|  | /* | 
|  | * defines common to all virtual CPUs | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #ifndef CPU_ALL_H | 
|  | #define CPU_ALL_H | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "cpu-common.h" | 
|  |  | 
|  | /* some important defines: | 
|  | * | 
|  | * WORDS_ALIGNED : if defined, the host cpu can only make word aligned | 
|  | * memory accesses. | 
|  | * | 
|  | * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and | 
|  | * otherwise little endian. | 
|  | * | 
|  | * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) | 
|  | * | 
|  | * TARGET_WORDS_BIGENDIAN : same for target cpu | 
|  | */ | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) | 
|  | #define BSWAP_NEEDED | 
|  | #endif | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  |  | 
|  | static inline uint16_t tswap16(uint16_t s) | 
|  | { | 
|  | return bswap16(s); | 
|  | } | 
|  |  | 
|  | static inline uint32_t tswap32(uint32_t s) | 
|  | { | 
|  | return bswap32(s); | 
|  | } | 
|  |  | 
|  | static inline uint64_t tswap64(uint64_t s) | 
|  | { | 
|  | return bswap64(s); | 
|  | } | 
|  |  | 
|  | static inline void tswap16s(uint16_t *s) | 
|  | { | 
|  | *s = bswap16(*s); | 
|  | } | 
|  |  | 
|  | static inline void tswap32s(uint32_t *s) | 
|  | { | 
|  | *s = bswap32(*s); | 
|  | } | 
|  |  | 
|  | static inline void tswap64s(uint64_t *s) | 
|  | { | 
|  | *s = bswap64(*s); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline uint16_t tswap16(uint16_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline uint32_t tswap32(uint32_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline uint64_t tswap64(uint64_t s) | 
|  | { | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static inline void tswap16s(uint16_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void tswap32s(uint32_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void tswap64s(uint64_t *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if TARGET_LONG_SIZE == 4 | 
|  | #define tswapl(s) tswap32(s) | 
|  | #define tswapls(s) tswap32s((uint32_t *)(s)) | 
|  | #define bswaptls(s) bswap32s(s) | 
|  | #else | 
|  | #define tswapl(s) tswap64(s) | 
|  | #define tswapls(s) tswap64s((uint64_t *)(s)) | 
|  | #define bswaptls(s) bswap64s(s) | 
|  | #endif | 
|  |  | 
|  | /* CPU memory access without any memory or io remapping */ | 
|  |  | 
|  | /* | 
|  | * the generic syntax for the memory accesses is: | 
|  | * | 
|  | * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) | 
|  | * | 
|  | * store: st{type}{size}{endian}_{access_type}(ptr, val) | 
|  | * | 
|  | * type is: | 
|  | * (empty): integer access | 
|  | *   f    : float access | 
|  | * | 
|  | * sign is: | 
|  | * (empty): for floats or 32 bit size | 
|  | *   u    : unsigned | 
|  | *   s    : signed | 
|  | * | 
|  | * size is: | 
|  | *   b: 8 bits | 
|  | *   w: 16 bits | 
|  | *   l: 32 bits | 
|  | *   q: 64 bits | 
|  | * | 
|  | * endian is: | 
|  | * (empty): target cpu endianness or 8 bit access | 
|  | *   r    : reversed target cpu endianness (not implemented yet) | 
|  | *   be   : big endian (not implemented yet) | 
|  | *   le   : little endian (not implemented yet) | 
|  | * | 
|  | * access_type is: | 
|  | *   raw    : host memory access | 
