| /* |
| * virtual page mapping and translated block handling |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "config.h" |
| #ifdef _WIN32 |
| #define WIN32_LEAN_AND_MEAN |
| #include <windows.h> |
| #else |
| #include <sys/types.h> |
| #include <sys/mman.h> |
| #endif |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <inttypes.h> |
| |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "qemu-common.h" |
| #include "tcg.h" |
| #include "hw/hw.h" |
| #include "hw/qdev.h" |
| #include "hw/xen/xen.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/osdep.h" |
| #include "qemu/tls.h" |
| #include "sysemu/kvm.h" |
| #include "exec/cputlb.h" |
| #include "exec/hax.h" |
| #include "exec/ram_addr.h" |
| #include "qemu/timer.h" |
| #if defined(CONFIG_USER_ONLY) |
| #include <qemu.h> |
| #endif |
| #include "translate-all.h" |
| |
| //#define DEBUG_SUBPAGE |
| |
| #if !defined(CONFIG_USER_ONLY) |
| int phys_ram_fd; |
| static int in_migration; |
| |
| RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) }; |
| #endif |
| |
| struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
| DEFINE_TLS(CPUState *, current_cpu); |
| |
| /* 0 = Do not count executed instructions. |
| 1 = Precise instruction counting. |
| 2 = Adaptive rate instruction counting. */ |
| int use_icount = 0; |
| /* Current instruction counter. While executing translated code this may |
| include some instructions that have not yet been executed. */ |
| int64_t qemu_icount; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static void io_mem_init(void); |
| |
| /* io memory support */ |
| CPUWriteMemoryFunc *_io_mem_write[IO_MEM_NB_ENTRIES][4]; |
| CPUReadMemoryFunc *_io_mem_read[IO_MEM_NB_ENTRIES][4]; |
| void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
| static char io_mem_used[IO_MEM_NB_ENTRIES]; |
| int io_mem_watch; |
| #endif |
| |
| /* log support */ |
| #ifdef WIN32 |
| static const char *logfilename = "qemu.log"; |
| #else |
| static const char *logfilename = "/tmp/qemu.log"; |
| #endif |
| FILE *logfile; |
| int loglevel; |
| static int log_append = 0; |
| |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
| typedef struct subpage_t { |
| hwaddr base; |
| CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4]; |
| CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4]; |
| void *opaque[TARGET_PAGE_SIZE][2][4]; |
| ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4]; |
| } subpage_t; |
| |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size |
| (in bytes) allocated to the translation buffer. Zero means default |
| size. */ |
| void cpu_exec_init_all(unsigned long tb_size) |
| { |
| //cpu_gen_init(); |
| //code_gen_alloc(tb_size); |
| //code_gen_ptr = code_gen_buffer; |
| //page_init(); |
| tcg_exec_init(tb_size); |
| #if !defined(CONFIG_USER_ONLY) |
| qemu_mutex_init(&ram_list.mutex); |
| io_mem_init(); |
| #endif |
| } |
| |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
| |
| #define CPU_COMMON_SAVE_VERSION 1 |
| |
| static void cpu_common_save(QEMUFile *f, void *opaque) |
| { |
| CPUOldState *env = opaque; |
| CPUState *cpu = ENV_GET_CPU(env); |
| |
| cpu_synchronize_state(cpu, 0); |
| |
| qemu_put_be32s(f, &cpu->halted); |
| qemu_put_be32s(f, &cpu->interrupt_request); |
| } |
| |
| static int cpu_common_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| CPUOldState *env = opaque; |
| CPUState *cpu = ENV_GET_CPU(env); |
| |
| if (version_id != CPU_COMMON_SAVE_VERSION) |
| return -EINVAL; |
| |
| qemu_get_be32s(f, &cpu->halted); |
| qemu_get_be32s(f, &cpu->interrupt_request); |
| /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
| version_id is increased. */ |
| cpu->interrupt_request &= ~0x01; |
| tlb_flush(env, 1); |
| cpu_synchronize_state(cpu, 1); |
| |
| return 0; |
| } |
| #endif |
| |
| CPUState *qemu_get_cpu(int cpu_index) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu->cpu_index == cpu_index) |
| return cpu; |
| } |
| return NULL; |
| } |
| |
| void cpu_exec_init(CPUArchState *env) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| |
| #if defined(CONFIG_USER_ONLY) |
| cpu_list_lock(); |
| #endif |
| // Compute CPU index from list position. |
| int cpu_index = 0; |
| CPUState *cpu1; |
| CPU_FOREACH(cpu1) { |
| cpu_index++; |
| } |
| cpu->cpu_index = cpu_index; |
| QTAILQ_INSERT_TAIL(&cpus, cpu, node); |
| |
| cpu->numa_node = 0; |
| QTAILQ_INIT(&env->breakpoints); |
| QTAILQ_INIT(&env->watchpoints); |
| #if defined(CONFIG_USER_ONLY) |
| cpu_list_unlock(); |
| #endif |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) |
| register_savevm(NULL, |
| "cpu_common", |
| cpu_index, |
| CPU_COMMON_SAVE_VERSION, |
| cpu_common_save, |
| cpu_common_load, |
| env); |
| register_savevm(NULL, |
| "cpu", |
| cpu_index, |
| CPU_SAVE_VERSION, |
| cpu_save, |
| cpu_load, |
| env); |
| #endif |
| } |
| |
| #if defined(TARGET_HAS_ICE) |
| static void breakpoint_invalidate(CPUArchState *env, target_ulong pc) |
| { |
| hwaddr addr; |
| target_ulong pd; |
| ram_addr_t ram_addr; |
| PhysPageDesc *p; |
| |
| addr = cpu_get_phys_page_debug(env, pc); |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); |
| tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
| } |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask) |
| |
| { |
| } |
| |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, |
| int flags, CPUWatchpoint **watchpoint) |
| { |
| return -ENOSYS; |
| } |
| #else |
| /* Add a watchpoint. */ |
| int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, |
| int flags, CPUWatchpoint **watchpoint) |
| { |
| target_ulong len_mask = ~(len - 1); |
| CPUWatchpoint *wp; |
| |
| /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ |
| if ((len & (len - 1)) || (addr & ~len_mask) || |
| len == 0 || len > TARGET_PAGE_SIZE) { |
| fprintf(stderr, "qemu: tried to set invalid watchpoint at " |
| TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); |
| return -EINVAL; |
| } |
| wp = g_malloc(sizeof(*wp)); |
| |
| wp->vaddr = addr; |
| wp->len_mask = len_mask; |
| wp->flags = flags; |
| |
| /* keep all GDB-injected watchpoints in front */ |
| if (flags & BP_GDB) |
| QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); |
| else |
| QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); |
| |
| tlb_flush_page(env, addr); |
| |
| if (watchpoint) |
| *watchpoint = wp; |
| return 0; |
| } |
| |
| /* Remove a specific watchpoint. */ |
| int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, |
| int flags) |
| { |
| target_ulong len_mask = ~(len - 1); |
| CPUWatchpoint *wp; |
| |
| QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
| if (addr == wp->vaddr && len_mask == wp->len_mask |
| && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
| cpu_watchpoint_remove_by_ref(env, wp); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /* Remove a specific watchpoint by reference. */ |
| void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint) |
| { |
| QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); |
| |
| tlb_flush_page(env, watchpoint->vaddr); |
| |
| g_free(watchpoint); |
| } |
| |
| /* Remove all matching watchpoints. */ |
| void cpu_watchpoint_remove_all(CPUArchState *env, int mask) |
| { |
| CPUWatchpoint *wp, *next; |
| |
| QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { |
| if (wp->flags & mask) |
| cpu_watchpoint_remove_by_ref(env, wp); |
| } |
| } |
| #endif |
| |
| /* Add a breakpoint. */ |
| int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, |
| CPUBreakpoint **breakpoint) |
| { |
| #if defined(TARGET_HAS_ICE) |
| CPUBreakpoint *bp; |
| |
| bp = g_malloc(sizeof(*bp)); |
| |
| bp->pc = pc; |
| bp->flags = flags; |
| |
| /* keep all GDB-injected breakpoints in front */ |
| if (flags & BP_GDB) { |
| QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); |
| } else { |
| QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); |
| } |
| |
