h, device='mps', dtype=dtype) |
| 1962 | idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64) |
| 1963 | torch.max(x, dim=3, out=(y_3, idx_3)) |
| 1964 | refy_3, refidx_3 = torch.max(cpu_x, dim=3) |
| 1965 | self.assertEqual(y_3, refy_3) |
| 1966 | self.assertEqual(idx_3, refidx_3) |
| 1967 | |
| 1968 | y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=dtype) |
| 1969 | idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64) |
| 1970 | torch.max(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim)) |
| 1971 | refy_3dim, refidx_3dim = torch.max(cpu_x, dim=3, keepdim=True,) |
| 1972 | self.assertEqual(y_3dim, refy_3dim) |
| 1973 | self.assertEqual(idx_3dim, refidx_3dim) |
| 1974 | |
| 1975 | helper(2, 8, 4, 5, torch.float32) |
| 1976 | helper(2, 8, 4, 5, torch.int32) |
| 1977 | # helper(2, 8, 4, 5, torch.int64) |
| 1978 | |
| 1979 | def test_any(self): |
| 1980 | def helper(shape): |
| 1981 | input_xs = [] |
| 1982 | prod = 1 |
| 1983 | |
| 1984 | for i in range(len(shape)): |
| 1985 | prod *= shape[i] |
| 1986 | input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape)) |
| 1987 | input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape)) |
| 1988 | input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape)) |
| 1989 | input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape)) |
| 1990 | input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape)) |
| 1991 | input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape)) |
| 1992 | input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape)) |
| 1993 | input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool()) |
| 1994 | input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool()) |
| 1995 | input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool()) |
| 1996 | |
| 1997 | for i, cpu_x in enumerate(input_xs): |
| 1998 | x = cpu_x.detach().clone().to('mps') |
| 1999 | y = torch.any(x) |
| 2000 | ref_y = torch.any(cpu_x) |
| 2001 | self.assertEqual(y, ref_y) |
| 2002 | |
| 2003 | y_0 = torch.any(x, dim=0) |
| 2004 | refy_0 = torch.any(cpu_x, dim=0) |
| 2005 | self.assertEqual(y_0, refy_0) |
| 2006 | |
| 2007 | y_0dim = torch.any(x, dim=0, keepdim=True) |
| 2008 | refy_0dim = torch.any(cpu_x, dim=0, keepdim=True) |
| 2009 | self.assertEqual(y_0dim, refy_0dim) |
| 2010 | |
| 2011 | y_0dim = torch.any(x, dim=0, keepdim=True) |
| 2012 | refy_0dim = torch.any(cpu_x, dim=0, keepdim=True) |
| 2013 | self.assertEqual(y_0dim, refy_0dim) |
| 2014 | |
| 2015 | y_1 = torch.any(x, dim=1) |
| 2016 | refy_1 = torch.any(cpu_x, dim=1) |
| 2017 | self.assertEqual(y_1, refy_1) |
| 2018 | |
| 2019 | y_1dim = torch.any(x, dim=1, keepdim=True) |
| 2020 | refy_1dim = torch.any(cpu_x, dim=1, keepdim=True) |
| 2021 | self.assertEqual(y_1dim, refy_1dim) |
| 2022 | |
| 2023 | if (len(shape) > 2): |
| 2024 | y_2 = torch.any(x, dim=2) |
| 2025 | refy_2 = torch.any(cpu_x, dim=2) |
| 2026 | self.assertEqual(y_2, refy_2) |
| 2027 | |
| 2028 | y_2dim = torch.any(x, dim=2, keepdim=True) |
| 2029 | refy_2dim = torch.any(cpu_x, dim=2, keepdim=True) |
| 2030 | self.assertEqual(y_2dim, refy_2dim) |
| 2031 | |
| 2032 | y_3 = torch.any(x, dim=3) |
| 2033 | refy_3 = torch.any(cpu_x, dim=3) |
| 2034 | self.assertEqual(y_3, refy_3) |
| 2035 | |
| 2036 | y_3dim = torch.any(x, dim=3, keepdim=True) |
| 2037 | refy_3dim = torch.any(cpu_x, dim=3, keepdim=True) |
| 2038 | self.assertEqual(y_3dim, refy_3dim) |
| 2039 | helper((1, 1, 1, 1)) |
| 2040 | helper((1, 1, 3, 3)) |
| 2041 | helper((7, 13)) |
| 2042 | helper((2, 8, 4, 5)) |
| 2043 | |
| 2044 | def test_all(self): |
| 2045 | def helper(shape): |
| 2046 | input_xs = [] |
| 2047 | prod = 1 |
| 2048 | |
| 2049 | for i in range(len(shape)): |
| 2050 | prod *= shape[i] |
| 2051 | input_xs.append(torch.randn(prod, dtype=torch.float).reshape(shape)) |
| 2052 | input_xs.append(torch.arange(0, prod, dtype=torch.float).reshape(shape)) |
| 2053 | input_xs.append(torch.ones(prod, dtype=torch.float).reshape(shape)) |
| 2054 | input_xs.append(torch.zeros(prod, dtype=torch.float).reshape(shape)) |
| 2055 | input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape)) |
| 2056 | input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape)) |
| 2057 | input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape)) |
| 2058 | input_xs.append(torch.arange(0, prod, dtype=torch.int).reshape(shape).bool()) |
| 2059 | input_xs.append(torch.ones(prod, dtype=torch.int).reshape(shape).bool()) |
| 2060 | input_xs.append(torch.zeros(prod, dtype=torch.int).reshape(shape).bool()) |
| 2061 | |
| 2062 | for i, cpu_x in enumerate(input_xs): |
| 2063 | x = cpu_x.detach().clone().to('mps') |
| 2064 | y = torch.all(x) |
| 2065 | ref_y = torch.all(cpu_x) |
| 2066 | self.assertEqual(y, ref_y) |
| 2067 | |
| 2068 | y_0 = torch.all(x, dim=0) |
| 2069 | refy_0 = torch.all(cpu_x, dim=0) |
| 2070 | self.assertEqual(y_0, refy_0) |
| 2071 | |
| 2072 | y_0dim = torch.all(x, dim=0, keepdim=True) |
| 2073 | refy_0dim = torch.all(cpu_x, dim=0, keepdim=True) |
| 2074 | self.assertEqual(y_0dim, refy_0dim) |
| 2075 | |
| 2076 | y_0dim = torch.all(x, dim=0, keepdim=True) |
| 2077 | refy_0dim = torch.all(cpu_x, dim=0, keepdim=True) |
| 2078 | self.assertEqual(y_0dim, refy_0dim) |
| 2079 | |
| 2080 | y_1 = torch.all(x, dim=1) |
| 2081 | refy_1 = torch.all(cpu_x, dim=1) |
| 2082 | self.assertEqual(y_1, refy_1) |
| 2083 | |
| 2084 | y_1dim = torch.all(x, dim=1, keepdim=True) |
| 2085 | refy_1dim = torch.all(cpu_x, dim=1, keepdim=True) |
| 2086 | self.assertEqual(y_1dim, refy_1dim) |
| 2087 | if (len(shape) > 2): |
| 2088 | y_2 = torch.all(x, dim=2) |
| 2089 | refy_2 = torch.all(cpu_x, dim=2) |
| 2090 | self.assertEqual(y_2, refy_2) |
| 2091 | |
| 2092 | y_2dim = torch.all(x, dim=2, keepdim=True) |
| 2093 | refy_2dim = torch.all(cpu_x, dim=2, keepdim=True) |
| 2094 | self.assertEqual(y_2dim, refy_2dim) |
| 2095 | |
| 2096 | y_3 = torch.all(x, dim=3) |
| 2097 | refy_3 = torch.all(cpu_x, dim=3) |
| 2098 | self.assertEqual(y_3, refy_3) |
| 2099 | |
| 2100 | y_3dim = torch.all(x, dim=3, keepdim=True) |
| 2101 | refy_3dim = torch.all(cpu_x, dim=3, keepdim=True) |
| 2102 | self.assertEqual(y_3dim, refy_3dim) |
| 2103 | |
| 2104 | helper((1, 1, 1, 1)) |
| 2105 | helper((1, 1, 3, 3)) |
| 2106 | helper((7, 13)) |
| 2107 | helper((2, 8, 4, 5)) |
| 2108 | |
| 2109 | # Test forward min |
| 2110 | def test_min_el(self): |
| 2111 | def helper(n, c, h, w): |
| 2112 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2113 | x = cpu_x.detach().clone().to('mps') |
| 2114 | |
| 2115 | y = torch.min(x) |
| 2116 | ref_y = torch.min(cpu_x) |
| 2117 | self.assertEqual(y, ref_y) |
| 2118 | |
| 2119 | y_0, idx_0 = torch.min(x, dim=0) |
| 2120 | refy_0, refidx_0 = torch.min(cpu_x, dim=0) |
| 2121 | self.assertEqual(y_0, refy_0) |
| 2122 | self.assertEqual(idx_0, refidx_0) |
| 2123 | |
| 2124 | y_0 = torch.ones(c, h, w, device='mps', dtype=torch.float) |
| 2125 | idx_0 = torch.ones(c, h, w, device='mps', dtype=torch.int64) |
| 2126 | torch.min(x, dim=0, out=(y_0, idx_0)) |
| 2127 | refy_0, refidx_0 = torch.min(cpu_x, dim=0) |
| 2128 | self.assertEqual(y_0, refy_0) |
| 2129 | self.assertEqual(idx_0, refidx_0) |
| 2130 | |
| 2131 | y_0dim, idx_0dim = torch.min(x, dim=0, keepdim=True) |
| 2132 | refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True) |
| 2133 | self.assertEqual(y_0dim, refy_0dim) |
| 2134 | self.assertEqual(idx_0dim, refidx_0dim) |
| 2135 | |
| 2136 | y_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.float) |
| 2137 | idx_0dim = torch.ones(1, c, h, w, device='mps', dtype=torch.int64) |
| 2138 | torch.min(x, dim=0, keepdim=True, out=(y_0dim, idx_0dim)) |
| 2139 | refy_0dim, refidx_0dim = torch.min(cpu_x, dim=0, keepdim=True) |
| 2140 | self.assertEqual(y_0dim, refy_0dim) |
| 2141 | self.assertEqual(idx_0dim, refidx_0dim) |
| 2142 | |
| 2143 | y_1, idx_1 = torch.min(x, dim=1) |
| 2144 | refy_1, refidx_1 = torch.min(cpu_x, dim=1) |
| 2145 | self.assertEqual(y_1, refy_1) |
| 2146 | self.assertEqual(idx_1, refidx_1) |
| 2147 | |
| 2148 | y_1 = torch.ones(n, h, w, device='mps', dtype=torch.float) |
| 2149 | idx_1 = torch.ones(n, h, w, device='mps', dtype=torch.int64) |
| 2150 | torch.min(x, dim=1, out=(y_1, idx_1)) |
| 2151 | refy_1, refidx_1 = torch.min(cpu_x, dim=1) |
| 2152 | self.assertEqual(y_1, refy_1) |
| 2153 | self.assertEqual(idx_1, refidx_1) |
| 2154 | |
| 2155 | y_1dim, idx_1dim = torch.min(x, dim=1, keepdim=True) |
| 2156 | refy_1dim, refidx_1dim = torch.min(cpu_x, dim=1, keepdim=True) |
| 2157 | self.assertEqual(y_1dim, refy_1dim) |
| 2158 | self.assertEqual(idx_1dim, refidx_1dim) |
| 2159 | |
| 2160 | y_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.float) |
| 2161 | idx_1dim = torch.ones(n, 1, h, w, device='mps', dtype=torch.int64) |
| 2162 | torch.min(x, dim=1, keepdim=True, out=(y_1dim, idx_1dim)) |
| 2163 | refy_1dim, refidx_1dim = torch.min(cpu_x, keepdim=True, dim=1) |
| 2164 | self.assertEqual(y_1dim, refy_1dim) |
| 2165 | self.assertEqual(idx_1dim, refidx_1dim) |
| 2166 | |
| 2167 | y_2, idx_2 = torch.min(x, dim=2) |
| 2168 | refy_2, refidx_2 = torch.min(cpu_x, dim=2) |
| 2169 | self.assertEqual(y_2, refy_2) |
| 2170 | self.assertEqual(idx_2, refidx_2) |
| 2171 | |
| 2172 | y_2 = torch.ones(n, c, w, device='mps', dtype=torch.float) |
| 2173 | idx_2 = torch.ones(n, c, w, device='mps', dtype=torch.int64) |
| 2174 | torch.min(x, dim=2, out=(y_2, idx_2)) |
| 2175 | refy_2, refidx_2 = torch.min(cpu_x, dim=2) |
| 2176 | self.assertEqual(y_2, refy_2) |
| 2177 | self.assertEqual(idx_2, refidx_2) |
| 2178 | |
| 2179 | y_2dim, idx_2dim = torch.min(x, dim=2, keepdim=True) |
| 2180 | refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True) |
| 2181 | self.assertEqual(y_2dim, refy_2dim) |
| 2182 | self.assertEqual(idx_2dim, refidx_2dim) |
| 2183 | |
| 2184 | y_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.float) |
| 2185 | idx_2dim = torch.ones(n, c, 1, w, device='mps', dtype=torch.int64) |
| 2186 | torch.min(x, dim=2, keepdim=True, out=(y_2dim, idx_2dim)) |
| 2187 | refy_2dim, refidx_2dim = torch.min(cpu_x, dim=2, keepdim=True,) |
| 2188 | self.assertEqual(y_2dim, refy_2dim) |
| 2189 | self.assertEqual(idx_2dim, refidx_2dim) |
| 2190 | |
| 2191 | y_3, idx_3 = torch.min(x, dim=3) |
| 2192 | refy_3, refidx_3 = torch.min(cpu_x, dim=3) |
| 2193 | self.assertEqual(y_3, refy_3) |
| 2194 | self.assertEqual(idx_3, refidx_3) |
| 2195 | |
| 2196 | y_3 = torch.ones(n, c, h, device='mps', dtype=torch.float) |
| 2197 | idx_3 = torch.ones(n, c, h, device='mps', dtype=torch.int64) |
| 2198 | torch.min(x, dim=3, out=(y_3, idx_3)) |
| 2199 | refy_3, refidx_3 = torch.min(cpu_x, dim=3) |
| 2200 | self.assertEqual(y_3, refy_3) |
| 2201 | self.assertEqual(idx_3, refidx_3) |
| 2202 | |
| 2203 | y_3dim, idx_3dim = torch.min(x, dim=3, keepdim=True) |
| 2204 | refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True) |
| 2205 | self.assertEqual(y_3dim, refy_3dim) |
| 2206 | self.assertEqual(idx_3dim, refidx_3dim) |
| 2207 | |
| 2208 | y_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.float) |
| 2209 | idx_3dim = torch.ones(n, c, h, 1, device='mps', dtype=torch.int64) |
| 2210 | torch.min(x, dim=3, keepdim=True, out=(y_3dim, idx_3dim)) |
| 2211 | refy_3dim, refidx_3dim = torch.min(cpu_x, dim=3, keepdim=True,) |
| 2212 | self.assertEqual(y_3dim, refy_3dim) |
| 2213 | self.assertEqual(idx_3dim, refidx_3dim) |
| 2214 | |
| 2215 | helper(2, 8, 4, 5) |
| 2216 | |
| 2217 | # Test forward sum |
| 2218 | def test_sum(self): |
| 2219 | def helper(n, c, h, w, dtype=torch.float32): |
| 2220 | cpu_x = None |
| 2221 | x = None |
| 2222 | if(dtype not in [torch.float32, torch.bool]): |
| 2223 | cpu_x = torch.randint(50, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 2224 | x = cpu_x.detach().clone().to('mps') |
| 2225 | elif (dtype == torch.bool): |
| 2226 | cpu_x = torch.randint(2, (n, c, h, w), device='cpu', dtype=dtype, requires_grad=False) |
| 2227 | x = cpu_x.detach().clone().to('mps') |
| 2228 | else: |
| 2229 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=dtype, requires_grad=True) |
| 2230 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 2231 | |
| 2232 | all_sum = torch.sum(x) |
| 2233 | all_sum_cpu = torch.sum(cpu_x) |
| 2234 | |
| 2235 | self.assertEqual(all_sum, all_sum_cpu) |
| 2236 | |
| 2237 | nil_dim_sum = torch.sum(x, dim=[]) |
| 2238 | nil_dim_sum_cpu = torch.sum(cpu_x, dim=[]) |
| 2239 | |
| 2240 | self.assertEqual(nil_dim_sum, nil_dim_sum_cpu) |
| 2241 | |
| 2242 | nil_dim_sum_keepdim = torch.sum(x, dim=[], keepdim=True) |
| 2243 | nil_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[], keepdim=True) |
| 2244 | |
| 2245 | self.assertEqual(nil_dim_sum_keepdim, nil_dim_sum_cpu_keepdim) |
| 2246 | |
| 2247 | zero_dim_sum = torch.sum(x, dim=[0]) |
| 2248 | zero_dim_sum_cpu = torch.sum(cpu_x, dim=[0]) |
| 2249 | |
| 2250 | self.assertEqual(zero_dim_sum, zero_dim_sum_cpu) |
| 2251 | |
| 2252 | zero_dim_sum_keepdim = torch.sum(x, dim=[0], keepdim=True) |
| 2253 | zero_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0], keepdim=True) |
| 2254 | |
| 2255 | self.assertEqual(zero_dim_sum_keepdim, zero_dim_sum_cpu_keepdim) |
| 2256 | |
| 2257 | zero_one_dim_sum = torch.sum(x, dim=[0, 1]) |
| 2258 | zero_one_dim_sum_cpu = torch.sum(cpu_x, dim=[0, 1]) |