|  | *   user   : user mode access using soft MMU | 
|  | *   kernel : kernel mode access using soft MMU | 
|  | */ | 
|  |  | 
|  | /* target-endianness CPU memory access functions */ | 
|  | #if defined(TARGET_WORDS_BIGENDIAN) | 
|  | #define lduw_p(p) lduw_be_p(p) | 
|  | #define ldsw_p(p) ldsw_be_p(p) | 
|  | #define ldl_p(p) ldl_be_p(p) | 
|  | #define ldq_p(p) ldq_be_p(p) | 
|  | #define ldfl_p(p) ldfl_be_p(p) | 
|  | #define ldfq_p(p) ldfq_be_p(p) | 
|  | #define stw_p(p, v) stw_be_p(p, v) | 
|  | #define stl_p(p, v) stl_be_p(p, v) | 
|  | #define stq_p(p, v) stq_be_p(p, v) | 
|  | #define stfl_p(p, v) stfl_be_p(p, v) | 
|  | #define stfq_p(p, v) stfq_be_p(p, v) | 
|  | #else | 
|  | #define lduw_p(p) lduw_le_p(p) | 
|  | #define ldsw_p(p) ldsw_le_p(p) | 
|  | #define ldl_p(p) ldl_le_p(p) | 
|  | #define ldq_p(p) ldq_le_p(p) | 
|  | #define ldfl_p(p) ldfl_le_p(p) | 
|  | #define ldfq_p(p) ldfq_le_p(p) | 
|  | #define stw_p(p, v) stw_le_p(p, v) | 
|  | #define stl_p(p, v) stl_le_p(p, v) | 
|  | #define stq_p(p, v) stq_le_p(p, v) | 
|  | #define stfl_p(p, v) stfl_le_p(p, v) | 
|  | #define stfq_p(p, v) stfq_le_p(p, v) | 
|  | #endif | 
|  |  | 
|  | /* MMU memory access macros */ | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | #include <assert.h> | 
|  | #include "qemu-types.h" | 
|  |  | 
|  | /* On some host systems the guest address space is reserved on the host. | 
|  | * This allows the guest address space to be offset to a convenient location. | 
|  | */ | 
|  | #if defined(CONFIG_USE_GUEST_BASE) | 
|  | extern unsigned long guest_base; | 
|  | extern int have_guest_base; | 
|  | extern unsigned long reserved_va; | 
|  | #define GUEST_BASE guest_base | 
|  | #define RESERVED_VA reserved_va | 
|  | #else | 
|  | #define GUEST_BASE 0ul | 
|  | #define RESERVED_VA 0ul | 
|  | #endif | 
|  |  | 
|  | /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */ | 
|  | #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE)) | 
|  |  | 
|  | #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS | 
|  | #define h2g_valid(x) 1 | 
|  | #else | 
|  | #define h2g_valid(x) ({ \ | 
|  | unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ | 
|  | __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #define h2g(x) ({ \ | 
|  | unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ | 
|  | /* Check if given address fits target address space */ \ | 
|  | assert(h2g_valid(x)); \ | 
|  | (abi_ulong)__ret; \ | 
|  | }) | 
|  |  | 
|  | #define saddr(x) g2h(x) | 
|  | #define laddr(x) g2h(x) | 
|  |  | 
|  | #else /* !CONFIG_USER_ONLY */ | 
|  | /* NOTE: we use double casts if pointers and target_ulong have | 
|  | different sizes */ | 
|  | #define saddr(x) (uint8_t *)(long)(x) | 
|  | #define laddr(x) (uint8_t *)(long)(x) | 
|  | #endif | 
|  |  | 
|  | #define ldub_raw(p) ldub_p(laddr((p))) | 
|  | #define ldsb_raw(p) ldsb_p(laddr((p))) | 
|  | #define lduw_raw(p) lduw_p(laddr((p))) | 
|  | #define ldsw_raw(p) ldsw_p(laddr((p))) | 
|  | #define ldl_raw(p) ldl_p(laddr((p))) | 
|  | #define ldq_raw(p) ldq_p(laddr((p))) | 
|  | #define ldfl_raw(p) ldfl_p(laddr((p))) | 
|  | #define ldfq_raw(p) ldfq_p(laddr((p))) | 
|  | #define stb_raw(p, v) stb_p(saddr((p)), v) | 
