| // Copyright 2008 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // A DFA (deterministic finite automaton)-based regular expression search. |
| // |
| // The DFA search has two main parts: the construction of the automaton, |
| // which is represented by a graph of State structures, and the execution |
| // of the automaton over a given input string. |
| // |
| // The basic idea is that the State graph is constructed so that the |
| // execution can simply start with a state s, and then for each byte c in |
| // the input string, execute "s = s->next[c]", checking at each point whether |
| // the current s represents a matching state. |
| // |
| // The simple explanation just given does convey the essence of this code, |
| // but it omits the details of how the State graph gets constructed as well |
| // as some performance-driven optimizations to the execution of the automaton. |
| // All these details are explained in the comments for the code following |
| // the definition of class DFA. |
| // |
| // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent. |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <algorithm> |
| #include <atomic> |
| #include <deque> |
| #include <mutex> |
| #include <new> |
| #include <string> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "util/logging.h" |
| #include "util/mix.h" |
| #include "util/mutex.h" |
| #include "util/pod_array.h" |
| #include "util/sparse_set.h" |
| #include "util/strutil.h" |
| #include "re2/prog.h" |
| #include "re2/stringpiece.h" |
| |
| // Silence "zero-sized array in struct/union" warning for DFA::State::next_. |
| #ifdef _MSC_VER |
| #pragma warning(disable: 4200) |
| #endif |
| |
| namespace re2 { |
| |
| #if !defined(__linux__) /* only Linux seems to have memrchr */ |
| static void* memrchr(const void* s, int c, size_t n) { |
| const unsigned char* p = (const unsigned char*)s; |
| for (p += n; n > 0; n--) |
| if (*--p == c) |
| return (void*)p; |
| |
| return NULL; |
| } |
| #endif |
| |
| // Controls whether the DFA should bail out early if the NFA would be faster. |
| static bool dfa_should_bail_when_slow = true; |
| |
| // Changing this to true compiles in prints that trace execution of the DFA. |
| // Generates a lot of output -- only useful for debugging. |
| static const bool ExtraDebug = false; |
| |
| // A DFA implementation of a regular expression program. |
| // Since this is entirely a forward declaration mandated by C++, |
| // some of the comments here are better understood after reading |
| // the comments in the sections that follow the DFA definition. |
| class DFA { |
| public: |
| DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem); |
| ~DFA(); |
| bool ok() const { return !init_failed_; } |
| Prog::MatchKind kind() { return kind_; } |
| |
| // Searches for the regular expression in text, which is considered |
| // as a subsection of context for the purposes of interpreting flags |
| // like ^ and $ and \A and \z. |
| // Returns whether a match was found. |
| // If a match is found, sets *ep to the end point of the best match in text. |
| // If "anchored", the match must begin at the start of text. |
| // If "want_earliest_match", the match that ends first is used, not |
| // necessarily the best one. |
| // If "run_forward" is true, the DFA runs from text.begin() to text.end(). |
| // If it is false, the DFA runs from text.end() to text.begin(), |
| // returning the leftmost end of the match instead of the rightmost one. |
| // If the DFA cannot complete the search (for example, if it is out of |
| // memory), it sets *failed and returns false. |
| bool Search(const StringPiece& text, const StringPiece& context, |
| bool anchored, bool want_earliest_match, bool run_forward, |
| bool* failed, const char** ep, SparseSet* matches); |
| |
| // Builds out all states for the entire DFA. |
| // If cb is not empty, it receives one callback per state built. |
| // Returns the number of states built. |
| // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY. |
| int BuildAllStates(const Prog::DFAStateCallback& cb); |
| |
| // Computes min and max for matching strings. Won't return strings |
| // bigger than maxlen. |
| bool PossibleMatchRange(string* min, string* max, int maxlen); |
| |
| // These data structures are logically private, but C++ makes it too |
| // difficult to mark them as such. |
| class RWLocker; |
| class StateSaver; |
| class Workq; |
| |
| // A single DFA state. The DFA is represented as a graph of these |
| // States, linked by the next_ pointers. If in state s and reading |
| // byte c, the next state should be s->next_[c]. |
| struct State { |
| inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; } |
| void SaveMatch(std::vector<int>* v); |
| |
| int* inst_; // Instruction pointers in the state. |
| int ninst_; // # of inst_ pointers. |
| uint32_t flag_; // Empty string bitfield flags in effect on the way |
| // into this state, along with kFlagMatch if this |
| // is a matching state. |
| |
| // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1). |
| // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932) |
| #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1 |
| std::atomic<State*> next_[0]; // Outgoing arrows from State, |
| #else |
| std::atomic<State*> next_[]; // Outgoing arrows from State, |
| #endif |
| |
| // one per input byte class |
| }; |
| |
| enum { |
| kByteEndText = 256, // imaginary byte at end of text |
| |
| kFlagEmptyMask = 0xFF, // State.flag_: bits holding kEmptyXXX flags |
| kFlagMatch = 0x0100, // State.flag_: this is a matching state |
| kFlagLastWord = 0x0200, // State.flag_: last byte was a word char |
| kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left |
| }; |
| |
| struct StateHash { |
| size_t operator()(const State* a) const { |
| DCHECK(a != NULL); |
| HashMix mix(a->flag_); |
| for (int i = 0; i < a->ninst_; i++) |
| mix.Mix(a->inst_[i]); |
| mix.Mix(0); |
| return mix.get(); |
| } |
| }; |
| |
| struct StateEqual { |
| bool operator()(const State* a, const State* b) const { |
| DCHECK(a != NULL); |
| DCHECK(b != NULL); |
| if (a == b) |
| return true; |
| if (a->flag_ != b->flag_) |
| return false; |
| if (a->ninst_ != b->ninst_) |
| return false; |
| for (int i = 0; i < a->ninst_; i++) |
| if (a->inst_[i] != b->inst_[i]) |
| return false; |
| return true; |
| } |
| }; |
| |
| typedef std::unordered_set<State*, StateHash, StateEqual> StateSet; |
| |
| private: |
| // Special "first_byte" values for a state. (Values >= 0 denote actual bytes.) |
| enum { |
| kFbUnknown = -1, // No analysis has been performed. |
| kFbNone = -2, // The first-byte trick cannot be used. |
| }; |
| |
| enum { |
| // Indices into start_ for unanchored searches. |
| // Add kStartAnchored for anchored searches. |
| kStartBeginText = 0, // text at beginning of context |
| kStartBeginLine = 2, // text at beginning of line |
| kStartAfterWordChar = 4, // text follows a word character |
| kStartAfterNonWordChar = 6, // text follows non-word character |
| kMaxStart = 8, |
| |
| kStartAnchored = 1, |
| }; |
| |
| // Resets the DFA State cache, flushing all saved State* information. |
| // Releases and reacquires cache_mutex_ via cache_lock, so any |
| // State* existing before the call are not valid after the call. |
| // Use a StateSaver to preserve important states across the call. |
| // cache_mutex_.r <= L < mutex_ |
| // After: cache_mutex_.w <= L < mutex_ |
| void ResetCache(RWLocker* cache_lock); |
| |
| // Looks up and returns the State corresponding to a Workq. |
| // L >= mutex_ |
| State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag); |
| |
| // Looks up and returns a State matching the inst, ninst, and flag. |
| // L >= mutex_ |
| State* CachedState(int* inst, int ninst, uint32_t flag); |
| |
| // Clear the cache entirely. |
| // Must hold cache_mutex_.w or be in destructor. |
| void ClearCache(); |
| |
| // Converts a State into a Workq: the opposite of WorkqToCachedState. |
| // L >= mutex_ |
| void StateToWorkq(State* s, Workq* q); |
| |
| // Runs a State on a given byte, returning the next state. |
| State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_ |
| State* RunStateOnByte(State*, int); // L >= mutex_ |
| |
| // Runs a Workq on a given byte followed by a set of empty-string flags, |
| // producing a new Workq in nq. If a match instruction is encountered, |
| // sets *ismatch to true. |
| // L >= mutex_ |
| void RunWorkqOnByte(Workq* q, Workq* nq, |
| int c, uint32_t flag, bool* ismatch); |
| |
| // Runs a Workq on a set of empty-string flags, producing a new Workq in nq. |
| // L >= mutex_ |
| void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag); |
| |
| // Adds the instruction id to the Workq, following empty arrows |
| // according to flag. |
| // L >= mutex_ |
| void AddToQueue(Workq* q, int id, uint32_t flag); |
| |
| // For debugging, returns a text representation of State. |
| static string DumpState(State* state); |
| |
| // For debugging, returns a text representation of a Workq. |
| static string DumpWorkq(Workq* q); |
| |
| // Search parameters |
| struct SearchParams { |
| SearchParams(const StringPiece& text, const StringPiece& context, |
| RWLocker* cache_lock) |
| : text(text), context(context), |
| anchored(false), |
| want_earliest_match(false), |
| run_forward(false), |