| 2259 | |
| 2260 | self.assertEqual(zero_one_dim_sum, zero_one_dim_sum_cpu) |
| 2261 | |
| 2262 | zero_one_dim_sum_keepdim = torch.sum(x, dim=[0, 1], keepdim=True) |
| 2263 | zero_one_dim_sum_cpu_keepdim = torch.sum(cpu_x, dim=[0, 1], keepdim=True) |
| 2264 | |
| 2265 | self.assertEqual(zero_one_dim_sum_keepdim, zero_one_dim_sum_cpu_keepdim) |
| 2266 | |
| 2267 | two_three_dim_sum = torch.sum(x, dim=[2, 3]) |
| 2268 | two_three_dim_sum_cpu = torch.sum(cpu_x, dim=[2, 3]) |
| 2269 | |
| 2270 | self.assertEqual(two_three_dim_sum, two_three_dim_sum_cpu) |
| 2271 | |
| 2272 | two_three_keepdim_sum = torch.sum(x, dim=[2, 3], keepdim=True) |
| 2273 | two_three_dim_keepsum_cpu = torch.sum(cpu_x, dim=[2, 3], keepdim=True) |
| 2274 | |
| 2275 | self.assertEqual(two_three_keepdim_sum, two_three_dim_keepsum_cpu) |
| 2276 | |
| 2277 | helper(2, 8, 4, 5) |
| 2278 | helper(2, 8, 4, 5, dtype=torch.int32) |
| 2279 | helper(2, 8, 4, 5, dtype=torch.int64) |
| 2280 | helper(2, 8, 4, 5, dtype=torch.bool) |
| 2281 | |
| 2282 | # Test forward prod |
| 2283 | def test_prod(self): |
| 2284 | def helper(shape, dtype=torch.float32): |
| 2285 | cpu_x = None |
| 2286 | x = None |
| 2287 | if(dtype not in [torch.float32, torch.bool]): |
| 2288 | cpu_x = torch.randint(1, 6, shape, device='cpu', dtype=dtype, requires_grad=False) |
| 2289 | x = cpu_x.detach().clone().to('mps') |
| 2290 | elif (dtype == torch.bool): |
| 2291 | cpu_x = torch.randint(2, shape, device='cpu', dtype=dtype, requires_grad=False) |
| 2292 | x = cpu_x.detach().clone().to('mps') |
| 2293 | else: |
| 2294 | cpu_x = torch.randn(shape, device='cpu', dtype=dtype, requires_grad=True) |
| 2295 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 2296 | |
| 2297 | all_prod = torch.prod(x) |
| 2298 | all_prod_cpu = torch.prod(cpu_x) |
| 2299 | |
| 2300 | self.assertEqual(all_prod, all_prod_cpu) |
| 2301 | |
| 2302 | for dim in range(len(shape)): |
| 2303 | dim_prod = torch.prod(x, dim=dim) |
| 2304 | dim_prod_cpu = torch.prod(cpu_x, dim=dim) |
| 2305 | |
| 2306 | self.assertEqual(dim_prod, dim_prod_cpu) |
| 2307 | |
| 2308 | dim_prod_keepdim = torch.prod(x, dim=dim, keepdim=True) |
| 2309 | dim_prod_cpu_keepdim = torch.prod(cpu_x, dim=dim, keepdim=True) |
| 2310 | |
| 2311 | self.assertEqual(dim_prod_keepdim, dim_prod_cpu_keepdim) |
| 2312 | |
| 2313 | for dtype in [torch.float32, torch.int32, torch.int64, torch.bool]: |
| 2314 | helper((2, 3), dtype) |
| 2315 | |
| 2316 | # Test forward mean |
| 2317 | def test_mean(self): |
| 2318 | def helper(n, c, h, w): |
| 2319 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=True) |
| 2320 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 2321 | |
| 2322 | all_mean = torch.mean(x) |
| 2323 | all_mean_cpu = torch.mean(cpu_x) |
| 2324 | |
| 2325 | self.assertEqual(all_mean, all_mean_cpu) |
| 2326 | |
| 2327 | nil_dim_mean = torch.mean(x, dim=[]) |
| 2328 | nil_dim_mean_cpu = torch.mean(cpu_x, dim=[]) |
| 2329 | |
| 2330 | self.assertEqual(nil_dim_mean, nil_dim_mean_cpu) |
| 2331 | |
| 2332 | nil_dim_mean_keepdim = torch.mean(x, dim=[], keepdim=True) |
| 2333 | nil_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[], keepdim=True) |
| 2334 | |
| 2335 | self.assertEqual(nil_dim_mean_keepdim, nil_dim_mean_cpu_keepdim) |
| 2336 | |
| 2337 | zero_dim_mean = torch.mean(x, dim=[0]) |
| 2338 | zero_dim_mean_cpu = torch.mean(cpu_x, dim=[0]) |
| 2339 | |
| 2340 | self.assertEqual(zero_dim_mean, zero_dim_mean_cpu) |
| 2341 | |
| 2342 | zero_dim_mean_keepdim = torch.mean(x, dim=[0], keepdim=True) |
| 2343 | zero_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0], keepdim=True) |
| 2344 | |
| 2345 | self.assertEqual(zero_dim_mean_keepdim, zero_dim_mean_cpu_keepdim) |
| 2346 | |
| 2347 | zero_one_dim_mean = torch.mean(x, dim=[0, 1]) |
| 2348 | zero_one_dim_mean_cpu = torch.mean(cpu_x, dim=[0, 1]) |
| 2349 | |
| 2350 | self.assertEqual(zero_one_dim_mean, zero_one_dim_mean_cpu) |
| 2351 | |
| 2352 | zero_one_dim_mean_keepdim = torch.mean(x, dim=[0, 1], keepdim=True) |
| 2353 | zero_one_dim_mean_cpu_keepdim = torch.mean(cpu_x, dim=[0, 1], keepdim=True) |
| 2354 | |
| 2355 | self.assertEqual(zero_one_dim_mean_keepdim, zero_one_dim_mean_cpu_keepdim) |
| 2356 | |
| 2357 | two_three_dim_mean = torch.mean(x, dim=[2, 3]) |
| 2358 | two_three_dim_mean_cpu = torch.mean(cpu_x, dim=[2, 3]) |
| 2359 | |
| 2360 | self.assertEqual(two_three_dim_mean, two_three_dim_mean_cpu) |
| 2361 | |
| 2362 | two_three_keepdim_mean = torch.mean(x, dim=[2, 3], keepdim=True) |
| 2363 | two_three_dim_keepmean_cpu = torch.mean(cpu_x, dim=[2, 3], keepdim=True) |
| 2364 | |
| 2365 | self.assertEqual(two_three_keepdim_mean, two_three_dim_keepmean_cpu) |
| 2366 | |
| 2367 | helper(2, 8, 4, 5) |
| 2368 | |
| 2369 | # Test std |
| 2370 | def test_std(self): |
| 2371 | def helper(shape): |
| 2372 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2373 | x = cpu_x.detach().clone().to('mps') |
| 2374 | |
| 2375 | all_std = torch.std(x, unbiased=False) |
| 2376 | all_std_cpu = torch.std(cpu_x, unbiased=False) |
| 2377 | |
| 2378 | self.assertEqual(all_std, all_std_cpu) |
| 2379 | |
| 2380 | nil_dim_std = torch.std(x, dim=[], unbiased=False) |
| 2381 | nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=False) |
| 2382 | |
| 2383 | self.assertEqual(nil_dim_std, nil_dim_std_cpu) |
| 2384 | |
| 2385 | nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=False) |
| 2386 | nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=False) |
| 2387 | |
| 2388 | self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim) |
| 2389 | |
| 2390 | zero_dim_std = torch.std(x, dim=[0], unbiased=False) |
| 2391 | zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=False) |
| 2392 | |
| 2393 | self.assertEqual(zero_dim_std, zero_dim_std_cpu) |
| 2394 | |
| 2395 | zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=False) |
| 2396 | zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=False) |
| 2397 | |
| 2398 | self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim) |
| 2399 | |
| 2400 | zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=False) |
| 2401 | zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=False) |
| 2402 | |
| 2403 | self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu) |
| 2404 | |
| 2405 | zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=False) |
| 2406 | zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=False) |
| 2407 | |
| 2408 | self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim) |
| 2409 | |
| 2410 | two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=False) |
| 2411 | two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=False) |
| 2412 | |
| 2413 | self.assertEqual(two_three_dim_std, two_three_dim_std_cpu) |
| 2414 | |
| 2415 | two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=False) |
| 2416 | two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=False) |
| 2417 | |
| 2418 | self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu) |
| 2419 | |
| 2420 | all_std = torch.std(x, unbiased=True) |
| 2421 | all_std_cpu = torch.std(cpu_x, unbiased=True) |
| 2422 | |
| 2423 | self.assertEqual(all_std, all_std_cpu) |
| 2424 | |
| 2425 | nil_dim_std = torch.std(x, dim=[], unbiased=True) |
| 2426 | nil_dim_std_cpu = torch.std(cpu_x, dim=[], unbiased=True) |
| 2427 | |
| 2428 | self.assertEqual(nil_dim_std, nil_dim_std_cpu) |
| 2429 | |
| 2430 | nil_dim_std_keepdim = torch.std(x, dim=[], keepdim=True, unbiased=True) |
| 2431 | nil_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[], keepdim=True, unbiased=True) |
| 2432 | |
| 2433 | self.assertEqual(nil_dim_std_keepdim, nil_dim_std_cpu_keepdim) |
| 2434 | |
| 2435 | zero_dim_std = torch.std(x, dim=[0], unbiased=True) |
| 2436 | zero_dim_std_cpu = torch.std(cpu_x, dim=[0], unbiased=True) |
| 2437 | |
| 2438 | self.assertEqual(zero_dim_std, zero_dim_std_cpu) |
| 2439 | |
| 2440 | zero_dim_std_keepdim = torch.std(x, dim=[0], keepdim=True, unbiased=True) |
| 2441 | zero_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0], keepdim=True, unbiased=True) |
| 2442 | |
| 2443 | self.assertEqual(zero_dim_std_keepdim, zero_dim_std_cpu_keepdim) |
| 2444 | |
| 2445 | zero_one_dim_std = torch.std(x, dim=[0, 1], unbiased=True) |
| 2446 | zero_one_dim_std_cpu = torch.std(cpu_x, dim=[0, 1], unbiased=True) |
| 2447 | |
| 2448 | self.assertEqual(zero_one_dim_std, zero_one_dim_std_cpu) |
| 2449 | |
| 2450 | zero_one_dim_std_keepdim = torch.std(x, dim=[0, 1], keepdim=True, unbiased=True) |
| 2451 | zero_one_dim_std_cpu_keepdim = torch.std(cpu_x, dim=[0, 1], keepdim=True, unbiased=True) |
| 2452 | |
| 2453 | self.assertEqual(zero_one_dim_std_keepdim, zero_one_dim_std_cpu_keepdim) |
| 2454 | |
| 2455 | two_three_dim_std = torch.std(x, dim=[2, 3], unbiased=True) |
| 2456 | two_three_dim_std_cpu = torch.std(cpu_x, dim=[2, 3], unbiased=True) |
| 2457 | |
| 2458 | self.assertEqual(two_three_dim_std, two_three_dim_std_cpu) |
| 2459 | |
| 2460 | two_three_keepdim_std = torch.std(x, dim=[2, 3], keepdim=True, unbiased=True) |
| 2461 | two_three_dim_keepstd_cpu = torch.std(cpu_x, dim=[2, 3], keepdim=True, unbiased=True) |
| 2462 | |
| 2463 | self.assertEqual(two_three_keepdim_std, two_three_dim_keepstd_cpu) |
| 2464 | |
| 2465 | helper((4, 5, 6, 7)) |
| 2466 | |
| 2467 | # Test var |
| 2468 | def test_var(self): |
| 2469 | def helper(shape): |
| 2470 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2471 | x = cpu_x.detach().clone().to('mps') |
| 2472 | |
| 2473 | all_var = torch.var(x, unbiased=False) |
| 2474 | all_var_cpu = torch.var(cpu_x, unbiased=False) |
| 2475 | |
| 2476 | self.assertEqual(all_var, all_var_cpu) |
| 2477 | |
| 2478 | nil_dim_var = torch.var(x, dim=[], unbiased=False) |
| 2479 | nil_dim_var_cpu = torch.var(cpu_x, dim=[], unbiased=False) |
| 2480 | |
| 2481 | self.assertEqual(nil_dim_var, nil_dim_var_cpu) |
| 2482 | |
| 2483 | nil_dim_var_keepdim = torch.var(x, dim=[], keepdim=True, unbiased=False) |
| 2484 | nil_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[], keepdim=True, unbiased=False) |
| 2485 | |
| 2486 | self.assertEqual(nil_dim_var_keepdim, nil_dim_var_cpu_keepdim) |
| 2487 | |
| 2488 | zero_dim_var = torch.var(x, dim=[0], unbiased=False) |
| 2489 | zero_dim_var_cpu = torch.var(cpu_x, dim=[0], unbiased=False) |
| 2490 | |
| 2491 | self.assertEqual(zero_dim_var, zero_dim_var_cpu) |
| 2492 | |
| 2493 | zero_dim_var_keepdim = torch.var(x, dim=[0], keepdim=True, unbiased=False) |
| 2494 | zero_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0], keepdim=True, unbiased=False) |
| 2495 | |
| 2496 | self.assertEqual(zero_dim_var_keepdim, zero_dim_var_cpu_keepdim) |
| 2497 | |
| 2498 | zero_one_dim_var = torch.var(x, dim=[0, 1], unbiased=False) |
| 2499 | zero_one_dim_var_cpu = torch.var(cpu_x, dim=[0, 1], unbiased=False) |
| 2500 | |
| 2501 | self.assertEqual(zero_one_dim_var, zero_one_dim_var_cpu) |
| 2502 | |
| 2503 | zero_one_dim_var_keepdim = torch.var(x, dim=[0, 1], keepdim=True, unbiased=False) |
| 2504 | zero_one_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0, 1], keepdim=True, unbiased=False) |
| 2505 | |
| 2506 | self.assertEqual(zero_one_dim_var_keepdim, zero_one_dim_var_cpu_keepdim) |
| 2507 | |
| 2508 | two_three_dim_var = torch.var(x, dim=[2, 3], unbiased=False) |
| 2509 | two_three_dim_var_cpu = torch.var(cpu_x, dim=[2, 3], unbiased=False) |
| 2510 | |
| 2511 | self.assertEqual(two_three_dim_var, two_three_dim_var_cpu) |
| 2512 | |
| 2513 | two_three_keepdim_var = torch.var(x, dim=[2, 3], keepdim=True, unbiased=False) |
| 2514 | two_three_dim_keepvar_cpu = torch.var(cpu_x, dim=[2, 3], keepdim=True, unbiased=False) |
| 2515 | |
| 2516 | self.assertEqual(two_three_keepdim_var, two_three_dim_keepvar_cpu) |
| 2517 | |
| 2518 | all_var = torch.var(x, unbiased=True) |
| 2519 | all_var_cpu = torch.var(cpu_x, unbiased=True) |
| 2520 | |
| 2521 | self.assertEqual(all_var, all_var_cpu) |
| 2522 | |
| 2523 | nil_dim_var = torch.var(x, dim=[], unbiased=True) |
| 2524 | nil_dim_var_cpu = torch.var(cpu_x, dim=[], unbiased=True) |
| 2525 | |
| 2526 | self.assertEqual(nil_dim_var, nil_dim_var_cpu) |
| 2527 | |
| 2528 | nil_dim_var_keepdim = torch.var(x, dim=[], keepdim=True, unbiased=True) |
| 2529 | nil_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[], keepdim=True, unbiased=True) |
| 2530 | |
| 2531 | self.assertEqual(nil_dim_var_keepdim, nil_dim_var_cpu_keepdim) |
| 2532 | |
| 2533 | zero_dim_var = torch.var(x, dim=[0], unbiased=True) |
| 2534 | zero_dim_var_cpu = torch.var(cpu_x, dim=[0], unbiased=True) |
| 2535 | |
| 2536 | self.assertEqual(zero_dim_var, zero_dim_var_cpu) |
| 2537 | |
| 2538 | zero_dim_var_keepdim = torch.var(x, dim=[0], keepdim=True, unbiased=True) |
| 2539 | zero_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0], keepdim=True, unbiased=True) |
| 2540 | |
| 2541 | self.assertEqual(zero_dim_var_keepdim, zero_dim_var_cpu_keepdim) |
| 2542 | |
| 2543 | zero_one_dim_var = torch.var(x, dim=[0, 1], unbiased=True) |
| 2544 | zero_one_dim_var_cpu = torch.var(cpu_x, dim=[0, 1], unbiased=True) |
| 2545 | |
| 2546 | self.assertEqual(zero_one_dim_var, zero_one_dim_var_cpu) |
| 2547 | |
| 2548 | zero_one_dim_var_keepdim = torch.var(x, dim=[0, 1], keepdim=True, unbiased=True) |
| 2549 | zero_one_dim_var_cpu_keepdim = torch.var(cpu_x, dim=[0, 1], keepdim=True, unbiased=True) |