| breakpoint_invalidate(env, pc); |
| |
| if (breakpoint) { |
| *breakpoint = bp; |
| } |
| return 0; |
| #else |
| return -ENOSYS; |
| #endif |
| } |
| |
| /* Remove a specific breakpoint. */ |
| int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags) |
| { |
| #if defined(TARGET_HAS_ICE) |
| CPUBreakpoint *bp; |
| |
| QTAILQ_FOREACH(bp, &env->breakpoints, entry) { |
| if (bp->pc == pc && bp->flags == flags) { |
| cpu_breakpoint_remove_by_ref(env, bp); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| #else |
| return -ENOSYS; |
| #endif |
| } |
| |
| /* Remove a specific breakpoint by reference. */ |
| void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint) |
| { |
| #if defined(TARGET_HAS_ICE) |
| QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); |
| |
| breakpoint_invalidate(env, breakpoint->pc); |
| |
| g_free(breakpoint); |
| #endif |
| } |
| |
| /* Remove all matching breakpoints. */ |
| void cpu_breakpoint_remove_all(CPUArchState *env, int mask) |
| { |
| #if defined(TARGET_HAS_ICE) |
| CPUBreakpoint *bp, *next; |
| |
| QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { |
| if (bp->flags & mask) |
| cpu_breakpoint_remove_by_ref(env, bp); |
| } |
| #endif |
| } |
| |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the |
| CPU loop after each instruction */ |
| void cpu_single_step(CPUState *cpu, int enabled) |
| { |
| #if defined(TARGET_HAS_ICE) |
| if (cpu->singlestep_enabled != enabled) { |
| cpu->singlestep_enabled = enabled; |
| if (kvm_enabled()) { |
| kvm_update_guest_debug(cpu->env_ptr, 0); |
| } else { |
| /* must flush all the translated code to avoid inconsistencies */ |
| /* XXX: only flush what is necessary */ |
| tb_flush(cpu->env_ptr); |
| } |
| } |
| #endif |
| } |
| |
| /* enable or disable low levels log */ |
| void cpu_set_log(int log_flags) |
| { |
| loglevel = log_flags; |
| if (loglevel && !logfile) { |
| logfile = fopen(logfilename, log_append ? "a" : "w"); |
| if (!logfile) { |
| perror(logfilename); |
| exit(1); |
| } |
| #if !defined(CONFIG_SOFTMMU) |
| /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ |
| { |
| static char logfile_buf[4096]; |
| setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); |
| } |
| #elif !defined(_WIN32) |
| /* Win32 doesn't support line-buffering and requires size >= 2 */ |
| setvbuf(logfile, NULL, _IOLBF, 0); |
| #endif |
| log_append = 1; |
| } |
| if (!loglevel && logfile) { |
| fclose(logfile); |
| logfile = NULL; |
| } |
| } |
| |
| void cpu_set_log_filename(const char *filename) |
| { |
| logfilename = strdup(filename); |
| if (logfile) { |
| fclose(logfile); |
| logfile = NULL; |
| } |
| cpu_set_log(loglevel); |
| } |
| |
| void cpu_reset_interrupt(CPUState *cpu, int mask) |
| { |
| cpu->interrupt_request &= ~mask; |
| } |
| |
| void cpu_exit(CPUState *cpu) |
| { |
| cpu->exit_request = 1; |
| cpu->tcg_exit_req = 1; |
| } |
| |
| void cpu_abort(CPUArchState *env, const char *fmt, ...) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| |
| va_list ap; |
| va_list ap2; |
| |
| va_start(ap, fmt); |
| va_copy(ap2, ap); |
| fprintf(stderr, "qemu: fatal: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| #ifdef TARGET_I386 |
| cpu_dump_state(cpu, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); |
| #else |
| cpu_dump_state(cpu, stderr, fprintf, 0); |
| #endif |
| if (qemu_log_enabled()) { |
| qemu_log("qemu: fatal: "); |
| qemu_log_vprintf(fmt, ap2); |
| qemu_log("\n"); |
| #ifdef TARGET_I386 |
| log_cpu_state(cpu, X86_DUMP_FPU | X86_DUMP_CCOP); |
| #else |
| log_cpu_state(cpu, 0); |
| #endif |
| qemu_log_flush(); |
| qemu_log_close(); |
| } |
| va_end(ap2); |
| va_end(ap); |
| #if defined(CONFIG_USER_ONLY) |
| { |
| struct sigaction act; |
| sigfillset(&act.sa_mask); |
| act.sa_handler = SIG_DFL; |
| sigaction(SIGABRT, &act, NULL); |
| } |
| #endif |
| abort(); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
| { |
| RAMBlock *block; |
| |
| /* The list is protected by the iothread lock here. */ |
| block = ram_list.mru_block; |
| if (block && addr - block->offset < block->length) { |
| goto found; |
| } |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (addr - block->offset < block->length) { |
| goto found; |
| } |
| } |
| |
| fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); |
| abort(); |
| |
| found: |
| ram_list.mru_block = block; |
| return block; |
| } |
| |
| static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
| { |
| ram_addr_t end = TARGET_PAGE_ALIGN(start + length); |
| |
| start &= TARGET_PAGE_MASK; |
| |
| RAMBlock* block = qemu_get_ram_block(start); |
| assert(block == qemu_get_ram_block(end - 1)); |
| uintptr_t start1 = (uintptr_t)block->host + (start - block->offset); |
| cpu_tlb_reset_dirty_all(start1, length); |
| } |
| |
| /* Note: start and end must be within the same ram block. */ |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length, |
| unsigned client) |
| { |
| if (length == 0) |
| return; |
| cpu_physical_memory_clear_dirty_range(start, length, client); |
| |
| if (tcg_enabled()) { |
| tlb_reset_dirty_range_all(start, length); |
| } |
| } |
| |
| int cpu_physical_memory_set_dirty_tracking(int enable) |
| { |
| in_migration = enable; |
| if (kvm_enabled()) { |
| return kvm_set_migration_log(enable); |
| } |
| return 0; |
| } |
| |
| int cpu_physical_memory_get_dirty_tracking(void) |
| { |
| return in_migration; |
| } |
| |
| int cpu_physical_sync_dirty_bitmap(hwaddr start_addr, |
| hwaddr end_addr) |
| { |
| int ret = 0; |
| |
| if (kvm_enabled()) |
| ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr); |
| return ret; |
| } |
| |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) |
| { |
| ram_addr_t ram_addr; |
| void *p; |
| |
| if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { |
| p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) |
| + tlb_entry->addend); |
| ram_addr = qemu_ram_addr_from_host_nofail(p); |
| if (cpu_physical_memory_is_clean(ram_addr)) { |
| tlb_entry->addr_write |= TLB_NOTDIRTY; |
| } |
| } |
| } |
| |
| /* update the TLB according to the current state of the dirty bits */ |
| void cpu_tlb_update_dirty(CPUArchState *env) |
| { |
| int i; |
| int mmu_idx; |
| for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
| for(i = 0; i < CPU_TLB_SIZE; i++) |
| tlb_update_dirty(&env->tlb_table[mmu_idx][i]); |
| } |
| } |
| |
| |
| #else |
| |
| void tlb_flush(CPUArchState *env, int flush_global) |
| { |
| } |
| |
| void tlb_flush_page(CPUArchState *env, target_ulong addr) |
| { |
| } |
| |
| int tlb_set_page_exec(CPUArchState *env, target_ulong vaddr, |
| hwaddr paddr, int prot, |
| int mmu_idx, int is_softmmu) |
| { |
| return 0; |
| } |
| |
| static inline void tlb_set_dirty(CPUOldState *env, |
| unsigned long addr, target_ulong vaddr) |
| { |
| } |
| #endif /* defined(CONFIG_USER_ONLY) */ |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| ram_addr_t memory, ram_addr_t region_offset); |
| static void *subpage_init (hwaddr base, ram_addr_t *phys, |
| ram_addr_t orig_memory, ram_addr_t region_offset); |
| |
| static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc; |
| |
| /* |
| * Set a custom physical guest memory alloator. |
| * Accelerators with unusual needs may need this. Hopefully, we can |
| * get rid of it eventually. |
| */ |
| void phys_mem_set_alloc(void *(*alloc)(size_t)) |
| { |
| phys_mem_alloc = alloc; |
| } |
| |
| #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ |
| need_subpage) \ |
| do { \ |
| if (addr > start_addr) \ |
| start_addr2 = 0; \ |
| else { \ |
| start_addr2 = start_addr & ~TARGET_PAGE_MASK; \ |
| if (start_addr2 > 0) \ |
| need_subpage = 1; \ |
| } \ |
| \ |
| if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \ |
| end_addr2 = TARGET_PAGE_SIZE - 1; \ |
| else { \ |
| end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ |
| if (end_addr2 < TARGET_PAGE_SIZE - 1) \ |
| need_subpage = 1; \ |