|  | #define stw_raw(p, v) stw_p(saddr((p)), v) | 
|  | #define stl_raw(p, v) stl_p(saddr((p)), v) | 
|  | #define stq_raw(p, v) stq_p(saddr((p)), v) | 
|  | #define stfl_raw(p, v) stfl_p(saddr((p)), v) | 
|  | #define stfq_raw(p, v) stfq_p(saddr((p)), v) | 
|  |  | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* if user mode, no other memory access functions */ | 
|  | #define ldub(p) ldub_raw(p) | 
|  | #define ldsb(p) ldsb_raw(p) | 
|  | #define lduw(p) lduw_raw(p) | 
|  | #define ldsw(p) ldsw_raw(p) | 
|  | #define ldl(p) ldl_raw(p) | 
|  | #define ldq(p) ldq_raw(p) | 
|  | #define ldfl(p) ldfl_raw(p) | 
|  | #define ldfq(p) ldfq_raw(p) | 
|  | #define stb(p, v) stb_raw(p, v) | 
|  | #define stw(p, v) stw_raw(p, v) | 
|  | #define stl(p, v) stl_raw(p, v) | 
|  | #define stq(p, v) stq_raw(p, v) | 
|  | #define stfl(p, v) stfl_raw(p, v) | 
|  | #define stfq(p, v) stfq_raw(p, v) | 
|  |  | 
|  | #define ldub_code(p) ldub_raw(p) | 
|  | #define ldsb_code(p) ldsb_raw(p) | 
|  | #define lduw_code(p) lduw_raw(p) | 
|  | #define ldsw_code(p) ldsw_raw(p) | 
|  | #define ldl_code(p) ldl_raw(p) | 
|  | #define ldq_code(p) ldq_raw(p) | 
|  |  | 
|  | #define ldub_kernel(p) ldub_raw(p) | 
|  | #define ldsb_kernel(p) ldsb_raw(p) | 
|  | #define lduw_kernel(p) lduw_raw(p) | 
|  | #define ldsw_kernel(p) ldsw_raw(p) | 
|  | #define ldl_kernel(p) ldl_raw(p) | 
|  | #define ldq_kernel(p) ldq_raw(p) | 
|  | #define ldfl_kernel(p) ldfl_raw(p) | 
|  | #define ldfq_kernel(p) ldfq_raw(p) | 
|  | #define stb_kernel(p, v) stb_raw(p, v) | 
|  | #define stw_kernel(p, v) stw_raw(p, v) | 
|  | #define stl_kernel(p, v) stl_raw(p, v) | 
|  | #define stq_kernel(p, v) stq_raw(p, v) | 
|  | #define stfl_kernel(p, v) stfl_raw(p, v) | 
|  | #define stfq_kernel(p, vt) stfq_raw(p, v) | 
|  |  | 
|  | #endif /* defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | /* page related stuff */ | 
|  |  | 
|  | #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) | 
|  | #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) | 
|  | #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) | 
|  |  | 
|  | /* ??? These should be the larger of unsigned long and target_ulong.  */ | 
|  | extern unsigned long qemu_real_host_page_size; | 
|  | extern unsigned long qemu_host_page_bits; | 
|  | extern unsigned long qemu_host_page_size; | 
|  | extern unsigned long qemu_host_page_mask; | 
|  |  | 
|  | #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) | 
|  |  | 
|  | /* same as PROT_xxx */ | 
|  | #define PAGE_READ      0x0001 | 
|  | #define PAGE_WRITE     0x0002 | 
|  | #define PAGE_EXEC      0x0004 | 
|  | #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC) | 
|  | #define PAGE_VALID     0x0008 | 
|  | /* original state of the write flag (used when tracking self-modifying | 
|  | code */ | 
|  | #define PAGE_WRITE_ORG 0x0010 | 
|  | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | 
|  | /* FIXME: Code that sets/uses this is broken and needs to go away.  */ | 
|  | #define PAGE_RESERVED  0x0020 | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | void page_dump(FILE *f); | 
|  |  | 
|  | typedef int (*walk_memory_regions_fn)(void *, abi_ulong, | 
|  | abi_ulong, unsigned long); | 
|  | int walk_memory_regions(void *, walk_memory_regions_fn); | 