| 2550 | |
| 2551 | self.assertEqual(zero_one_dim_var_keepdim, zero_one_dim_var_cpu_keepdim) |
| 2552 | |
| 2553 | two_three_dim_var = torch.var(x, dim=[2, 3], unbiased=True) |
| 2554 | two_three_dim_var_cpu = torch.var(cpu_x, dim=[2, 3], unbiased=True) |
| 2555 | |
| 2556 | self.assertEqual(two_three_dim_var, two_three_dim_var_cpu) |
| 2557 | |
| 2558 | two_three_keepdim_var = torch.var(x, dim=[2, 3], keepdim=True, unbiased=True) |
| 2559 | two_three_dim_keepvar_cpu = torch.var(cpu_x, dim=[2, 3], keepdim=True, unbiased=True) |
| 2560 | |
| 2561 | self.assertEqual(two_three_keepdim_var, two_three_dim_keepvar_cpu) |
| 2562 | |
| 2563 | helper((4, 5, 6, 7)) |
| 2564 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2565 | # Test minimum and maximum |
| 2566 | def test_minimum_maximum(self): |
| 2567 | def helper(n, c, h, w): |
| 2568 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2569 | cpu_y = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2570 | mps_x = cpu_x.detach().clone().to('mps') |
| 2571 | mps_y = cpu_y.detach().clone().to('mps') |
| 2572 | |
| 2573 | minimum_result_cpu = torch.minimum(cpu_x, cpu_y) |
| 2574 | minimum_result_mps = torch.minimum(mps_x, mps_y) |
| 2575 | self.assertEqual(minimum_result_cpu, minimum_result_mps) |
| 2576 | |
| 2577 | maximum_result_cpu = torch.maximum(cpu_x, cpu_y) |
| 2578 | maximum_result_mps = torch.maximum(mps_x, mps_y) |
| 2579 | self.assertEqual(maximum_result_cpu, maximum_result_mps) |
| 2580 | |
| 2581 | helper(1, 1, 4, 5) |
| 2582 | |
| 2583 | # Test clamp_min |
| 2584 | def test_clamp_min(self): |
| 2585 | def helper(n, c, h, w): |
| 2586 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2587 | x = cpu_x.detach().clone().to('mps') |
| 2588 | |
| 2589 | cpu_min_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2590 | min_t = cpu_min_t.detach().clone().to('mps') |
| 2591 | |
| 2592 | clamp_min_result = torch.clamp_min(x, min=5.0) |
| 2593 | clamp_min_result_cpu = torch.clamp_min(cpu_x, min=5.0) |
| 2594 | |
| 2595 | self.assertEqual(clamp_min_result, clamp_min_result_cpu) |
| 2596 | |
| 2597 | clamp_min_t_result = torch.clamp_min(x, min=min_t) |
| 2598 | clamp_min_t_result_cpu = torch.clamp_min(cpu_x, min=cpu_min_t) |
| 2599 | |
| 2600 | self.assertEqual(clamp_min_t_result, clamp_min_t_result_cpu) |
| 2601 | |
| 2602 | helper(2, 8, 4, 5) |
| 2603 | |
| 2604 | # Test clamp_max |
| 2605 | |
| 2606 | def test_clamp_max(self): |
| 2607 | def helper(n, c, h, w): |
| 2608 | cpu_x = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2609 | x = cpu_x.detach().clone().to('mps') |
| 2610 | |
| 2611 | cpu_max_t = torch.randn(n, c, h, w, device='cpu', dtype=torch.float, requires_grad=False) |
| 2612 | max_t = cpu_max_t.detach().clone().to('mps') |
| 2613 | |
| 2614 | clamp_max_result = torch.clamp_max(x, max=100.0) |
| 2615 | clamp_max_result_cpu = torch.clamp_max(cpu_x, max=100.0) |
| 2616 | |
| 2617 | self.assertEqual(clamp_max_result, clamp_max_result_cpu) |
| 2618 | |
| 2619 | clamp_max_t_result = torch.clamp_max(x, max=max_t) |
| 2620 | clamp_max_t_result_cpu = torch.clamp_max(cpu_x, max=cpu_max_t) |
| 2621 | |
| 2622 | self.assertEqual(clamp_max_t_result, clamp_max_t_result_cpu) |
| 2623 | |
| 2624 | helper(2, 8, 4, 5) |
| 2625 | |
| 2626 | # Test clamp |
| 2627 | def test_clamp(self): |
| 2628 | def helper(n, c, h, w): |
| 2629 | import numpy as np |
| 2630 | upper_bound = 1000 |
| 2631 | half_upper_bound = upper_bound / 2 |
| 2632 | |
| 2633 | # x=[0..1000) |
| 2634 | x_arr = upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32) |
| 2635 | cpu_x = torch.tensor(x_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| 2636 | x = cpu_x.detach().clone().to('mps') |
| 2637 | |
| 2638 | # x=[0..500) |
| 2639 | min_arr = half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32) |
| 2640 | cpu_min_t = torch.tensor(min_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| 2641 | min_t = cpu_min_t.detach().clone().to('mps') |
| 2642 | |
| 2643 | # x=[500..1000), to ensure max's are greater than mins |
| 2644 | max_arr = (half_upper_bound * np.random.random_sample(size=(n, c, h, w)).astype(np.float32)) + half_upper_bound |
| 2645 | cpu_max_t = torch.tensor(max_arr, device='cpu', dtype=torch.float, requires_grad=False) |
| 2646 | max_t = cpu_max_t.detach().clone().to('mps') |
| 2647 | |
| 2648 | # [200..600]: just an arbitrary range between [0..1000] |
| 2649 | clamp_result = torch.clamp(x, min=200.0, max=600.0) |
| 2650 | clamp_result_cpu = torch.clamp(cpu_x, min=200.0, max=600.0) |
| 2651 | self.assertEqual(clamp_result, clamp_result_cpu) |
| 2652 | |
| 2653 | # test optional scalar refs and cached graph keys by passing only max |
| 2654 | clamp_opt_result = torch.clamp(x, max=600.0) |
| 2655 | clamp_opt_result_cpu = torch.clamp(cpu_x, max=600.0) |
| 2656 | self.assertEqual(clamp_opt_result, clamp_opt_result_cpu) |
| 2657 | |
| 2658 | clamp_t_result = torch.clamp(x, min=min_t, max=max_t) |
| 2659 | clamp_t_result_cpu = torch.clamp(cpu_x, min=cpu_min_t, max=cpu_max_t) |
| 2660 | self.assertEqual(clamp_t_result, clamp_t_result_cpu) |
| 2661 | |
| 2662 | # test optional tensor refs and cached graph keys by passing only max |
| 2663 | clamp_topt_result = torch.clamp(x, max=max_t) |
| 2664 | clamp_topt_result_cpu = torch.clamp(cpu_x, max=cpu_max_t) |
| 2665 | self.assertEqual(clamp_topt_result, clamp_topt_result_cpu) |
| 2666 | |
| 2667 | # test inplace clamping |
| 2668 | x.clamp_(min=200.0, max=600.0) |
| 2669 | cpu_x.clamp_(min=200.0, max=600.0) |
| 2670 | self.assertEqual(cpu_x, x) |
| 2671 | |
| 2672 | helper(2, 8, 4, 5) |
| 2673 | |
| 2674 | def test_divmode(self): |
| 2675 | def helper(shape, rounding_mode): |
| 2676 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2677 | mps_x = cpu_x.detach().clone().to('mps') |
| 2678 | # clamp to avoid division by 0 |
| 2679 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False).clamp_min_(0.1) |
| 2680 | mps_y = cpu_y.detach().clone().to('mps') |
| 2681 | |
| 2682 | result_div_cpu = torch.div(cpu_x, cpu_y, rounding_mode=rounding_mode) |
| 2683 | result_div_mps = torch.div(mps_x, mps_y, rounding_mode=rounding_mode) |
| 2684 | self.assertEqual(result_div_mps, result_div_cpu) |
| 2685 | |
| 2686 | helper((2, 8, 4, 5), "floor") |
| 2687 | helper((2, 8, 4, 5), "trunc") |
| 2688 | |
| 2689 | def test_rounding(self): |
| 2690 | def helper(shape): |
| 2691 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2692 | mps_x = cpu_x.detach().clone().to('mps') |
| 2693 | |
| 2694 | result_floor_cpu = torch.floor(cpu_x) |
| 2695 | result_floor_mps = torch.floor(mps_x) |
| 2696 | self.assertEqual(result_floor_mps, result_floor_cpu) |
| 2697 | |
| 2698 | result_ceil_cpu = torch.ceil(cpu_x) |
| 2699 | result_ceil_mps = torch.ceil(mps_x) |
| 2700 | self.assertEqual(result_ceil_mps, result_ceil_cpu) |
| 2701 | |
| 2702 | result_trunc_cpu = torch.trunc(cpu_x) |
| 2703 | result_trunc_mps = torch.trunc(mps_x) |
| 2704 | self.assertEqual(result_trunc_mps, result_trunc_cpu) |
| 2705 | |
| 2706 | result_round_cpu = torch.round(cpu_x) |
| 2707 | result_round_mps = torch.round(mps_x) |
| 2708 | self.assertEqual(result_round_mps, result_round_cpu) |
| 2709 | |
| 2710 | helper((2, 6, 3, 5)) |
| 2711 | helper((2, 8, 4, 5)) |
| 2712 | |
| 2713 | def test_expand(self): |
| 2714 | def helper(n, c): |
| 2715 | values = [[1.0], [4.0], [7.0]] |
| 2716 | cpu_x = torch.tensor(values, device='cpu') |
| 2717 | x = cpu_x.detach().clone().to('mps') |
| 2718 | |
| 2719 | strided_cpu = torch.as_strided(cpu_x, (3, 4), (1, 0)) |
| 2720 | strided_mps = torch.as_strided(x, (3, 4), (1, 0)) |
| 2721 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2722 | self.assertEqual(strided_mps, strided_cpu) |
| 2723 | |
| 2724 | helper(3, 1) |
| 2725 | |
| 2726 | def test_select(self): |
| 2727 | def helper(n, c): |
| 2728 | cpu_x = torch.randn(n, c, device='cpu', dtype=torch.float, requires_grad=True) |
| 2729 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 2730 | |
| 2731 | strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1)) |
| 2732 | strided_mps = torch.as_strided(x, (3, 1), (3, 1)) |
| 2733 | self.assertEqual(strided_mps, strided_cpu) |
| 2734 | |
| 2735 | strided_cpu = torch.as_strided(cpu_x, (1, 3), (3, 1)) |
| 2736 | strided_mps = torch.as_strided(x, (1, 3), (3, 1)) |
| 2737 | self.assertEqual(strided_mps, strided_cpu) |
| 2738 | |
| 2739 | strided_cpu = torch.as_strided(cpu_x, (3, 1), (3, 1), storage_offset=1) |
| 2740 | strided_mps = torch.as_strided(x, (3, 1), (3, 1), storage_offset=1) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2741 | |
| 2742 | self.assertEqual(strided_mps, strided_cpu) |
| 2743 | |
| 2744 | helper(3, 3) |
| 2745 | |
| 2746 | def test_topk(self): |
| 2747 | def helper(shape): |
| 2748 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2749 | x = cpu_x.detach().clone().to('mps') |
| 2750 | for largest_val in [True, False]: |
| 2751 | if (type(shape) == tuple): |
| 2752 | for curr_dim in range(0, len(shape)): |
| 2753 | dim_size = shape[curr_dim] |
| 2754 | for k in range(1, dim_size + 1): |
| 2755 | topk_values, topk_indices = torch.topk(x, k, dim=curr_dim, largest=largest_val) |
| 2756 | topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=curr_dim, largest=largest_val) |
| 2757 | self.assertEqual(topk_values, topk_values_cpu) |
| 2758 | self.assertEqual(topk_indices, topk_indices_cpu) |
| 2759 | else: |
| 2760 | for k in range(1, shape): |
| 2761 | topk_values, topk_indices = torch.topk(x, k, dim=0, largest=largest_val) |
| 2762 | topk_values_cpu, topk_indices_cpu = torch.topk(cpu_x, k, dim=0, largest=largest_val) |
| 2763 | self.assertEqual(topk_values, topk_values_cpu) |
| 2764 | self.assertEqual(topk_indices, topk_indices_cpu) |
| 2765 | |
| 2766 | helper(2) |
| 2767 | helper((5, 1)) |
| 2768 | helper((1, 5)) |
| 2769 | helper((5, 9, 7, 4)) |
| 2770 | |
| 2771 | def test_upsample_nearest_exact2d(self): |
| 2772 | def helper(N, C, H, W): |
| 2773 | inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float, |
| 2774 | requires_grad=True).reshape(N, C, H, W) |
| 2775 | inputCPU.retain_grad() |
| 2776 | inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| 2777 | |
| 2778 | outputCPU = torch.nn.functional.interpolate(inputCPU, size=(5, 5), mode='nearest-exact') |
| 2779 | outputMPS = torch.nn.functional.interpolate(inputMPS, size=(5, 5), mode='nearest-exact') |
| 2780 | |
| 2781 | self.assertEqual(outputCPU, outputMPS) |
| 2782 | |
| 2783 | outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3)) |
| 2784 | outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3)) |
| 2785 | |
| 2786 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 2787 | |
| 2788 | helper(1, 1, 4, 4) |
| 2789 | helper(7, 5, 3, 2) |
| 2790 | |
| 2791 | def test_upsample_nearest2d(self): |
| 2792 | def helper(N, C, H, W): |
| 2793 | inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float, |
| 2794 | requires_grad=True).reshape(N, C, H, W) |
| 2795 | inputCPU.retain_grad() |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 2796 | inputMPS = inputCPU.detach().to('mps').requires_grad_() |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2797 | |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 2798 | values = [1, 2, 5, 10, 40] |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2799 | |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 2800 | for i in values: |
| 2801 | for j in values: |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2802 | upsample_nearest2d = nn.UpsamplingNearest2d(scale_factor=(i, j)) |
| 2803 | |
| 2804 | outputCPU = upsample_nearest2d(inputCPU) |
| 2805 | outputMPS = upsample_nearest2d(inputMPS) |
| 2806 | |
| 2807 | self.assertEqual(outputCPU, outputMPS) |
| 2808 | upsample_nearest2d = nn.UpsamplingNearest2d((i * H, j * W)) |
| 2809 | |
| 2810 | outputCPU = upsample_nearest2d(inputCPU) |
| 2811 | outputMPS = upsample_nearest2d(inputMPS) |
| 2812 | |
| 2813 | self.assertEqual(outputCPU, outputMPS) |
| 2814 | |
| 2815 | outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3)) |
| 2816 | outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3)) |
| 2817 | |
| 2818 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 2819 | |
| 2820 | helper(1, 1, 4, 4) |
| 2821 | helper(7, 5, 3, 2) |
| 2822 | |
| 2823 | def test_upsample_bilinear2d(self): |
| 2824 | def helper(N, C, H, W): |
| 2825 | inputCPU = torch.arange(N * C * H * W, device='cpu', dtype=torch.float, |
| 2826 | requires_grad=True).reshape(N, C, H, W) |
| 2827 | inputCPU.retain_grad() |
| 2828 | inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| 2829 | |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 2830 | values = [1, 2, 5, 10, 40] |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2831 | |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 2832 | for i in values: |
| 2833 | for j in values: |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 2834 | upsample_bilinear2d = nn.UpsamplingBilinear2d(scale_factor=(i, j)) |
| 2835 | |
| 2836 | outputCPU = upsample_bilinear2d(inputCPU) |
| 2837 | outputMPS = upsample_bilinear2d(inputMPS) |
| 2838 | |
| 2839 | self.assertEqual(outputCPU, outputMPS) |
| 2840 | |
| 2841 | upsample_bilinear2d = nn.UpsamplingBilinear2d((i * H, j * W)) |
| 2842 | |
