blob: c8dea7e0362309e55db51ccddae5969f8c114ed3 [file] [log] [blame]
// Copyright 2006 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Regular expression parser.
// The parser is a simple precedence-based parser with a
// manual stack. The parsing work is done by the methods
// of the ParseState class. The Regexp::Parse function is
// essentially just a lexer that calls the ParseState method
// for each token.
// The parser recognizes POSIX extended regular expressions
// excluding backreferences, collating elements, and collating
// classes. It also allows the empty string as a regular expression
// and recognizes the Perl escape sequences \d, \s, \w, \D, \S, and \W.
// See regexp.h for rationale.
#include <ctype.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <string>
#include <vector>
#include "util/util.h"
#include "util/logging.h"
#include "util/pod_array.h"
#include "util/strutil.h"
#include "util/utf.h"
#include "re2/regexp.h"
#include "re2/stringpiece.h"
#include "re2/unicode_casefold.h"
#include "re2/unicode_groups.h"
#include "re2/walker-inl.h"
#if defined(RE2_USE_ICU)
#include "unicode/uniset.h"
#include "unicode/unistr.h"
#include "unicode/utypes.h"
#endif
namespace re2 {
// Reduce the maximum repeat count by an order of magnitude when fuzzing.
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
static const int kMaxRepeat = 100;
#else
static const int kMaxRepeat = 1000;
#endif
// Regular expression parse state.
// The list of parsed regexps so far is maintained as a vector of
// Regexp pointers called the stack. Left parenthesis and vertical
// bar markers are also placed on the stack, as Regexps with
// non-standard opcodes.
// Scanning a left parenthesis causes the parser to push a left parenthesis
// marker on the stack.
// Scanning a vertical bar causes the parser to pop the stack until it finds a
// vertical bar or left parenthesis marker (not popping the marker),
// concatenate all the popped results, and push them back on
// the stack (DoConcatenation).
// Scanning a right parenthesis causes the parser to act as though it
// has seen a vertical bar, which then leaves the top of the stack in the
// form LeftParen regexp VerticalBar regexp VerticalBar ... regexp VerticalBar.
// The parser pops all this off the stack and creates an alternation of the
// regexps (DoAlternation).
class Regexp::ParseState {
public:
ParseState(ParseFlags flags, const StringPiece& whole_regexp,
RegexpStatus* status);
~ParseState();
ParseFlags flags() { return flags_; }
int rune_max() { return rune_max_; }
// Parse methods. All public methods return a bool saying
// whether parsing should continue. If a method returns
// false, it has set fields in *status_, and the parser
// should return NULL.
// Pushes the given regular expression onto the stack.
// Could check for too much memory used here.
bool PushRegexp(Regexp* re);
// Pushes the literal rune r onto the stack.
bool PushLiteral(Rune r);
// Pushes a regexp with the given op (and no args) onto the stack.
bool PushSimpleOp(RegexpOp op);
// Pushes a ^ onto the stack.
bool PushCarat();
// Pushes a \b (word == true) or \B (word == false) onto the stack.
bool PushWordBoundary(bool word);
// Pushes a $ onto the stack.
bool PushDollar();
// Pushes a . onto the stack
bool PushDot();
// Pushes a repeat operator regexp onto the stack.
// A valid argument for the operator must already be on the stack.
// s is the name of the operator, for use in error messages.
bool PushRepeatOp(RegexpOp op, const StringPiece& s, bool nongreedy);
// Pushes a repetition regexp onto the stack.
// A valid argument for the operator must already be on the stack.
bool PushRepetition(int min, int max, const StringPiece& s, bool nongreedy);
// Checks whether a particular regexp op is a marker.
bool IsMarker(RegexpOp op);
// Processes a left parenthesis in the input.
// Pushes a marker onto the stack.
bool DoLeftParen(const StringPiece& name);
bool DoLeftParenNoCapture();
// Processes a vertical bar in the input.
bool DoVerticalBar();
// Processes a right parenthesis in the input.
bool DoRightParen();
// Processes the end of input, returning the final regexp.
Regexp* DoFinish();
// Finishes the regexp if necessary, preparing it for use
// in a more complicated expression.
// If it is a CharClassBuilder, converts into a CharClass.
Regexp* FinishRegexp(Regexp*);
// These routines don't manipulate the parse stack
// directly, but they do need to look at flags_.
// ParseCharClass also manipulates the internals of Regexp
// while creating *out_re.
// Parse a character class into *out_re.
// Removes parsed text from s.
bool ParseCharClass(StringPiece* s, Regexp** out_re,
RegexpStatus* status);
// Parse a character class character into *rp.
// Removes parsed text from s.
bool ParseCCCharacter(StringPiece* s, Rune *rp,
const StringPiece& whole_class,
RegexpStatus* status);
// Parse a character class range into rr.
// Removes parsed text from s.
bool ParseCCRange(StringPiece* s, RuneRange* rr,
const StringPiece& whole_class,
RegexpStatus* status);
// Parse a Perl flag set or non-capturing group from s.
bool ParsePerlFlags(StringPiece* s);
// Finishes the current concatenation,
// collapsing it into a single regexp on the stack.
void DoConcatenation();
// Finishes the current alternation,
// collapsing it to a single regexp on the stack.
void DoAlternation();
// Generalized DoAlternation/DoConcatenation.
void DoCollapse(RegexpOp op);
// Maybe concatenate Literals into LiteralString.
bool MaybeConcatString(int r, ParseFlags flags);
private:
ParseFlags flags_;
StringPiece whole_regexp_;
RegexpStatus* status_;
Regexp* stacktop_;
int ncap_; // number of capturing parens seen
int rune_max_; // maximum char value for this encoding
ParseState(const ParseState&) = delete;
ParseState& operator=(const ParseState&) = delete;
};
// Pseudo-operators - only on parse stack.
const RegexpOp kLeftParen = static_cast<RegexpOp>(kMaxRegexpOp+1);
const RegexpOp kVerticalBar = static_cast<RegexpOp>(kMaxRegexpOp+2);
Regexp::ParseState::ParseState(ParseFlags flags,
const StringPiece& whole_regexp,
RegexpStatus* status)
: flags_(flags), whole_regexp_(whole_regexp),
status_(status), stacktop_(NULL), ncap_(0) {
if (flags_ & Latin1)
rune_max_ = 0xFF;
else
rune_max_ = Runemax;
}
// Cleans up by freeing all the regexps on the stack.
Regexp::ParseState::~ParseState() {
Regexp* next;
for (Regexp* re = stacktop_; re != NULL; re = next) {
next = re->down_;
re->down_ = NULL;
if (re->op() == kLeftParen)
delete re->name_;
re->Decref();
}
}
// Finishes the regexp if necessary, preparing it for use in
// a more complex expression.
// If it is a CharClassBuilder, converts into a CharClass.
Regexp* Regexp::ParseState::FinishRegexp(Regexp* re) {
if (re == NULL)
return NULL;
re->down_ = NULL;
if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
CharClassBuilder* ccb = re->ccb_;
re->ccb_ = NULL;
re->cc_ = ccb->GetCharClass();
delete ccb;
}
return re;
}
// Pushes the given regular expression onto the stack.