| start(NULL), |
| first_byte(kFbUnknown), |
| cache_lock(cache_lock), |
| failed(false), |
| ep(NULL), |
| matches(NULL) { } |
| |
| StringPiece text; |
| StringPiece context; |
| bool anchored; |
| bool want_earliest_match; |
| bool run_forward; |
| State* start; |
| int first_byte; |
| RWLocker *cache_lock; |
| bool failed; // "out" parameter: whether search gave up |
| const char* ep; // "out" parameter: end pointer for match |
| SparseSet* matches; |
| |
| private: |
| SearchParams(const SearchParams&) = delete; |
| SearchParams& operator=(const SearchParams&) = delete; |
| }; |
| |
| // Before each search, the parameters to Search are analyzed by |
| // AnalyzeSearch to determine the state in which to start and the |
| // "first_byte" for that state, if any. |
| struct StartInfo { |
| StartInfo() : start(NULL), first_byte(kFbUnknown) {} |
| State* start; |
| std::atomic<int> first_byte; |
| }; |
| |
| // Fills in params->start and params->first_byte using |
| // the other search parameters. Returns true on success, |
| // false on failure. |
| // cache_mutex_.r <= L < mutex_ |
| bool AnalyzeSearch(SearchParams* params); |
| bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, |
| uint32_t flags); |
| |
| // The generic search loop, inlined to create specialized versions. |
| // cache_mutex_.r <= L < mutex_ |
| // Might unlock and relock cache_mutex_ via params->cache_lock. |
| inline bool InlinedSearchLoop(SearchParams* params, |
| bool have_first_byte, |
| bool want_earliest_match, |
| bool run_forward); |
| |
| // The specialized versions of InlinedSearchLoop. The three letters |
| // at the ends of the name denote the true/false values used as the |
| // last three parameters of InlinedSearchLoop. |
| // cache_mutex_.r <= L < mutex_ |
| // Might unlock and relock cache_mutex_ via params->cache_lock. |
| bool SearchFFF(SearchParams* params); |
| bool SearchFFT(SearchParams* params); |
| bool SearchFTF(SearchParams* params); |
| bool SearchFTT(SearchParams* params); |
| bool SearchTFF(SearchParams* params); |
| bool SearchTFT(SearchParams* params); |
| bool SearchTTF(SearchParams* params); |
| bool SearchTTT(SearchParams* params); |
| |
| // The main search loop: calls an appropriate specialized version of |
| // InlinedSearchLoop. |
| // cache_mutex_.r <= L < mutex_ |
| // Might unlock and relock cache_mutex_ via params->cache_lock. |
| bool FastSearchLoop(SearchParams* params); |
| |
| // For debugging, a slow search loop that calls InlinedSearchLoop |
| // directly -- because the booleans passed are not constants, the |
| // loop is not specialized like the SearchFFF etc. versions, so it |
| // runs much more slowly. Useful only for debugging. |
| // cache_mutex_.r <= L < mutex_ |
| // Might unlock and relock cache_mutex_ via params->cache_lock. |
| bool SlowSearchLoop(SearchParams* params); |
| |
| // Looks up bytes in bytemap_ but handles case c == kByteEndText too. |
| int ByteMap(int c) { |
| if (c == kByteEndText) |
| return prog_->bytemap_range(); |
| return prog_->bytemap()[c]; |
| } |
| |
| // Constant after initialization. |
| Prog* prog_; // The regular expression program to run. |
| Prog::MatchKind kind_; // The kind of DFA. |
| bool init_failed_; // initialization failed (out of memory) |
| |
| Mutex mutex_; // mutex_ >= cache_mutex_.r |
| |
| // Scratch areas, protected by mutex_. |
| Workq* q0_; // Two pre-allocated work queues. |
| Workq* q1_; |
| PODArray<int> stack_; // Pre-allocated stack for AddToQueue |
| |
| // State* cache. Many threads use and add to the cache simultaneously, |
| // holding cache_mutex_ for reading and mutex_ (above) when adding. |
| // If the cache fills and needs to be discarded, the discarding is done |
| // while holding cache_mutex_ for writing, to avoid interrupting other |
| // readers. Any State* pointers are only valid while cache_mutex_ |
| // is held. |
| Mutex cache_mutex_; |
| int64_t mem_budget_; // Total memory budget for all States. |
| int64_t state_budget_; // Amount of memory remaining for new States. |
| StateSet state_cache_; // All States computed so far. |
| StartInfo start_[kMaxStart]; |
| }; |
| |
| // Shorthand for casting to uint8_t*. |
| static inline const uint8_t* BytePtr(const void* v) { |
| return reinterpret_cast<const uint8_t*>(v); |
| } |
| |
| // Work queues |
| |
| // Marks separate thread groups of different priority |
| // in the work queue when in leftmost-longest matching mode. |
| #define Mark (-1) |
| |
| // Separates the match IDs from the instructions in inst_. |
| // Used only for "many match" DFA states. |
| #define MatchSep (-2) |
| |
| // Internally, the DFA uses a sparse array of |
| // program instruction pointers as a work queue. |
| // In leftmost longest mode, marks separate sections |
| // of workq that started executing at different |
| // locations in the string (earlier locations first). |
| class DFA::Workq : public SparseSet { |
| public: |
| // Constructor: n is number of normal slots, maxmark number of mark slots. |
| Workq(int n, int maxmark) : |
| SparseSet(n+maxmark), |
| n_(n), |
| maxmark_(maxmark), |
| nextmark_(n), |
| last_was_mark_(true) { |
| } |
| |
| bool is_mark(int i) { return i >= n_; } |
| |
| int maxmark() { return maxmark_; } |
| |
| void clear() { |
| SparseSet::clear(); |
| nextmark_ = n_; |
| } |
| |
| void mark() { |
| if (last_was_mark_) |
| return; |
| last_was_mark_ = false; |
| SparseSet::insert_new(nextmark_++); |
| } |
| |
| int size() { |
| return n_ + maxmark_; |
| } |
| |
| void insert(int id) { |
| if (contains(id)) |
| return; |
| insert_new(id); |
| } |
| |
| void insert_new(int id) { |
| last_was_mark_ = false; |
| SparseSet::insert_new(id); |
| } |
| |
| private: |
| int n_; // size excluding marks |
| int maxmark_; // maximum number of marks |
| int nextmark_; // id of next mark |
| bool last_was_mark_; // last inserted was mark |
| |
| Workq(const Workq&) = delete; |
| Workq& operator=(const Workq&) = delete; |
| }; |
| |
| DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem) |
| : prog_(prog), |
| kind_(kind), |
| init_failed_(false), |
| q0_(NULL), |
| q1_(NULL), |
| mem_budget_(max_mem) { |
| if (ExtraDebug) |
| fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str()); |
| int nmark = 0; |
| if (kind_ == Prog::kLongestMatch) |
| nmark = prog_->size(); |
| // See DFA::AddToQueue() for why this is so. |
| int nstack = prog_->inst_count(kInstCapture) + |
| prog_->inst_count(kInstEmptyWidth) + |
| prog_->inst_count(kInstNop) + |
| nmark + 1; // + 1 for start inst |
| |
| // Account for space needed for DFA, q0, q1, stack. |
| mem_budget_ -= sizeof(DFA); |
| mem_budget_ -= (prog_->size() + nmark) * |
| (sizeof(int)+sizeof(int)) * 2; // q0, q1 |
| mem_budget_ -= nstack * sizeof(int); // stack |
| if (mem_budget_ < 0) { |
| init_failed_ = true; |
| return; |
| } |
| |
| state_budget_ = mem_budget_; |
| |
| // Make sure there is a reasonable amount of working room left. |
| // At minimum, the search requires room for two states in order |
| // to limp along, restarting frequently. We'll get better performance |
| // if there is room for a larger number of states, say 20. |
| // Note that a state stores list heads only, so we use the program |
| // list count for the upper bound, not the program size. |
| int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
| int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) + |
| (prog_->list_count()+nmark)*sizeof(int); |
| if (state_budget_ < 20*one_state) { |
| init_failed_ = true; |
| return; |
| } |
| |
| q0_ = new Workq(prog_->size(), nmark); |
| q1_ = new Workq(prog_->size(), nmark); |
| stack_ = PODArray<int>(nstack); |
| } |
| |
| DFA::~DFA() { |
| delete q0_; |
| delete q1_; |
| ClearCache(); |
| } |
| |
| // In the DFA state graph, s->next[c] == NULL means that the |
| // state has not yet been computed and needs to be. We need |
| // a different special value to signal that s->next[c] is a |
| // state that can never lead to a match (and thus the search |
| // can be called off). Hence DeadState. |
| #define DeadState reinterpret_cast<State*>(1) |
| |
| // Signals that the rest of the string matches no matter what it is. |
| #define FullMatchState reinterpret_cast<State*>(2) |
| |
| #define SpecialStateMax FullMatchState |
| |
| // Debugging printouts |
| |
| // For debugging, returns a string representation of the work queue. |
| string DFA::DumpWorkq(Workq* q) { |
| string s; |
| const char* sep = ""; |
| for (Workq::iterator it = q->begin(); it != q->end(); ++it) { |
| if (q->is_mark(*it)) { |
| StringAppendF(&s, "|"); |
| sep = ""; |
| } else { |
| StringAppendF(&s, "%s%d", sep, *it); |
| sep = ","; |
| } |
| } |
| return s; |
| } |
| |
| // For debugging, returns a string representation of the state. |
| string DFA::DumpState(State* state) { |
| if (state == NULL) |
| return "_"; |
| if (state == DeadState) |
| return "X"; |
| if (state == FullMatchState) |
| return "*"; |
| string s; |
| const char* sep = ""; |
| StringAppendF(&s, "(%p)", state); |
| for (int i = 0; i < state->ninst_; i++) { |
| if (state->inst_[i] == Mark) { |
| StringAppendF(&s, "|"); |
| sep = ""; |
| } else if (state->inst_[i] == MatchSep) { |
| StringAppendF(&s, "||"); |
| sep = ""; |
| } else { |
| StringAppendF(&s, "%s%d", sep, state->inst_[i]); |
| sep = ","; |
| } |
| } |