| 2843 | outputCPU = upsample_bilinear2d(inputCPU) |
| 2844 | outputMPS = upsample_bilinear2d(inputMPS) |
| 2845 | |
| 2846 | self.assertEqual(outputCPU, outputMPS) |
| 2847 | |
| 2848 | outputCPU.backward(gradient=torch.full_like(outputCPU, 0.3)) |
| 2849 | outputMPS.backward(gradient=torch.full_like(outputMPS, 0.3)) |
| 2850 | |
| 2851 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 2852 | |
| 2853 | helper(1, 1, 4, 4) |
| 2854 | helper(7, 5, 3, 2) |
| 2855 | |
| 2856 | # Test concat forward |
| 2857 | def test_cat1(self): |
| 2858 | def helper(shape_x, shape_y, shape_z): |
| 2859 | cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| 2860 | x = cpu_x.detach().clone().to('mps') |
| 2861 | |
| 2862 | cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| 2863 | y = cpu_y.detach().clone().to('mps') |
| 2864 | |
| 2865 | cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| 2866 | z = cpu_z.detach().clone().to('mps') |
| 2867 | |
| 2868 | cat = torch.cat([x, y, z], dim=1) |
| 2869 | cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1) |
| 2870 | |
| 2871 | self.assertEqual(cat, cat_cpu) |
| 2872 | |
| 2873 | helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5]) |
| 2874 | # Empty test - Currently failing! Empty tensor not handled! |
| 2875 | # helper([0, 2, 4, 5], [2, 0, 4, 5], [2, 5, 0, 5]) |
| 2876 | |
| 2877 | def test_pad(self): |
| 2878 | def helper(shape, padding, op): |
| 2879 | inputCPU = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 2880 | inputCPU.retain_grad() |
| 2881 | inputMPS = inputCPU.detach().clone().to('mps').requires_grad_() |
| 2882 | |
| 2883 | padCriteria = op(padding) |
| 2884 | outputCPU = padCriteria(inputCPU) |
| 2885 | outputMPS = padCriteria(inputMPS) |
| 2886 | self.assertEqual(outputCPU, outputMPS) |
| 2887 | |
| 2888 | # backward pass (chose 0.6 just to have the grad_output != 1) |
| 2889 | outputCPU.backward(gradient=torch.full_like(outputCPU, 0.6)) |
| 2890 | outputMPS.backward(gradient=torch.full_like(outputMPS, 0.6)) |
| 2891 | self.assertEqual(inputCPU.grad, inputMPS.grad) |
| 2892 | |
| 2893 | # 1D Padding |
| 2894 | helper((2, 4, 3), 2, nn.ReflectionPad1d) |
| 2895 | # verify if a change in shape of input would cause problems with graph caching |
| 2896 | helper((2, 4, 4), (1, 3), nn.ReflectionPad1d) |
| 2897 | # Replication 1D |
| 2898 | helper((2, 1, 6), 3, nn.ReplicationPad1d) |
| 2899 | |
| 2900 | # 2D Padding |
| 2901 | helper((1, 2, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d) |
| 2902 | # verify if a change in shape of input would cause problems with graph caching |
| 2903 | helper((2, 4, 3, 4), (1, 1, 2, 0), nn.ReflectionPad2d) |
| 2904 | # this should make the padding (2, 2, 2, 2) |
| 2905 | helper((2, 1, 6, 8), 2, nn.ReplicationPad2d) |
| 2906 | # verify if a change in shape of padding would cause problems with graph caching |
| 2907 | helper((2, 1, 6, 8), (2, 4, 3, 5), nn.ReplicationPad2d) |
| 2908 | |
| 2909 | # 3D Padding |
| 2910 | helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReflectionPad3d) |
| 2911 | # verify if a change in shape of padding would cause problems with graph caching |
| 2912 | helper((2, 4, 6, 8, 4), (1, 3, 3, 5, 3, 4), nn.ReplicationPad3d) |
| 2913 | |
| 2914 | # Test stack forward |
| 2915 | def test_stack(self): |
| 2916 | # All shapes must be same |
| 2917 | def helper(shape): |
| 2918 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2919 | x = cpu_x.detach().clone().to('mps') |
| 2920 | |
| 2921 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2922 | y = cpu_y.detach().clone().to('mps') |
| 2923 | |
| 2924 | cpu_z = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2925 | z = cpu_z.detach().clone().to('mps') |
| 2926 | |
| 2927 | stack = torch.stack([x, y, z], dim=1) |
| 2928 | stack_cpu = torch.stack([cpu_x, cpu_y, cpu_z], dim=1) |
| 2929 | |
| 2930 | self.assertEqual(stack, stack_cpu) |
| 2931 | |
| 2932 | helper([2, 8, 4, 5]) |
| 2933 | # Empty test - Currently failing! Empty tensor not handled! |
| 2934 | # helper([0, 2, 4, 5]) |
| 2935 | |
| 2936 | # Test abs |
| 2937 | def test_abs(self): |
| 2938 | def helper(shape): |
| 2939 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2940 | x = cpu_x.detach().clone().to('mps') |
| 2941 | |
| 2942 | abs_result = torch.abs(x) |
| 2943 | abs_result_cpu = torch.abs(cpu_x) |
| 2944 | |
| 2945 | self.assertEqual(abs_result, abs_result_cpu) |
| 2946 | |
| 2947 | helper((2, 8, 4, 5)) |
| 2948 | |
| 2949 | def test_log(self): |
| 2950 | def helper(shape): |
| 2951 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2952 | x = cpu_x.detach().clone().to('mps') |
| 2953 | |
| 2954 | log_result = torch.log(x) |
| 2955 | log_result_cpu = torch.log(cpu_x) |
| 2956 | |
| 2957 | self.assertEqual(log_result, log_result_cpu) |
| 2958 | |
| 2959 | helper((2, 8, 4, 5)) |
| 2960 | |
| 2961 | def test_log_ten(self): |
| 2962 | def helper(shape): |
| 2963 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2964 | x = cpu_x.detach().clone().to('mps') |
| 2965 | |
| 2966 | log_ten_result = torch.log10(x) |
| 2967 | log_ten_result_cpu = torch.log10(cpu_x) |
| 2968 | |
| 2969 | self.assertEqual(log_ten_result, log_ten_result_cpu) |
| 2970 | |
| 2971 | helper((2, 8, 4, 5)) |
| 2972 | |
| 2973 | def test_log_two(self): |
| 2974 | def helper(shape): |
| 2975 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2976 | x = cpu_x.detach().clone().to('mps') |
| 2977 | |
| 2978 | log_two_result = torch.log2(x) |
| 2979 | log_two_result_cpu = torch.log2(cpu_x) |
| 2980 | |
| 2981 | self.assertEqual(log_two_result, log_two_result_cpu) |
| 2982 | |
| 2983 | helper((2, 8, 4, 5)) |
| 2984 | |
| 2985 | def test_log1p(self): |
| 2986 | def helper(shape): |
| 2987 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 2988 | x = cpu_x.detach().clone().to('mps') |
| 2989 | |
| 2990 | log_result = torch.log1p(x) |
| 2991 | log_result_cpu = torch.log1p(cpu_x) |
| 2992 | |
| 2993 | self.assertEqual(log_result, log_result_cpu) |
| 2994 | |
| 2995 | helper((2, 8, 4, 5)) |
| 2996 | |
| 2997 | def test_logaddexp(self): |
| 2998 | def helper(shape): |
| 2999 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3000 | x = cpu_x.detach().clone().to('mps') |
| 3001 | |
| 3002 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3003 | y = cpu_y.detach().clone().to('mps') |
| 3004 | |
| 3005 | log_result = torch.logaddexp(x, y) |
| 3006 | log_result_cpu = torch.logaddexp(cpu_x, cpu_y) |
| 3007 | |
| 3008 | self.assertEqual(log_result, log_result_cpu) |
| 3009 | |
| 3010 | helper((2, 8, 4, 5)) |
| 3011 | |
| 3012 | def test_logaddexp2(self): |
| 3013 | def helper(shape): |
| 3014 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3015 | x = cpu_x.detach().clone().to('mps') |
| 3016 | |
| 3017 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3018 | y = cpu_y.detach().clone().to('mps') |
| 3019 | |
| 3020 | log_result = torch.logaddexp2(x, y) |
| 3021 | log_result_cpu = torch.logaddexp2(cpu_x, cpu_y) |
| 3022 | |
| 3023 | self.assertEqual(log_result, log_result_cpu) |
| 3024 | |
| 3025 | helper((2, 8, 4, 5)) |
| 3026 | |
| 3027 | # Test concat forward |
| 3028 | def test_cat2(self): |
| 3029 | |
| 3030 | def helper1(shape_x, shape_y, shape_z, shape_w): |
| 3031 | cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| 3032 | x = cpu_x.detach().clone().to('mps') |
| 3033 | |
| 3034 | cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| 3035 | y = cpu_y.detach().clone().to('mps') |
| 3036 | |
| 3037 | cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| 3038 | z = cpu_z.detach().clone().to('mps') |
| 3039 | |
| 3040 | cpu_w = torch.randn(shape_w, device='cpu', dtype=torch.float, requires_grad=False) |
| 3041 | w = cpu_w.detach().clone().to('mps') |
| 3042 | |
| 3043 | cat = torch.cat([x, y, z, w], dim=1) |
| 3044 | cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z, cpu_w], dim=1) |
| 3045 | |
| 3046 | self.assertEqual(cat, cat_cpu) |
| 3047 | |
| 3048 | def helper(shape_x, shape_y, shape_z): |
| 3049 | cpu_x = torch.randn(shape_x, device='cpu', dtype=torch.float, requires_grad=False) |
| 3050 | x = cpu_x.detach().clone().to('mps') |
| 3051 | |
| 3052 | cpu_y = torch.randn(shape_y, device='cpu', dtype=torch.float, requires_grad=False) |
| 3053 | y = cpu_y.detach().clone().to('mps') |
| 3054 | |
| 3055 | cpu_z = torch.randn(shape_z, device='cpu', dtype=torch.float, requires_grad=False) |
| 3056 | z = cpu_z.detach().clone().to('mps') |
| 3057 | |
| 3058 | cat = torch.cat([x, y, z], dim=1) |
| 3059 | cat_cpu = torch.cat([cpu_x, cpu_y, cpu_z], dim=1) |
| 3060 | |
| 3061 | self.assertEqual(cat, cat_cpu) |
| 3062 | |
| 3063 | helper([2, 8, 4, 5], [2, 10, 4, 5], [2, 6, 4, 5]) |
| 3064 | helper([2, 2, 4, 5], [2, 3, 4, 5], [2, 5, 4, 5]) |
| 3065 | # Empty test - Currently failing! Empty tensor not handled! |
| 3066 | # helper([0, 2, 4, 5], [2, 0, 4, 5], [2, 5, 0, 5]) |
| 3067 | |
| 3068 | # Test isnan |
| 3069 | def test_isnan(self): |
| 3070 | def helper(shape): |
| 3071 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3072 | nan_index = [random.randrange(0, shape[0])] |
| 3073 | # make a selected row inf |
| 3074 | cpu_x.index_put_(indices=[torch.tensor(nan_index)], values=torch.tensor(float('nan'))) |
| 3075 | x = cpu_x.detach().clone().to('mps') |
| 3076 | |
| 3077 | isnan_result = torch.isnan(x) |
| 3078 | isnan_result_cpu = torch.isnan(cpu_x) |
| 3079 | |
| 3080 | self.assertEqual(isnan_result, isnan_result_cpu) |
| 3081 | |
| 3082 | helper((8, 2, 4, 5)) |
| 3083 | |
| 3084 | # Test reciprocal |
| 3085 | def test_reciprocal(self): |
| 3086 | def helper(shape): |
| 3087 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3088 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3089 | |
| 3090 | reciprocal_result = torch.reciprocal(x) |
| 3091 | reciprocal_result_cpu = torch.reciprocal(cpu_x) |
| 3092 | |
| 3093 | cpu_grad = torch.ones_like(reciprocal_result_cpu) |
| 3094 | grad = cpu_grad.to('mps') |
| 3095 | |
| 3096 | reciprocal_result.backward(gradient=grad) |
| 3097 | reciprocal_result_cpu.backward(gradient=cpu_grad) |
| 3098 | |
| 3099 | self.assertEqual(reciprocal_result, reciprocal_result_cpu) |
| 3100 | self.assertEqual(x.grad, cpu_x.grad) |
| 3101 | |
| 3102 | helper((2, 8, 4, 5)) |
| 3103 | |
| 3104 | # Test sqrt |
| 3105 | def test_sqrt(self): |
| 3106 | def helper(shape): |
| 3107 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3108 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3109 | |
| 3110 | sqrt_result = torch.sqrt(x) |
| 3111 | sqrt_result_cpu = torch.sqrt(cpu_x) |
| 3112 | |
| 3113 | cpu_grad = torch.ones_like(sqrt_result_cpu) |
| 3114 | grad = cpu_grad.to('mps') |
| 3115 | |
| 3116 | sqrt_result.backward(gradient=grad) |
| 3117 | sqrt_result_cpu.backward(gradient=cpu_grad) |
| 3118 | |
| 3119 | self.assertEqual(sqrt_result, sqrt_result_cpu) |
| 3120 | self.assertEqual(x.grad, cpu_x.grad) |
| 3121 | |
| 3122 | helper((2, 8, 4, 5)) |
| 3123 | |
| 3124 | # Test selu, elu, celu |
| 3125 | def test_elu(self): |
| 3126 | def helper(shape, alpha=1.0): |
| 3127 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3128 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3129 | |
| 3130 | for activation_func in [torch.nn.ELU(alpha=alpha), torch.nn.CELU(alpha=alpha), torch.nn.SELU()]: |
| 3131 | elu_result = activation_func(x) |
| 3132 | elu_result_cpu = activation_func(cpu_x) |
| 3133 | |
| 3134 | cpu_grad = torch.randn(elu_result_cpu.shape) |
| 3135 | grad = cpu_grad.to('mps') |
| 3136 | |
| 3137 | elu_result.backward(gradient=grad) |
| 3138 | elu_result_cpu.backward(gradient=cpu_grad) |
| 3139 | |
| 3140 | self.assertEqual(elu_result, elu_result_cpu) |
| 3141 | self.assertEqual(x.grad, cpu_x.grad) |
| 3142 | |
| 3143 | # Test empty shape too |
| 3144 | for shape in [[], (2, 3), (2, 8, 4, 5)]: |
| 3145 | for alpha in [0.000001, 1.0, 2.3, 0.34, 23]: |
| 3146 | helper(shape, alpha) |
| 3147 | # Test silu |
| 3148 | |
| 3149 | def test_silu(self): |
| 3150 | def helper(shape): |
| 3151 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3152 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3153 | |
| 3154 | silu_result = torch.nn.SiLU()(x) |
| 3155 | silu_result_cpu = torch.nn.SiLU()(cpu_x) |
| 3156 | |
| 3157 | cpu_grad = torch.randn(silu_result_cpu.shape) |
| 3158 | grad = cpu_grad.to('mps') |
| 3159 | |
| 3160 | silu_result.backward(gradient=grad) |
| 3161 | silu_result_cpu.backward(gradient=cpu_grad) |
| 3162 | |
| 3163 | self.assertEqual(silu_result, silu_result_cpu) |
| 3164 | self.assertEqual(x.grad, cpu_x.grad) |
| 3165 | |
| 3166 | # Test empty shape too |
| 3167 | for shape in [[], (2, 3), (2, 8, 4, 5)]: |
| 3168 | helper(shape) |
| 3169 | |
| 3170 | # Test adaptive avg pool2d - when the input size is a multiple of output size |
| 3171 | # Not testing for channels last right now |
| 3172 | def test_adaptive_avg_pool2d_simple(self): |
| 3173 | def helper(input_shape, out_shape, channels_last): |
| 3174 | cpu_x = torch.randn(input_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3175 | if(channels_last): |
| 3176 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 3177 | cpu_x.retain_grad() |
| 3178 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3179 | |
| 3180 | avg_result = torch.nn.AdaptiveAvgPool2d(out_shape)(x) |
| 3181 | avg_result_cpu = torch.nn.AdaptiveAvgPool2d(out_shape)(cpu_x) |