// Could check for too much memory used here.
bool Regexp::ParseState::PushRegexp(Regexp* re) {
MaybeConcatString(-1, NoParseFlags);
// Special case: a character class of one character is just
// a literal. This is a common idiom for escaping
// single characters (e.g., [.] instead of \.), and some
// analysis does better with fewer character classes.
// Similarly, [Aa] can be rewritten as a literal A with ASCII case folding.
if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
re->ccb_->RemoveAbove(rune_max_);
if (re->ccb_->size() == 1) {
Rune r = re->ccb_->begin()->lo;
re->Decref();
re = new Regexp(kRegexpLiteral, flags_);
re->rune_ = r;
} else if (re->ccb_->size() == 2) {
Rune r = re->ccb_->begin()->lo;
if ('A' <= r && r <= 'Z' && re->ccb_->Contains(r + 'a' - 'A')) {
re->Decref();
re = new Regexp(kRegexpLiteral, flags_ | FoldCase);
re->rune_ = r + 'a' - 'A';
}
}
}
if (!IsMarker(re->op()))
re->simple_ = re->ComputeSimple();
re->down_ = stacktop_;
stacktop_ = re;
return true;
}
// Searches the case folding tables and returns the CaseFold* that contains r.
// If there isn't one, returns the CaseFold* with smallest f->lo bigger than r.
// If there isn't one, returns NULL.
const CaseFold* LookupCaseFold(const CaseFold *f, int n, Rune r) {
const CaseFold* ef = f + n;
// Binary search for entry containing r.
while (n > 0) {
int m = n/2;
if (f[m].lo <= r && r <= f[m].hi)
return &f[m];
if (r < f[m].lo) {
n = m;
} else {
f += m+1;
n -= m+1;
}
}
// There is no entry that contains r, but f points
// where it would have been. Unless f points at
// the end of the array, it points at the next entry
// after r.
if (f < ef)
return f;
// No entry contains r; no entry contains runes > r.
return NULL;
}
// Returns the result of applying the fold f to the rune r.
Rune ApplyFold(const CaseFold *f, Rune r) {
switch (f->delta) {
default:
return r + f->delta;
case EvenOddSkip: // even <-> odd but only applies to every other
if ((r - f->lo) % 2)
return r;
FALLTHROUGH_INTENDED;
case EvenOdd: // even <-> odd
if (r%2 == 0)
return r + 1;
return r - 1;
case OddEvenSkip: // odd <-> even but only applies to every other
if ((r - f->lo) % 2)
return r;
FALLTHROUGH_INTENDED;
case OddEven: // odd <-> even
if (r%2 == 1)
return r + 1;
return r - 1;
}
}
// Returns the next Rune in r's folding cycle (see unicode_casefold.h).
// Examples:
// CycleFoldRune('A') = 'a'
// CycleFoldRune('a') = 'A'
//
// CycleFoldRune('K') = 'k'
// CycleFoldRune('k') = 0x212A (Kelvin)
// CycleFoldRune(0x212A) = 'K'
//
// CycleFoldRune('?') = '?'
Rune CycleFoldRune(Rune r) {
const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, r);
if (f == NULL || r < f->lo)
return r;
return ApplyFold(f, r);
}
// Add lo-hi to the class, along with their fold-equivalent characters.
// If lo-hi is already in the class, assume that the fold-equivalent
// chars are there too, so there's no work to do.
static void AddFoldedRange(CharClassBuilder* cc, Rune lo, Rune hi, int depth) {
// AddFoldedRange calls itself recursively for each rune in the fold cycle.
// Most folding cycles are small: there aren't any bigger than four in the
// current Unicode tables. make_unicode_casefold.py checks that
// the cycles are not too long, and we double-check here using depth.
if (depth > 10) {
LOG(DFATAL) << "AddFoldedRange recurses too much.";
return;
}
if (!cc->AddRange(lo, hi)) // lo-hi was already there? we're done
return;
while (lo <= hi) {
const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, lo);
if (f == NULL) // lo has no fold, nor does anything above lo
break;
if (lo < f->lo) { // lo has no fold; next rune with a fold is f->lo
lo = f->lo;
continue;
}
// Add in the result of folding the range lo - f->hi
// and that range's fold, recursively.
Rune lo1 = lo;
Rune hi1 = std::min<Rune>(hi, f->hi);
switch (f->delta) {
default:
lo1 += f->delta;
hi1 += f->delta;
break;
case EvenOdd:
if (lo1%2 == 1)
lo1--;
if (hi1%2 == 0)
hi1++;
break;
case OddEven:
if (lo1%2 == 0)
lo1--;
if (hi1%2 == 1)
hi1++;
break;
}
AddFoldedRange(cc, lo1, hi1, depth+1);
// Pick up where this fold left off.
lo = f->hi + 1;
}
}
// Pushes the literal rune r onto the stack.
bool Regexp::ParseState::PushLiteral(Rune r) {
// Do case folding if needed.
if ((flags_ & FoldCase) && CycleFoldRune(r) != r) {
Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
re->ccb_ = new CharClassBuilder;
Rune r1 = r;
do {
if (!(flags_ & NeverNL) || r != '\n') {
re->ccb_->AddRange(r, r);
}
r = CycleFoldRune(r);
} while (r != r1);
return PushRegexp(re);
}
// Exclude newline if applicable.
if ((flags_ & NeverNL) && r == '\n')
return PushRegexp(new Regexp(kRegexpNoMatch, flags_));
// No fancy stuff worked. Ordinary literal.
if (MaybeConcatString(r, flags_))
return true;
Regexp* re = new Regexp(kRegexpLiteral, flags_);
re->rune_ = r;
return PushRegexp(re);
}
// Pushes a ^ onto the stack.
bool Regexp::ParseState::PushCarat() {
if (flags_ & OneLine) {
return PushSimpleOp(kRegexpBeginText);
}
return PushSimpleOp(kRegexpBeginLine);
}
// Pushes a \b or \B onto the stack.
bool Regexp::ParseState::PushWordBoundary(bool word) {
if (word)
return PushSimpleOp(kRegexpWordBoundary);
return PushSimpleOp(kRegexpNoWordBoundary);
}
// Pushes a $ onto the stack.
bool Regexp::ParseState::PushDollar() {
if (flags_ & OneLine) {
// Clumsy marker so that MimicsPCRE() can tell whether
// this kRegexpEndText was a $ and not a \z.
Regexp::ParseFlags oflags = flags_;
flags_ = flags_ | WasDollar;
bool ret = PushSimpleOp(kRegexpEndText);
flags_ = oflags;
return ret;
}
return PushSimpleOp(kRegexpEndLine);
}
// Pushes a . onto the stack.
bool Regexp::ParseState::PushDot() {
if ((flags_ & DotNL) && !(flags_ & NeverNL))
return PushSimpleOp(kRegexpAnyChar);
// Rewrite . into [^\n]
Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
re->ccb_ = new CharClassBuilder;
re->ccb_->AddRange(0, '\n' - 1);
re->ccb_->AddRange('\n' + 1, rune_max_);
return PushRegexp(re);
}
// Pushes a regexp with the given op (and no args) onto the stack.
bool Regexp::ParseState::PushSimpleOp(RegexpOp op) {
Regexp* re = new Regexp(op, flags_);
return PushRegexp(re);
}
// Pushes a repeat operator regexp onto the stack.