| } \ |
| } while (0) |
| |
| /* register physical memory. |
| For RAM, 'size' must be a multiple of the target page size. |
| If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an |
| io memory page. The address used when calling the IO function is |
| the offset from the start of the region, plus region_offset. Both |
| start_addr and region_offset are rounded down to a page boundary |
| before calculating this offset. This should not be a problem unless |
| the low bits of start_addr and region_offset differ. */ |
| void cpu_register_physical_memory_log(hwaddr start_addr, |
| ram_addr_t size, |
| ram_addr_t phys_offset, |
| ram_addr_t region_offset, |
| bool log_dirty) |
| { |
| hwaddr addr, end_addr; |
| PhysPageDesc *p; |
| CPUState *cpu; |
| ram_addr_t orig_size = size; |
| subpage_t *subpage; |
| |
| if (kvm_enabled()) |
| kvm_set_phys_mem(start_addr, size, phys_offset); |
| #ifdef CONFIG_HAX |
| if (hax_enabled()) |
| hax_set_phys_mem(start_addr, size, phys_offset); |
| #endif |
| |
| if (phys_offset == IO_MEM_UNASSIGNED) { |
| region_offset = start_addr; |
| } |
| region_offset &= TARGET_PAGE_MASK; |
| size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; |
| end_addr = start_addr + (hwaddr)size; |
| |
| addr = start_addr; |
| do { |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (p && p->phys_offset != IO_MEM_UNASSIGNED) { |
| ram_addr_t orig_memory = p->phys_offset; |
| hwaddr start_addr2, end_addr2; |
| int need_subpage = 0; |
| |
| CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, |
| need_subpage); |
| if (need_subpage) { |
| if (!(orig_memory & IO_MEM_SUBPAGE)) { |
| subpage = subpage_init((addr & TARGET_PAGE_MASK), |
| &p->phys_offset, orig_memory, |
| p->region_offset); |
| } else { |
| subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) |
| >> IO_MEM_SHIFT]; |
| } |
| subpage_register(subpage, start_addr2, end_addr2, phys_offset, |
| region_offset); |
| p->region_offset = 0; |
| } else { |
| p->phys_offset = phys_offset; |
| if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
| (phys_offset & IO_MEM_ROMD)) |
| phys_offset += TARGET_PAGE_SIZE; |
| } |
| } else { |
| p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); |
| p->phys_offset = phys_offset; |
| p->region_offset = region_offset; |
| if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || |
| (phys_offset & IO_MEM_ROMD)) { |
| phys_offset += TARGET_PAGE_SIZE; |
| } else { |
| hwaddr start_addr2, end_addr2; |
| int need_subpage = 0; |
| |
| CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, |
| end_addr2, need_subpage); |
| |
| if (need_subpage) { |
| subpage = subpage_init((addr & TARGET_PAGE_MASK), |
| &p->phys_offset, IO_MEM_UNASSIGNED, |
| addr & TARGET_PAGE_MASK); |
| subpage_register(subpage, start_addr2, end_addr2, |
| phys_offset, region_offset); |
| p->region_offset = 0; |
| } |
| } |
| } |
| region_offset += TARGET_PAGE_SIZE; |
| addr += TARGET_PAGE_SIZE; |
| } while (addr != end_addr); |
| |
| /* since each CPU stores ram addresses in its TLB cache, we must |
| reset the modified entries */ |
| /* XXX: slow ! */ |
| CPU_FOREACH(cpu) { |
| tlb_flush(cpu->env_ptr, 1); |
| } |
| } |
| |
| /* XXX: temporary until new memory mapping API */ |
| ram_addr_t cpu_get_physical_page_desc(hwaddr addr) |
| { |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) |
| return IO_MEM_UNASSIGNED; |
| return p->phys_offset; |
| } |
| |
| void qemu_register_coalesced_mmio(hwaddr addr, ram_addr_t size) |
| { |
| if (kvm_enabled()) |
| kvm_coalesce_mmio_region(addr, size); |
| } |
| |
| void qemu_unregister_coalesced_mmio(hwaddr addr, ram_addr_t size) |
| { |
| if (kvm_enabled()) |
| kvm_uncoalesce_mmio_region(addr, size); |
| } |
| |
| void qemu_mutex_lock_ramlist(void) |
| { |
| qemu_mutex_lock(&ram_list.mutex); |
| } |
| |
| void qemu_mutex_unlock_ramlist(void) |
| { |
| qemu_mutex_unlock(&ram_list.mutex); |
| } |
| |
| #if defined(__linux__) && !defined(CONFIG_ANDROID) |
| |
| #include <sys/vfs.h> |
| |
| #define HUGETLBFS_MAGIC 0x958458f6 |
| |
| static long gethugepagesize(const char *path) |
| { |
| struct statfs fs; |
| int ret; |
| |
| do { |
| ret = statfs(path, &fs); |
| } while (ret != 0 && errno == EINTR); |
| |
| if (ret != 0) { |
| perror(path); |
| return 0; |
| } |
| |
| if (fs.f_type != HUGETLBFS_MAGIC) |
| fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); |
| |
| return fs.f_bsize; |
| } |
| |
| static sigjmp_buf sigjump; |
| |
| static void sigbus_handler(int signal) |
| { |
| siglongjmp(sigjump, 1); |
| } |
| |
| static void *file_ram_alloc(RAMBlock *block, |
| ram_addr_t memory, |
| const char *path) |
| { |
| char *filename; |
| char *sanitized_name; |
| char *c; |
| void *area; |
| int fd; |
| unsigned long hpagesize; |
| |
| hpagesize = gethugepagesize(path); |
| if (!hpagesize) { |
| return NULL; |
| } |
| |
| if (memory < hpagesize) { |
| return NULL; |
| } |
| |
| if (kvm_enabled() && !kvm_has_sync_mmu()) { |
| fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); |
| return NULL; |
| } |
| |
| /* Make name safe to use with mkstemp by replacing '/' with '_'. */ |
| sanitized_name = g_strdup(block->mr->name); |
| for (c = sanitized_name; *c != '\0'; c++) { |
| if (*c == '/') |
| *c = '_'; |
| } |
| |
| filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
| sanitized_name); |
| g_free(sanitized_name); |
| |
| fd = mkstemp(filename); |
| if (fd < 0) { |
| perror("unable to create backing store for hugepages"); |
| g_free(filename); |
| return NULL; |
| } |
| unlink(filename); |
| g_free(filename); |
| |
| memory = (memory+hpagesize-1) & ~(hpagesize-1); |
| |
| /* |
| * ftruncate is not supported by hugetlbfs in older |
| * hosts, so don't bother bailing out on errors. |
| * If anything goes wrong with it under other filesystems, |
| * mmap will fail. |
| */ |
| if (ftruncate(fd, memory)) |
| perror("ftruncate"); |
| |
| area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); |
| if (area == MAP_FAILED) { |
| perror("file_ram_alloc: can't mmap RAM pages"); |
| close(fd); |
| return (NULL); |
| } |
| |
| if (mem_prealloc) { |
| int ret, i; |
| struct sigaction act, oldact; |
| sigset_t set, oldset; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = &sigbus_handler; |
| act.sa_flags = 0; |
| |
| ret = sigaction(SIGBUS, &act, &oldact); |
| if (ret) { |
| perror("file_ram_alloc: failed to install signal handler"); |
| exit(1); |
| } |
| |
| /* unblock SIGBUS */ |
| sigemptyset(&set); |
| sigaddset(&set, SIGBUS); |
| pthread_sigmask(SIG_UNBLOCK, &set, &oldset); |
| |
| if (sigsetjmp(sigjump, 1)) { |
| fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n"); |
| exit(1); |
| } |
| |
| /* MAP_POPULATE silently ignores failures */ |
| for (i = 0; i < (memory/hpagesize)-1; i++) { |
| memset(area + (hpagesize*i), 0, 1); |
| } |
| |
| ret = sigaction(SIGBUS, &oldact, NULL); |
| if (ret) { |
| perror("file_ram_alloc: failed to reinstall signal handler"); |
| exit(1); |
| } |
| |
| pthread_sigmask(SIG_SETMASK, &oldset, NULL); |
| } |
| |
| block->fd = fd; |
| return area; |
| } |
| #else |
| static void *file_ram_alloc(RAMBlock *block, |
| ram_addr_t memory, |
| const char *path) |
| { |
| fprintf(stderr, "-mem-path not supported on this host\n"); |
| exit(1); |
| } |
| #endif |
| |
| static ram_addr_t find_ram_offset(ram_addr_t size) |
| { |
| RAMBlock *block, *next_block; |
| ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
| |
| assert(size != 0); /* it would hand out same offset multiple times */ |
| |
| if (QTAILQ_EMPTY(&ram_list.blocks)) |
| return 0; |
| |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| ram_addr_t end, next = RAM_ADDR_MAX; |
| |
| end = block->offset + block->length; |
| |
| QTAILQ_FOREACH(next_block, &ram_list.blocks, next) { |
| if (next_block->offset >= end) { |
| next = MIN(next, next_block->offset); |
| } |
| } |