| 3182 | |
| 3183 | cpu_grad = torch.randn(avg_result_cpu.shape) |
| 3184 | grad = cpu_grad.to('mps') |
| 3185 | |
| 3186 | avg_result.backward(gradient=grad) |
| 3187 | avg_result_cpu.backward(gradient=cpu_grad) |
| 3188 | |
| 3189 | self.assertEqual(avg_result, avg_result_cpu) |
| 3190 | self.assertEqual(x.grad, cpu_x.grad) |
| 3191 | |
| 3192 | helper((2, 2, 4, 4), (2, 2), False) |
| 3193 | helper((2, 2, 9, 9), (3, 3), False) |
| 3194 | helper((2, 2, 9, 9), (9, 9), False) |
| 3195 | helper((2, 2, 16, 16), (2, 2), False) |
| 3196 | helper((2, 2, 16, 16), (2, 16), False) |
| 3197 | |
| 3198 | helper((2, 16, 16), (4, 4), False) |
| 3199 | |
Kulin Seth | 2e32d5f | 2022-05-27 11:59:07 +0000 | [diff] [blame] | 3200 | # Test max avg pool2d - when the input size is a multiple of output size |
| 3201 | # Not testing for channels last right now |
| 3202 | def test_adaptive_max_pool2d_simple(self): |
| 3203 | def helper(input_shape, out_shape, return_indices, dtype, channels_last=False): |
| 3204 | cpu_x = None |
| 3205 | if(dtype in [torch.float16, torch.float32]): |
| 3206 | cpu_x = torch.randn(input_shape, device='cpu', dtype=dtype, requires_grad=True) |
| 3207 | else: |
| 3208 | cpu_x = torch.randint(50, input_shape, device='cpu', dtype=dtype, requires_grad=True) |
| 3209 | if(channels_last): |
| 3210 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 3211 | cpu_x.retain_grad() |
| 3212 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3213 | |
| 3214 | max_result, max_indices = None, None |
| 3215 | max_result_cpu, max_indices_cpu = None, None |
| 3216 | |
| 3217 | if(return_indices): |
| 3218 | max_result, max_indices = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(x) |
| 3219 | max_result_cpu, max_indices_cpu = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(cpu_x) |
| 3220 | else: |
| 3221 | max_result = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(x) |
| 3222 | max_result_cpu = torch.nn.AdaptiveMaxPool2d(out_shape, return_indices)(cpu_x) |
| 3223 | |
| 3224 | cpu_grad = torch.randn(max_result_cpu.shape) |
| 3225 | grad = cpu_grad.to('mps') |
| 3226 | |
| 3227 | max_result.backward(gradient=grad) |
| 3228 | max_result_cpu.backward(gradient=cpu_grad) |
| 3229 | |
| 3230 | self.assertEqual(max_result, max_result_cpu) |
| 3231 | if(return_indices): |
| 3232 | self.assertEqual(max_indices, max_indices_cpu) |
| 3233 | self.assertEqual(x.grad, cpu_x.grad) |
| 3234 | |
| 3235 | for dtype in [torch.float32]: |
| 3236 | for return_indices in [False, True]: |
| 3237 | helper((2, 2, 4, 4), (2, 2), return_indices, dtype) |
| 3238 | helper((2, 2, 9, 9), (3, 3), return_indices, dtype) |
| 3239 | helper((2, 2, 9, 9), (9, 9), return_indices, dtype) |
| 3240 | helper((2, 2, 16, 16), (2, 2), return_indices, dtype) |
| 3241 | helper((2, 2, 16, 16), (2, 16), return_indices, dtype) |
| 3242 | helper((2, 16, 16), (4, 4), return_indices, dtype) |
| 3243 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3244 | def test_gelu_simple(self): |
| 3245 | def helper(shape): |
| 3246 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3247 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3248 | |
| 3249 | gelu_result = torch.nn.GELU()(x) |
| 3250 | gelu_result_cpu = torch.nn.GELU()(cpu_x) |
| 3251 | |
| 3252 | cpu_grad = torch.ones_like(gelu_result_cpu) |
| 3253 | grad = cpu_grad.to('mps') |
| 3254 | |
| 3255 | gelu_result.backward(gradient=grad) |
| 3256 | gelu_result_cpu.backward(gradient=cpu_grad) |
| 3257 | |
| 3258 | self.assertEqual(gelu_result, gelu_result_cpu) |
| 3259 | self.assertEqual(x.grad, cpu_x.grad) |
| 3260 | |
| 3261 | # Test empty shape too |
| 3262 | for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]: |
| 3263 | helper(shape) |
| 3264 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 3265 | def test_gelu(self): |
| 3266 | def _test_gelu(n, m, dtype, contiguous, atol=None, rtol=None): |
| 3267 | numpy_dtype = { |
| 3268 | torch.bfloat16: torch.float, torch.float: torch.float, torch.double: torch.double |
| 3269 | }[dtype] |
| 3270 | devices = ['cpu'] |
| 3271 | devices += ['mps'] |
| 3272 | |
| 3273 | def _gelu_ref(X): |
| 3274 | return X * stats.norm.cdf(X) |
| 3275 | |
| 3276 | for d in devices: |
| 3277 | X = torch.rand(n, m, dtype=dtype, requires_grad=True, device=d)[:, ::2] |
| 3278 | res = X |
| 3279 | ref = (X.to(numpy_dtype).cpu().detach().numpy()) |
| 3280 | self.assertEqual(res, ref, rtol=rtol, atol=atol, exact_dtype=False) |
| 3281 | |
Alban Desmaison | bde246f | 2022-05-30 10:36:31 -0400 | [diff] [blame] | 3282 | for n in [1, 5, 10]: |
| 3283 | for m in [1, 5, 10]: |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 3284 | _test_gelu(n, m, torch.float32, True) |
| 3285 | _test_gelu(n, m, torch.float32, False) |
| 3286 | |
| 3287 | # Test multi threaded |
| 3288 | num_threads = torch.get_num_threads() |
| 3289 | torch.set_num_threads(4) |
| 3290 | try: |
| 3291 | _test_gelu(32, 32, torch.float32, False) |
| 3292 | finally: |
| 3293 | torch.set_num_threads(num_threads) |
| 3294 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3295 | # Test hardtanh |
| 3296 | def test_hardtanh(self): |
| 3297 | def helper(shape, min_val, max_val, inplace=False): |
| 3298 | cpu_x = None |
| 3299 | x = None |
| 3300 | |
| 3301 | if(not inplace): |
| 3302 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3303 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3304 | else: |
| 3305 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3306 | x = cpu_x.detach().clone().to('mps') |
| 3307 | |
| 3308 | hardtanh_result = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(x) |
| 3309 | hardtanh_result_cpu = torch.nn.Hardtanh(min_val=min_val, max_val=max_val, inplace=inplace)(cpu_x) |
| 3310 | |
| 3311 | self.assertEqual(hardtanh_result, hardtanh_result_cpu) |
| 3312 | |
| 3313 | if(not inplace): |
| 3314 | cpu_grad = torch.randn(hardtanh_result_cpu.shape) |
| 3315 | grad = cpu_grad.to('mps') |
| 3316 | hardtanh_result.backward(gradient=grad) |
| 3317 | hardtanh_result_cpu.backward(gradient=cpu_grad) |
| 3318 | self.assertEqual(x.grad, cpu_x.grad) |
| 3319 | |
| 3320 | # Test empty shape too |
| 3321 | for shape in [(0, 3), [], (2, 3), (2, 8, 4, 5)]: |
| 3322 | for min_val, max_val in zip([-1, -2, 3], [1, -1, 4]): |
| 3323 | helper(shape, min_val, max_val) |
| 3324 | helper(shape, min_val, max_val, inplace=True) |
| 3325 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 3326 | def test_transpose_2D(self): |
| 3327 | values = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] |
| 3328 | values1 = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] |
| 3329 | cpu_x = torch.tensor(values, device='cpu') |
| 3330 | mps_x = torch.tensor(values, device='mps') |
| 3331 | mps_x1 = torch.tensor(values1, device='mps') |
| 3332 | |
| 3333 | cpu_transpose = torch.transpose(cpu_x, 0, 1) |
| 3334 | mps_transpose = torch.transpose(mps_x, 0, 1) |
| 3335 | self.assertEqual(cpu_transpose, mps_transpose.to('cpu')) |
| 3336 | |
| 3337 | def test_transpose_3D(self): |
| 3338 | values = [[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]] |
| 3339 | cpu_x = torch.tensor(values, device='cpu') |
| 3340 | mps_x = torch.tensor(values, device='mps') |
| 3341 | |
| 3342 | cpu_transpose1 = torch.transpose(cpu_x, 0, 1) |
| 3343 | mps_transpose1 = torch.transpose(mps_x, 0, 1).to('cpu') |
| 3344 | self.assertEqual(cpu_transpose1, mps_transpose1) |
| 3345 | |
| 3346 | cpu_transpose2 = torch.transpose(cpu_x, 0, 2) |
| 3347 | mps_transpose2 = torch.transpose(mps_x, 0, 2).to('cpu') |
| 3348 | self.assertEqual(cpu_transpose2, mps_transpose2) |
| 3349 | |
| 3350 | cpu_transpose3 = torch.transpose(cpu_x, 1, 2) |
| 3351 | mps_transpose3 = torch.transpose(mps_x, 1, 2).to('cpu') |
| 3352 | self.assertEqual(cpu_transpose3, mps_transpose3) |
| 3353 | |
| 3354 | |
| 3355 | def test_transpose_4D(self): |
| 3356 | values = [[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]], |
| 3357 | [[[13.0, 14.0, 15.0], [16.0, 17.0, 18.0]], [[19.0, 20.0, 21.0], [22.0, 23.0, 24.0]]]] |
| 3358 | cpu_x = torch.tensor(values, device='cpu') |
| 3359 | mps_x = torch.tensor(values, device='mps') |
| 3360 | |
| 3361 | cpu_transpose1 = torch.transpose(cpu_x, 0, 1) |
| 3362 | mps_transpose1 = torch.transpose(mps_x, 0, 1).to('cpu') |
| 3363 | self.assertEqual(cpu_transpose1, mps_transpose1) |
| 3364 | |
| 3365 | cpu_transpose2 = torch.transpose(cpu_x, 0, 2) |
| 3366 | mps_transpose2 = torch.transpose(mps_x, 0, 2).to('cpu') |
| 3367 | self.assertEqual(cpu_transpose2, mps_transpose2) |
| 3368 | |
| 3369 | cpu_transpose3 = torch.transpose(cpu_x, 0, 3) |
| 3370 | mps_transpose3 = torch.transpose(mps_x, 0, 3).to('cpu') |
| 3371 | self.assertEqual(cpu_transpose3, mps_transpose3) |
| 3372 | |
| 3373 | cpu_transpose4 = torch.transpose(cpu_x, 3, 1) |
| 3374 | mps_transpose4 = torch.transpose(mps_x, 3, 1).to('cpu') |
| 3375 | self.assertEqual(cpu_transpose4, mps_transpose4) |
| 3376 | |
| 3377 | cpu_transpose5 = torch.transpose(cpu_x, 3, 2) |
| 3378 | mps_transpose5 = torch.transpose(mps_x, 3, 2).to('cpu') |
| 3379 | self.assertEqual(cpu_transpose5, mps_transpose5) |
| 3380 | |
| 3381 | cpu_transpose6 = torch.transpose(cpu_x, 1, 2) |
| 3382 | mps_transpose6 = torch.transpose(mps_x, 1, 2).to('cpu') |
| 3383 | self.assertEqual(cpu_transpose6, mps_transpose6) |
| 3384 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3385 | # Test sign |
| 3386 | def test_sign(self): |
| 3387 | def helper(shape): |
| 3388 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3389 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3390 | |
| 3391 | sign_result = torch.sign(x) |
| 3392 | sign_result_cpu = torch.sign(cpu_x) |
| 3393 | |
| 3394 | cpu_grad = torch.ones_like(sign_result_cpu) |
| 3395 | grad = cpu_grad.to('mps') |
| 3396 | |
| 3397 | sign_result.backward(gradient=grad) |
| 3398 | sign_result_cpu.backward(gradient=cpu_grad) |
| 3399 | |
| 3400 | self.assertEqual(sign_result, sign_result_cpu) |
| 3401 | |
| 3402 | helper((2, 8, 4, 5)) |
| 3403 | |
| 3404 | # Test neg |
| 3405 | def test_neg(self): |
| 3406 | def helper(shape): |
| 3407 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3408 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3409 | |
| 3410 | neg_result = torch.neg(x) |
| 3411 | neg_result_cpu = torch.neg(cpu_x) |
| 3412 | |
| 3413 | cpu_grad = torch.ones_like(neg_result_cpu) |
| 3414 | grad = cpu_grad.to('mps') |
| 3415 | |
| 3416 | neg_result.backward(gradient=grad) |
| 3417 | neg_result_cpu.backward(gradient=cpu_grad) |
| 3418 | |
| 3419 | self.assertEqual(neg_result, neg_result_cpu) |
| 3420 | |
| 3421 | helper((2, 8, 4, 5)) |
| 3422 | |
| 3423 | # Test index select |
| 3424 | def test_index_select(self): |
| 3425 | def helper(shape, dim, index, idx_dtype=torch.int32): |
| 3426 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3427 | x = cpu_x.detach().clone().to('mps') |
| 3428 | |
| 3429 | cpu_idx = torch.tensor(index, device='cpu', dtype=idx_dtype) |
| 3430 | idx = cpu_idx.detach().clone().to('mps') |
| 3431 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3432 | idx_result = torch.index_select(x, dim=dim, index=idx) |
| 3433 | idx_result_cpu = torch.index_select(cpu_x, dim=dim, index=cpu_idx) |
| 3434 | |
| 3435 | self.assertEqual(idx_result, idx_result_cpu) |
| 3436 | |
| 3437 | helper((2, 8, 4, 5), 0, [1]) |
| 3438 | helper((8, 8, 4, 5), 0, [0, 3, 2, 7, 6]) |
| 3439 | helper((2, 8, 4, 5), 1, [0, 3, 2, 7, 6]) |
| 3440 | helper((2, 8, 4, 5), 2, [3, 0, 1]) |
| 3441 | helper((2, 8, 4, 5), 3, [2, 3, 0]) |
| 3442 | helper((2, 3, 3), -1, [1, 2]) |
| 3443 | |
| 3444 | def test_embedding_dense_backward(self): |
| 3445 | def helper(n, d, m): |
| 3446 | embeddingMPS = nn.Embedding(n, d, max_norm=True, device='mps') |
| 3447 | W_MPS = torch.randn((m, d), requires_grad=True, device='mps') |
| 3448 | idx_MPS = torch.tensor([0, 1, 2]).to('mps') |
| 3449 | a_MPS = embeddingMPS.weight.clone() @ W_MPS.t() # weight must be cloned for this to be differentiable |
| 3450 | a_MPS.retain_grad() |
| 3451 | b_MPS = embeddingMPS(idx_MPS) @ W_MPS.t() # modifies weight in-place |
| 3452 | b_MPS.retain_grad() |
| 3453 | out_MPS = (a_MPS.unsqueeze(0) + b_MPS.unsqueeze(1)) |
| 3454 | loss_MPS = out_MPS.sigmoid().prod() |
| 3455 | loss_MPS.backward() |
| 3456 | |
| 3457 | embeddingCPU = nn.Embedding(n, d, max_norm=True, scale_grad_by_freq=True) |
| 3458 | W_CPU = W_MPS.to('cpu') |
| 3459 | idx_CPU = torch.tensor([0, 1, 2]) |
| 3460 | a_CPU = embeddingCPU.weight.clone() @ W_CPU.t() # weight must be cloned for this to be differentiable |
| 3461 | a_CPU.retain_grad() |
| 3462 | b_CPU = embeddingCPU(idx_CPU) @ W_CPU.t() # modifies weight in-place |
| 3463 | b_CPU.retain_grad() |
| 3464 | out_CPU = (a_CPU.unsqueeze(0) + b_CPU.unsqueeze(1)) |
| 3465 | loss_CPU = out_CPU.sigmoid().prod() |
| 3466 | loss_CPU.backward() |
| 3467 | |
| 3468 | self.assertEqual(b_CPU.grad, b_MPS.grad) |
| 3469 | self.assertEqual(a_CPU.grad, a_MPS.grad) |
| 3470 | |
| 3471 | helper(3, 5, 7) |
| 3472 | |
| 3473 | # Test pytorch gather |
| 3474 | def test_gather(self): |
| 3475 | def helper(shape, dim, idx_shape, idx_dtype=torch.int64): |
| 3476 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3477 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3478 | |