// A valid argument for the operator must already be on the stack.
// The char c is the name of the operator, for use in error messages.
bool Regexp::ParseState::PushRepeatOp(RegexpOp op, const StringPiece& s,
bool nongreedy) {
if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
status_->set_code(kRegexpRepeatArgument);
status_->set_error_arg(s);
return false;
}
Regexp::ParseFlags fl = flags_;
if (nongreedy)
fl = fl ^ NonGreedy;
// Squash **, ++ and ??. Regexp::Star() et al. handle this too, but
// they're mostly for use during simplification, not during parsing.
if (op == stacktop_->op() && fl == stacktop_->parse_flags())
return true;
// Squash *+, *?, +*, +?, ?* and ?+. They all squash to *, so because
// op is a repeat, we just have to check that stacktop_->op() is too,
// then adjust stacktop_.
if ((stacktop_->op() == kRegexpStar ||
stacktop_->op() == kRegexpPlus ||
stacktop_->op() == kRegexpQuest) &&
fl == stacktop_->parse_flags()) {
stacktop_->op_ = kRegexpStar;
return true;
}
Regexp* re = new Regexp(op, fl);
re->AllocSub(1);
re->down_ = stacktop_->down_;
re->sub()[0] = FinishRegexp(stacktop_);
re->simple_ = re->ComputeSimple();
stacktop_ = re;
return true;
}
// RepetitionWalker reports whether the repetition regexp is valid.
// Valid means that the combination of the top-level repetition
// and any inner repetitions does not exceed n copies of the
// innermost thing.
// This rewalks the regexp tree and is called for every repetition,
// so we have to worry about inducing quadratic behavior in the parser.
// We avoid this by only using RepetitionWalker when min or max >= 2.
// In that case the depth of any >= 2 nesting can only get to 9 without
// triggering a parse error, so each subtree can only be rewalked 9 times.
class RepetitionWalker : public Regexp::Walker<int> {
public:
RepetitionWalker() {}
virtual int PreVisit(Regexp* re, int parent_arg, bool* stop);
virtual int PostVisit(Regexp* re, int parent_arg, int pre_arg,
int* child_args, int nchild_args);
virtual int ShortVisit(Regexp* re, int parent_arg);
private:
RepetitionWalker(const RepetitionWalker&) = delete;
RepetitionWalker& operator=(const RepetitionWalker&) = delete;
};
int RepetitionWalker::PreVisit(Regexp* re, int parent_arg, bool* stop) {
int arg = parent_arg;
if (re->op() == kRegexpRepeat) {
int m = re->max();
if (m < 0) {
m = re->min();
}
if (m > 0) {
arg /= m;
}
}
return arg;
}
int RepetitionWalker::PostVisit(Regexp* re, int parent_arg, int pre_arg,
int* child_args, int nchild_args) {
int arg = pre_arg;
for (int i = 0; i < nchild_args; i++) {
if (child_args[i] < arg) {
arg = child_args[i];
}
}
return arg;
}
int RepetitionWalker::ShortVisit(Regexp* re, int parent_arg) {
// This should never be called, since we use Walk and not
// WalkExponential.
LOG(DFATAL) << "RepetitionWalker::ShortVisit called";
return 0;
}
// Pushes a repetition regexp onto the stack.
// A valid argument for the operator must already be on the stack.
bool Regexp::ParseState::PushRepetition(int min, int max,
const StringPiece& s,
bool nongreedy) {
if ((max != -1 && max < min) || min > kMaxRepeat || max > kMaxRepeat) {
status_->set_code(kRegexpRepeatSize);
status_->set_error_arg(s);
return false;
}
if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
status_->set_code(kRegexpRepeatArgument);
status_->set_error_arg(s);
return false;
}
Regexp::ParseFlags fl = flags_;
if (nongreedy)
fl = fl ^ NonGreedy;
Regexp* re = new Regexp(kRegexpRepeat, fl);
re->min_ = min;
re->max_ = max;
re->AllocSub(1);
re->down_ = stacktop_->down_;
re->sub()[0] = FinishRegexp(stacktop_);
re->simple_ = re->ComputeSimple();
stacktop_ = re;
if (min >= 2 || max >= 2) {
RepetitionWalker w;
if (w.Walk(stacktop_, kMaxRepeat) == 0) {
status_->set_code(kRegexpRepeatSize);
status_->set_error_arg(s);
return false;
}
}
return true;
}
// Checks whether a particular regexp op is a marker.
bool Regexp::ParseState::IsMarker(RegexpOp op) {
return op >= kLeftParen;
}
// Processes a left parenthesis in the input.
// Pushes a marker onto the stack.
bool Regexp::ParseState::DoLeftParen(const StringPiece& name) {
Regexp* re = new Regexp(kLeftParen, flags_);
re->cap_ = ++ncap_;
if (name.data() != NULL)
re->name_ = new string(name);
return PushRegexp(re);
}
// Pushes a non-capturing marker onto the stack.
bool Regexp::ParseState::DoLeftParenNoCapture() {
Regexp* re = new Regexp(kLeftParen, flags_);
re->cap_ = -1;
return PushRegexp(re);
}
// Processes a vertical bar in the input.
bool Regexp::ParseState::DoVerticalBar() {
MaybeConcatString(-1, NoParseFlags);
DoConcatenation();
// Below the vertical bar is a list to alternate.
// Above the vertical bar is a list to concatenate.
// We just did the concatenation, so either swap
// the result below the vertical bar or push a new
// vertical bar on the stack.
Regexp* r1;
Regexp* r2;
if ((r1 = stacktop_) != NULL &&
(r2 = r1->down_) != NULL &&
r2->op() == kVerticalBar) {
Regexp* r3;
if ((r3 = r2->down_) != NULL &&
(r1->op() == kRegexpAnyChar || r3->op() == kRegexpAnyChar)) {
// AnyChar is above or below the vertical bar. Let it subsume
// the other when the other is Literal, CharClass or AnyChar.
if (r3->op() == kRegexpAnyChar &&
(r1->op() == kRegexpLiteral ||
r1->op() == kRegexpCharClass ||
r1->op() == kRegexpAnyChar)) {
// Discard r1.
stacktop_ = r2;
r1->Decref();
return true;
}
if (r1->op() == kRegexpAnyChar &&
(r3->op() == kRegexpLiteral ||
r3->op() == kRegexpCharClass ||
r3->op() == kRegexpAnyChar)) {
// Rearrange the stack and discard r3.
r1->down_ = r3->down_;
r2->down_ = r1;
stacktop_ = r2;
r3->Decref();
return true;
}
}
// Swap r1 below vertical bar (r2).
r1->down_ = r2->down_;
r2->down_ = r1;
stacktop_ = r2;
return true;
}
return PushSimpleOp(kVerticalBar);
}
// Processes a right parenthesis in the input.
bool Regexp::ParseState::DoRightParen() {
// Finish the current concatenation and alternation.