| StringAppendF(&s, " flag=%#x", state->flag_); |
| return s; |
| } |
| |
| ////////////////////////////////////////////////////////////////////// |
| // |
| // DFA state graph construction. |
| // |
| // The DFA state graph is a heavily-linked collection of State* structures. |
| // The state_cache_ is a set of all the State structures ever allocated, |
| // so that if the same state is reached by two different paths, |
| // the same State structure can be used. This reduces allocation |
| // requirements and also avoids duplication of effort across the two |
| // identical states. |
| // |
| // A State is defined by an ordered list of instruction ids and a flag word. |
| // |
| // The choice of an ordered list of instructions differs from a typical |
| // textbook DFA implementation, which would use an unordered set. |
| // Textbook descriptions, however, only care about whether |
| // the DFA matches, not where it matches in the text. To decide where the |
| // DFA matches, we need to mimic the behavior of the dominant backtracking |
| // implementations like PCRE, which try one possible regular expression |
| // execution, then another, then another, stopping when one of them succeeds. |
| // The DFA execution tries these many executions in parallel, representing |
| // each by an instruction id. These pointers are ordered in the State.inst_ |
| // list in the same order that the executions would happen in a backtracking |
| // search: if a match is found during execution of inst_[2], inst_[i] for i>=3 |
| // can be discarded. |
| // |
| // Textbooks also typically do not consider context-aware empty string operators |
| // like ^ or $. These are handled by the flag word, which specifies the set |
| // of empty-string operators that should be matched when executing at the |
| // current text position. These flag bits are defined in prog.h. |
| // The flag word also contains two DFA-specific bits: kFlagMatch if the state |
| // is a matching state (one that reached a kInstMatch in the program) |
| // and kFlagLastWord if the last processed byte was a word character, for the |
| // implementation of \B and \b. |
| // |
| // The flag word also contains, shifted up 16 bits, the bits looked for by |
| // any kInstEmptyWidth instructions in the state. These provide a useful |
| // summary indicating when new flags might be useful. |
| // |
| // The permanent representation of a State's instruction ids is just an array, |
| // but while a state is being analyzed, these instruction ids are represented |
| // as a Workq, which is an array that allows iteration in insertion order. |
| |
| // NOTE(rsc): The choice of State construction determines whether the DFA |
| // mimics backtracking implementations (so-called leftmost first matching) or |
| // traditional DFA implementations (so-called leftmost longest matching as |
| // prescribed by POSIX). This implementation chooses to mimic the |
| // backtracking implementations, because we want to replace PCRE. To get |
| // POSIX behavior, the states would need to be considered not as a simple |
| // ordered list of instruction ids, but as a list of unordered sets of instruction |
| // ids. A match by a state in one set would inhibit the running of sets |
| // farther down the list but not other instruction ids in the same set. Each |
| // set would correspond to matches beginning at a given point in the string. |
| // This is implemented by separating different sets with Mark pointers. |
| |
| // Looks in the State cache for a State matching q, flag. |
| // If one is found, returns it. If one is not found, allocates one, |
| // inserts it in the cache, and returns it. |
| // If mq is not null, MatchSep and the match IDs in mq will be appended |
| // to the State. |
| DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) { |
| //mutex_.AssertHeld(); |
| |
| // Construct array of instruction ids for the new state. |
| // Only ByteRange, EmptyWidth, and Match instructions are useful to keep: |
| // those are the only operators with any effect in |
| // RunWorkqOnEmptyString or RunWorkqOnByte. |
| int* inst = new int[q->size()]; |
| int n = 0; |
| uint32_t needflags = 0; // flags needed by kInstEmptyWidth instructions |
| bool sawmatch = false; // whether queue contains guaranteed kInstMatch |
| bool sawmark = false; // whether queue contains a Mark |
| if (ExtraDebug) |
| fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag); |
| for (Workq::iterator it = q->begin(); it != q->end(); ++it) { |
| int id = *it; |
| if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id))) |
| break; |
| if (q->is_mark(id)) { |
| if (n > 0 && inst[n-1] != Mark) { |
| sawmark = true; |
| inst[n++] = Mark; |
| } |
| continue; |
| } |
| Prog::Inst* ip = prog_->inst(id); |
| switch (ip->opcode()) { |
| case kInstAltMatch: |
| // This state will continue to a match no matter what |
| // the rest of the input is. If it is the highest priority match |
| // being considered, return the special FullMatchState |
| // to indicate that it's all matches from here out. |
| if (kind_ != Prog::kManyMatch && |
| (kind_ != Prog::kFirstMatch || |
| (it == q->begin() && ip->greedy(prog_))) && |
| (kind_ != Prog::kLongestMatch || !sawmark) && |
| (flag & kFlagMatch)) { |
| delete[] inst; |
| if (ExtraDebug) |
| fprintf(stderr, " -> FullMatchState\n"); |
| return FullMatchState; |
| } |
| FALLTHROUGH_INTENDED; |
| default: |
| // Record iff id is the head of its list, which must |
| // be the case if id-1 is the last of *its* list. :) |
| if (prog_->inst(id-1)->last()) |
| inst[n++] = *it; |
| if (ip->opcode() == kInstEmptyWidth) |
| needflags |= ip->empty(); |
| if (ip->opcode() == kInstMatch && !prog_->anchor_end()) |
| sawmatch = true; |
| break; |
| } |
| } |
| DCHECK_LE(n, q->size()); |
| if (n > 0 && inst[n-1] == Mark) |
| n--; |
| |
| // If there are no empty-width instructions waiting to execute, |
| // then the extra flag bits will not be used, so there is no |
| // point in saving them. (Discarding them reduces the number |
| // of distinct states.) |
| if (needflags == 0) |
| flag &= kFlagMatch; |
| |
| // NOTE(rsc): The code above cannot do flag &= needflags, |
| // because if the right flags were present to pass the current |
| // kInstEmptyWidth instructions, new kInstEmptyWidth instructions |
| // might be reached that in turn need different flags. |
| // The only sure thing is that if there are no kInstEmptyWidth |
| // instructions at all, no flags will be needed. |
| // We could do the extra work to figure out the full set of |
| // possibly needed flags by exploring past the kInstEmptyWidth |
| // instructions, but the check above -- are any flags needed |
| // at all? -- handles the most common case. More fine-grained |
| // analysis can only be justified by measurements showing that |
| // too many redundant states are being allocated. |
| |
| // If there are no Insts in the list, it's a dead state, |
| // which is useful to signal with a special pointer so that |
| // the execution loop can stop early. This is only okay |
| // if the state is *not* a matching state. |
| if (n == 0 && flag == 0) { |
| delete[] inst; |
| if (ExtraDebug) |
| fprintf(stderr, " -> DeadState\n"); |
| return DeadState; |
| } |
| |
| // If we're in longest match mode, the state is a sequence of |
| // unordered state sets separated by Marks. Sort each set |
| // to canonicalize, to reduce the number of distinct sets stored. |
| if (kind_ == Prog::kLongestMatch) { |
| int* ip = inst; |
| int* ep = ip + n; |
| while (ip < ep) { |
| int* markp = ip; |
| while (markp < ep && *markp != Mark) |
| markp++; |
| std::sort(ip, markp); |
| if (markp < ep) |
| markp++; |
| ip = markp; |
| } |
| } |
| |
| // Append MatchSep and the match IDs in mq if necessary. |
| if (mq != NULL) { |
| inst[n++] = MatchSep; |
| for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) { |
| int id = *i; |
| Prog::Inst* ip = prog_->inst(id); |
| if (ip->opcode() == kInstMatch) |
| inst[n++] = ip->match_id(); |
| } |
| } |
| |
| // Save the needed empty-width flags in the top bits for use later. |
| flag |= needflags << kFlagNeedShift; |
| |
| State* state = CachedState(inst, n, flag); |
| delete[] inst; |
| return state; |
| } |
| |
| // Looks in the State cache for a State matching inst, ninst, flag. |
| // If one is found, returns it. If one is not found, allocates one, |
| // inserts it in the cache, and returns it. |
| DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) { |
| //mutex_.AssertHeld(); |
| |
| // Look in the cache for a pre-existing state. |
| // We have to initialise the struct like this because otherwise |
| // MSVC will complain about the flexible array member. :( |
| State state; |
| state.inst_ = inst; |
| state.ninst_ = ninst; |
| state.flag_ = flag; |
| StateSet::iterator it = state_cache_.find(&state); |
| if (it != state_cache_.end()) { |
| if (ExtraDebug) |
| fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str()); |
| return *it; |
| } |
| |
| // Must have enough memory for new state. |
| // In addition to what we're going to allocate, |
| // the state cache hash table seems to incur about 40 bytes per |
| // State*, empirically. |
| const int kStateCacheOverhead = 40; |
| int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
| int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) + |