| 3479 | # Indices should be taken from range of axis along which gathering is done |
| 3480 | idx_np = np.random.randint(0, shape[dim], idx_shape) |
| 3481 | |
| 3482 | cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| 3483 | idx = cpu_idx.detach().clone().to('mps') |
| 3484 | |
| 3485 | gather_result = torch.gather(x, dim=dim, index=idx) |
| 3486 | gather_result_cpu = torch.gather(cpu_x, dim=dim, index=cpu_idx) |
| 3487 | |
| 3488 | cpu_grad = torch.randn(idx_shape, device='cpu', dtype=torch.float) |
| 3489 | grad = cpu_grad.to('mps') |
| 3490 | gather_result.backward(gradient=grad) |
| 3491 | gather_result_cpu.backward(gradient=cpu_grad) |
| 3492 | |
| 3493 | self.assertEqual(gather_result, gather_result_cpu) |
| 3494 | self.assertEqual(cpu_x.grad, x.grad) |
| 3495 | |
| 3496 | helper((6, 3, 3), 0, (3, 3, 3)) |
| 3497 | helper((2, 3, 3, 3), 0, (10, 3, 3, 3)) |
| 3498 | helper((2, 8, 4, 5), 0, (10, 8, 4, 5)) |
| 3499 | helper((2, 8, 4, 5), 0, (10, 6, 3, 2)) |
| 3500 | helper((8, 8, 4, 5), 0, (6, 8, 4, 5)) |
| 3501 | helper((8, 8, 4, 5), 0, (6, 7, 2, 3)) |
| 3502 | helper((2, 8, 4, 5), 1, (2, 5, 3, 4)) |
| 3503 | helper((2, 8, 4, 5), 2, (1, 8, 10, 3)) |
| 3504 | helper((2, 8, 4, 5), 3, (2, 5, 3, 12)) |
| 3505 | |
| 3506 | # Test pytorch scatter_add and scatter |
| 3507 | def test_scatter_add(self): |
| 3508 | def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, do_add=True): |
| 3509 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3510 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3511 | |
| 3512 | cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3513 | src = cpu_src.detach().clone().to('mps').requires_grad_() |
| 3514 | |
| 3515 | # Indices should be taken from range of axis along which gathering is done |
| 3516 | idx_np = None |
| 3517 | if(do_add): |
| 3518 | idx_np = np.random.randint(0, shape[dim], idx_shape) |
| 3519 | else: |
| 3520 | idx_np = np.array([[0, 1, 2], |
| 3521 | [1, 2, 3], |
| 3522 | [2, 3, 4], |
| 3523 | [3, 4, 5], |
| 3524 | [4, 5, 6]]) |
| 3525 | |
| 3526 | cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| 3527 | idx = cpu_idx.detach().clone().to('mps') |
| 3528 | |
| 3529 | scatter_result = None |
| 3530 | scatter_result_cpu = None |
| 3531 | |
| 3532 | if(do_add): |
| 3533 | scatter_result = torch.scatter_add(x, dim=dim, index=idx, src=src) |
| 3534 | scatter_result_cpu = torch.scatter_add(cpu_x, dim=dim, index=cpu_idx, src=cpu_src) |
| 3535 | else: |
| 3536 | scatter_result = torch.scatter(x, dim=dim, index=idx, src=src) |
| 3537 | scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src) |
| 3538 | |
| 3539 | cpu_grad = None |
| 3540 | grad = None |
| 3541 | |
| 3542 | if(idx_shape == src_shape): |
| 3543 | cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float) |
| 3544 | grad = cpu_grad.to('mps') |
| 3545 | scatter_result.backward(gradient=grad) |
| 3546 | scatter_result_cpu.backward(gradient=cpu_grad) |
| 3547 | |
| 3548 | self.assertEqual(scatter_result, scatter_result_cpu) |
| 3549 | if(idx_shape == src_shape): |
| 3550 | self.assertEqual(cpu_x.grad, x.grad) |
| 3551 | self.assertEqual(cpu_src.grad, src.grad) |
| 3552 | |
| 3553 | helper((2, 3), 0, (5, 3), (5, 3)) |
| 3554 | helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5)) |
| 3555 | helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5)) |
| 3556 | helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2)) |
| 3557 | helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2)) |
| 3558 | helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5)) |
| 3559 | |
| 3560 | helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5)) |
| 3561 | helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2)) |
| 3562 | helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3)) |
| 3563 | helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3)) |
| 3564 | |
| 3565 | helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8)) |
| 3566 | helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6)) |
| 3567 | helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6)) |
| 3568 | |
| 3569 | # Test scatter src |
| 3570 | helper((8, 3), 0, (5, 3), (5, 3), do_add=False) |
| 3571 | helper((10, 3), 0, (5, 3), (5, 8), do_add=False) |
| 3572 | |
| 3573 | # Test pytorch scatter_reduce |
| 3574 | def test_scatter_reduce(self): |
| 3575 | def helper(shape, dim, idx_shape, src_shape, idx_dtype=torch.int64, reduce_str="sum"): |
| 3576 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3577 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3578 | |
| 3579 | cpu_src = torch.randn(src_shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3580 | src = cpu_src.detach().clone().to('mps').requires_grad_() |
| 3581 | |
| 3582 | # Indices should be taken from range of axis along which gathering is done |
| 3583 | idx_np = np.random.randint(0, shape[dim], idx_shape) |
| 3584 | |
| 3585 | cpu_idx = torch.tensor(idx_np, device='cpu', dtype=idx_dtype) |
| 3586 | idx = cpu_idx.detach().clone().to('mps') |
| 3587 | |
| 3588 | scatter_result = torch.scatter(x, dim=dim, index=idx, src=src, reduce=reduce_str) |
| 3589 | scatter_result_cpu = torch.scatter(cpu_x, dim=dim, index=cpu_idx, src=cpu_src, reduce=reduce_str) |
| 3590 | |
| 3591 | self.assertEqual(scatter_result, scatter_result_cpu) |
| 3592 | |
| 3593 | # for reduce in ["sum", "prod", "amax", "amin"]: |
| 3594 | for reduce in ["add", "multiply"]: |
| 3595 | helper((2, 3), 0, (5, 3), (5, 3), reduce_str=reduce) |
| 3596 | helper((2, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce) |
| 3597 | helper((8, 8, 4, 5), 0, (10, 8, 4, 5), (10, 8, 4, 5), reduce_str=reduce) |
| 3598 | helper((8, 8, 4, 5), 0, (4, 7, 3, 2), (4, 7, 3, 2), reduce_str=reduce) |
| 3599 | helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (4, 7, 3, 2), reduce_str=reduce) |
| 3600 | helper((8, 8, 4, 5), 0, (4, 6, 3, 2), (8, 8, 4, 5), reduce_str=reduce) |
| 3601 | |
| 3602 | helper((2, 8, 4, 5), 1, (2, 20, 4, 5), (2, 20, 4, 5), reduce_str=reduce) |
| 3603 | helper((2, 8, 4, 5), 1, (2, 13, 3, 2), (2, 13, 3, 2), reduce_str=reduce) |
| 3604 | helper((8, 8, 4, 5), 1, (6, 5, 2, 3), (6, 5, 2, 3), reduce_str=reduce) |
| 3605 | helper((8, 8, 4, 5), 1, (3, 4, 2, 2), (6, 5, 2, 3), reduce_str=reduce) |
| 3606 | |
| 3607 | helper((4, 5, 9, 8), 2, (4, 5, 13, 8), (4, 5, 13, 8), reduce_str=reduce) |
| 3608 | helper((4, 5, 9, 8), 2, (3, 4, 10, 6), (3, 4, 10, 6), reduce_str=reduce) |
| 3609 | helper((4, 5, 9, 8), 2, (3, 3, 7, 5), (3, 4, 10, 6), reduce_str=reduce) |
| 3610 | |
| 3611 | def test_is_nonzero(self): |
| 3612 | self.assertFalse(torch.is_nonzero(torch.tensor([0.]).to('mps'))) |
| 3613 | self.assertTrue(torch.is_nonzero(torch.tensor([1.5]).to('mps'))) |
| 3614 | self.assertFalse(torch.is_nonzero(torch.tensor([False]).to('mps'))) |
| 3615 | self.assertTrue(torch.is_nonzero(torch.tensor([3]).to('mps'))) |
| 3616 | |
| 3617 | # Test triu |
| 3618 | def test_triu(self): |
| 3619 | def helper(shape, diag=0): |
| 3620 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3621 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3622 | |
| 3623 | triu_result = torch.triu(x, diag) |
| 3624 | triu_result_cpu = torch.triu(cpu_x, diag) |
| 3625 | |
| 3626 | cpu_grad = torch.randn(triu_result_cpu.shape) |
| 3627 | grad = cpu_grad.to('mps') |
| 3628 | |
| 3629 | triu_result.backward(gradient=grad) |
| 3630 | triu_result_cpu.backward(gradient=cpu_grad) |
| 3631 | |
| 3632 | self.assertEqual(triu_result, triu_result_cpu) |
| 3633 | self.assertEqual(x.grad, cpu_x.grad) |
| 3634 | |
| 3635 | helper((2, 8, 4, 5)) |
| 3636 | helper((2, 8, 4, 5), diag=1) |
| 3637 | helper((2, 8, 4, 5), diag=2) |
| 3638 | helper((2, 8, 4, 5), diag=3) |
| 3639 | helper((2, 8, 4, 5), diag=-1) |
| 3640 | helper((2, 8, 4, 5), diag=-2) |
| 3641 | helper((2, 8, 4, 5), diag=-3) |
| 3642 | |
| 3643 | # Test tril |
| 3644 | def test_tril(self): |
| 3645 | def helper(shape, diag=0): |
| 3646 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3647 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3648 | |
| 3649 | tril_result = torch.tril(x, diag) |
| 3650 | tril_result_cpu = torch.tril(cpu_x, diag) |
| 3651 | |
| 3652 | cpu_grad = torch.randn(tril_result_cpu.shape) |
| 3653 | grad = cpu_grad.to('mps') |
| 3654 | |
| 3655 | tril_result.backward(gradient=grad) |
| 3656 | tril_result_cpu.backward(gradient=cpu_grad) |
| 3657 | |
| 3658 | self.assertEqual(tril_result, tril_result_cpu) |
| 3659 | self.assertEqual(x.grad, cpu_x.grad) |
| 3660 | |
| 3661 | helper((2, 8, 4, 5)) |
| 3662 | helper((2, 8, 4, 5), diag=1) |
| 3663 | helper((2, 8, 4, 5), diag=2) |
| 3664 | helper((2, 8, 4, 5), diag=3) |
| 3665 | helper((2, 8, 4, 5), diag=-1) |
| 3666 | helper((2, 8, 4, 5), diag=-2) |
| 3667 | helper((2, 8, 4, 5), diag=-3) |
| 3668 | |
Kulin Seth | 8552acb | 2022-05-27 17:07:02 +0000 | [diff] [blame] | 3669 | # test eye |
| 3670 | def test_eye(self): |
| 3671 | def helper(n, m, dtype): |
| 3672 | cpu_result = None |
| 3673 | result = None |
| 3674 | |
| 3675 | if(n == m): |
| 3676 | cpu_result = torch.eye(n, dtype=dtype, device='cpu') |
| 3677 | result = torch.eye(n, dtype=dtype, device='mps') |
| 3678 | else: |
| 3679 | cpu_result = torch.eye(n, m, device='cpu') |
| 3680 | result = torch.eye(n, m, device='mps') |
| 3681 | |
| 3682 | self.assertEqual(result, cpu_result) |
| 3683 | |
| 3684 | for dtype in [torch.float32, torch.int32, torch.int64]: |
| 3685 | helper(2, 2, dtype) |
| 3686 | helper(2, 3, dtype) |
| 3687 | helper(0, 2, dtype) |
| 3688 | helper(0, 0, dtype) |
| 3689 | helper(3, 8, dtype) |
| 3690 | helper(8, 3, dtype) |
| 3691 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3692 | # Test diag |
| 3693 | def test_diag(self): |
| 3694 | def helper(shape, diag=0): |
| 3695 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3696 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3697 | |
| 3698 | diag_result = torch.diag(x, diag) |
| 3699 | diag_result_cpu = torch.diag(cpu_x, diag) |
| 3700 | |
| 3701 | # cpu_grad = torch.randn(diag_result_cpu.shape) |
| 3702 | # grad = cpu_grad.to('mps') |
| 3703 | |
| 3704 | # diag_result.backward(gradient=grad) |
| 3705 | # diag_result_cpu.backward(gradient=cpu_grad) |
| 3706 | |
| 3707 | self.assertEqual(diag_result, diag_result_cpu) |
| 3708 | # self.assertEqual(x.grad, cpu_x.grad) |
| 3709 | |
| 3710 | for shape in [(5, 5), (5, 6), (6, 5), (5,), (6,)]: |
| 3711 | for diag in [0, 1, 2, 3, 4, -1, -2, -3, -4]: |
| 3712 | helper(shape, diag=diag) |
| 3713 | |
| 3714 | # Test softmax |
| 3715 | def test_softmax(self): |
| 3716 | def helper(shape, dim, channels_last=False): |
| 3717 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=True) |
| 3718 | if(channels_last): |
| 3719 | cpu_x = cpu_x.to(memory_format=torch.channels_last) |
| 3720 | cpu_x.retain_grad() |
| 3721 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3722 | |
| 3723 | softmax_result = torch.nn.functional.softmax(x, dim=dim) |
| 3724 | softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim) |
| 3725 | |
| 3726 | # Currently NOT testing backward for channels last backward |
| 3727 | cpu_grad = None |
| 3728 | grad = None |
| 3729 | |
| 3730 | if(not channels_last): |
| 3731 | cpu_grad = torch.randn(shape, device='cpu', dtype=torch.float) |
| 3732 | grad = cpu_grad.to('mps') |
| 3733 | |
| 3734 | softmax_result.backward(gradient=grad) |
| 3735 | softmax_result_cpu.backward(gradient=cpu_grad) |
| 3736 | |
| 3737 | self.assertEqual(softmax_result, softmax_result_cpu) |
| 3738 | if(not channels_last): |
| 3739 | self.assertEqual(x.grad, cpu_x.grad) |
| 3740 | |
| 3741 | def helper2(dim): |
| 3742 | cpu_x = torch.tensor(1.23, device='cpu', dtype=torch.float, requires_grad=True) |
| 3743 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3744 | |
| 3745 | softmax_result = torch.nn.functional.softmax(x, dim=dim) |
| 3746 | softmax_result_cpu = torch.nn.functional.softmax(cpu_x, dim=dim) |
| 3747 | |
| 3748 | cpu_grad = torch.tensor(2.34, device='cpu', dtype=torch.float) |
| 3749 | grad = cpu_grad.to('mps') |
| 3750 | |
| 3751 | softmax_result.backward(gradient=grad) |
| 3752 | softmax_result_cpu.backward(gradient=cpu_grad) |
| 3753 | |
| 3754 | self.assertEqual(softmax_result, softmax_result_cpu) |
| 3755 | self.assertEqual(x.grad, cpu_x.grad) |
| 3756 | |
| 3757 | helper2(0) |
| 3758 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 3759 | for channels_last in [False]: |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3760 | for shape in [(2, 4, 8, 5), (3, 4, 6, 7, 2)]: |
| 3761 | if(len(shape) != 4 and channels_last): |
| 3762 | continue |
| 3763 | for dim in [0, 1, 2, 3, -1, -2, -3]: |
| 3764 | helper(shape, dim, channels_last) |
| 3765 | |
| 3766 | # Test sub |
| 3767 | def test_sub(self): |
| 3768 | def helper(shape, alpha): |
| 3769 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3770 | x = cpu_x.detach().clone().to('mps') |
| 3771 | |
| 3772 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3773 | y = cpu_y.detach().clone().to('mps') |
| 3774 | |
| 3775 | cpu_out = torch.sub(cpu_x, cpu_y, alpha=alpha) |
| 3776 | out = torch.sub(x, y, alpha=alpha) |
| 3777 | |
| 3778 | self.assertEqual(out, cpu_out) |
| 3779 | |
| 3780 | helper((2, 8, 4, 5), 0.1) |
| 3781 | helper((2, 8, 3, 5), 0.1) |
| 3782 | helper((2, 8, 3, 5), 0.2) |
| 3783 | |
| 3784 | # Test where |
