blob: e4d76aeceedaa5fb8ee83273c26749240dc91b3c [file] [log] [blame] [edit]
#!/usr/bin/python
"""Reads a CSV file on stdin, and prints an an HTML table on stdout.
The static HTML can then be made made dynamic with JavaScript, e.g. jQuery
DataTable.
Use Cases:
- overview.csv -- each row is a metric
- links: to metric page
- status.csv -- each row is a day
- links: to log.txt, to results.html
"""
import cgi
import csv
import optparse
import sys
import util
def CreateOptionsParser():
p = optparse.OptionParser()
# We are taking a path, and not using stdin, because we read it twice.
p.add_option(
'--col-format', dest='col_formats', metavar="'COLNAME FMT'", type='str',
default=[], action='append',
help='Add HTML links to the named column, using the given Python '
'.format() string')
p.add_option(
'--def', dest='defs', metavar="'NAME VALUE'", type='str',
default=[], action='append',
help='Define varaibles for use in format strings')
p.add_option(
'--as-percent', dest='percent_cols', metavar="COLNAME", type='str',
default=[], action='append',
help='Format this floating point column as a percentage string')
# TODO: We could include this by default, and then change all the HTML to
# have <div> placeholders instead of <table>.
p.add_option(
'--table', dest='table', default=False, action='store_true',
help='Add <table></table> tags (useful for testing)')
return p
def ParseSpec(arg_list):
"""Given an argument list, return a string -> string dictionary."""
# The format string is passed the cell value. Escaped as HTML?
d = {}
for s in arg_list:
try:
name, value = s.split(' ', 1)
except ValueError:
raise RuntimeError('Invalid column format %r' % s)
d[name] = value
return d
def PrintRow(row, col_names, col_formats, defs, percent_cols):
"""Print a CSV row as HTML, using the given formatting.
Returns:
An array of booleans indicating whether each cell is a number.
"""
is_number_flags = [False] * len(col_names)
for i, cell in enumerate(row):
# The cell as a string. By default we leave it as is; it may be mutated
# below.
cell_str = cell
css_class = '' # CSS class for the cell.
col_name = col_names[i] # column that the cell is under
# Does the cell look like a float?
try:
cell_float = float(cell)
if col_name in percent_cols: # Floats can be formatted as percentages.
cell_str = '{:.1f}%'.format(cell_float * 100)
else:
# Arbitrarily use 3 digits of precision for display
cell_str = '{:.3f}'.format(cell_float)
css_class = 'num'
is_number_flags[i] = True
except ValueError:
pass
# Does it look lik an int?
try:
cell_int = int(cell)
cell_str = '{:,}'.format(cell_int)
css_class = 'num'
is_number_flags[i] = True
except ValueError:
pass
# Special CSS class for R NA values.
if cell_str.strip() == 'NA':
css_class = 'num na' # num should right justify; na should make it red
is_number_flags[i] = True
if css_class:
print ' <td class="{}">'.format(css_class),
else:
print ' <td>',
cell_safe = cgi.escape(cell_str)
# If the cell has a format string, print it this way.
fmt = col_formats.get(col_name) # e.g. "../{date}.html"
if fmt:
# Copy variable bindings
bindings = dict(defs)
# Also let the format string use other column names. TODO: Is there a
# more efficient way?
bindings.update(zip(col_names, [cgi.escape(c) for c in row]))
bindings[col_name] = cell_safe
print fmt.format(**bindings), # no newline
else:
print cell_safe, # no newline
print '</td>'
return is_number_flags
def ReadCsv(f):
"""Read the CSV file, returning the column names and rows."""
c = csv.reader(f)
# The first row of the CSV is assumed to be a header. The rest are data.
col_names = []
rows = []
for i, row in enumerate(c):
if i == 0:
col_names = row
continue
rows.append(row)
return col_names, rows
def PrintColGroup(col_names, col_is_numeric):
"""Print HTML colgroup element, used for JavaScript sorting."""
print '<colgroup>'
for i, col in enumerate(col_names):
# CSS class is used for sorting
if col_is_numeric[i]:
css_class = 'number'
else:
css_class = 'case-insensitive'
# NOTE: id is a comment only; not used
print ' <col id="{}" type="{}" />'.format(col, css_class)
print '</colgroup>'
def main(argv):
(opts, argv) = CreateOptionsParser().parse_args(argv)
col_formats = ParseSpec(opts.col_formats)
defs = ParseSpec(opts.defs)
col_names, rows = ReadCsv(sys.stdin)
for col in opts.percent_cols:
if col not in col_names:
raise RuntimeError('--percent-col %s is not a valid column' % col)
# By default, we don't print the <table> bit -- that's up to the host page
if opts.table:
print '<table>'
print '<thead>'
for col in col_names:
# change _ to space so long column names can wrap
print ' <td>%s</td>' % cgi.escape(col.replace('_', ' '))
print '</thead>'
# Assume all columns are numeric at first. Look at each row for non-numeric
# values.
col_is_numeric = [True] * len(col_names)
print '<tbody>'
for row in rows:
print ' <tr>'
is_number_flags = PrintRow(row, col_names, col_formats, defs,
opts.percent_cols)
# If one cell in a column is not a number, then the whole cell isn't.
for (i, is_number) in enumerate(is_number_flags):
if not is_number:
col_is_numeric[i] = False
print ' </tr>'
print '</tbody>'
PrintColGroup(col_names, col_is_numeric)
if opts.table:
print '</table>'
if __name__ == '__main__':
try:
main(sys.argv)
except RuntimeError, e:
print >>sys.stderr, 'FATAL: %s' % e
sys.exit(1)