| ninst*sizeof(int); |
| if (mem_budget_ < mem + kStateCacheOverhead) { |
| mem_budget_ = -1; |
| return NULL; |
| } |
| mem_budget_ -= mem + kStateCacheOverhead; |
| |
| // Allocate new state along with room for next_ and inst_. |
| char* space = std::allocator<char>().allocate(mem); |
| State* s = new (space) State; |
| (void) new (s->next_) std::atomic<State*>[nnext]; |
| // Work around a unfortunate bug in older versions of libstdc++. |
| // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658) |
| for (int i = 0; i < nnext; i++) |
| (void) new (s->next_ + i) std::atomic<State*>(NULL); |
| s->inst_ = new (s->next_ + nnext) int[ninst]; |
| memmove(s->inst_, inst, ninst*sizeof s->inst_[0]); |
| s->ninst_ = ninst; |
| s->flag_ = flag; |
| if (ExtraDebug) |
| fprintf(stderr, " -> %s\n", DumpState(s).c_str()); |
| |
| // Put state in cache and return it. |
| state_cache_.insert(s); |
| return s; |
| } |
| |
| // Clear the cache. Must hold cache_mutex_.w or be in destructor. |
| void DFA::ClearCache() { |
| StateSet::iterator begin = state_cache_.begin(); |
| StateSet::iterator end = state_cache_.end(); |
| while (begin != end) { |
| StateSet::iterator tmp = begin; |
| ++begin; |
| // Deallocate the blob of memory that we allocated in DFA::CachedState(). |
| // We recompute mem in order to benefit from sized delete where possible. |
| int ninst = (*tmp)->ninst_; |
| int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
| int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) + |
| ninst*sizeof(int); |
| std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem); |
| } |
| state_cache_.clear(); |
| } |
| |
| // Copies insts in state s to the work queue q. |
| void DFA::StateToWorkq(State* s, Workq* q) { |
| q->clear(); |
| for (int i = 0; i < s->ninst_; i++) { |
| if (s->inst_[i] == Mark) { |
| q->mark(); |
| } else if (s->inst_[i] == MatchSep) { |
| // Nothing after this is an instruction! |
| break; |
| } else { |
| // Explore from the head of the list. |
| AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask); |
| } |
| } |
| } |
| |
| // Adds ip to the work queue, following empty arrows according to flag. |
| void DFA::AddToQueue(Workq* q, int id, uint32_t flag) { |
| |
| // Use stack_ to hold our stack of instructions yet to process. |
| // It was preallocated as follows: |
| // one entry per Capture; |
| // one entry per EmptyWidth; and |
| // one entry per Nop. |
| // This reflects the maximum number of stack pushes that each can |
| // perform. (Each instruction can be processed at most once.) |
| // When using marks, we also added nmark == prog_->size(). |
| // (Otherwise, nmark == 0.) |
| int* stk = stack_.data(); |
| int nstk = 0; |
| |
| stk[nstk++] = id; |
| while (nstk > 0) { |
| DCHECK_LE(nstk, stack_.size()); |
| id = stk[--nstk]; |
| |
| Loop: |
| if (id == Mark) { |
| q->mark(); |
| continue; |
| } |
| |
| if (id == 0) |
| continue; |
| |
| // If ip is already on the queue, nothing to do. |
| // Otherwise add it. We don't actually keep all the |
| // ones that get added, but adding all of them here |
| // increases the likelihood of q->contains(id), |
| // reducing the amount of duplicated work. |
| if (q->contains(id)) |
| continue; |
| q->insert_new(id); |
| |
| // Process instruction. |
| Prog::Inst* ip = prog_->inst(id); |
| switch (ip->opcode()) { |
| default: |
| LOG(DFATAL) << "unhandled opcode: " << ip->opcode(); |
| break; |
| |
| case kInstByteRange: // just save these on the queue |
| case kInstMatch: |
| if (ip->last()) |
| break; |
| id = id+1; |
| goto Loop; |
| |
| case kInstCapture: // DFA treats captures as no-ops. |
| case kInstNop: |
| if (!ip->last()) |
| stk[nstk++] = id+1; |
| |
| // If this instruction is the [00-FF]* loop at the beginning of |
| // a leftmost-longest unanchored search, separate with a Mark so |
| // that future threads (which will start farther to the right in |
| // the input string) are lower priority than current threads. |
| if (ip->opcode() == kInstNop && q->maxmark() > 0 && |
| id == prog_->start_unanchored() && id != prog_->start()) |
| stk[nstk++] = Mark; |
| id = ip->out(); |
| goto Loop; |
| |
| case kInstAltMatch: |
| DCHECK(!ip->last()); |
| id = id+1; |
| goto Loop; |
| |
| case kInstEmptyWidth: |
| if (!ip->last()) |
| stk[nstk++] = id+1; |
| |
| // Continue on if we have all the right flag bits. |
| if (ip->empty() & ~flag) |
| break; |
| id = ip->out(); |
| goto Loop; |
| } |
| } |
| } |
| |
| // Running of work queues. In the work queue, order matters: |
| // the queue is sorted in priority order. If instruction i comes before j, |
| // then the instructions that i produces during the run must come before |
| // the ones that j produces. In order to keep this invariant, all the |
| // work queue runners have to take an old queue to process and then |
| // also a new queue to fill in. It's not acceptable to add to the end of |
| // an existing queue, because new instructions will not end up in the |
| // correct position. |
| |
| // Runs the work queue, processing the empty strings indicated by flag. |
| // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match |
| // both ^ and $. It is important that callers pass all flags at once: |
| // processing both ^ and $ is not the same as first processing only ^ |
| // and then processing only $. Doing the two-step sequence won't match |
| // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior |
| // exhibited by existing implementations). |
| void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) { |
| newq->clear(); |
| for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
| if (oldq->is_mark(*i)) |
| AddToQueue(newq, Mark, flag); |
| else |
| AddToQueue(newq, *i, flag); |
| } |
| } |
| |
| // Runs the work queue, processing the single byte c followed by any empty |
| // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine, |
| // means to match c$. Sets the bool *ismatch to true if the end of the |
| // regular expression program has been reached (the regexp has matched). |
| void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq, |
| int c, uint32_t flag, bool* ismatch) { |
| //mutex_.AssertHeld(); |
| |
| newq->clear(); |
| for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) { |
| if (oldq->is_mark(*i)) { |
| if (*ismatch) |
| return; |
| newq->mark(); |
| continue; |
| } |
| int id = *i; |
| Prog::Inst* ip = prog_->inst(id); |
| switch (ip->opcode()) { |
| default: |
| LOG(DFATAL) << "unhandled opcode: " << ip->opcode(); |
| break; |
| |
| case kInstFail: // never succeeds |
| case kInstCapture: // already followed |
| case kInstNop: // already followed |
| case kInstAltMatch: // already followed |
| case kInstEmptyWidth: // already followed |
| break; |
| |
| case kInstByteRange: // can follow if c is in range |
| if (ip->Matches(c)) |
| AddToQueue(newq, ip->out(), flag); |
| break; |
| |
| case kInstMatch: |
| if (prog_->anchor_end() && c != kByteEndText && |
| kind_ != Prog::kManyMatch) |
| break; |
| *ismatch = true; |
| if (kind_ == Prog::kFirstMatch) { |
| // Can stop processing work queue since we found a match. |
| return; |
| } |
| break; |
| } |
| } |
| |
| if (ExtraDebug) |
| fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(), |
| c, flag, DumpWorkq(newq).c_str(), *ismatch); |
| } |
| |
| // Processes input byte c in state, returning new state. |
| // Caller does not hold mutex. |
| DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) { |
| // Keep only one RunStateOnByte going |
| // even if the DFA is being run by multiple threads. |
| MutexLock l(&mutex_); |
| return RunStateOnByte(state, c); |
| } |
| |
| // Processes input byte c in state, returning new state. |
| DFA::State* DFA::RunStateOnByte(State* state, int c) { |
| //mutex_.AssertHeld(); |
| |
| if (state <= SpecialStateMax) { |
| if (state == FullMatchState) { |
| // It is convenient for routines like PossibleMatchRange |
| // if we implement RunStateOnByte for FullMatchState: |
| // once you get into this state you never get out, |
| // so it's pretty easy. |
| return FullMatchState; |
| } |
| if (state == DeadState) { |
| LOG(DFATAL) << "DeadState in RunStateOnByte"; |
| return NULL; |
| } |
| if (state == NULL) { |
| LOG(DFATAL) << "NULL state in RunStateOnByte"; |
| return NULL; |
| } |
| LOG(DFATAL) << "Unexpected special state in RunStateOnByte"; |
| return NULL; |
| } |
| |
| // If someone else already computed this, return it. |
| State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed); |
| if (ns != NULL) |
| return ns; |
| |
| // Convert state into Workq. |
| StateToWorkq(state, q0_); |
| |
| // Flags marking the kinds of empty-width things (^ $ etc) |
| // around this byte. Before the byte we have the flags recorded |
| // in the State structure itself. After the byte we have |
| // nothing yet (but that will change: read on). |
| uint32_t needflag = state->flag_ >> kFlagNeedShift; |
| uint32_t beforeflag = state->flag_ & kFlagEmptyMask; |
| uint32_t oldbeforeflag = beforeflag; |
| uint32_t afterflag = 0; |
| |
| if (c == '\n') { |
| // Insert implicit $ and ^ around \n |
| beforeflag |= kEmptyEndLine; |
| afterflag |= kEmptyBeginLine; |
| } |
| |
| if (c == kByteEndText) { |
| // Insert implicit $ and \z before the fake "end text" byte. |
| beforeflag |= kEmptyEndLine | kEmptyEndText; |
| } |