| if (next - end >= size && next - end < mingap) { |
| offset = end; |
| mingap = next - end; |
| } |
| } |
| |
| if (offset == RAM_ADDR_MAX) { |
| fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", |
| (uint64_t)size); |
| abort(); |
| } |
| |
| return offset; |
| } |
| |
| ram_addr_t last_ram_offset(void) |
| { |
| RAMBlock *block; |
| ram_addr_t last = 0; |
| |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) |
| last = MAX(last, block->offset + block->length); |
| |
| return last; |
| } |
| |
| static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
| { |
| #ifndef CONFIG_ANDROID |
| int ret; |
| |
| /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ |
| if (!qemu_opt_get_bool(qemu_get_machine_opts(), |
| "dump-guest-core", true)) { |
| ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
| if (ret) { |
| perror("qemu_madvise"); |
| fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " |
| "but dump_guest_core=off specified\n"); |
| } |
| } |
| #endif // !CONFIG_ANDROID |
| } |
| |
| void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev) |
| { |
| RAMBlock *new_block, *block; |
| |
| new_block = NULL; |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (block->offset == addr) { |
| new_block = block; |
| break; |
| } |
| } |
| assert(new_block); |
| assert(!new_block->idstr[0]); |
| |
| if (dev) { |
| char *id = qdev_get_dev_path(dev); |
| if (id) { |
| snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); |
| g_free(id); |
| } |
| } |
| pstrcat(new_block->idstr, sizeof(new_block->idstr), name); |
| |
| /* This assumes the iothread lock is taken here too. */ |
| qemu_mutex_lock_ramlist(); |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (block != new_block && !strcmp(block->idstr, new_block->idstr)) { |
| fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
| new_block->idstr); |
| abort(); |
| } |
| } |
| qemu_mutex_unlock_ramlist(); |
| } |
| |
| static int memory_try_enable_merging(void *addr, size_t len) |
| { |
| #ifndef CONFIG_ANDROID |
| if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) { |
| /* disabled by the user */ |
| return 0; |
| } |
| |
| return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); |
| #else // CONFIG_ANDROID |
| return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); |
| #endif // CONFIG_ANDROID |
| } |
| |
| ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name, |
| ram_addr_t size, void *host) |
| { |
| RAMBlock *block, *new_block; |
| ram_addr_t old_ram_size, new_ram_size; |
| |
| old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; |
| |
| size = TARGET_PAGE_ALIGN(size); |
| new_block = g_malloc0(sizeof(*new_block)); |
| new_block->fd = -1; |
| |
| /* This assumes the iothread lock is taken here too. */ |
| qemu_mutex_lock_ramlist(); |
| //new_block->mr = mr; |
| new_block->offset = find_ram_offset(size); |
| if (host) { |
| new_block->host = host; |
| new_block->flags |= RAM_PREALLOC_MASK; |
| } else if (xen_enabled()) { |
| if (mem_path) { |
| fprintf(stderr, "-mem-path not supported with Xen\n"); |
| exit(1); |
| } |
| //xen_ram_alloc(new_block->offset, size, mr); |
| } else { |
| if (mem_path) { |
| if (phys_mem_alloc != qemu_anon_ram_alloc) { |
| /* |
| * file_ram_alloc() needs to allocate just like |
| * phys_mem_alloc, but we haven't bothered to provide |
| * a hook there. |
| */ |
| fprintf(stderr, |
| "-mem-path not supported with this accelerator\n"); |
| exit(1); |
| } |
| new_block->host = file_ram_alloc(new_block, size, mem_path); |
| } |
| if (!new_block->host) { |
| new_block->host = phys_mem_alloc(size); |
| if (!new_block->host) { |
| fprintf(stderr, "Cannot set up guest memory '%s': %s\n", |
| name, strerror(errno)); |
| exit(1); |
| } |
| #ifdef CONFIG_HAX |
| if (hax_enabled()) { |
| /* |
| * In HAX, qemu allocates the virtual address, and HAX kernel |
| * module populates the region with physical memory. Currently |
| * we don’t populate guest memory on demand, thus we should |
| * make sure that sufficient amount of memory is available in |
| * advance. |
| */ |
| int ret = hax_populate_ram( |
| (uint64_t)(uintptr_t)new_block->host, |
| (uint32_t)size); |
| if (ret < 0) { |
| fprintf(stderr, "Hax failed to populate ram\n"); |
| exit(-1); |
| } |
| } |
| #endif // CONFIG_HAX |
| memory_try_enable_merging(new_block->host, size); |
| } |
| } |
| new_block->length = size; |
| |
| if (dev) { |
| char *id = qdev_get_dev_path(dev); |
| if (id) { |
| snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); |
| g_free(id); |
| } |
| } |
| pstrcat(new_block->idstr, sizeof(new_block->idstr), name); |
| |
| /* Keep the list sorted from biggest to smallest block. */ |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (block->length < new_block->length) { |
| break; |
| } |
| } |
| if (block) { |
| QTAILQ_INSERT_BEFORE(block, new_block, next); |
| } else { |
| QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next); |
| } |
| ram_list.mru_block = NULL; |
| |
| ram_list.version++; |
| qemu_mutex_unlock_ramlist(); |
| |
| new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; |
| |
| if (new_ram_size > old_ram_size) { |
| int i; |
| for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
| ram_list.dirty_memory[i] = |
| bitmap_zero_extend(ram_list.dirty_memory[i], |
| old_ram_size, new_ram_size); |
| } |
| } |
| cpu_physical_memory_set_dirty_range(new_block->offset, size); |
| |
| qemu_ram_setup_dump(new_block->host, size); |
| //qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE); |
| //qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK); |
| |
| if (kvm_enabled()) |
| kvm_setup_guest_memory(new_block->host, size); |
| |
| return new_block->offset; |
| } |
| |
| ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size) |
| { |
| return qemu_ram_alloc_from_ptr(dev, name, size, NULL); |
| } |
| |
| void qemu_ram_free_from_ptr(ram_addr_t addr) |
| { |
| RAMBlock *block; |
| |
| /* This assumes the iothread lock is taken here too. */ |
| qemu_mutex_lock_ramlist(); |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (addr == block->offset) { |
| QTAILQ_REMOVE(&ram_list.blocks, block, next); |
| ram_list.mru_block = NULL; |
| ram_list.version++; |
| g_free(block); |
| break; |
| } |
| } |
| qemu_mutex_unlock_ramlist(); |
| } |
| |
| void qemu_ram_free(ram_addr_t addr) |
| { |
| RAMBlock *block; |
| |
| /* This assumes the iothread lock is taken here too. */ |
| qemu_mutex_lock_ramlist(); |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (addr == block->offset) { |
| QTAILQ_REMOVE(&ram_list.blocks, block, next); |
| ram_list.mru_block = NULL; |
| ram_list.version++; |
| if (block->flags & RAM_PREALLOC_MASK) { |
| ; |
| } else if (xen_enabled()) { |
| //xen_invalidate_map_cache_entry(block->host); |
| #ifndef _WIN32 |
| } else if (block->fd >= 0) { |
| munmap(block->host, block->length); |
| close(block->fd); |
| #endif |
| } else { |
| qemu_anon_ram_free(block->host, block->length); |
| } |
| g_free(block); |
| break; |
| } |
| } |
| qemu_mutex_unlock_ramlist(); |
| |
| } |
| |
| #ifndef _WIN32 |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| int flags; |
| void *area, *vaddr; |
| |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| offset = addr - block->offset; |
| if (offset < block->length) { |
| vaddr = block->host + offset; |
| if (block->flags & RAM_PREALLOC_MASK) { |
| ; |
| } else if (xen_enabled()) { |
| abort(); |
| } else { |
| flags = MAP_FIXED; |
| munmap(vaddr, length); |
| if (block->fd >= 0) { |
| #ifdef MAP_POPULATE |
| flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED : |
| MAP_PRIVATE; |
| #else |
| flags |= MAP_PRIVATE; |
| #endif |
| area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
| flags, block->fd, offset); |
| } else { |
| /* |
| * Remap needs to match alloc. Accelerators that |
| * set phys_mem_alloc never remap. If they did, |
| * we'd need a remap hook here. |