|  |  | 
|  | int page_get_flags(target_ulong address); | 
|  | void page_set_flags(target_ulong start, target_ulong end, int flags); | 
|  | int page_check_range(target_ulong start, target_ulong len, int flags); | 
|  | #endif | 
|  |  | 
|  | CPUState *cpu_copy(CPUState *env); | 
|  | CPUState *qemu_get_cpu(int cpu); | 
|  |  | 
|  | #define CPU_DUMP_CODE 0x00010000 | 
|  |  | 
|  | void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | 
|  | int flags); | 
|  | void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf, | 
|  | int flags); | 
|  |  | 
|  | void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...) | 
|  | GCC_FMT_ATTR(2, 3); | 
|  | extern CPUState *first_cpu; | 
|  | extern CPUState *cpu_single_env; | 
|  |  | 
|  | /* Flags for use in ENV->INTERRUPT_PENDING. | 
|  |  | 
|  | The numbers assigned here are non-sequential in order to preserve | 
|  | binary compatibility with the vmstate dump.  Bit 0 (0x0001) was | 
|  | previously used for CPU_INTERRUPT_EXIT, and is cleared when loading | 
|  | the vmstate dump.  */ | 
|  |  | 
|  | /* External hardware interrupt pending.  This is typically used for | 
|  | interrupts from devices.  */ | 
|  | #define CPU_INTERRUPT_HARD        0x0002 | 
|  |  | 
|  | /* Exit the current TB.  This is typically used when some system-level device | 
|  | makes some change to the memory mapping.  E.g. the a20 line change.  */ | 
|  | #define CPU_INTERRUPT_EXITTB      0x0004 | 
|  |  | 
|  | /* Halt the CPU.  */ | 
|  | #define CPU_INTERRUPT_HALT        0x0020 | 
|  |  | 
|  | /* Debug event pending.  */ | 
|  | #define CPU_INTERRUPT_DEBUG       0x0080 | 
|  |  | 
|  | /* Several target-specific external hardware interrupts.  Each target/cpu.h | 
|  | should define proper names based on these defines.  */ | 
|  | #define CPU_INTERRUPT_TGT_EXT_0   0x0008 | 
|  | #define CPU_INTERRUPT_TGT_EXT_1   0x0010 | 
|  | #define CPU_INTERRUPT_TGT_EXT_2   0x0040 | 
|  | #define CPU_INTERRUPT_TGT_EXT_3   0x0200 | 
|  | #define CPU_INTERRUPT_TGT_EXT_4   0x1000 | 
|  |  | 
|  | /* Several target-specific internal interrupts.  These differ from the | 
|  | preceeding target-specific interrupts in that they are intended to | 
|  | originate from within the cpu itself, typically in response to some | 
|  | instruction being executed.  These, therefore, are not masked while | 
|  | single-stepping within the debugger.  */ | 
|  | #define CPU_INTERRUPT_TGT_INT_0   0x0100 | 
|  | #define CPU_INTERRUPT_TGT_INT_1   0x0400 | 
|  | #define CPU_INTERRUPT_TGT_INT_2   0x0800 | 
|  |  | 
|  | /* First unused bit: 0x2000.  */ | 
|  |  | 
|  | /* The set of all bits that should be masked when single-stepping.  */ | 
|  | #define CPU_INTERRUPT_SSTEP_MASK \ | 
|  | (CPU_INTERRUPT_HARD          \ | 
|  | | CPU_INTERRUPT_TGT_EXT_0   \ | 
|  | | CPU_INTERRUPT_TGT_EXT_1   \ | 
|  | | CPU_INTERRUPT_TGT_EXT_2   \ | 
|  | | CPU_INTERRUPT_TGT_EXT_3   \ | 
|  | | CPU_INTERRUPT_TGT_EXT_4) | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | typedef void (*CPUInterruptHandler)(CPUState *, int); | 
|  |  | 
|  | extern CPUInterruptHandler cpu_interrupt_handler; | 
|  |  | 
|  | static inline void cpu_interrupt(CPUState *s, int mask) | 
|  | { | 
|  | cpu_interrupt_handler(s, mask); | 