| |
| // The state flag kFlagLastWord says whether the last |
| // byte processed was a word character. Use that info to |
| // insert empty-width (non-)word boundaries. |
| bool islastword = (state->flag_ & kFlagLastWord) != 0; |
| bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c)); |
| if (isword == islastword) |
| beforeflag |= kEmptyNonWordBoundary; |
| else |
| beforeflag |= kEmptyWordBoundary; |
| |
| // Okay, finally ready to run. |
| // Only useful to rerun on empty string if there are new, useful flags. |
| if (beforeflag & ~oldbeforeflag & needflag) { |
| RunWorkqOnEmptyString(q0_, q1_, beforeflag); |
| using std::swap; |
| swap(q0_, q1_); |
| } |
| bool ismatch = false; |
| RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch); |
| using std::swap; |
| swap(q0_, q1_); |
| |
| // Save afterflag along with ismatch and isword in new state. |
| uint32_t flag = afterflag; |
| if (ismatch) |
| flag |= kFlagMatch; |
| if (isword) |
| flag |= kFlagLastWord; |
| |
| if (ismatch && kind_ == Prog::kManyMatch) |
| ns = WorkqToCachedState(q0_, q1_, flag); |
| else |
| ns = WorkqToCachedState(q0_, NULL, flag); |
| |
| // Flush ns before linking to it. |
| // Write barrier before updating state->next_ so that the |
| // main search loop can proceed without any locking, for speed. |
| // (Otherwise it would need one mutex operation per input byte.) |
| state->next_[ByteMap(c)].store(ns, std::memory_order_release); |
| return ns; |
| } |
| |
| |
| ////////////////////////////////////////////////////////////////////// |
| // DFA cache reset. |
| |
| // Reader-writer lock helper. |
| // |
| // The DFA uses a reader-writer mutex to protect the state graph itself. |
| // Traversing the state graph requires holding the mutex for reading, |
| // and discarding the state graph and starting over requires holding the |
| // lock for writing. If a search needs to expand the graph but is out |
| // of memory, it will need to drop its read lock and then acquire the |
| // write lock. Since it cannot then atomically downgrade from write lock |
| // to read lock, it runs the rest of the search holding the write lock. |
| // (This probably helps avoid repeated contention, but really the decision |
| // is forced by the Mutex interface.) It's a bit complicated to keep |
| // track of whether the lock is held for reading or writing and thread |
| // that through the search, so instead we encapsulate it in the RWLocker |
| // and pass that around. |
| |
| class DFA::RWLocker { |
| public: |
| explicit RWLocker(Mutex* mu); |
| ~RWLocker(); |
| |
| // If the lock is only held for reading right now, |
| // drop the read lock and re-acquire for writing. |
| // Subsequent calls to LockForWriting are no-ops. |
| // Notice that the lock is *released* temporarily. |
| void LockForWriting(); |
| |
| private: |
| Mutex* mu_; |
| bool writing_; |
| |
| RWLocker(const RWLocker&) = delete; |
| RWLocker& operator=(const RWLocker&) = delete; |
| }; |
| |
| DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) { |
| mu_->ReaderLock(); |
| } |
| |
| // This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations |
| // does not support lock upgrade. |
| void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS { |
| if (!writing_) { |
| mu_->ReaderUnlock(); |
| mu_->WriterLock(); |
| writing_ = true; |
| } |
| } |
| |
| DFA::RWLocker::~RWLocker() { |
| if (!writing_) |
| mu_->ReaderUnlock(); |
| else |
| mu_->WriterUnlock(); |
| } |
| |
| |
| // When the DFA's State cache fills, we discard all the states in the |
| // cache and start over. Many threads can be using and adding to the |
| // cache at the same time, so we synchronize using the cache_mutex_ |
| // to keep from stepping on other threads. Specifically, all the |
| // threads using the current cache hold cache_mutex_ for reading. |
| // When a thread decides to flush the cache, it drops cache_mutex_ |
| // and then re-acquires it for writing. That ensures there are no |
| // other threads accessing the cache anymore. The rest of the search |
| // runs holding cache_mutex_ for writing, avoiding any contention |
| // with or cache pollution caused by other threads. |
| |
| void DFA::ResetCache(RWLocker* cache_lock) { |
| // Re-acquire the cache_mutex_ for writing (exclusive use). |
| cache_lock->LockForWriting(); |
| |
| // Clear the cache, reset the memory budget. |
| for (int i = 0; i < kMaxStart; i++) { |
| start_[i].start = NULL; |
| start_[i].first_byte.store(kFbUnknown, std::memory_order_relaxed); |
| } |
| ClearCache(); |
| mem_budget_ = state_budget_; |
| } |
| |
| // Typically, a couple States do need to be preserved across a cache |
| // reset, like the State at the current point in the search. |
| // The StateSaver class helps keep States across cache resets. |
| // It makes a copy of the state's guts outside the cache (before the reset) |
| // and then can be asked, after the reset, to recreate the State |
| // in the new cache. For example, in a DFA method ("this" is a DFA): |
| // |
| // StateSaver saver(this, s); |
| // ResetCache(cache_lock); |
| // s = saver.Restore(); |
| // |
| // The saver should always have room in the cache to re-create the state, |
| // because resetting the cache locks out all other threads, and the cache |
| // is known to have room for at least a couple states (otherwise the DFA |
| // constructor fails). |
| |
| class DFA::StateSaver { |
| public: |
| explicit StateSaver(DFA* dfa, State* state); |
| ~StateSaver(); |
| |
| // Recreates and returns a state equivalent to the |
| // original state passed to the constructor. |
| // Returns NULL if the cache has filled, but |
| // since the DFA guarantees to have room in the cache |
| // for a couple states, should never return NULL |
| // if used right after ResetCache. |
| State* Restore(); |
| |
| private: |
| DFA* dfa_; // the DFA to use |
| int* inst_; // saved info from State |
| int ninst_; |
| uint32_t flag_; |
| bool is_special_; // whether original state was special |
| State* special_; // if is_special_, the original state |
| |
| StateSaver(const StateSaver&) = delete; |
| StateSaver& operator=(const StateSaver&) = delete; |
| }; |
| |
| DFA::StateSaver::StateSaver(DFA* dfa, State* state) { |
| dfa_ = dfa; |
| if (state <= SpecialStateMax) { |
| inst_ = NULL; |
| ninst_ = 0; |
| flag_ = 0; |
| is_special_ = true; |
| special_ = state; |
| return; |
| } |
| is_special_ = false; |
| special_ = NULL; |
| flag_ = state->flag_; |
| ninst_ = state->ninst_; |
| inst_ = new int[ninst_]; |
| memmove(inst_, state->inst_, ninst_*sizeof inst_[0]); |
| } |
| |
| DFA::StateSaver::~StateSaver() { |
| if (!is_special_) |
| delete[] inst_; |
| } |
| |
| DFA::State* DFA::StateSaver::Restore() { |
| if (is_special_) |
| return special_; |
| MutexLock l(&dfa_->mutex_); |
| State* s = dfa_->CachedState(inst_, ninst_, flag_); |
| if (s == NULL) |
| LOG(DFATAL) << "StateSaver failed to restore state."; |
| return s; |
| } |
| |
| |
| ////////////////////////////////////////////////////////////////////// |
| // |
| // DFA execution. |
| // |
| // The basic search loop is easy: start in a state s and then for each |
| // byte c in the input, s = s->next[c]. |
| // |
| // This simple description omits a few efficiency-driven complications. |
| // |
| // First, the State graph is constructed incrementally: it is possible |
| // that s->next[c] is null, indicating that that state has not been |
| // fully explored. In this case, RunStateOnByte must be invoked to |
| // determine the next state, which is cached in s->next[c] to save |
| // future effort. An alternative reason for s->next[c] to be null is |
| // that the DFA has reached a so-called "dead state", in which any match |
| // is no longer possible. In this case RunStateOnByte will return NULL |
| // and the processing of the string can stop early. |
| // |
| // Second, a 256-element pointer array for s->next_ makes each State |
| // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[] |
| // maps from bytes to "byte classes" and then next_ only needs to have |
| // as many pointers as there are byte classes. A byte class is simply a |
| // range of bytes that the regexp never distinguishes between. |
| // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1, |
| // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit |
| // but in exchange we typically cut the size of a State (and thus our |
| // memory footprint) by about 5-10x. The comments still refer to |
| // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]]. |
| // |
| // Third, it is common for a DFA for an unanchored match to begin in a |
| // state in which only one particular byte value can take the DFA to a |
| // different state. That is, s->next[c] != s for only one c. In this |
| // situation, the DFA can do better than executing the simple loop. |
| // Instead, it can call memchr to search very quickly for the byte c. |
| // Whether the start state has this property is determined during a |
| // pre-compilation pass, and if so, the byte b is passed to the search |
| // loop as the "first_byte" argument, along with a boolean "have_first_byte". |
| // |
| // Fourth, the desired behavior is to search for the leftmost-best match |
| // (approximately, the same one that Perl would find), which is not |
| // necessarily the match ending earliest in the string. Each time a |