| */ |
| assert(phys_mem_alloc == qemu_anon_ram_alloc); |
| |
| flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
| area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
| flags, -1, 0); |
| } |
| if (area != vaddr) { |
| fprintf(stderr, "Could not remap addr: " |
| RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n", |
| length, addr); |
| exit(1); |
| } |
| memory_try_enable_merging(vaddr, length); |
| qemu_ram_setup_dump(vaddr, length); |
| } |
| return; |
| } |
| } |
| } |
| #endif /* !_WIN32 */ |
| |
| /* Return a host pointer to ram allocated with qemu_ram_alloc. |
| With the exception of the softmmu code in this file, this should |
| only be used for local memory (e.g. video ram) that the device owns, |
| and knows it isn't going to access beyond the end of the block. |
| |
| It should not be used for general purpose DMA. |
| Use cpu_physical_memory_map/cpu_physical_memory_rw instead. |
| */ |
| void *qemu_get_ram_ptr(ram_addr_t addr) |
| { |
| RAMBlock *block = qemu_get_ram_block(addr); |
| #if 0 |
| if (xen_enabled()) { |
| /* We need to check if the requested address is in the RAM |
| * because we don't want to map the entire memory in QEMU. |
| * In that case just map until the end of the page. |
| */ |
| if (block->offset == 0) { |
| return xen_map_cache(addr, 0, 0); |
| } else if (block->host == NULL) { |
| block->host = |
| xen_map_cache(block->offset, block->length, 1); |
| } |
| } |
| #endif |
| return block->host + (addr - block->offset); |
| } |
| |
| /* Return a host pointer to ram allocated with qemu_ram_alloc. |
| * Same as qemu_get_ram_ptr but avoid reordering ramblocks. |
| */ |
| void *qemu_safe_ram_ptr(ram_addr_t addr) |
| { |
| RAMBlock *block; |
| |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| if (addr - block->offset < block->length) { |
| return block->host + (addr - block->offset); |
| } |
| } |
| |
| fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); |
| abort(); |
| |
| return NULL; |
| } |
| |
| /* Some of the softmmu routines need to translate from a host pointer |
| (typically a TLB entry) back to a ram offset. */ |
| int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) |
| { |
| RAMBlock *block; |
| uint8_t *host = ptr; |
| #if 0 |
| if (xen_enabled()) { |
| *ram_addr = xen_ram_addr_from_mapcache(ptr); |
| return qemu_get_ram_block(*ram_addr)->mr; |
| } |
| #endif |
| block = ram_list.mru_block; |
| if (block && block->host && host - block->host < block->length) { |
| goto found; |
| } |
| |
| QTAILQ_FOREACH(block, &ram_list.blocks, next) { |
| /* This case append when the block is not mapped. */ |
| if (block->host == NULL) { |
| continue; |
| } |
| if (host - block->host < block->length) { |
| goto found; |
| } |
| } |
| |
| return -1; |
| |
| found: |
| *ram_addr = block->offset + (host - block->host); |
| return 0; |
| } |
| |
| /* Some of the softmmu routines need to translate from a host pointer |
| (typically a TLB entry) back to a ram offset. */ |
| ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) |
| { |
| ram_addr_t ram_addr; |
| |
| if (qemu_ram_addr_from_host(ptr, &ram_addr)) { |
| fprintf(stderr, "Bad ram pointer %p\n", ptr); |
| abort(); |
| } |
| return ram_addr; |
| } |
| |
| static uint32_t unassigned_mem_readb(void *opaque, hwaddr addr) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1); |
| #endif |
| return 0; |
| } |
| |
| static uint32_t unassigned_mem_readw(void *opaque, hwaddr addr) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2); |
| #endif |
| return 0; |
| } |
| |
| static uint32_t unassigned_mem_readl(void *opaque, hwaddr addr) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4); |
| #endif |
| return 0; |
| } |
| |
| static void unassigned_mem_writeb(void *opaque, hwaddr addr, uint32_t val) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1); |
| #endif |
| } |
| |
| static void unassigned_mem_writew(void *opaque, hwaddr addr, uint32_t val) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2); |
| #endif |
| } |
| |
| static void unassigned_mem_writel(void *opaque, hwaddr addr, uint32_t val) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); |
| #endif |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) |
| cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4); |
| #endif |
| } |
| |
| static CPUReadMemoryFunc * const unassigned_mem_read[3] = { |
| unassigned_mem_readb, |
| unassigned_mem_readw, |
| unassigned_mem_readl, |
| }; |
| |
| static CPUWriteMemoryFunc * const unassigned_mem_write[3] = { |
| unassigned_mem_writeb, |
| unassigned_mem_writew, |
| unassigned_mem_writel, |
| }; |
| |
| static void notdirty_mem_writeb(void *opaque, hwaddr ram_addr, |
| uint32_t val) |
| { |
| if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
| tb_invalidate_phys_page_fast0(ram_addr, 1); |
| } |
| stb_p(qemu_get_ram_ptr(ram_addr), val); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA); |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (!cpu_physical_memory_is_clean(ram_addr)) { |
| CPUArchState *env = current_cpu->env_ptr; |
| tlb_set_dirty(env, env->mem_io_vaddr); |
| } |
| } |
| |
| static void notdirty_mem_writew(void *opaque, hwaddr ram_addr, |
| uint32_t val) |
| { |
| if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
| tb_invalidate_phys_page_fast0(ram_addr, 1); |
| } |
| stw_p(qemu_get_ram_ptr(ram_addr), val); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA); |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (!cpu_physical_memory_is_clean(ram_addr)) { |
| CPUArchState *env = current_cpu->env_ptr; |
| tlb_set_dirty(env, env->mem_io_vaddr); |
| } |
| } |
| |
| static void notdirty_mem_writel(void *opaque, hwaddr ram_addr, |
| uint32_t val) |
| { |
| if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
| tb_invalidate_phys_page_fast0(ram_addr, 1); |
| } |
| stl_p(qemu_get_ram_ptr(ram_addr), val); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA); |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (!cpu_physical_memory_is_clean(ram_addr)) { |
| CPUArchState *env = current_cpu->env_ptr; |
| tlb_set_dirty(env, env->mem_io_vaddr); |
| } |
| } |
| |
| static CPUReadMemoryFunc * const error_mem_read[3] = { |
| NULL, /* never used */ |
| NULL, /* never used */ |
| NULL, /* never used */ |
| }; |
| |
| static CPUWriteMemoryFunc * const notdirty_mem_write[3] = { |
| notdirty_mem_writeb, |
| notdirty_mem_writew, |
| notdirty_mem_writel, |
| }; |
| |
| |
| /* Generate a debug exception if a watchpoint has been hit. */ |
| static void check_watchpoint(int offset, int len_mask, int flags) |
| { |
| CPUState *cpu = current_cpu; |
| CPUArchState *env = cpu->env_ptr; |
| target_ulong pc, cs_base; |
| target_ulong vaddr; |
| CPUWatchpoint *wp; |
| int cpu_flags; |
| |
| if (env->watchpoint_hit) { |
| /* We re-entered the check after replacing the TB. Now raise |
| * the debug interrupt so that is will trigger after the |
| * current instruction. */ |
| cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
| return; |
| } |
| vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
| QTAILQ_FOREACH(wp, &env->watchpoints, entry) { |
| if ((vaddr == (wp->vaddr & len_mask) || |
| (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { |
| wp->flags |= BP_WATCHPOINT_HIT; |
| if (!env->watchpoint_hit) { |
| env->watchpoint_hit = wp; |
| tb_check_watchpoint(env); |
| if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(env); |
| } else { |
| cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); |
| tb_gen_code(env, pc, cs_base, cpu_flags, 1); |
| cpu_resume_from_signal(env, NULL); |
| } |
| } |
| } else { |
| wp->flags &= ~BP_WATCHPOINT_HIT; |
| } |
| } |
| } |
| |
| /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
| so these check for a hit then pass through to the normal out-of-line |
| phys routines. */ |
| static uint32_t watch_mem_readb(void *opaque, hwaddr addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); |