DoAlternation();
// The stack should be: LeftParen regexp
// Remove the LeftParen, leaving the regexp,
// parenthesized.
Regexp* r1;
Regexp* r2;
if ((r1 = stacktop_) == NULL ||
(r2 = r1->down_) == NULL ||
r2->op() != kLeftParen) {
status_->set_code(kRegexpMissingParen);
status_->set_error_arg(whole_regexp_);
return false;
}
// Pop off r1, r2. Will Decref or reuse below.
stacktop_ = r2->down_;
// Restore flags from when paren opened.
Regexp* re = r2;
flags_ = re->parse_flags();
// Rewrite LeftParen as capture if needed.
if (re->cap_ > 0) {
re->op_ = kRegexpCapture;
// re->cap_ is already set
re->AllocSub(1);
re->sub()[0] = FinishRegexp(r1);
re->simple_ = re->ComputeSimple();
} else {
re->Decref();
re = r1;
}
return PushRegexp(re);
}
// Processes the end of input, returning the final regexp.
Regexp* Regexp::ParseState::DoFinish() {
DoAlternation();
Regexp* re = stacktop_;
if (re != NULL && re->down_ != NULL) {
status_->set_code(kRegexpMissingParen);
status_->set_error_arg(whole_regexp_);
return NULL;
}
stacktop_ = NULL;
return FinishRegexp(re);
}
// Returns the leading regexp that re starts with.
// The returned Regexp* points into a piece of re,
// so it must not be used after the caller calls re->Decref().
Regexp* Regexp::LeadingRegexp(Regexp* re) {
if (re->op() == kRegexpEmptyMatch)
return NULL;
if (re->op() == kRegexpConcat && re->nsub() >= 2) {
Regexp** sub = re->sub();
if (sub[0]->op() == kRegexpEmptyMatch)
return NULL;
return sub[0];
}
return re;
}
// Removes LeadingRegexp(re) from re and returns what's left.
// Consumes the reference to re and may edit it in place.
// If caller wants to hold on to LeadingRegexp(re),
// must have already Incref'ed it.
Regexp* Regexp::RemoveLeadingRegexp(Regexp* re) {
if (re->op() == kRegexpEmptyMatch)
return re;
if (re->op() == kRegexpConcat && re->nsub() >= 2) {
Regexp** sub = re->sub();
if (sub[0]->op() == kRegexpEmptyMatch)
return re;
sub[0]->Decref();
sub[0] = NULL;
if (re->nsub() == 2) {
// Collapse concatenation to single regexp.
Regexp* nre = sub[1];
sub[1] = NULL;
re->Decref();
return nre;
}
// 3 or more -> 2 or more.
re->nsub_--;
memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
return re;
}
Regexp::ParseFlags pf = re->parse_flags();
re->Decref();
return new Regexp(kRegexpEmptyMatch, pf);
}
// Returns the leading string that re starts with.
// The returned Rune* points into a piece of re,
// so it must not be used after the caller calls re->Decref().
Rune* Regexp::LeadingString(Regexp* re, int *nrune,
Regexp::ParseFlags *flags) {
while (re->op() == kRegexpConcat && re->nsub() > 0)
re = re->sub()[0];
*flags = static_cast<Regexp::ParseFlags>(re->parse_flags_ & Regexp::FoldCase);
if (re->op() == kRegexpLiteral) {
*nrune = 1;
return &re->rune_;
}
if (re->op() == kRegexpLiteralString) {
*nrune = re->nrunes_;
return re->runes_;
}
*nrune = 0;
return NULL;
}
// Removes the first n leading runes from the beginning of re.
// Edits re in place.
void Regexp::RemoveLeadingString(Regexp* re, int n) {
// Chase down concats to find first string.
// For regexps generated by parser, nested concats are
// flattened except when doing so would overflow the 16-bit
// limit on the size of a concatenation, so we should never
// see more than two here.
Regexp* stk[4];
int d = 0;
while (re->op() == kRegexpConcat) {
if (d < arraysize(stk))
stk[d++] = re;
re = re->sub()[0];
}
// Remove leading string from re.
if (re->op() == kRegexpLiteral) {
re->rune_ = 0;
re->op_ = kRegexpEmptyMatch;
} else if (re->op() == kRegexpLiteralString) {
if (n >= re->nrunes_) {
delete[] re->runes_;
re->runes_ = NULL;
re->nrunes_ = 0;
re->op_ = kRegexpEmptyMatch;
} else if (n == re->nrunes_ - 1) {
Rune rune = re->runes_[re->nrunes_ - 1];
delete[] re->runes_;
re->runes_ = NULL;
re->nrunes_ = 0;
re->rune_ = rune;
re->op_ = kRegexpLiteral;
} else {
re->nrunes_ -= n;
memmove(re->runes_, re->runes_ + n, re->nrunes_ * sizeof re->runes_[0]);
}
}
// If re is now empty, concatenations might simplify too.
while (d-- > 0) {
re = stk[d];
Regexp** sub = re->sub();
if (sub[0]->op() == kRegexpEmptyMatch) {
sub[0]->Decref();
sub[0] = NULL;
// Delete first element of concat.
switch (re->nsub()) {
case 0:
case 1:
// Impossible.
LOG(DFATAL) << "Concat of " << re->nsub();
re->submany_ = NULL;
re->op_ = kRegexpEmptyMatch;
break;
case 2: {
// Replace re with sub[1].
Regexp* old = sub[1];
sub[1] = NULL;
re->Swap(old);
old->Decref();
break;
}
default:
// Slide down.
re->nsub_--;
memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
break;
}
}
}
}
// In the context of factoring alternations, a Splice is: a factored prefix or
// merged character class computed by one iteration of one round of factoring;
// the span of subexpressions of the alternation to be "spliced" (i.e. removed
// and replaced); and, for a factored prefix, the number of suffixes after any
// factoring that might have subsequently been performed on them. For a merged
// character class, there are no suffixes, of course, so the field is ignored.
struct Splice {
Splice(Regexp* prefix, Regexp** sub, int nsub)
: prefix(prefix),
sub(sub),
nsub(nsub),
nsuffix(-1) {}
Regexp* prefix;
Regexp** sub;
int nsub;
int nsuffix;
};
// Named so because it is used to implement an explicit stack, a Frame is: the
// span of subexpressions of the alternation to be factored; the current round
// of factoring; any Splices computed; and, for a factored prefix, an iterator
// to the next Splice to be factored (i.e. in another Frame) because suffixes.
struct Frame {
Frame(Regexp** sub, int nsub)
: sub(sub),
nsub(nsub),
round(0) {}
Regexp** sub;
int nsub;
int round;
std::vector<Splice> splices;
int spliceidx;
};
// Bundled into a class for friend access to Regexp without needing to declare
// (or define) Splice in regexp.h.
class FactorAlternationImpl {
public:
static void Round1(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices);
static void Round2(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices);
static void Round3(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices);
};
// Factors common prefixes from alternation.