| // match is found, it must be noted, but the DFA must continue on in |
| // hope of finding a higher-priority match. In some cases, the caller only |
| // cares whether there is any match at all, not which one is found. |
| // The "want_earliest_match" flag causes the search to stop at the first |
| // match found. |
| // |
| // Fifth, one algorithm that uses the DFA needs it to run over the |
| // input string backward, beginning at the end and ending at the beginning. |
| // Passing false for the "run_forward" flag causes the DFA to run backward. |
| // |
| // The checks for these last three cases, which in a naive implementation |
| // would be performed once per input byte, slow the general loop enough |
| // to merit specialized versions of the search loop for each of the |
| // eight possible settings of the three booleans. Rather than write |
| // eight different functions, we write one general implementation and then |
| // inline it to create the specialized ones. |
| // |
| // Note that matches are delayed by one byte, to make it easier to |
| // accomodate match conditions depending on the next input byte (like $ and \b). |
| // When s->next[c]->IsMatch(), it means that there is a match ending just |
| // *before* byte c. |
| |
| // The generic search loop. Searches text for a match, returning |
| // the pointer to the end of the chosen match, or NULL if no match. |
| // The bools are equal to the same-named variables in params, but |
| // making them function arguments lets the inliner specialize |
| // this function to each combination (see two paragraphs above). |
| inline bool DFA::InlinedSearchLoop(SearchParams* params, |
| bool have_first_byte, |
| bool want_earliest_match, |
| bool run_forward) { |
| State* start = params->start; |
| const uint8_t* bp = BytePtr(params->text.begin()); // start of text |
| const uint8_t* p = bp; // text scanning point |
| const uint8_t* ep = BytePtr(params->text.end()); // end of text |
| const uint8_t* resetp = NULL; // p at last cache reset |
| if (!run_forward) { |
| using std::swap; |
| swap(p, ep); |
| } |
| |
| const uint8_t* bytemap = prog_->bytemap(); |
| const uint8_t* lastmatch = NULL; // most recent matching position in text |
| bool matched = false; |
| |
| State* s = start; |
| if (ExtraDebug) |
| fprintf(stderr, "@stx: %s\n", DumpState(s).c_str()); |
| |
| if (s->IsMatch()) { |
| matched = true; |
| lastmatch = p; |
| if (ExtraDebug) |
| fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str()); |
| if (params->matches != NULL && kind_ == Prog::kManyMatch) { |
| for (int i = s->ninst_ - 1; i >= 0; i--) { |
| int id = s->inst_[i]; |
| if (id == MatchSep) |
| break; |
| params->matches->insert(id); |
| } |
| } |
| if (want_earliest_match) { |
| params->ep = reinterpret_cast<const char*>(lastmatch); |
| return true; |
| } |
| } |
| |
| while (p != ep) { |
| if (ExtraDebug) |
| fprintf(stderr, "@%td: %s\n", |
| p - bp, DumpState(s).c_str()); |
| |
| if (have_first_byte && s == start) { |
| // In start state, only way out is to find first_byte, |
| // so use optimized assembly in memchr to skip ahead. |
| // If first_byte isn't found, we can skip to the end |
| // of the string. |
| if (run_forward) { |
| if ((p = BytePtr(memchr(p, params->first_byte, ep - p))) == NULL) { |
| p = ep; |
| break; |
| } |
| } else { |
| if ((p = BytePtr(memrchr(ep, params->first_byte, p - ep))) == NULL) { |
| p = ep; |
| break; |
| } |
| p++; |
| } |
| } |
| |
| int c; |
| if (run_forward) |
| c = *p++; |
| else |
| c = *--p; |
| |
| // Note that multiple threads might be consulting |
| // s->next_[bytemap[c]] simultaneously. |
| // RunStateOnByte takes care of the appropriate locking, |
| // including a memory barrier so that the unlocked access |
| // (sometimes known as "double-checked locking") is safe. |
| // The alternative would be either one DFA per thread |
| // or one mutex operation per input byte. |
| // |
| // ns == DeadState means the state is known to be dead |
| // (no more matches are possible). |
| // ns == NULL means the state has not yet been computed |
| // (need to call RunStateOnByteUnlocked). |
| // RunStateOnByte returns ns == NULL if it is out of memory. |
| // ns == FullMatchState means the rest of the string matches. |
| // |
| // Okay to use bytemap[] not ByteMap() here, because |
| // c is known to be an actual byte and not kByteEndText. |
| |
| State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire); |
| if (ns == NULL) { |
| ns = RunStateOnByteUnlocked(s, c); |
| if (ns == NULL) { |
| // After we reset the cache, we hold cache_mutex exclusively, |
| // so if resetp != NULL, it means we filled the DFA state |
| // cache with this search alone (without any other threads). |
| // Benchmarks show that doing a state computation on every |
| // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the |
| // same at about 2 MB/s. Unless we're processing an average |
| // of 10 bytes per state computation, fail so that RE2 can |
| // fall back to the NFA. |
| if (dfa_should_bail_when_slow && resetp != NULL && |
| static_cast<size_t>(p - resetp) < 10*state_cache_.size()) { |
| params->failed = true; |
| return false; |
| } |
| resetp = p; |
| |
| // Prepare to save start and s across the reset. |
| StateSaver save_start(this, start); |
| StateSaver save_s(this, s); |
| |
| // Discard all the States in the cache. |
| ResetCache(params->cache_lock); |
| |
| // Restore start and s so we can continue. |
| if ((start = save_start.Restore()) == NULL || |
| (s = save_s.Restore()) == NULL) { |
| // Restore already did LOG(DFATAL). |
| params->failed = true; |
| return false; |
| } |
| ns = RunStateOnByteUnlocked(s, c); |
| if (ns == NULL) { |
| LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache"; |
| params->failed = true; |
| return false; |
| } |
| } |
| } |
| if (ns <= SpecialStateMax) { |
| if (ns == DeadState) { |
| params->ep = reinterpret_cast<const char*>(lastmatch); |
| return matched; |
| } |
| // FullMatchState |
| params->ep = reinterpret_cast<const char*>(ep); |
| return true; |
| } |
| |
| s = ns; |
| if (s->IsMatch()) { |
| matched = true; |
| // The DFA notices the match one byte late, |
| // so adjust p before using it in the match. |
| if (run_forward) |
| lastmatch = p - 1; |
| else |
| lastmatch = p + 1; |
| if (ExtraDebug) |
| fprintf(stderr, "match @%td! [%s]\n", |
| lastmatch - bp, DumpState(s).c_str()); |
| if (params->matches != NULL && kind_ == Prog::kManyMatch) { |
| for (int i = s->ninst_ - 1; i >= 0; i--) { |
| int id = s->inst_[i]; |
| if (id == MatchSep) |
| break; |
| params->matches->insert(id); |
| } |
| } |
| if (want_earliest_match) { |
| params->ep = reinterpret_cast<const char*>(lastmatch); |
| return true; |
| } |
| } |
| } |
| |
| // Process one more byte to see if it triggers a match. |
| // (Remember, matches are delayed one byte.) |
| if (ExtraDebug) |
| fprintf(stderr, "@etx: %s\n", DumpState(s).c_str()); |
| |
| int lastbyte; |
| if (run_forward) { |
| if (params->text.end() == params->context.end()) |
| lastbyte = kByteEndText; |
| else |
| lastbyte = params->text.end()[0] & 0xFF; |
| } else { |
| if (params->text.begin() == params->context.begin()) |
| lastbyte = kByteEndText; |
| else |
| lastbyte = params->text.begin()[-1] & 0xFF; |
| } |
| |
| State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire); |
| if (ns == NULL) { |
| ns = RunStateOnByteUnlocked(s, lastbyte); |
| if (ns == NULL) { |
| StateSaver save_s(this, s); |
| ResetCache(params->cache_lock); |
| if ((s = save_s.Restore()) == NULL) { |
| params->failed = true; |
| return false; |
| } |
| ns = RunStateOnByteUnlocked(s, lastbyte); |
| if (ns == NULL) { |
| LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset"; |
| params->failed = true; |
| return false; |
| } |
| } |
| } |
| if (ns <= SpecialStateMax) { |
| if (ns == DeadState) { |
| params->ep = reinterpret_cast<const char*>(lastmatch); |
| return matched; |
| } |
| // FullMatchState |
| params->ep = reinterpret_cast<const char*>(ep); |
| return true; |
| } |
| |
| s = ns; |
| if (s->IsMatch()) { |
| matched = true; |
| lastmatch = p; |
| if (ExtraDebug) |
| fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str()); |
| if (params->matches != NULL && kind_ == Prog::kManyMatch) { |
| for (int i = s->ninst_ - 1; i >= 0; i--) { |
| int id = s->inst_[i]; |
| if (id == MatchSep) |
| break; |
| params->matches->insert(id); |
| } |
| } |
| } |
| |
| params->ep = reinterpret_cast<const char*>(lastmatch); |
| return matched; |
| } |
| |
| // Inline specializations of the general loop. |
| bool DFA::SearchFFF(SearchParams* params) { |
| return InlinedSearchLoop(params, 0, 0, 0); |
| } |
| bool DFA::SearchFFT(SearchParams* params) { |
| return InlinedSearchLoop(params, 0, 0, 1); |
| } |
| bool DFA::SearchFTF(SearchParams* params) { |
| return InlinedSearchLoop(params, 0, 1, 0); |
| } |
| bool DFA::SearchFTT(SearchParams* params) { |
| return InlinedSearchLoop(params, 0, 1, 1); |
| } |
| bool DFA::SearchTFF(SearchParams* params) { |
| return InlinedSearchLoop(params, 1, 0, 0); |
| } |
| bool DFA::SearchTFT(SearchParams* params) { |
| return InlinedSearchLoop(params, 1, 0, 1); |
| } |
| bool DFA::SearchTTF(SearchParams* params) { |
| return InlinedSearchLoop(params, 1, 1, 0); |
| } |
| bool DFA::SearchTTT(SearchParams* params) { |