| return ldub_phys(addr); |
| } |
| |
| static uint32_t watch_mem_readw(void *opaque, hwaddr addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); |
| return lduw_phys(addr); |
| } |
| |
| static uint32_t watch_mem_readl(void *opaque, hwaddr addr) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); |
| return ldl_phys(addr); |
| } |
| |
| static void watch_mem_writeb(void *opaque, hwaddr addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); |
| stb_phys(addr, val); |
| } |
| |
| static void watch_mem_writew(void *opaque, hwaddr addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); |
| stw_phys(addr, val); |
| } |
| |
| static void watch_mem_writel(void *opaque, hwaddr addr, |
| uint32_t val) |
| { |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); |
| stl_phys(addr, val); |
| } |
| |
| static CPUReadMemoryFunc * const watch_mem_read[3] = { |
| watch_mem_readb, |
| watch_mem_readw, |
| watch_mem_readl, |
| }; |
| |
| static CPUWriteMemoryFunc * const watch_mem_write[3] = { |
| watch_mem_writeb, |
| watch_mem_writew, |
| watch_mem_writel, |
| }; |
| |
| static inline uint32_t subpage_readlen (subpage_t *mmio, hwaddr addr, |
| unsigned int len) |
| { |
| uint32_t ret; |
| unsigned int idx; |
| |
| idx = SUBPAGE_IDX(addr); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, |
| mmio, len, addr, idx); |
| #endif |
| ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], |
| addr + mmio->region_offset[idx][0][len]); |
| |
| return ret; |
| } |
| |
| static inline void subpage_writelen (subpage_t *mmio, hwaddr addr, |
| uint32_t value, unsigned int len) |
| { |
| unsigned int idx; |
| |
| idx = SUBPAGE_IDX(addr); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__, |
| mmio, len, addr, idx, value); |
| #endif |
| (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], |
| addr + mmio->region_offset[idx][1][len], |
| value); |
| } |
| |
| static uint32_t subpage_readb (void *opaque, hwaddr addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 0); |
| } |
| |
| static void subpage_writeb (void *opaque, hwaddr addr, |
| uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 0); |
| } |
| |
| static uint32_t subpage_readw (void *opaque, hwaddr addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 1); |
| } |
| |
| static void subpage_writew (void *opaque, hwaddr addr, |
| uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 1); |
| } |
| |
| static uint32_t subpage_readl (void *opaque, hwaddr addr) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr); |
| #endif |
| |
| return subpage_readlen(opaque, addr, 2); |
| } |
| |
| static void subpage_writel (void *opaque, |
| hwaddr addr, uint32_t value) |
| { |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value); |
| #endif |
| subpage_writelen(opaque, addr, value, 2); |
| } |
| |
| static CPUReadMemoryFunc * const subpage_read[] = { |
| &subpage_readb, |
| &subpage_readw, |
| &subpage_readl, |
| }; |
| |
| static CPUWriteMemoryFunc * const subpage_write[] = { |
| &subpage_writeb, |
| &subpage_writew, |
| &subpage_writel, |
| }; |
| |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| ram_addr_t memory, ram_addr_t region_offset) |
| { |
| int idx, eidx; |
| unsigned int i; |
| |
| if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) |
| return -1; |
| idx = SUBPAGE_IDX(start); |
| eidx = SUBPAGE_IDX(end); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, |
| mmio, start, end, idx, eidx, memory); |
| #endif |
| memory >>= IO_MEM_SHIFT; |
| for (; idx <= eidx; idx++) { |
| for (i = 0; i < 4; i++) { |
| if (_io_mem_read[memory][i]) { |
| mmio->mem_read[idx][i] = &_io_mem_read[memory][i]; |
| mmio->opaque[idx][0][i] = io_mem_opaque[memory]; |
| mmio->region_offset[idx][0][i] = region_offset; |
| } |
| if (_io_mem_write[memory][i]) { |
| mmio->mem_write[idx][i] = &_io_mem_write[memory][i]; |
| mmio->opaque[idx][1][i] = io_mem_opaque[memory]; |
| mmio->region_offset[idx][1][i] = region_offset; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void *subpage_init (hwaddr base, ram_addr_t *phys, |
| ram_addr_t orig_memory, ram_addr_t region_offset) |
| { |
| subpage_t *mmio; |
| int subpage_memory; |
| |
| mmio = g_malloc0(sizeof(subpage_t)); |
| |
| mmio->base = base; |
| subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, |
| mmio, base, TARGET_PAGE_SIZE, subpage_memory); |
| #endif |
| *phys = subpage_memory | IO_MEM_SUBPAGE; |
| subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory, |
| region_offset); |
| |
| return mmio; |
| } |
| |
| static int get_free_io_mem_idx(void) |
| { |
| int i; |
| |
| for (i = 0; i<IO_MEM_NB_ENTRIES; i++) |
| if (!io_mem_used[i]) { |
| io_mem_used[i] = 1; |
| return i; |
| } |
| fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES); |
| return -1; |
| } |
| |
| /* mem_read and mem_write are arrays of functions containing the |
| function to access byte (index 0), word (index 1) and dword (index |
| 2). Functions can be omitted with a NULL function pointer. |
| If io_index is non zero, the corresponding io zone is |
| modified. If it is zero, a new io zone is allocated. The return |
| value can be used with cpu_register_physical_memory(). (-1) is |
| returned if error. */ |
| static int cpu_register_io_memory_fixed(int io_index, |
| CPUReadMemoryFunc * const *mem_read, |
| CPUWriteMemoryFunc * const *mem_write, |
| void *opaque) |
| { |
| int i, subwidth = 0; |
| |
| if (io_index <= 0) { |
| io_index = get_free_io_mem_idx(); |
| if (io_index == -1) |
| return io_index; |
| } else { |
| io_index >>= IO_MEM_SHIFT; |
| if (io_index >= IO_MEM_NB_ENTRIES) |
| return -1; |
| } |
| |
| for(i = 0;i < 3; i++) { |
| if (!mem_read[i] || !mem_write[i]) |
| subwidth = IO_MEM_SUBWIDTH; |
| _io_mem_read[io_index][i] = mem_read[i]; |
| _io_mem_write[io_index][i] = mem_write[i]; |
| } |
| io_mem_opaque[io_index] = opaque; |
| return (io_index << IO_MEM_SHIFT) | subwidth; |
| } |
| |
| int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read, |
| CPUWriteMemoryFunc * const *mem_write, |
| void *opaque) |
| { |
| return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); |
| } |
| |
| void cpu_unregister_io_memory(int io_table_address) |
| { |
| int i; |
| int io_index = io_table_address >> IO_MEM_SHIFT; |
| |
| for (i=0;i < 3; i++) { |
| _io_mem_read[io_index][i] = unassigned_mem_read[i]; |
| _io_mem_write[io_index][i] = unassigned_mem_write[i]; |
| } |
| io_mem_opaque[io_index] = NULL; |
| io_mem_used[io_index] = 0; |
| } |
| |
| static void io_mem_init(void) |
| { |
| int i; |
| |
| cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); |
| cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); |
| cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); |
| for (i=0; i<5; i++) |
| io_mem_used[i] = 1; |
| |
| io_mem_watch = cpu_register_io_memory(watch_mem_read, |
| watch_mem_write, NULL); |
| } |
| |
| #endif /* !defined(CONFIG_USER_ONLY) */ |
| |
| /* physical memory access (slow version, mainly for debug) */ |
| #if defined(CONFIG_USER_ONLY) |
| void cpu_physical_memory_rw(hwaddr addr, void *buf, |
| int len, int is_write) |
| { |
| int l, flags; |
| target_ulong page; |
| void * p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| flags = page_get_flags(page); |
| if (!(flags & PAGE_VALID)) |
| return; |
| if (is_write) { |
| if (!(flags & PAGE_WRITE)) |
| return; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
| /* FIXME - should this return an error rather than just fail? */ |
| return; |
| memcpy(p, buf, l); |
| unlock_user(p, addr, l); |
| } else { |
| if (!(flags & PAGE_READ)) |
| return; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
| /* FIXME - should this return an error rather than just fail? */ |
| return; |
| memcpy(buf, p, l); |
| unlock_user(p, addr, 0); |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| } |