// For example,
// ABC|ABD|AEF|BCX|BCY
// simplifies to
// A(B(C|D)|EF)|BC(X|Y)
// and thence to
// A(B[CD]|EF)|BC[XY]
//
// Rewrites sub to contain simplified list to alternate and returns
// the new length of sub. Adjusts reference counts accordingly
// (incoming sub[i] decremented, outgoing sub[i] incremented).
int Regexp::FactorAlternation(Regexp** sub, int nsub, ParseFlags flags) {
std::vector<Frame> stk;
stk.emplace_back(sub, nsub);
for (;;) {
auto& sub = stk.back().sub;
auto& nsub = stk.back().nsub;
auto& round = stk.back().round;
auto& splices = stk.back().splices;
auto& spliceidx = stk.back().spliceidx;
if (splices.empty()) {
// Advance to the next round of factoring. Note that this covers
// the initialised state: when splices is empty and round is 0.
round++;
} else if (spliceidx < static_cast<int>(splices.size())) {
// We have at least one more Splice to factor. Recurse logically.
stk.emplace_back(splices[spliceidx].sub, splices[spliceidx].nsub);
continue;
} else {
// We have no more Splices to factor. Apply them.
auto iter = splices.begin();
int out = 0;
for (int i = 0; i < nsub; ) {
// Copy until we reach where the next Splice begins.
while (sub + i < iter->sub)
sub[out++] = sub[i++];
switch (round) {
case 1:
case 2: {
// Assemble the Splice prefix and the suffixes.
Regexp* re[2];
re[0] = iter->prefix;
re[1] = Regexp::AlternateNoFactor(iter->sub, iter->nsuffix, flags);
sub[out++] = Regexp::Concat(re, 2, flags);
i += iter->nsub;
break;
}
case 3:
// Just use the Splice prefix.
sub[out++] = iter->prefix;
i += iter->nsub;
break;
default:
LOG(DFATAL) << "unknown round: " << round;
break;
}
// If we are done, copy until the end of sub.
if (++iter == splices.end()) {
while (i < nsub)
sub[out++] = sub[i++];
}
}
splices.clear();
nsub = out;
// Advance to the next round of factoring.
round++;
}
switch (round) {
case 1:
FactorAlternationImpl::Round1(sub, nsub, flags, &splices);
break;
case 2:
FactorAlternationImpl::Round2(sub, nsub, flags, &splices);
break;
case 3:
FactorAlternationImpl::Round3(sub, nsub, flags, &splices);
break;
case 4:
if (stk.size() == 1) {
// We are at the top of the stack. Just return.
return nsub;
} else {
// Pop the stack and set the number of suffixes.
// (Note that references will be invalidated!)
int nsuffix = nsub;
stk.pop_back();
stk.back().splices[stk.back().spliceidx].nsuffix = nsuffix;
++stk.back().spliceidx;
continue;
}
default:
LOG(DFATAL) << "unknown round: " << round;
break;
}
// Set spliceidx depending on whether we have Splices to factor.
if (splices.empty() || round == 3) {
spliceidx = static_cast<int>(splices.size());
} else {
spliceidx = 0;
}
}
}
void FactorAlternationImpl::Round1(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices) {
// Round 1: Factor out common literal prefixes.
int start = 0;
Rune* rune = NULL;
int nrune = 0;
Regexp::ParseFlags runeflags = Regexp::NoParseFlags;
for (int i = 0; i <= nsub; i++) {
// Invariant: sub[start:i] consists of regexps that all
// begin with rune[0:nrune].
Rune* rune_i = NULL;
int nrune_i = 0;
Regexp::ParseFlags runeflags_i = Regexp::NoParseFlags;
if (i < nsub) {
rune_i = Regexp::LeadingString(sub[i], &nrune_i, &runeflags_i);
if (runeflags_i == runeflags) {
int same = 0;
while (same < nrune && same < nrune_i && rune[same] == rune_i[same])
same++;
if (same > 0) {
// Matches at least one rune in current range. Keep going around.
nrune = same;
continue;
}
}
}
// Found end of a run with common leading literal string:
// sub[start:i] all begin with rune[0:nrune],
// but sub[i] does not even begin with rune[0].
if (i == start) {
// Nothing to do - first iteration.
} else if (i == start+1) {
// Just one: don't bother factoring.
} else {
Regexp* prefix = Regexp::LiteralString(rune, nrune, runeflags);
for (int j = start; j < i; j++)
Regexp::RemoveLeadingString(sub[j], nrune);
splices->emplace_back(prefix, sub + start, i - start);
}
// Prepare for next iteration (if there is one).
if (i < nsub) {
start = i;
rune = rune_i;
nrune = nrune_i;
runeflags = runeflags_i;
}
}
}
void FactorAlternationImpl::Round2(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices) {
// Round 2: Factor out common simple prefixes,
// just the first piece of each concatenation.
// This will be good enough a lot of the time.
//
// Complex subexpressions (e.g. involving quantifiers)
// are not safe to factor because that collapses their
// distinct paths through the automaton, which affects
// correctness in some cases.
int start = 0;
Regexp* first = NULL;
for (int i = 0; i <= nsub; i++) {
// Invariant: sub[start:i] consists of regexps that all
// begin with first.
Regexp* first_i = NULL;
if (i < nsub) {
first_i = Regexp::LeadingRegexp(sub[i]);
if (first != NULL &&
// first must be an empty-width op
// OR a char class, any char or any byte
// OR a fixed repeat of a literal, char class, any char or any byte.
(first->op() == kRegexpBeginLine ||
first->op() == kRegexpEndLine ||
first->op() == kRegexpWordBoundary ||
first->op() == kRegexpNoWordBoundary ||
first->op() == kRegexpBeginText ||
first->op() == kRegexpEndText ||
first->op() == kRegexpCharClass ||
first->op() == kRegexpAnyChar ||
first->op() == kRegexpAnyByte ||
(first->op() == kRegexpRepeat &&
first->min() == first->max() &&
(first->sub()[0]->op() == kRegexpLiteral ||
first->sub()[0]->op() == kRegexpCharClass ||
first->sub()[0]->op() == kRegexpAnyChar ||
first->sub()[0]->op() == kRegexpAnyByte))) &&
Regexp::Equal(first, first_i))
continue;
}
// Found end of a run with common leading regexp:
// sub[start:i] all begin with first,
// but sub[i] does not.
if (i == start) {
// Nothing to do - first iteration.
} else if (i == start+1) {
// Just one: don't bother factoring.
} else {
Regexp* prefix = first->Incref();
for (int j = start; j < i; j++)
sub[j] = Regexp::RemoveLeadingRegexp(sub[j]);
splices->emplace_back(prefix, sub + start, i - start);
}
// Prepare for next iteration (if there is one).
if (i < nsub) {
start = i;
first = first_i;
}
}
}
void FactorAlternationImpl::Round3(Regexp** sub, int nsub,
Regexp::ParseFlags flags,
std::vector<Splice>* splices) {
// Round 3: Merge runs of literals and/or character classes.
int start = 0;
Regexp* first = NULL;
for (int i = 0; i <= nsub; i++) {
// Invariant: sub[start:i] consists of regexps that all
// are either literals (i.e. runes) or character classes.