|  | } | 
|  | #else /* USER_ONLY */ | 
|  | void cpu_interrupt(CPUState *env, int mask); | 
|  | #endif /* USER_ONLY */ | 
|  |  | 
|  | void cpu_reset_interrupt(CPUState *env, int mask); | 
|  |  | 
|  | void cpu_exit(CPUState *s); | 
|  |  | 
|  | bool qemu_cpu_has_work(CPUState *env); | 
|  |  | 
|  | /* Breakpoint/watchpoint flags */ | 
|  | #define BP_MEM_READ           0x01 | 
|  | #define BP_MEM_WRITE          0x02 | 
|  | #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE) | 
|  | #define BP_STOP_BEFORE_ACCESS 0x04 | 
|  | #define BP_WATCHPOINT_HIT     0x08 | 
|  | #define BP_GDB                0x10 | 
|  | #define BP_CPU                0x20 | 
|  |  | 
|  | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | 
|  | CPUBreakpoint **breakpoint); | 
|  | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags); | 
|  | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint); | 
|  | void cpu_breakpoint_remove_all(CPUState *env, int mask); | 
|  | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | 
|  | int flags, CPUWatchpoint **watchpoint); | 
|  | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, | 
|  | target_ulong len, int flags); | 
|  | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint); | 
|  | void cpu_watchpoint_remove_all(CPUState *env, int mask); | 
|  |  | 
|  | #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */ | 
|  | #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */ | 
|  | #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */ | 
|  |  | 
|  | void cpu_single_step(CPUState *env, int enabled); | 
|  | void cpu_reset(CPUState *s); | 
|  | int cpu_is_stopped(CPUState *env); | 
|  | void run_on_cpu(CPUState *env, void (*func)(void *data), void *data); | 
|  |  | 
|  | #define CPU_LOG_TB_OUT_ASM (1 << 0) | 
|  | #define CPU_LOG_TB_IN_ASM  (1 << 1) | 
|  | #define CPU_LOG_TB_OP      (1 << 2) | 
|  | #define CPU_LOG_TB_OP_OPT  (1 << 3) | 
|  | #define CPU_LOG_INT        (1 << 4) | 
|  | #define CPU_LOG_EXEC       (1 << 5) | 
|  | #define CPU_LOG_PCALL      (1 << 6) | 
|  | #define CPU_LOG_IOPORT     (1 << 7) | 
|  | #define CPU_LOG_TB_CPU     (1 << 8) | 
|  | #define CPU_LOG_RESET      (1 << 9) | 
|  |  | 
|  | /* define log items */ | 
|  | typedef struct CPULogItem { | 
|  | int mask; | 
|  | const char *name; | 
|  | const char *help; | 
|  | } CPULogItem; | 
|  |  | 
|  | extern const CPULogItem cpu_log_items[]; | 
|  |  | 
|  | void cpu_set_log(int log_flags); | 
|  | void cpu_set_log_filename(const char *filename); | 
|  | int cpu_str_to_log_mask(const char *str); | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* Return the physical page corresponding to a virtual one. Use it | 
|  | only for debugging because no protection checks are done. Return -1 | 
|  | if no page found. */ | 
|  | target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr); | 
|  |  | 
|  | /* memory API */ | 
|  |  | 
|  | extern int phys_ram_fd; | 
|  | extern ram_addr_t ram_size; | 
|  |  | 
|  | /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ | 
|  | #define RAM_PREALLOC_MASK   (1 << 0) | 
|  |  | 
|  | typedef struct RAMBlock { | 
|  | uint8_t *host; | 
|  | ram_addr_t offset; | 
|  | ram_addr_t length; | 
|  | uint32_t flags; | 
|  | char idstr[256]; | 