| return InlinedSearchLoop(params, 1, 1, 1); |
| } |
| |
| // For debugging, calls the general code directly. |
| bool DFA::SlowSearchLoop(SearchParams* params) { |
| return InlinedSearchLoop(params, |
| params->first_byte >= 0, |
| params->want_earliest_match, |
| params->run_forward); |
| } |
| |
| // For performance, calls the appropriate specialized version |
| // of InlinedSearchLoop. |
| bool DFA::FastSearchLoop(SearchParams* params) { |
| // Because the methods are private, the Searches array |
| // cannot be declared at top level. |
| static bool (DFA::*Searches[])(SearchParams*) = { |
| &DFA::SearchFFF, |
| &DFA::SearchFFT, |
| &DFA::SearchFTF, |
| &DFA::SearchFTT, |
| &DFA::SearchTFF, |
| &DFA::SearchTFT, |
| &DFA::SearchTTF, |
| &DFA::SearchTTT, |
| }; |
| |
| bool have_first_byte = params->first_byte >= 0; |
| int index = 4 * have_first_byte + |
| 2 * params->want_earliest_match + |
| 1 * params->run_forward; |
| return (this->*Searches[index])(params); |
| } |
| |
| |
| // The discussion of DFA execution above ignored the question of how |
| // to determine the initial state for the search loop. There are two |
| // factors that influence the choice of start state. |
| // |
| // The first factor is whether the search is anchored or not. |
| // The regexp program (Prog*) itself has |
| // two different entry points: one for anchored searches and one for |
| // unanchored searches. (The unanchored version starts with a leading ".*?" |
| // and then jumps to the anchored one.) |
| // |
| // The second factor is where text appears in the larger context, which |
| // determines which empty-string operators can be matched at the beginning |
| // of execution. If text is at the very beginning of context, \A and ^ match. |
| // Otherwise if text is at the beginning of a line, then ^ matches. |
| // Otherwise it matters whether the character before text is a word character |
| // or a non-word character. |
| // |
| // The two cases (unanchored vs not) and four cases (empty-string flags) |
| // combine to make the eight cases recorded in the DFA's begin_text_[2], |
| // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached |
| // StartInfos. The start state for each is filled in the first time it |
| // is used for an actual search. |
| |
| // Examines text, context, and anchored to determine the right start |
| // state for the DFA search loop. Fills in params and returns true on success. |
| // Returns false on failure. |
| bool DFA::AnalyzeSearch(SearchParams* params) { |
| const StringPiece& text = params->text; |
| const StringPiece& context = params->context; |
| |
| // Sanity check: make sure that text lies within context. |
| if (text.begin() < context.begin() || text.end() > context.end()) { |
| LOG(DFATAL) << "context does not contain text"; |
| params->start = DeadState; |
| return true; |
| } |
| |
| // Determine correct search type. |
| int start; |
| uint32_t flags; |
| if (params->run_forward) { |
| if (text.begin() == context.begin()) { |
| start = kStartBeginText; |
| flags = kEmptyBeginText|kEmptyBeginLine; |
| } else if (text.begin()[-1] == '\n') { |
| start = kStartBeginLine; |
| flags = kEmptyBeginLine; |
| } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) { |
| start = kStartAfterWordChar; |
| flags = kFlagLastWord; |
| } else { |
| start = kStartAfterNonWordChar; |
| flags = 0; |
| } |
| } else { |
| if (text.end() == context.end()) { |
| start = kStartBeginText; |
| flags = kEmptyBeginText|kEmptyBeginLine; |
| } else if (text.end()[0] == '\n') { |
| start = kStartBeginLine; |
| flags = kEmptyBeginLine; |
| } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) { |
| start = kStartAfterWordChar; |
| flags = kFlagLastWord; |
| } else { |
| start = kStartAfterNonWordChar; |
| flags = 0; |
| } |
| } |
| if (params->anchored) |
| start |= kStartAnchored; |
| StartInfo* info = &start_[start]; |
| |
| // Try once without cache_lock for writing. |
| // Try again after resetting the cache |
| // (ResetCache will relock cache_lock for writing). |
| if (!AnalyzeSearchHelper(params, info, flags)) { |
| ResetCache(params->cache_lock); |
| if (!AnalyzeSearchHelper(params, info, flags)) { |
| LOG(DFATAL) << "Failed to analyze start state."; |
| params->failed = true; |
| return false; |
| } |
| } |
| |
| if (ExtraDebug) |
| fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s first_byte=%d\n", |
| params->anchored, params->run_forward, flags, |
| DumpState(info->start).c_str(), info->first_byte.load()); |
| |
| params->start = info->start; |
| params->first_byte = info->first_byte.load(std::memory_order_acquire); |
| |
| return true; |
| } |
| |
| // Fills in info if needed. Returns true on success, false on failure. |
| bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info, |
| uint32_t flags) { |
| // Quick check. |
| int fb = info->first_byte.load(std::memory_order_acquire); |
| if (fb != kFbUnknown) |
| return true; |
| |
| MutexLock l(&mutex_); |
| fb = info->first_byte.load(std::memory_order_relaxed); |
| if (fb != kFbUnknown) |
| return true; |
| |
| q0_->clear(); |
| AddToQueue(q0_, |
| params->anchored ? prog_->start() : prog_->start_unanchored(), |
| flags); |
| info->start = WorkqToCachedState(q0_, NULL, flags); |
| if (info->start == NULL) |
| return false; |
| |
| if (info->start == DeadState) { |
| // Synchronize with "quick check" above. |
| info->first_byte.store(kFbNone, std::memory_order_release); |
| return true; |
| } |
| |
| if (info->start == FullMatchState) { |
| // Synchronize with "quick check" above. |
| info->first_byte.store(kFbNone, std::memory_order_release); // will be ignored |
| return true; |
| } |
| |
| // Even if we have a first_byte, we cannot use it when anchored and, |
| // less obviously, we cannot use it when we are going to need flags. |
| // This trick works only when there is a single byte that leads to a |
| // different state! |
| int first_byte = prog_->first_byte(); |
| if (first_byte == -1 || |
| params->anchored || |
| info->start->flag_ >> kFlagNeedShift != 0) |
| first_byte = kFbNone; |
| |
| // Synchronize with "quick check" above. |
| info->first_byte.store(first_byte, std::memory_order_release); |
| return true; |
| } |
| |
| // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop. |
| bool DFA::Search(const StringPiece& text, |
| const StringPiece& context, |
| bool anchored, |
| bool want_earliest_match, |
| bool run_forward, |
| bool* failed, |
| const char** epp, |
| SparseSet* matches) { |
| *epp = NULL; |
| if (!ok()) { |
| *failed = true; |
| return false; |
| } |
| *failed = false; |
| |
| if (ExtraDebug) { |
| fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str()); |
| fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n", |
| string(text).c_str(), anchored, want_earliest_match, |
| run_forward, kind_); |
| } |
| |
| RWLocker l(&cache_mutex_); |
| SearchParams params(text, context, &l); |
| params.anchored = anchored; |
| params.want_earliest_match = want_earliest_match; |
| params.run_forward = run_forward; |
| params.matches = matches; |
| |
| if (!AnalyzeSearch(¶ms)) { |
| *failed = true; |
| return false; |
| } |
| if (params.start == DeadState) |
| return false; |
| if (params.start == FullMatchState) { |
| if (run_forward == want_earliest_match) |
| *epp = text.begin(); |
| else |
| *epp = text.end(); |
| return true; |
| } |
| if (ExtraDebug) |
| fprintf(stderr, "start %s\n", DumpState(params.start).c_str()); |
| bool ret = FastSearchLoop(¶ms); |
| if (params.failed) { |
| *failed = true; |
| return false; |
| } |
| *epp = params.ep; |
| return ret; |
| } |
| |
| DFA* Prog::GetDFA(MatchKind kind) { |
| // For a forward DFA, half the memory goes to each DFA. |
| // However, if it is a "many match" DFA, then there is |
| // no counterpart with which the memory must be shared. |
| // |
| // For a reverse DFA, all the memory goes to the |
| // "longest match" DFA, because RE2 never does reverse |
| // "first match" searches. |
| if (kind == kFirstMatch) { |
| std::call_once(dfa_first_once_, [](Prog* prog) { |
| prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2); |
| }, this); |
| return dfa_first_; |
| } else if (kind == kManyMatch) { |
| std::call_once(dfa_first_once_, [](Prog* prog) { |
| prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_); |
| }, this); |
| return dfa_first_; |
| } else { |
| std::call_once(dfa_longest_once_, [](Prog* prog) { |
| if (!prog->reversed_) |
| prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2); |
| else |
| prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_); |
| }, this); |
| return dfa_longest_; |
| } |
| } |
| |
| void Prog::DeleteDFA(DFA* dfa) { |
| delete dfa; |
| } |
| |
| // Executes the regexp program to search in text, |
| // which itself is inside the larger context. (As a convenience, |
| // passing a NULL context is equivalent to passing text.) |
| // Returns true if a match is found, false if not. |
| // If a match is found, fills in match0->end() to point at the end of the match |
| // and sets match0->begin() to text.begin(), since the DFA can't track |
| // where the match actually began. |
| // |
| // This is the only external interface (class DFA only exists in this file). |
| // |
| bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context, |