Regexp* first_i = NULL;
if (i < nsub) {
first_i = sub[i];
if (first != NULL &&
(first->op() == kRegexpLiteral ||
first->op() == kRegexpCharClass) &&
(first_i->op() == kRegexpLiteral ||
first_i->op() == kRegexpCharClass))
continue;
}
// Found end of a run of Literal/CharClass:
// sub[start:i] all are either one or the other,
// but sub[i] is not.
if (i == start) {
// Nothing to do - first iteration.
} else if (i == start+1) {
// Just one: don't bother factoring.
} else {
CharClassBuilder ccb;
for (int j = start; j < i; j++) {
Regexp* re = sub[j];
if (re->op() == kRegexpCharClass) {
CharClass* cc = re->cc();
for (CharClass::iterator it = cc->begin(); it != cc->end(); ++it)
ccb.AddRange(it->lo, it->hi);
} else if (re->op() == kRegexpLiteral) {
ccb.AddRangeFlags(re->rune(), re->rune(), re->parse_flags());
} else {
LOG(DFATAL) << "RE2: unexpected op: " << re->op() << " "
<< re->ToString();
}
re->Decref();
}
Regexp* re = Regexp::NewCharClass(ccb.GetCharClass(), flags);
splices->emplace_back(re, sub + start, i - start);
}
// Prepare for next iteration (if there is one).
if (i < nsub) {
start = i;
first = first_i;
}
}
}
// Collapse the regexps on top of the stack, down to the
// first marker, into a new op node (op == kRegexpAlternate
// or op == kRegexpConcat).
void Regexp::ParseState::DoCollapse(RegexpOp op) {
// Scan backward to marker, counting children of composite.
int n = 0;
Regexp* next = NULL;
Regexp* sub;
for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
next = sub->down_;
if (sub->op_ == op)
n += sub->nsub_;
else
n++;
}
// If there's just one child, leave it alone.
// (Concat of one thing is that one thing; alternate of one thing is same.)
if (stacktop_ != NULL && stacktop_->down_ == next)
return;
// Construct op (alternation or concatenation), flattening op of op.
PODArray<Regexp*> subs(n);
next = NULL;
int i = n;
for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
next = sub->down_;
if (sub->op_ == op) {
Regexp** sub_subs = sub->sub();
for (int k = sub->nsub_ - 1; k >= 0; k--)
subs[--i] = sub_subs[k]->Incref();
sub->Decref();
} else {
subs[--i] = FinishRegexp(sub);
}
}
Regexp* re = ConcatOrAlternate(op, subs.data(), n, flags_, true);
re->simple_ = re->ComputeSimple();
re->down_ = next;
stacktop_ = re;
}
// Finishes the current concatenation,
// collapsing it into a single regexp on the stack.
void Regexp::ParseState::DoConcatenation() {
Regexp* r1 = stacktop_;
if (r1 == NULL || IsMarker(r1->op())) {
// empty concatenation is special case
Regexp* re = new Regexp(kRegexpEmptyMatch, flags_);
PushRegexp(re);
}
DoCollapse(kRegexpConcat);
}
// Finishes the current alternation,
// collapsing it to a single regexp on the stack.
void Regexp::ParseState::DoAlternation() {
DoVerticalBar();
// Now stack top is kVerticalBar.
Regexp* r1 = stacktop_;
stacktop_ = r1->down_;
r1->Decref();
DoCollapse(kRegexpAlternate);
}
// Incremental conversion of concatenated literals into strings.
// If top two elements on stack are both literal or string,
// collapse into single string.
// Don't walk down the stack -- the parser calls this frequently
// enough that below the bottom two is known to be collapsed.
// Only called when another regexp is about to be pushed
// on the stack, so that the topmost literal is not being considered.
// (Otherwise ab* would turn into (ab)*.)
// If r >= 0, consider pushing a literal r on the stack.
// Return whether that happened.
bool Regexp::ParseState::MaybeConcatString(int r, ParseFlags flags) {
Regexp* re1;
Regexp* re2;
if ((re1 = stacktop_) == NULL || (re2 = re1->down_) == NULL)
return false;
if (re1->op_ != kRegexpLiteral && re1->op_ != kRegexpLiteralString)
return false;
if (re2->op_ != kRegexpLiteral && re2->op_ != kRegexpLiteralString)
return false;
if ((re1->parse_flags_ & FoldCase) != (re2->parse_flags_ & FoldCase))
return false;
if (re2->op_ == kRegexpLiteral) {
// convert into string
Rune rune = re2->rune_;
re2->op_ = kRegexpLiteralString;
re2->nrunes_ = 0;
re2->runes_ = NULL;
re2->AddRuneToString(rune);
}
// push re1 into re2.
if (re1->op_ == kRegexpLiteral) {
re2->AddRuneToString(re1->rune_);
} else {
for (int i = 0; i < re1->nrunes_; i++)
re2->AddRuneToString(re1->runes_[i]);
re1->nrunes_ = 0;
delete[] re1->runes_;
re1->runes_ = NULL;
}
// reuse re1 if possible
if (r >= 0) {
re1->op_ = kRegexpLiteral;
re1->rune_ = r;
re1->parse_flags_ = static_cast<uint16_t>(flags);
return true;
}
stacktop_ = re2;
re1->Decref();
return false;
}
// Lexing routines.
// Parses a decimal integer, storing it in *np.
// Sets *s to span the remainder of the string.
static bool ParseInteger(StringPiece* s, int* np) {
if (s->size() == 0 || !isdigit((*s)[0] & 0xFF))
return false;
// Disallow leading zeros.
if (s->size() >= 2 && (*s)[0] == '0' && isdigit((*s)[1] & 0xFF))
return false;
int n = 0;
int c;
while (s->size() > 0 && isdigit(c = (*s)[0] & 0xFF)) {
// Avoid overflow.
if (n >= 100000000)
return false;
n = n*10 + c - '0';
s->remove_prefix(1); // digit
}
*np = n;
return true;
}
// Parses a repetition suffix like {1,2} or {2} or {2,}.
// Sets *s to span the remainder of the string on success.
// Sets *lo and *hi to the given range.
// In the case of {2,}, the high number is unbounded;
// sets *hi to -1 to signify this.
// {,2} is NOT a valid suffix.
// The Maybe in the name signifies that the regexp parse
// doesn't fail even if ParseRepetition does, so the StringPiece
// s must NOT be edited unless MaybeParseRepetition returns true.
static bool MaybeParseRepetition(StringPiece* sp, int* lo, int* hi) {
StringPiece s = *sp;
if (s.size() == 0 || s[0] != '{')
return false;
s.remove_prefix(1); // '{'
if (!ParseInteger(&s, lo))
return false;
if (s.size() == 0)
return false;
if (s[0] == ',') {
s.remove_prefix(1); // ','
if (s.size() == 0)
return false;
if (s[0] == '}') {
// {2,} means at least 2
*hi = -1;
} else {
// {2,4} means 2, 3, or 4.
if (!ParseInteger(&s, hi))
return false;
}
} else {
// {2} means exactly two
*hi = *lo;
}
if (s.size() == 0 || s[0] != '}')
return false;
s.remove_prefix(1); // '}'
*sp = s;
return true;
}
// Removes the next Rune from the StringPiece and stores it in *r.