| 3785 | def test_where(self): |
| 3786 | def helper(shape, x_shape, y_shape, cond_dtype=torch.bool, x_dtype=torch.float): |
| 3787 | |
| 3788 | cpu_cond = torch.randint(2, shape, device='cpu', dtype=cond_dtype, requires_grad=False) |
| 3789 | cond = cpu_cond.detach().clone().to('mps') |
| 3790 | |
| 3791 | cpu_x = torch.randn(x_shape, device='cpu', dtype=x_dtype, requires_grad=True) |
| 3792 | x = cpu_x.detach().clone().to('mps').requires_grad_() |
| 3793 | |
| 3794 | cpu_y = torch.randn(y_shape, device='cpu', dtype=x_dtype, requires_grad=True) |
| 3795 | y = cpu_y.detach().clone().to('mps').requires_grad_() |
| 3796 | |
| 3797 | cpu_out = torch.where(cpu_cond, cpu_x, cpu_y) |
| 3798 | out = torch.where(cond, x, y) |
| 3799 | |
| 3800 | cpu_grad = torch.randn(cpu_out.shape) |
| 3801 | grad = cpu_grad.to('mps') |
| 3802 | |
| 3803 | cpu_out.backward(gradient=cpu_grad) |
| 3804 | out.backward(gradient=grad) |
| 3805 | |
| 3806 | self.assertEqual(out, cpu_out) |
| 3807 | self.assertEqual(x.grad, cpu_x.grad) |
| 3808 | self.assertEqual(y.grad, cpu_y.grad) |
| 3809 | |
| 3810 | for shape in ([(0, 3), [], (2, 3), (9,)]): |
| 3811 | helper(shape, shape, shape) |
| 3812 | |
| 3813 | helper((2, 3, 1), (2, 3, 4), (2, 1, 4)) |
| 3814 | helper((2, 1, 1), (2, 3, 4), (1, 3, 4)) |
| 3815 | helper((1, 1, 1), (1, 1, 4), (2, 3, 1)) |
| 3816 | helper([], (1, 1, 4), (2, 3, 1)) |
| 3817 | helper([], (2, 3, 4), []) |
| 3818 | |
| 3819 | # Test normal |
| 3820 | def test_normal(self): |
| 3821 | def helper(shape, mean=0.0, std=1.0): |
| 3822 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3823 | x = cpu_x.detach().clone().to('mps') |
| 3824 | |
| 3825 | mps_out = torch.normal(mean, std, shape, device='mps') |
| 3826 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3827 | mean_array = np.ones(shape) |
| 3828 | mean_array *= mean |
| 3829 | cpu_mean_tensor = torch.tensor(mean_array, device='cpu', dtype=torch.float, requires_grad=False) |
| 3830 | mean_tensor = cpu_mean_tensor.detach().clone().to('mps') |
| 3831 | |
| 3832 | std_array = np.ones(shape) |
| 3833 | std_array *= std |
| 3834 | cpu_std_tensor = torch.tensor(std_array, device='cpu', dtype=torch.float, requires_grad=False) |
| 3835 | std_tensor = cpu_std_tensor.detach().clone().to('mps') |
| 3836 | |
| 3837 | mps_out = torch.zeros(shape, device='mps') |
| 3838 | torch.normal(mean_tensor, std, out=mps_out) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3839 | |
| 3840 | mps_out = torch.zeros(shape, device='mps') |
| 3841 | torch.normal(mean, std_tensor, out=mps_out) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3842 | |
| 3843 | mps_out = torch.zeros(shape, device='mps') |
| 3844 | torch.normal(mean_tensor, std_tensor, out=mps_out) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3845 | |
| 3846 | helper((2, 3, 4, 5, 6)) |
| 3847 | helper((100, 100), 2.5, 1.2) |
| 3848 | |
| 3849 | def test_bernoulli(self): |
| 3850 | def helper(shape, prob=0.5): |
| 3851 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3852 | x = cpu_x.detach().clone().to('mps') |
| 3853 | |
| 3854 | prob_array = np.ones(shape) |
| 3855 | prob_array *= prob |
| 3856 | cpu_prob_tensor = torch.tensor(prob_array, device='cpu', dtype=torch.float, requires_grad=False) |
| 3857 | prob_tensor = cpu_prob_tensor.detach().clone().to('mps') |
| 3858 | |
| 3859 | mps_out = torch.bernoulli(prob_tensor) |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 3860 | # We can't check reliably the mean and std. |
| 3861 | # Just make sure we don't return constant values |
| 3862 | self.assertNotEqual(mps_out.to('cpu').mean(), 0.) |
| 3863 | self.assertNotEqual(mps_out.to('cpu').std() ** 2, 0.) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3864 | |
| 3865 | mps_out = torch.zeros(shape, device='mps') |
| 3866 | mps_out = torch.bernoulli(mps_out, prob) |
| 3867 | |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 3868 | self.assertNotEqual(mps_out.to('cpu').mean(), 0.) |
| 3869 | self.assertNotEqual(mps_out.to('cpu').std(), 0.) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3870 | |
| 3871 | helper((100, 100), 0.50) |
| 3872 | helper((100, 100), 0.76) |
| 3873 | helper((100, 100), 0.23) |
| 3874 | |
| 3875 | # Test random_.to and random_.from |
| 3876 | def test_random(self): |
| 3877 | def helper(shape, low, high, dtype=torch.int32): |
| 3878 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3879 | mps_out = torch.randint(low, high, shape, dtype=dtype, device='mps') |
| 3880 | |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 3881 | # We can't check reliably the mean and std. |
| 3882 | # Just make sure we don't return constant values |
| 3883 | self.assertNotEqual(mps_out.to('cpu').float().mean(), 0.) |
| 3884 | self.assertNotEqual(mps_out.to('cpu').float().std(), 0.) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3885 | |
| 3886 | helper([100, 100], 0, 10) |
| 3887 | helper([100, 100], 23, 89) |
| 3888 | helper([100, 100], 23, 89, dtype=torch.float32) |
| 3889 | helper([100, 100], 23, 89, dtype=torch.int64) |
| 3890 | helper([100, 100], 0, 2, dtype=torch.bool) |
| 3891 | |
| 3892 | # Test add |
| 3893 | def test_add_binary_op(self): |
| 3894 | def helper(shape, alpha): |
| 3895 | cpu_x = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3896 | x = cpu_x.detach().clone().to('mps') |
| 3897 | |
| 3898 | cpu_y = torch.randn(shape, device='cpu', dtype=torch.float, requires_grad=False) |
| 3899 | y = cpu_y.detach().clone().to('mps') |
| 3900 | |
| 3901 | cpu_out = torch.add(cpu_x, cpu_y, alpha=alpha) |
| 3902 | out = torch.add(x, y, alpha=alpha) |
| 3903 | |
| 3904 | self.assertEqual(out, cpu_out) |
| 3905 | |
| 3906 | helper((2, 8, 4, 5), 0.1) |
| 3907 | helper((2, 8, 3, 5), 0.1) |
| 3908 | helper((2, 8, 3, 5), 0.2) |
| 3909 | |
| 3910 | # Test add |
| 3911 | def test_add_scalars(self): |
| 3912 | def helper(alpha=1.0): |
| 3913 | cpu_x = torch.tensor(2.3, device='cpu', dtype=torch.float, requires_grad=False) |
| 3914 | x = cpu_x.detach().clone().to('mps') |
| 3915 | |
| 3916 | cpu_y = torch.tensor(3.4, device='cpu', dtype=torch.float, requires_grad=False) |
| 3917 | y = cpu_y.detach().clone().to('mps') |
| 3918 | |
| 3919 | cpu_out = torch.add(cpu_x, cpu_y, alpha=alpha) |
| 3920 | out = torch.add(x, y, alpha=alpha) |
| 3921 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 3922 | self.assertEqual(out, cpu_out) |
| 3923 | |
| 3924 | helper() |
| 3925 | helper(0.1) |
| 3926 | helper(0.2) |
| 3927 | |
| 3928 | def test_atan2(self): |
| 3929 | def helper(shape): |
| 3930 | input_cpu = torch.randn(shape) |
| 3931 | input_mps = input_cpu.detach().clone().to("mps") |
| 3932 | |
| 3933 | other_cpu = torch.randn(shape) |
| 3934 | other_mps = other_cpu.detach().clone().to("mps") |
| 3935 | |
| 3936 | atan2_cpu = torch.atan2(input_cpu, other_cpu) |
| 3937 | atan2_mps = torch.atan2(input_mps, other_mps) |
| 3938 | |
| 3939 | self.assertEqual(atan2_cpu, atan2_mps.to("cpu")) |
| 3940 | |
| 3941 | helper(4) |
| 3942 | helper(10000) |
| 3943 | helper((10000, 40)) |
| 3944 | |
| 3945 | |
| 3946 | class TestNNMPS(NNTestCase): |
| 3947 | |
| 3948 | def _create_basic_net(self): |
| 3949 | class Layer(nn.Module): |
| 3950 | def __init__(self): |
| 3951 | super(Layer, self).__init__() |
| 3952 | self.layer_dummy_param = Parameter(torch.empty(3, 5)) |
| 3953 | self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7)) |
| 3954 | |
| 3955 | class Net(nn.Module): |
| 3956 | def __init__(self): |
| 3957 | super(Net, self).__init__() |
| 3958 | self.l1 = Layer() |
| 3959 | self.dummy_param = Parameter(torch.empty(3, 5)) |
| 3960 | self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1)) |
| 3961 | |
| 3962 | l = Layer() |
| 3963 | n = Net() |
| 3964 | s = nn.Sequential(n, n) |
| 3965 | |
| 3966 | return l, n, s |
| 3967 | |
| 3968 | def test_requires_grad_(self): |
| 3969 | m = self._create_basic_net()[-1] |
| 3970 | assert len(list(m.buffers())) > 0, 'invalid test' |
| 3971 | assert all(not b.requires_grad for b in m.buffers()) > 0, 'invalid test' |
| 3972 | assert len(list(m.parameters())) > 0, 'invalid test' |
| 3973 | assert all(p.requires_grad for p in m.parameters()) > 0, 'invalid test' |
| 3974 | for requires_grad in (False, True): |
| 3975 | self.assertIs(m.requires_grad_(requires_grad), m) |
| 3976 | for p in m.parameters(): |
| 3977 | self.assertEqual(p.requires_grad, requires_grad) |
| 3978 | for b in m.buffers(): |
| 3979 | self.assertFalse(b.requires_grad) |
| 3980 | |
| 3981 | def test_module_backcompat(self): |
| 3982 | from torch.serialization import SourceChangeWarning |
| 3983 | path = download_file('https://download.pytorch.org/test_data/linear.pt') |
| 3984 | with warnings.catch_warnings(): |
| 3985 | warnings.simplefilter('ignore', SourceChangeWarning) |
| 3986 | m = torch.load(path) |
| 3987 | input = torch.randn(2, 3, dtype=torch.float) |
| 3988 | self.assertEqual(m(input).size(), (2, 5)) |
| 3989 | |
| 3990 | def test_conv_backcompat(self): |
| 3991 | from torch.serialization import SourceChangeWarning |
| 3992 | # This file was generated by running on PyTorch 1.0.1 on Python 2: |
| 3993 | # |
| 3994 | # import torch |
| 3995 | # from torch import nn |
| 3996 | # m = nn.Conv2d(1, 1, 1) |
| 3997 | # torch.save(m, 'legacy_conv2d.pt') |
| 3998 | # |
| 3999 | # NB: This Pickle also contains some Unicode data! |
| 4000 | path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') |
| 4001 | with warnings.catch_warnings(): |
| 4002 | warnings.simplefilter('ignore', SourceChangeWarning) |
| 4003 | m = torch.load(path, encoding='utf-8') |
| 4004 | input = torch.randn((1, 1, 1, 1), dtype=torch.float) |
| 4005 | self.assertEqual(m(input).size(), (1, 1, 1, 1)) |
| 4006 | |
Kulin Seth | 017b0ae | 2022-05-31 02:09:03 +0000 | [diff] [blame] | 4007 | def test_conv_expand(self): |
| 4008 | device = 'mps' |
| 4009 | input_ = torch.rand(2, 3, 16, 16, device=device) |
| 4010 | kernel = torch.rand(1, 1, 3, 11, device=device) |
| 4011 | tmp_kernel = kernel.expand(-1, 3, -1, -1) |
| 4012 | output = F.conv2d(input_, tmp_kernel, groups=1, padding=0, stride=1) |
| 4013 | |
| 4014 | # The test should not crash |
| 4015 | def test_permute(self): |
| 4016 | X = torch.randn(5, 5).to('mps') |
| 4017 | torch.log(X) |
| 4018 | X = X.permute(1, 0) |
| 4019 | torch.log(X) |
| 4020 | |
| 4021 | # Printing of non_contiguous should not crash |
| 4022 | def test_print_non_contiguous(self): |
| 4023 | print(torch.ones(100, 100, device='mps').nonzero()) |
| 4024 | print(torch.ones(100, 100, device='mps').nonzero().contiguous()) |
| 4025 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4026 | def test_zero_grad(self): |
| 4027 | i = torch.randn(2, 5, requires_grad=True) |
| 4028 | module = nn.Linear(5, 5) |
| 4029 | for p in module.parameters(): |
| 4030 | p.requires_grad = False |
| 4031 | module.zero_grad() |
| 4032 | |
| 4033 | module.weight.requires_grad = True |
| 4034 | module.zero_grad() |
| 4035 | self.assertIsNone(module.weight.grad) # uninitialized grad |
| 4036 | |
| 4037 | module(i).sum().backward() |
| 4038 | self.assertIsNotNone(module.weight.grad) |
| 4039 | self.assertGreater(module.weight.grad.data.abs().sum(), 0) |
| 4040 | module.zero_grad() |
| 4041 | self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) |
| 4042 | |
| 4043 | module.bias.requires_grad = True |
| 4044 | module.zero_grad() |
| 4045 | self.assertIsNotNone(module.weight.grad) |
| 4046 | self.assertIsNone(module.bias.grad) |
| 4047 | module(i).sum().backward() |
| 4048 | self.assertIsNotNone(module.weight.grad) |
| 4049 | self.assertIsNotNone(module.bias.grad) |
| 4050 | self.assertGreater(module.weight.grad.data.abs().sum(), 0) |
| 4051 | self.assertGreater(module.bias.grad.data.abs().sum(), 0) |
| 4052 | module.zero_grad() |
| 4053 | self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) |
| 4054 | self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_()) |
| 4055 | |
| 4056 | # Force set to None. |
| 4057 | module.zero_grad(set_to_none=True) |
| 4058 | self.assertIsNone(module.weight.grad) |
| 4059 | |
| 4060 | def test_no_grad(self): |
| 4061 | for dtype in [torch.bfloat16, torch.float, torch.double]: |
| 4062 | module = nn.Conv2d(2, 5, kernel_size=3, padding=1).to(dtype) |
| 4063 | input = torch.randn(1, 2, 10, 10).to(dtype) |
| 4064 | x = input |
| 4065 | y = input.clone() |
| 4066 | |
| 4067 | output = module(x) |
| 4068 | self.assertTrue(output.requires_grad) |
| 4069 | output.backward(torch.ones(1, 5, 10, 10)) |
| 4070 | |
| 4071 | with torch.no_grad(): |
| 4072 | output2 = module(y) |
| 4073 | self.assertFalse(output2.requires_grad) |
| 4074 | self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10))) |
| 4075 | |
| 4076 | def test_invalid_conv1d(self): |
| 4077 | for dtype in [torch.bfloat16, torch.float, torch.double]: |
| 4078 | module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype) |
| 4079 | input = torch.randn(1, 3, 4).to(dtype) |
| 4080 | with self.assertRaisesRegex(RuntimeError, |
| 4081 | r'Calculated padded input size per channel: \(4\). ' + |
| 4082 | r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'): |
| 4083 | module(input) |
| 4084 | |
| 4085 | # Negative stride check |
| 4086 | module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype) |
| 4087 | input = torch.randn(1, 3, 4).to(dtype) |