| Anchor anchor, MatchKind kind, StringPiece* match0, |
| bool* failed, SparseSet* matches) { |
| *failed = false; |
| |
| StringPiece context = const_context; |
| if (context.begin() == NULL) |
| context = text; |
| bool carat = anchor_start(); |
| bool dollar = anchor_end(); |
| if (reversed_) { |
| using std::swap; |
| swap(carat, dollar); |
| } |
| if (carat && context.begin() != text.begin()) |
| return false; |
| if (dollar && context.end() != text.end()) |
| return false; |
| |
| // Handle full match by running an anchored longest match |
| // and then checking if it covers all of text. |
| bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch; |
| bool endmatch = false; |
| if (kind == kManyMatch) { |
| // This is split out in order to avoid clobbering kind. |
| } else if (kind == kFullMatch || anchor_end()) { |
| endmatch = true; |
| kind = kLongestMatch; |
| } |
| |
| // If the caller doesn't care where the match is (just whether one exists), |
| // then we can stop at the very first match we find, the so-called |
| // "earliest match". |
| bool want_earliest_match = false; |
| if (kind == kManyMatch) { |
| // This is split out in order to avoid clobbering kind. |
| if (matches == NULL) { |
| want_earliest_match = true; |
| } |
| } else if (match0 == NULL && !endmatch) { |
| want_earliest_match = true; |
| kind = kLongestMatch; |
| } |
| |
| DFA* dfa = GetDFA(kind); |
| const char* ep; |
| bool matched = dfa->Search(text, context, anchored, |
| want_earliest_match, !reversed_, |
| failed, &ep, matches); |
| if (*failed) |
| return false; |
| if (!matched) |
| return false; |
| if (endmatch && ep != (reversed_ ? text.begin() : text.end())) |
| return false; |
| |
| // If caller cares, record the boundary of the match. |
| // We only know where it ends, so use the boundary of text |
| // as the beginning. |
| if (match0) { |
| if (reversed_) |
| *match0 = StringPiece(ep, static_cast<size_t>(text.end() - ep)); |
| else |
| *match0 = |
| StringPiece(text.begin(), static_cast<size_t>(ep - text.begin())); |
| } |
| return true; |
| } |
| |
| // Build out all states in DFA. Returns number of states. |
| int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) { |
| if (!ok()) |
| return 0; |
| |
| // Pick out start state for unanchored search |
| // at beginning of text. |
| RWLocker l(&cache_mutex_); |
| SearchParams params(StringPiece(), StringPiece(), &l); |
| params.anchored = false; |
| if (!AnalyzeSearch(¶ms) || |
| params.start == NULL || |
| params.start == DeadState) |
| return 0; |
| |
| // Add start state to work queue. |
| // Note that any State* that we handle here must point into the cache, |
| // so we can simply depend on pointer-as-a-number hashing and equality. |
| std::unordered_map<State*, int> m; |
| std::deque<State*> q; |
| m.emplace(params.start, static_cast<int>(m.size())); |
| q.push_back(params.start); |
| |
| // Compute the input bytes needed to cover all of the next pointers. |
| int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot |
| std::vector<int> input(nnext); |
| for (int c = 0; c < 256; c++) { |
| int b = prog_->bytemap()[c]; |
| while (c < 256-1 && prog_->bytemap()[c+1] == b) |
| c++; |
| input[b] = c; |
| } |
| input[prog_->bytemap_range()] = kByteEndText; |
| |
| // Scratch space for the output. |
| std::vector<int> output(nnext); |
| |
| // Flood to expand every state. |
| bool oom = false; |
| while (!q.empty()) { |
| State* s = q.front(); |
| q.pop_front(); |
| for (int c : input) { |
| State* ns = RunStateOnByteUnlocked(s, c); |
| if (ns == NULL) { |
| oom = true; |
| break; |
| } |
| if (ns == DeadState) { |
| output[ByteMap(c)] = -1; |
| continue; |
| } |
| if (m.find(ns) == m.end()) { |
| m.emplace(ns, static_cast<int>(m.size())); |
| q.push_back(ns); |
| } |
| output[ByteMap(c)] = m[ns]; |
| } |
| if (cb) |
| cb(oom ? NULL : output.data(), |
| s == FullMatchState || s->IsMatch()); |
| if (oom) |
| break; |
| } |
| |
| return static_cast<int>(m.size()); |
| } |
| |
| // Build out all states in DFA for kind. Returns number of states. |
| int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) { |
| return GetDFA(kind)->BuildAllStates(cb); |
| } |
| |
| void Prog::TEST_dfa_should_bail_when_slow(bool b) { |
| dfa_should_bail_when_slow = b; |
| } |
| |
| // Computes min and max for matching string. |
| // Won't return strings bigger than maxlen. |
| bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) { |
| if (!ok()) |
| return false; |
| |
| // NOTE: if future users of PossibleMatchRange want more precision when |
| // presented with infinitely repeated elements, consider making this a |
| // parameter to PossibleMatchRange. |
| static int kMaxEltRepetitions = 0; |
| |
| // Keep track of the number of times we've visited states previously. We only |
| // revisit a given state if it's part of a repeated group, so if the value |
| // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set |
| // |*max| to |PrefixSuccessor(*max)|. |
| // |
| // Also note that previously_visited_states[UnseenStatePtr] will, in the STL |
| // tradition, implicitly insert a '0' value at first use. We take advantage |
| // of that property below. |
| std::unordered_map<State*, int> previously_visited_states; |
| |
| // Pick out start state for anchored search at beginning of text. |
| RWLocker l(&cache_mutex_); |
| SearchParams params(StringPiece(), StringPiece(), &l); |
| params.anchored = true; |
| if (!AnalyzeSearch(¶ms)) |
| return false; |
| if (params.start == DeadState) { // No matching strings |
| *min = ""; |
| *max = ""; |
| return true; |
| } |
| if (params.start == FullMatchState) // Every string matches: no max |
| return false; |
| |
| // The DFA is essentially a big graph rooted at params.start, |
| // and paths in the graph correspond to accepted strings. |
| // Each node in the graph has potentially 256+1 arrows |
| // coming out, one for each byte plus the magic end of |
| // text character kByteEndText. |
| |
| // To find the smallest possible prefix of an accepted |
| // string, we just walk the graph preferring to follow |
| // arrows with the lowest bytes possible. To find the |
| // largest possible prefix, we follow the largest bytes |
| // possible. |
| |
| // The test for whether there is an arrow from s on byte j is |
| // ns = RunStateOnByteUnlocked(s, j); |
| // if (ns == NULL) |
| // return false; |
| // if (ns != DeadState && ns->ninst > 0) |
| // The RunStateOnByteUnlocked call asks the DFA to build out the graph. |
| // It returns NULL only if the DFA has run out of memory, |
| // in which case we can't be sure of anything. |
| // The second check sees whether there was graph built |
| // and whether it is interesting graph. Nodes might have |
| // ns->ninst == 0 if they exist only to represent the fact |
| // that a match was found on the previous byte. |
| |
| // Build minimum prefix. |
| State* s = params.start; |
| min->clear(); |
| MutexLock lock(&mutex_); |
| for (int i = 0; i < maxlen; i++) { |
| if (previously_visited_states[s] > kMaxEltRepetitions) |
| break; |
| previously_visited_states[s]++; |
| |
| // Stop if min is a match. |
| State* ns = RunStateOnByte(s, kByteEndText); |
| if (ns == NULL) // DFA out of memory |
| return false; |
| if (ns != DeadState && (ns == FullMatchState || ns->IsMatch())) |
| break; |
| |
| // Try to extend the string with low bytes. |
| bool extended = false; |
| for (int j = 0; j < 256; j++) { |
| ns = RunStateOnByte(s, j); |
| if (ns == NULL) // DFA out of memory |
| return false; |
| if (ns == FullMatchState || |
| (ns > SpecialStateMax && ns->ninst_ > 0)) { |
| extended = true; |
| min->append(1, static_cast<char>(j)); |
| s = ns; |
| break; |
| } |
| } |
| if (!extended) |
| break; |
| } |
| |
| // Build maximum prefix. |
| previously_visited_states.clear(); |
| s = params.start; |
| max->clear(); |
| for (int i = 0; i < maxlen; i++) { |
| if (previously_visited_states[s] > kMaxEltRepetitions) |
| break; |
| previously_visited_states[s] += 1; |
| |
| // Try to extend the string with high bytes. |
| bool extended = false; |
| for (int j = 255; j >= 0; j--) { |
| State* ns = RunStateOnByte(s, j); |
| if (ns == NULL) |
| return false; |
| if (ns == FullMatchState || |
| (ns > SpecialStateMax && ns->ninst_ > 0)) { |
| extended = true; |
| max->append(1, static_cast<char>(j)); |
| s = ns; |
| break; |
| } |
| } |
| if (!extended) { |
| // Done, no need for PrefixSuccessor. |
| return true; |
| } |
| } |
| |
| // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b |
| PrefixSuccessor(max); |
| |
| // If there are no bytes left, we have no way to say "there is no maximum |
| // string". We could make the interface more complicated and be able to |
| // return "there is no maximum but here is a minimum", but that seems like |
| // overkill -- the most common no-max case is all possible strings, so not |
| // telling the caller that the empty string is the minimum match isn't a |
| // great loss. |
| if (max->empty()) |
| return false; |
| |
| return true; |
| } |
| |
| // PossibleMatchRange for a Prog. |
| bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) { |
| // Have to use dfa_longest_ to get all strings for full matches. |
| // For example, (a|aa) never matches aa in first-match mode. |
| return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen); |
| } |
| |
| } // namespace re2 |