// Returns number of bytes removed from sp.
// Behaves as though there is a terminating NUL at the end of sp.
// Argument order is backwards from usual Google style
// but consistent with chartorune.
static int StringPieceToRune(Rune *r, StringPiece *sp, RegexpStatus* status) {
// fullrune() takes int, not size_t. However, it just looks
// at the leading byte and treats any length >= 4 the same.
if (fullrune(sp->data(), static_cast<int>(std::min(size_t{4}, sp->size())))) {
int n = chartorune(r, sp->data());
// Some copies of chartorune have a bug that accepts
// encodings of values in (10FFFF, 1FFFFF] as valid.
// Those values break the character class algorithm,
// which assumes Runemax is the largest rune.
if (*r > Runemax) {
n = 1;
*r = Runeerror;
}
if (!(n == 1 && *r == Runeerror)) { // no decoding error
sp->remove_prefix(n);
return n;
}
}
status->set_code(kRegexpBadUTF8);
status->set_error_arg(StringPiece());
return -1;
}
// Return whether name is valid UTF-8.
// If not, set status to kRegexpBadUTF8.
static bool IsValidUTF8(const StringPiece& s, RegexpStatus* status) {
StringPiece t = s;
Rune r;
while (t.size() > 0) {
if (StringPieceToRune(&r, &t, status) < 0)
return false;
}
return true;
}
// Is c a hex digit?
static int IsHex(int c) {
return ('0' <= c && c <= '9') ||
('A' <= c && c <= 'F') ||
('a' <= c && c <= 'f');
}
// Convert hex digit to value.
static int UnHex(int c) {
if ('0' <= c && c <= '9')
return c - '0';
if ('A' <= c && c <= 'F')
return c - 'A' + 10;
if ('a' <= c && c <= 'f')
return c - 'a' + 10;
LOG(DFATAL) << "Bad hex digit " << c;
return 0;
}
// Parse an escape sequence (e.g., \n, \{).
// Sets *s to span the remainder of the string.
// Sets *rp to the named character.
static bool ParseEscape(StringPiece* s, Rune* rp,
RegexpStatus* status, int rune_max) {
const char* begin = s->begin();
if (s->size() < 1 || (*s)[0] != '\\') {
// Should not happen - caller always checks.
status->set_code(kRegexpInternalError);
status->set_error_arg(StringPiece());
return false;
}
if (s->size() < 2) {
status->set_code(kRegexpTrailingBackslash);
status->set_error_arg(StringPiece());
return false;
}
Rune c, c1;
s->remove_prefix(1); // backslash
if (StringPieceToRune(&c, s, status) < 0)
return false;
int code;
switch (c) {
default:
if (c < Runeself && !isalpha(c) && !isdigit(c)) {
// Escaped non-word characters are always themselves.
// PCRE is not quite so rigorous: it accepts things like
// \q, but we don't. We once rejected \_, but too many
// programs and people insist on using it, so allow \_.
*rp = c;
return true;
}
goto BadEscape;
// Octal escapes.
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
// Single non-zero octal digit is a backreference; not supported.
if (s->size() == 0 || (*s)[0] < '0' || (*s)[0] > '7')
goto BadEscape;
FALLTHROUGH_INTENDED;
case '0':
// consume up to three octal digits; already have one.
code = c - '0';
if (s->size() > 0 && '0' <= (c = (*s)[0]) && c <= '7') {
code = code * 8 + c - '0';
s->remove_prefix(1); // digit
if (s->size() > 0) {
c = (*s)[0];
if ('0' <= c && c <= '7') {
code = code * 8 + c - '0';
s->remove_prefix(1); // digit
}
}
}
if (code > rune_max)
goto BadEscape;
*rp = code;
return true;
// Hexadecimal escapes
case 'x':
if (s->size() == 0)
goto BadEscape;
if (StringPieceToRune(&c, s, status) < 0)
return false;
if (c == '{') {
// Any number of digits in braces.
// Update n as we consume the string, so that
// the whole thing gets shown in the error message.
// Perl accepts any text at all; it ignores all text
// after the first non-hex digit. We require only hex digits,
// and at least one.
if (StringPieceToRune(&c, s, status) < 0)
return false;
int nhex = 0;
code = 0;
while (IsHex(c)) {
nhex++;
code = code * 16 + UnHex(c);
if (code > rune_max)
goto BadEscape;
if (s->size() == 0)
goto BadEscape;
if (StringPieceToRune(&c, s, status) < 0)
return false;
}
if (c != '}' || nhex == 0)
goto BadEscape;
*rp = code;
return true;
}
// Easy case: two hex digits.
if (s->size() == 0)
goto BadEscape;
if (StringPieceToRune(&c1, s, status) < 0)
return false;
if (!IsHex(c) || !IsHex(c1))
goto BadEscape;
*rp = UnHex(c) * 16 + UnHex(c1);
return true;
// C escapes.
case 'n':
*rp = '\n';
return true;
case 'r':
*rp = '\r';
return true;
case 't':
*rp = '\t';
return true;
// Less common C escapes.
case 'a':
*rp = '\a';
return true;
case 'f':
*rp = '\f';
return true;
case 'v':
*rp = '\v';
return true;
// This code is disabled to avoid misparsing
// the Perl word-boundary \b as a backspace
// when in POSIX regexp mode. Surprisingly,
// in Perl, \b means word-boundary but [\b]
// means backspace. We don't support that:
// if you want a backspace embed a literal
// backspace character or use \x08.
//
// case 'b':
// *rp = '\b';
// return true;
}
LOG(DFATAL) << "Not reached in ParseEscape.";
BadEscape:
// Unrecognized escape sequence.
status->set_code(kRegexpBadEscape);
status->set_error_arg(
StringPiece(begin, static_cast<size_t>(s->begin() - begin)));
return false;
}
// Add a range to the character class, but exclude newline if asked.