|  | QLIST_ENTRY(RAMBlock) next; | 
|  | #if defined(__linux__) && !defined(TARGET_S390X) | 
|  | int fd; | 
|  | #endif | 
|  | } RAMBlock; | 
|  |  | 
|  | typedef struct RAMList { | 
|  | uint8_t *phys_dirty; | 
|  | QLIST_HEAD(, RAMBlock) blocks; | 
|  | } RAMList; | 
|  | extern RAMList ram_list; | 
|  |  | 
|  | extern const char *mem_path; | 
|  | extern int mem_prealloc; | 
|  |  | 
|  | /* physical memory access */ | 
|  |  | 
|  | /* MMIO pages are identified by a combination of an IO device index and | 
|  | 3 flags.  The ROMD code stores the page ram offset in iotlb entry, | 
|  | so only a limited number of ids are avaiable.  */ | 
|  |  | 
|  | #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT)) | 
|  |  | 
|  | /* Flags stored in the low bits of the TLB virtual address.  These are | 
|  | defined so that fast path ram access is all zeros.  */ | 
|  | /* Zero if TLB entry is valid.  */ | 
|  | #define TLB_INVALID_MASK   (1 << 3) | 
|  | /* Set if TLB entry references a clean RAM page.  The iotlb entry will | 
|  | contain the page physical address.  */ | 
|  | #define TLB_NOTDIRTY    (1 << 4) | 
|  | /* Set if TLB entry is an IO callback.  */ | 
|  | #define TLB_MMIO        (1 << 5) | 
|  |  | 
|  | #define VGA_DIRTY_FLAG       0x01 | 
|  | #define CODE_DIRTY_FLAG      0x02 | 
|  | #define MIGRATION_DIRTY_FLAG 0x08 | 
|  |  | 
|  | /* read dirty bit (return 0 or 1) */ | 
|  | static inline int cpu_physical_memory_is_dirty(ram_addr_t addr) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS]; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_get_dirty(ram_addr_t addr, | 
|  | int dirty_flags) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags; | 
|  | } | 
|  |  | 
|  | static inline void cpu_physical_memory_set_dirty(ram_addr_t addr) | 
|  | { | 
|  | ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff; | 
|  | } | 
|  |  | 
|  | static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr, | 
|  | int dirty_flags) | 
|  | { | 
|  | return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags; | 
|  | } | 
|  |  | 
|  | static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start, | 
|  | int length, | 
|  | int dirty_flags) | 
|  | { | 
|  | int i, mask, len; | 
|  | uint8_t *p; | 
|  |  | 
|  | len = length >> TARGET_PAGE_BITS; | 
|  | mask = ~dirty_flags; | 
|  | p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS); | 
|  | for (i = 0; i < len; i++) { | 
|  | p[i] &= mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | 
|  | int dirty_flags); | 
|  | void cpu_tlb_update_dirty(CPUState *env); | 
|  |  | 
|  | int cpu_physical_memory_set_dirty_tracking(int enable); | 
|  |  | 
|  | int cpu_physical_memory_get_dirty_tracking(void); | 
|  |  | 
|  | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | 
|  | target_phys_addr_t end_addr); | 
|  |  | 
|  | int cpu_physical_log_start(target_phys_addr_t start_addr, | 
|  | ram_addr_t size); | 
|  |  | 
|  | int cpu_physical_log_stop(target_phys_addr_t start_addr, | 
|  | ram_addr_t size); | 
|  |  | 
|  | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf); | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | 
|  | uint8_t *buf, int len, int is_write); | 
|  |  | 
|  | #endif /* CPU_ALL_H */ |