| |
| #else |
| |
| static void invalidate_and_set_dirty(hwaddr addr, |
| hwaddr length) |
| { |
| if (cpu_physical_memory_is_clean(addr)) { |
| /* invalidate code */ |
| tb_invalidate_phys_page_range(addr, addr + length, 0); |
| /* set dirty bit */ |
| cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA); |
| cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); |
| } |
| } |
| |
| void cpu_physical_memory_rw(hwaddr addr, void *buf, |
| int len, int is_write) |
| { |
| int l, io_index; |
| uint8_t *ptr; |
| uint32_t val; |
| hwaddr page; |
| ram_addr_t pd; |
| uint8_t* buf8 = (uint8_t*)buf; |
| PhysPageDesc *p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| p = phys_page_find(page >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if (is_write) { |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| hwaddr addr1 = addr; |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| /* XXX: could force cpu_single_env to NULL to avoid |
| potential bugs */ |
| if (l >= 4 && ((addr1 & 3) == 0)) { |
| /* 32 bit write access */ |
| val = ldl_p(buf8); |
| io_mem_write(io_index, addr1, val, 4); |
| l = 4; |
| } else if (l >= 2 && ((addr1 & 1) == 0)) { |
| /* 16 bit write access */ |
| val = lduw_p(buf8); |
| io_mem_write(io_index, addr1, val, 2); |
| l = 2; |
| } else { |
| /* 8 bit write access */ |
| val = ldub_p(buf8); |
| io_mem_write(io_index, addr1, val, 1); |
| l = 1; |
| } |
| } else { |
| ram_addr_t addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(addr1); |
| memcpy(ptr, buf8, l); |
| invalidate_and_set_dirty(addr1, l); |
| } |
| } else { |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| hwaddr addr1 = addr; |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| if (l >= 4 && ((addr1 & 3) == 0)) { |
| /* 32 bit read access */ |
| val = io_mem_read(io_index, addr1, 4); |
| stl_p(buf8, val); |
| l = 4; |
| } else if (l >= 2 && ((addr1 & 1) == 0)) { |
| /* 16 bit read access */ |
| val = io_mem_read(io_index, addr1, 2); |
| stw_p(buf8, val); |
| l = 2; |
| } else { |
| /* 8 bit read access */ |
| val = io_mem_read(io_index, addr1, 1); |
| stb_p(buf8, val); |
| l = 1; |
| } |
| } else { |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| memcpy(buf8, ptr, l); |
| } |
| } |
| len -= l; |
| buf8 += l; |
| addr += l; |
| } |
| } |
| |
| /* used for ROM loading : can write in RAM and ROM */ |
| void cpu_physical_memory_write_rom(hwaddr addr, |
| const void *buf, int len) |
| { |
| int l; |
| uint8_t *ptr; |
| hwaddr page; |
| unsigned long pd; |
| const uint8_t* buf8 = (const uint8_t*)buf; |
| PhysPageDesc *p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| p = phys_page_find(page >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && |
| (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* do nothing */ |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* ROM/RAM case */ |
| ptr = qemu_get_ram_ptr(addr1); |
| memcpy(ptr, buf8, l); |
| invalidate_and_set_dirty(addr1, l); |
| } |
| len -= l; |
| buf8 += l; |
| addr += l; |
| } |
| } |
| |
| typedef struct { |
| void *buffer; |
| hwaddr addr; |
| hwaddr len; |
| } BounceBuffer; |
| |
| static BounceBuffer bounce; |
| |
| typedef struct MapClient { |
| void *opaque; |
| void (*callback)(void *opaque); |
| QLIST_ENTRY(MapClient) link; |
| } MapClient; |
| |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list |
| = QLIST_HEAD_INITIALIZER(map_client_list); |
| |
| void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) |
| { |
| MapClient *client = g_malloc(sizeof(*client)); |
| |
| client->opaque = opaque; |
| client->callback = callback; |
| QLIST_INSERT_HEAD(&map_client_list, client, link); |
| return client; |
| } |
| |
| static void cpu_unregister_map_client(void *_client) |
| { |
| MapClient *client = (MapClient *)_client; |
| |
| QLIST_REMOVE(client, link); |
| g_free(client); |
| } |
| |
| static void cpu_notify_map_clients(void) |
| { |
| MapClient *client; |
| |
| while (!QLIST_EMPTY(&map_client_list)) { |
| client = QLIST_FIRST(&map_client_list); |
| client->callback(client->opaque); |
| cpu_unregister_map_client(client); |
| } |
| } |
| |
| /* Map a physical memory region into a host virtual address. |
| * May map a subset of the requested range, given by and returned in *plen. |
| * May return NULL if resources needed to perform the mapping are exhausted. |
| * Use only for reads OR writes - not for read-modify-write operations. |
| * Use cpu_register_map_client() to know when retrying the map operation is |
| * likely to succeed. |
| */ |
| void *cpu_physical_memory_map(hwaddr addr, |
| hwaddr *plen, |
| int is_write) |
| { |
| hwaddr len = *plen; |
| hwaddr done = 0; |
| int l; |
| uint8_t *ret = NULL; |
| uint8_t *ptr; |
| hwaddr page; |
| unsigned long pd; |
| PhysPageDesc *p; |
| unsigned long addr1; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| p = phys_page_find(page >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| if (done || bounce.buffer) { |
| break; |
| } |
| bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); |
| bounce.addr = addr; |
| bounce.len = l; |
| if (!is_write) { |
| cpu_physical_memory_read(addr, bounce.buffer, l); |
| } |
| ptr = bounce.buffer; |
| } else { |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| ptr = qemu_get_ram_ptr(addr1); |
| } |
| if (!done) { |
| ret = ptr; |
| } else if (ret + done != ptr) { |
| break; |
| } |
| |
| len -= l; |
| addr += l; |
| done += l; |
| } |
| *plen = done; |
| return ret; |
| } |
| |
| /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). |
| * Will also mark the memory as dirty if is_write == 1. access_len gives |
| * the amount of memory that was actually read or written by the caller. |
| */ |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
| int is_write, hwaddr access_len) |
| { |
| if (buffer != bounce.buffer) { |
| if (is_write) { |
| ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); |
| while (access_len) { |
| unsigned l; |
| l = TARGET_PAGE_SIZE; |
| if (l > access_len) |
| l = access_len; |
| invalidate_and_set_dirty(addr1, l); |
| addr1 += l; |
| access_len -= l; |
| } |
| } |
| return; |
| } |
| if (is_write) { |
| cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); |
| } |
| qemu_vfree(bounce.buffer); |
| bounce.buffer = NULL; |
| cpu_notify_map_clients(); |
| } |
| |
| /* warning: addr must be aligned */ |
| static inline uint32_t ldl_phys_internal(hwaddr addr, |
| enum device_endian endian) |
| { |
| int io_index; |
| uint8_t *ptr; |
| uint32_t val; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| val = io_mem_read(io_index, addr, 4); |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| if (endian == DEVICE_LITTLE_ENDIAN) { |
| val = bswap32(val); |
| } |
| #else |
| if (endian == DEVICE_BIG_ENDIAN) { |
| val = bswap32(val); |
| } |
| #endif |
| } else { |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| switch (endian) { |
| case DEVICE_LITTLE_ENDIAN: |
| val = ldl_le_p(ptr); |
| break; |
| case DEVICE_BIG_ENDIAN: |
| val = ldl_be_p(ptr); |
| break; |
| default: |
| val = ldl_p(ptr); |
| break; |
| } |
| } |
| return val; |
| } |
| |
| uint32_t ldl_phys(hwaddr addr) |
| { |
| return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN); |
| } |
| |
| uint32_t ldl_le_phys(hwaddr addr) |
| { |
| return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN); |
| } |
| |
| uint32_t ldl_be_phys(hwaddr addr) |
| { |
| return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN); |
| } |
| |
| /* warning: addr must be aligned */ |
| static inline uint64_t ldq_phys_internal(hwaddr addr, |
| enum device_endian endian) |
| { |
| int io_index; |
| uint8_t *ptr; |
| uint64_t val; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| |
| /* XXX This is broken when device endian != cpu endian. |
| Fix and add "endian" variable check */ |
| #ifdef TARGET_WORDS_BIGENDIAN |