| 4088 | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| 4089 | module(input) |
| 4090 | |
| 4091 | def test_conv2d_discontiguous_weight(self): |
| 4092 | # Test for https://github.com/pytorch/pytorch/issues/55781 |
| 4093 | x = torch.ones(64, 16, 16, 16) |
| 4094 | weight = torch.arange(0, 1.0, 1 / 2.0 ** 10).reshape(32, 16, 1, 2)[:, :, :, ::2] |
| 4095 | self.assertFalse(weight.is_contiguous()) |
| 4096 | y = torch.nn.functional.conv2d(x, weight, None) |
| 4097 | if torch.backends.mkldnn.is_available(): |
| 4098 | # Disable MKLDNN explicitly, so that either NNPACK or THCNN will be used |
| 4099 | with torch.backends.mkldnn.flags(enabled=False): |
| 4100 | y_ = torch.nn.functional.conv2d(x, weight, None) |
| 4101 | self.assertEqual(y, y_) |
| 4102 | self.assertEqual(y.sum(), 4186112.) |
| 4103 | |
| 4104 | def test_invalid_conv2d(self): |
| 4105 | for dtype in [torch.bfloat16, torch.float, torch.double]: |
| 4106 | module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) |
| 4107 | input = torch.empty(1, 1, 4, 4).to(dtype) |
| 4108 | self.assertRaises(RuntimeError, lambda: module(input)) |
| 4109 | |
| 4110 | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True) |
| 4111 | input = torch.randn(1, 3, 1, 1) |
| 4112 | with self.assertRaisesRegex(RuntimeError, |
| 4113 | r'Calculated padded input size per channel: \(1 x 1\). ' + |
| 4114 | r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'): |
| 4115 | module(input) |
| 4116 | |
| 4117 | # Negative stride check |
| 4118 | module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype) |
| 4119 | input = torch.randn(1, 3, 4, 4).to(dtype) |
| 4120 | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| 4121 | module(input) |
| 4122 | |
| 4123 | # Zero stride check |
| 4124 | module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype) |
| 4125 | input = torch.randn(1, 3, 4, 4).to(dtype) |
| 4126 | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): |
| 4127 | module(input) |
| 4128 | |
| 4129 | def test_conv2d_valid_padding(self, device='mps'): |
| 4130 | # Test F.conv2d padding='valid' is the same as no padding |
| 4131 | x = torch.rand(1, 1, 1, 10, device=device).to(torch.float) |
| 4132 | y = torch.rand(1, 1, 1, 4, device=device).to(torch.float) |
| 4133 | |
| 4134 | expect = F.conv2d(x, y) |
| 4135 | actual = F.conv2d(x, y, padding='valid') |
| 4136 | self.assertEqual(expect.to('cpu'), actual.to('cpu')) |
| 4137 | |
| 4138 | # def test_conv2d_same_padding(self, device='mps'): |
| 4139 | # x = torch.rand(1, 1, 10, 11, device=device) |
| 4140 | # y = torch.rand(1, 1, 4, 5, device=device) |
| 4141 | # expect = F.conv2d(x, y, padding=(2, 2))[..., 1:, :] |
| 4142 | # actual = F.conv2d(x, y, padding='same') |
| 4143 | # self.assertEqual(expect.to('cpu'), actual.to('cpu')) |
| 4144 | |
| 4145 | # # With dilation |
| 4146 | # y = torch.rand(1, 1, 3, 4, device=device) |
| 4147 | # expect = F.conv2d(x, y, padding=(2, 3), dilation=2) |
| 4148 | # actual = F.conv2d(x, y, padding='same', dilation=2) |
| 4149 | # self.assertEqual(expect, actual) |
| 4150 | |
| 4151 | # # Dilation with asymmetric padding |
| 4152 | # y = torch.rand(1, 1, 4, 4, device=device) |
| 4153 | # expect = F.conv2d(x, y, padding=5, dilation=3)[..., 1:, 1:] |
| 4154 | # actual = F.conv2d(x, y, padding='same', dilation=3) |
| 4155 | # self.assertEqual(expect, actual) |
| 4156 | |
| 4157 | |
| 4158 | class TestConstantPadNd(TestCase): |
| 4159 | def test_preserves_memory_format(self): |
| 4160 | nchw_tensor = torch.rand((1, 2, 5, 3)) |
| 4161 | nchw_padded = torch.constant_pad_nd(nchw_tensor, [1, 2], 0.5) |
| 4162 | self.assertTrue(nchw_padded.is_contiguous(memory_format=torch.contiguous_format)) |
| 4163 | |
| 4164 | nhwc_tensor = nchw_tensor.contiguous(memory_format=torch.channels_last) |
| 4165 | nhwc_padded = torch.constant_pad_nd(nhwc_tensor, [1, 2], 0.5) |
| 4166 | self.assertTrue(nhwc_padded.is_contiguous(memory_format=torch.channels_last)) |
| 4167 | |
| 4168 | |
| 4169 | class TestLinalgMPS(TestCase): |
| 4170 | def _test_addmm_addmv(self, f, t, m, v, *, alpha=None, beta=None, transpose_out=False): |
| 4171 | dtype = t.dtype |
| 4172 | numpy_dtype = dtype |
| 4173 | alpha = 1.2 if alpha is None else alpha |
| 4174 | beta = 0.8 if beta is None else beta |
| 4175 | res1 = f(t, m, v, alpha=alpha, beta=beta) |
| 4176 | res2 = torch.full_like(res1, math.nan) |
| 4177 | if transpose_out: |
| 4178 | res2 = res2.t().clone(memory_format=torch.contiguous_format).t() |
| 4179 | f(t, m, v, alpha=alpha, beta=beta, out=res2) |
| 4180 | res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy()) |
| 4181 | if beta != 0: |
| 4182 | res3 += (torch.mul(t, beta)).to(numpy_dtype).cpu().numpy() |
| 4183 | res3 = torch.from_numpy(res3).to(dtype) |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 4184 | self.assertEqual(res1, res2) |
| 4185 | self.assertEqual(res1, res3) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4186 | |
| 4187 | def test_addmm(self, device="mps", dtype=torch.float32): |
| 4188 | M = torch.randn(10, 25, device=device).to(dtype) |
| 4189 | m1 = torch.randn(10, 50, device=device).to(dtype) |
| 4190 | m2 = torch.randn(50, 25, device=device).to(dtype) |
| 4191 | self._test_addmm_addmv(torch.addmm, M, m1, m2) |
| 4192 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4193 | # Test beta=0, M=nan |
| 4194 | M = torch.full((10, 25), math.nan, device=device).to(dtype) |
| 4195 | m1 = torch.randn(10, 50, device=device).to(dtype) |
| 4196 | m2 = torch.randn(50, 25, device=device).to(dtype) |
| 4197 | self._test_addmm_addmv(torch.addmm, M, m1, m2, beta=0) |
| 4198 | |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 4199 | # Test transpose |
| 4200 | for t1, t2, t3, t4 in itertools.product([True, False], repeat=4): |
| 4201 | def maybe_transpose(cond, m): |
| 4202 | if not cond: |
| 4203 | return m |
| 4204 | return m.t().clone(memory_format=torch.contiguous_format).t() |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4205 | |
Kulin Seth | 978304f | 2022-05-14 13:33:16 +0000 | [diff] [blame] | 4206 | M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype)) |
| 4207 | m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype)) |
| 4208 | m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype)) |
| 4209 | self._test_addmm_addmv(torch.addmm, M, m1, m2, transpose_out=t4) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4210 | |
| 4211 | |
| 4212 | class TestRNNMPS(TestCase): |
| 4213 | def test_lstm_1(self, device="mps", dtype=torch.float32): |
| 4214 | |
| 4215 | rnn = nn.LSTM(1, 4, 2, device="cpu") |
| 4216 | input = torch.randn(2, 3, 1, device="cpu") |
| 4217 | hx = torch.zeros(2, 3, 4, device="cpu") |
| 4218 | cx = torch.zeros(2, 3, 4, device="cpu") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4219 | |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 4220 | cpu_output, _ = rnn(input, (hx, cx)) |
| 4221 | |
| 4222 | device = torch.device("mps") |
| 4223 | rnn = rnn.to(device) |
| 4224 | input = input.to(device) |
| 4225 | hx = hx.to(device) |
| 4226 | cx = cx.to(device) |
| 4227 | output, _ = rnn(input, (hx, cx)) |
| 4228 | self.assertEqual(cpu_output, output) |
| 4229 | |
| 4230 | @unittest.skipIf(True, "Backward of lstm returns wrong result") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4231 | def test_lstm_2(self, device="mps", dtype=torch.float32): |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 4232 | def get_results(device): |
| 4233 | rnn = nn.LSTM(1, 4, 1, device=device) |
| 4234 | inp = torch.randn(2, 3, 1, device=device, requires_grad=True) |
| 4235 | hx = torch.zeros(1, 3, 4, device=device) |
| 4236 | cx = torch.zeros(1, 3, 4, device=device) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4237 | |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 4238 | output, _ = rnn(inp, (hx, cx)) |
| 4239 | output.sum().backward() |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4240 | |
Alban Desmaison | 02551a0 | 2022-05-28 12:39:10 -0400 | [diff] [blame] | 4241 | weight_grad = rnn.weight_ih_l0.grad.clone() |
| 4242 | input_grad = inp.grad.clone() |
| 4243 | |
| 4244 | return output, weight_grad, input_grad |
| 4245 | |
| 4246 | |
| 4247 | cpu_output, cpu_weight_grad, cpu_input_grad = get_results("cpu") |
| 4248 | mps_output, mps_weight_grad, mps_input_grad = get_results("mps") |
| 4249 | |
| 4250 | self.assertEqual(cpu_output, mps_output) |
| 4251 | self.assertEqual(cpu_input_grad, mps_input_grad) |
| 4252 | self.assertEqual(cpu_weight_grad, mps_weight_grad) |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4253 | |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 4254 | class TestFallbackWarning(TestCase): |
| 4255 | def test_no_warning_on_import(self): |
| 4256 | script = """ |
| 4257 | import warnings |
| 4258 | |
| 4259 | with warnings.catch_warnings(record=True) as w: |
| 4260 | import torch |
| 4261 | |
| 4262 | exit(len(w)) |
| 4263 | """ |
| 4264 | try: |
| 4265 | subprocess.check_output( |
| 4266 | [sys.executable, '-W', 'all', '-c', script], |
| 4267 | stderr=subprocess.STDOUT, |
| 4268 | # On Windows, opening the subprocess with the default CWD makes `import torch` |
| 4269 | # fail, so just set CWD to this script's directory |
| 4270 | cwd=os.path.dirname(os.path.realpath(__file__)),) |
| 4271 | except subprocess.CalledProcessError as e: |
| 4272 | self.assertTrue(False, "There was a warning when importing torch.") |
| 4273 | |
| 4274 | def _get_not_implemented_op(self): |
Kulin Seth | 8552acb | 2022-05-27 17:07:02 +0000 | [diff] [blame] | 4275 | # This can be changed once we actually implement `torch.bincount` |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 4276 | # Should return fn, args, kwargs, string_version |
Kulin Seth | 8552acb | 2022-05-27 17:07:02 +0000 | [diff] [blame] | 4277 | return (torch.bincount, |
Kulin Seth | d63db52 | 2022-05-28 14:41:56 +0000 | [diff] [blame] | 4278 | torch.tensor([4], device='mps'), {}, |
Kulin Seth | 8552acb | 2022-05-27 17:07:02 +0000 | [diff] [blame] | 4279 | "torch.bincount(torch.tensor([4, 3, 6, 3, 4], device='mps'))") |
Kulin Seth | 3d83321 | 2022-05-20 03:18:09 +0000 | [diff] [blame] | 4280 | |
| 4281 | def test_error_on_not_implemented(self): |
| 4282 | fn, args, kwargs, _ = self._get_not_implemented_op() |
| 4283 | |
| 4284 | with self.assertRaisesRegex(NotImplementedError, "not current implemented for the MPS device"): |
| 4285 | fn(*args, **kwargs) |
| 4286 | |
| 4287 | def test_warn_on_not_implemented_with_fallback(self): |
| 4288 | _, _, _, op = self._get_not_implemented_op() |
| 4289 | script = f""" |
| 4290 | import os |
| 4291 | # MUST happen before pytorch's import |
| 4292 | os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
| 4293 | import warnings |
| 4294 | |
| 4295 | with warnings.catch_warnings(record=True) as w: |
| 4296 | import torch |
| 4297 | |
| 4298 | if len(w) > 0: |
| 4299 | exit(1) |
| 4300 | |
| 4301 | # This should run just fine and raise warning about perf |
| 4302 | with warnings.catch_warnings(record=True) as w: |
| 4303 | {op} |
| 4304 | |
| 4305 | if len(w) != 1: |
| 4306 | exit(2) |
| 4307 | |
| 4308 | """ |
| 4309 | try: |
| 4310 | subprocess.check_output( |
| 4311 | [sys.executable, '-W', 'all', '-c', script], |
| 4312 | stderr=subprocess.STDOUT, |
| 4313 | # On Windows, opening the subprocess with the default CWD makes `import torch` |
| 4314 | # fail, so just set CWD to this script's directory |
| 4315 | cwd=os.path.dirname(os.path.realpath(__file__)),) |
| 4316 | except subprocess.CalledProcessError as e: |
| 4317 | if e.returncode == 1: |
| 4318 | self.assertTrue(False, "There was a warning when importing torch when PYTORCH_ENABLE_MPS_FALLBACK is set.") |
| 4319 | elif e.returncode == 2: |
| 4320 | self.assertTrue(False, "There wasn't exactly one warning when running not implemented op with " |
| 4321 | "PYTORCH_ENABLE_MPS_FALLBACK set.") |
| 4322 | else: |
| 4323 | self.assertTrue(False, "Running a not implemented op failed even though PYTORCH_ENABLE_MPS_FALLBACK is set.") |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4324 | |
Alban Desmaison | 04ac80c | 2022-05-20 20:25:12 +0000 | [diff] [blame] | 4325 | class TestNoRegression(TestCase): |
| 4326 | def test_assert_close(self): |
| 4327 | a = torch.ones(1, device="mps") |
| 4328 | b = torch.zeros(1, device="mps") |
| 4329 | inf = a / b |
| 4330 | nan = b / b |
| 4331 | |
| 4332 | with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"): |
| 4333 | torch.testing.assert_close(a, inf) |
| 4334 | |
| 4335 | with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"): |
| 4336 | torch.testing.assert_close(a, nan) |
| 4337 | |
| 4338 | def test_double_error(self): |
| 4339 | with self.assertRaisesRegex(TypeError, "the MPS framework doesn't support float64"): |
| 4340 | a = torch.ones(2, dtype=torch.float64, device="mps") |
| 4341 | |
| 4342 | a = torch.ones(2, device="mps") |
| 4343 | with self.assertRaisesRegex(TypeError, "the MPS framework doesn't support float64"): |
| 4344 | a = a.double() |
| 4345 | |
| 4346 | def test_legacy_constructor(self): |
| 4347 | a = torch.ones(2, device="mps") |
| 4348 | |
| 4349 | b = a.new(1) |
| 4350 | |
| 4351 | |
| 4352 | |
Kulin Seth | e011a8e | 2022-05-13 18:28:53 +0000 | [diff] [blame] | 4353 | if __name__ == "__main__": |
| 4354 | run_tests() |