| val = (uint64_t)io_mem_read(io_index, addr, 4) << 32; |
| val |= io_mem_read(io_index, addr + 4, 4); |
| #else |
| val = io_mem_read(io_index, addr, 4); |
| val |= (uint64_t)io_mem_read(io_index, addr + 4, 4) << 32; |
| #endif |
| } else { |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| switch (endian) { |
| case DEVICE_LITTLE_ENDIAN: |
| val = ldq_le_p(ptr); |
| break; |
| case DEVICE_BIG_ENDIAN: |
| val = ldq_be_p(ptr); |
| break; |
| default: |
| val = ldq_p(ptr); |
| break; |
| } |
| } |
| return val; |
| } |
| |
| uint64_t ldq_phys(hwaddr addr) |
| { |
| return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN); |
| } |
| |
| uint64_t ldq_le_phys(hwaddr addr) |
| { |
| return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN); |
| } |
| |
| uint64_t ldq_be_phys(hwaddr addr) |
| { |
| return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN); |
| } |
| |
| /* XXX: optimize */ |
| uint32_t ldub_phys(hwaddr addr) |
| { |
| uint8_t val; |
| cpu_physical_memory_read(addr, &val, 1); |
| return val; |
| } |
| |
| /* XXX: optimize */ |
| static inline uint32_t lduw_phys_internal(hwaddr addr, |
| enum device_endian endian) |
| { |
| int io_index; |
| uint8_t *ptr; |
| uint64_t val; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && |
| !(pd & IO_MEM_ROMD)) { |
| /* I/O case */ |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| val = io_mem_read(io_index, addr, 2); |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| if (endian == DEVICE_LITTLE_ENDIAN) { |
| val = bswap16(val); |
| } |
| #else |
| if (endian == DEVICE_BIG_ENDIAN) { |
| val = bswap16(val); |
| } |
| #endif |
| } else { |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| switch (endian) { |
| case DEVICE_LITTLE_ENDIAN: |
| val = lduw_le_p(ptr); |
| break; |
| case DEVICE_BIG_ENDIAN: |
| val = lduw_be_p(ptr); |
| break; |
| default: |
| val = lduw_p(ptr); |
| break; |
| } |
| } |
| return val; |
| } |
| |
| uint32_t lduw_phys(hwaddr addr) |
| { |
| return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN); |
| } |
| |
| uint32_t lduw_le_phys(hwaddr addr) |
| { |
| return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN); |
| } |
| |
| uint32_t lduw_be_phys(hwaddr addr) |
| { |
| return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN); |
| } |
| |
| /* warning: addr must be aligned. The ram page is not masked as dirty |
| and the code inside is not invalidated. It is useful if the dirty |
| bits are used to track modified PTEs */ |
| void stl_phys_notdirty(hwaddr addr, uint32_t val) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| io_mem_write(io_index, addr, val, 4); |
| } else { |
| unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| ptr = qemu_get_ram_ptr(addr1); |
| stl_p(ptr, val); |
| |
| if (unlikely(in_migration)) { |
| if (cpu_physical_memory_is_clean(addr1)) { |
| /* invalidate code */ |
| tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); |
| /* set dirty bit */ |
| cpu_physical_memory_set_dirty_flag(addr1, |
| DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA); |
| } |
| } |
| } |
| } |
| |
| void stq_phys_notdirty(hwaddr addr, uint64_t val) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| #ifdef TARGET_WORDS_BIGENDIAN |
| io_mem_write(io_index, addr, val >> 32, 4); |
| io_mem_write(io_index, addr + 4, val, 4); |
| #else |
| io_mem_write(io_index, addr, val, 4); |
| io_mem_write(io_index, addr + 4, val >> 32, 4); |
| #endif |
| } else { |
| ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + |
| (addr & ~TARGET_PAGE_MASK); |
| stq_p(ptr, val); |
| } |
| } |
| |
| /* warning: addr must be aligned */ |
| static inline void stl_phys_internal(hwaddr addr, uint32_t val, |
| enum device_endian endian) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| if (endian == DEVICE_LITTLE_ENDIAN) { |
| val = bswap32(val); |
| } |
| #else |
| if (endian == DEVICE_BIG_ENDIAN) { |
| val = bswap32(val); |
| } |
| #endif |
| io_mem_write(io_index, addr, val, 4); |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(addr1); |
| switch (endian) { |
| case DEVICE_LITTLE_ENDIAN: |
| stl_le_p(ptr, val); |
| break; |
| case DEVICE_BIG_ENDIAN: |
| stl_be_p(ptr, val); |
| break; |
| default: |
| stl_p(ptr, val); |
| break; |
| } |
| invalidate_and_set_dirty(addr1, 4); |
| } |
| } |
| |
| void stl_phys(hwaddr addr, uint32_t val) |
| { |
| stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); |
| } |
| |
| void stl_le_phys(hwaddr addr, uint32_t val) |
| { |
| stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); |
| } |
| |
| void stl_be_phys(hwaddr addr, uint32_t val) |
| { |
| stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN); |
| } |
| |
| /* XXX: optimize */ |
| void stb_phys(hwaddr addr, uint32_t val) |
| { |
| uint8_t v = val; |
| cpu_physical_memory_write(addr, &v, 1); |
| } |
| |
| /* XXX: optimize */ |
| static inline void stw_phys_internal(hwaddr addr, uint32_t val, |
| enum device_endian endian) |
| { |
| int io_index; |
| uint8_t *ptr; |
| unsigned long pd; |
| PhysPageDesc *p; |
| |
| p = phys_page_find(addr >> TARGET_PAGE_BITS); |
| if (!p) { |
| pd = IO_MEM_UNASSIGNED; |
| } else { |
| pd = p->phys_offset; |
| } |
| |
| if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { |
| io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); |
| if (p) |
| addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| if (endian == DEVICE_LITTLE_ENDIAN) { |
| val = bswap16(val); |
| } |
| #else |
| if (endian == DEVICE_BIG_ENDIAN) { |
| val = bswap16(val); |
| } |
| #endif |
| io_mem_write(io_index, addr, val, 2); |
| } else { |
| unsigned long addr1; |
| addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); |
| /* RAM case */ |
| ptr = qemu_get_ram_ptr(addr1); |
| switch (endian) { |
| case DEVICE_LITTLE_ENDIAN: |
| stw_le_p(ptr, val); |
| break; |
| case DEVICE_BIG_ENDIAN: |
| stw_be_p(ptr, val); |
| break; |
| default: |
| stw_p(ptr, val); |
| break; |
| } |
| if (cpu_physical_memory_is_clean(addr1)) { |
| /* invalidate code */ |
| tb_invalidate_phys_page_range(addr1, addr1 + 2, 0); |
| /* set dirty bit */ |
| cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_MIGRATION); |
| cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA); |
| } |
| } |
| } |
| |
| void stw_phys(hwaddr addr, uint32_t val) |
| { |
| stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN); |
| } |
| |
| void stw_le_phys(hwaddr addr, uint32_t val) |
| { |
| stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN); |
| } |
| |
| void stw_be_phys(hwaddr addr, uint32_t val) |
| { |
| stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN); |
| } |
| |
| /* XXX: optimize */ |
| void stq_phys(hwaddr addr, uint64_t val) |
| { |
| val = tswap64(val); |
| cpu_physical_memory_write(addr, &val, 8); |
| } |
| |
| |
| void stq_le_phys(hwaddr addr, uint64_t val) |
| { |
| val = cpu_to_le64(val); |
| cpu_physical_memory_write(addr, &val, 8); |
| } |
| |
| void stq_be_phys(hwaddr addr, uint64_t val) |
| { |
| val = cpu_to_be64(val); |
| cpu_physical_memory_write(addr, &val, 8); |
| } |
| |
| #endif |
| |
| /* virtual memory access for debug (includes writing to ROM) */ |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
| void *buf, int len, int is_write) |
| { |
| int l; |
| hwaddr phys_addr; |
| target_ulong page; |
| uint8_t* buf8 = (uint8_t*)buf; |
| CPUArchState *env = cpu->env_ptr; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| phys_addr = cpu_get_phys_page_debug(env, page); |
| /* if no physical page mapped, return an error */ |
| if (phys_addr == -1) |
| return -1; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| phys_addr += (addr & ~TARGET_PAGE_MASK); |
| #if !defined(CONFIG_USER_ONLY) |
| if (is_write) |
| cpu_physical_memory_write_rom(phys_addr, buf8, l); |
| else |
| #endif |
| cpu_physical_memory_rw(phys_addr, buf8, l, is_write); |
| len -= l; |
| buf8 += l; |
| addr += l; |
| } |
| return 0; |
| } |