// Also handle case folding.
void CharClassBuilder::AddRangeFlags(
Rune lo, Rune hi, Regexp::ParseFlags parse_flags) {
// Take out \n if the flags say so.
bool cutnl = !(parse_flags & Regexp::ClassNL) ||
(parse_flags & Regexp::NeverNL);
if (cutnl && lo <= '\n' && '\n' <= hi) {
if (lo < '\n')
AddRangeFlags(lo, '\n' - 1, parse_flags);
if (hi > '\n')
AddRangeFlags('\n' + 1, hi, parse_flags);
return;
}
// If folding case, add fold-equivalent characters too.
if (parse_flags & Regexp::FoldCase)
AddFoldedRange(this, lo, hi, 0);
else
AddRange(lo, hi);
}
// Look for a group with the given name.
static const UGroup* LookupGroup(const StringPiece& name,
const UGroup *groups, int ngroups) {
// Simple name lookup.
for (int i = 0; i < ngroups; i++)
if (StringPiece(groups[i].name) == name)
return &groups[i];
return NULL;
}
// Look for a POSIX group with the given name (e.g., "[:^alpha:]")
static const UGroup* LookupPosixGroup(const StringPiece& name) {
return LookupGroup(name, posix_groups, num_posix_groups);
}
static const UGroup* LookupPerlGroup(const StringPiece& name) {
return LookupGroup(name, perl_groups, num_perl_groups);
}
#if !defined(RE2_USE_ICU)
// Fake UGroup containing all Runes
static URange16 any16[] = { { 0, 65535 } };
static URange32 any32[] = { { 65536, Runemax } };
static UGroup anygroup = { "Any", +1, any16, 1, any32, 1 };
// Look for a Unicode group with the given name (e.g., "Han")
static const UGroup* LookupUnicodeGroup(const StringPiece& name) {
// Special case: "Any" means any.
if (name == StringPiece("Any"))
return &anygroup;
return LookupGroup(name, unicode_groups, num_unicode_groups);
}
#endif
// Add a UGroup or its negation to the character class.
static void AddUGroup(CharClassBuilder *cc, const UGroup *g, int sign,
Regexp::ParseFlags parse_flags) {
if (sign == +1) {
for (int i = 0; i < g->nr16; i++) {
cc->AddRangeFlags(g->r16[i].lo, g->r16[i].hi, parse_flags);
}
for (int i = 0; i < g->nr32; i++) {
cc->AddRangeFlags(g->r32[i].lo, g->r32[i].hi, parse_flags);
}
} else {
if (parse_flags & Regexp::FoldCase) {
// Normally adding a case-folded group means
// adding all the extra fold-equivalent runes too.
// But if we're adding the negation of the group,
// we have to exclude all the runes that are fold-equivalent
// to what's already missing. Too hard, so do in two steps.
CharClassBuilder ccb1;
AddUGroup(&ccb1, g, +1, parse_flags);
// If the flags say to take out \n, put it in, so that negating will take it out.
// Normally AddRangeFlags does this, but we're bypassing AddRangeFlags.
bool cutnl = !(parse_flags & Regexp::ClassNL) ||
(parse_flags & Regexp::NeverNL);
if (cutnl) {
ccb1.AddRange('\n', '\n');
}
ccb1.Negate();
cc->AddCharClass(&ccb1);
return;
}
int next = 0;
for (int i = 0; i < g->nr16; i++) {
if (next < g->r16[i].lo)
cc->AddRangeFlags(next, g->r16[i].lo - 1, parse_flags);
next = g->r16[i].hi + 1;
}
for (int i = 0; i < g->nr32; i++) {
if (next < g->r32[i].lo)
cc->AddRangeFlags(next, g->r32[i].lo - 1, parse_flags);
next = g->r32[i].hi + 1;
}
if (next <= Runemax)
cc->AddRangeFlags(next, Runemax, parse_flags);
}
}
// Maybe parse a Perl character class escape sequence.
// Only recognizes the Perl character classes (\d \s \w \D \S \W),
// not the Perl empty-string classes (\b \B \A \Z \z).
// On success, sets *s to span the remainder of the string
// and returns the corresponding UGroup.
// The StringPiece must *NOT* be edited unless the call succeeds.
const UGroup* MaybeParsePerlCCEscape(StringPiece* s, Regexp::ParseFlags parse_flags) {
if (!(parse_flags & Regexp::PerlClasses))
return NULL;
if (s->size() < 2 || (*s)[0] != '\\')
return NULL;
// Could use StringPieceToRune, but there aren't
// any non-ASCII Perl group names.
StringPiece name(s->begin(), 2);
const UGroup *g = LookupPerlGroup(name);
if (g == NULL)
return NULL;
s->remove_prefix(name.size());
return g;
}
enum ParseStatus {
kParseOk, // Did some parsing.
kParseError, // Found an error.
kParseNothing, // Decided not to parse.
};
// Maybe parses a Unicode character group like \p{Han} or \P{Han}
// (the latter is a negated group).
ParseStatus ParseUnicodeGroup(StringPiece* s, Regexp::ParseFlags parse_flags,
CharClassBuilder *cc,
RegexpStatus* status) {
// Decide whether to parse.
if (!(parse_flags & Regexp::UnicodeGroups))
return kParseNothing;
if (s->size() < 2 || (*s)[0] != '\\')
return kParseNothing;
Rune c = (*s)[1];
if (c != 'p' && c != 'P')
return kParseNothing;
// Committed to parse. Results:
int sign = +1; // -1 = negated char class
if (c == 'P')
sign = -sign;
StringPiece seq = *s; // \p{Han} or \pL
StringPiece name; // Han or L
s->remove_prefix(2); // '\\', 'p'
if (!StringPieceToRune(&c, s, status))
return kParseError;
if (c != '{') {
// Name is the bit of string we just skipped over for c.
const char* p = seq.begin() + 2;
name = StringPiece(p, static_cast<size_t>(s->begin() - p));
} else {
// Name is in braces. Look for closing }
size_t end = s->find('}', 0);
if (end == StringPiece::npos) {
if (!IsValidUTF8(seq, status))
return kParseError;
status->set_code(kRegexpBadCharRange);
status->set_error_arg(seq);
return kParseError;
}
name = StringPiece(s->begin(), end); // without '}'
s->remove_prefix(end + 1); // with '}'
if (!IsValidUTF8(name, status))
return kParseError;
}
// Chop seq where s now begins.
seq = StringPiece(seq.begin(), static_cast<size_t>(s->begin() - seq.begin()));
if (name.size() > 0 && name[0] == '^') {
sign = -sign;
name.remove_prefix(1); // '^'
}
#if !defined(RE2_USE_ICU)
// Look up the group in the RE2 Unicode data.
const UGroup *g = LookupUnicodeGroup(name);
if (g == NULL) {
status->set_code(kRegexpBadCharRange);
status->set_error_arg(seq);
return kParseError;
}
AddUGroup(cc, g, sign, parse_flags);
#else
// Look up the group in the ICU Unicode data. Because ICU provides full
// Unicode properties support, this could be more than a lookup by name.
::icu::UnicodeString ustr = ::icu::UnicodeString::fromUTF8(
string("\\p{") + string(name) + string("}"));
UErrorCode uerr = U_ZERO_ERROR;
::icu::UnicodeSet uset(ustr, uerr);
if (U_FAILURE(uerr)) {
status->set_code(kRegexpBadCharRange);
status->set_error_arg(seq);
return kParseError;
}
// Convert the UnicodeSet to a URange32 and UGroup that we can add.
int nr = uset.getRangeCount();
URange32* r = new URange32[nr];
for (int i = 0; i < nr; i++) {
r[i].lo = uset.getRangeStart(i);
r[i].hi = uset.getRangeEnd(i);
}
UGroup g = {"", +1, 0, 0, r, nr};
AddUGroup(cc, &g, sign, parse_flags);
delete[] r;
#endif
return kParseOk;
}
// Parses a character class name like [:alnum:].
// Sets *s to span the remainder of the string.
// Adds the ranges corresponding to the class to ranges.
static ParseStatus ParseCCName(StringPiece* s, Regexp::ParseFlags parse_flags,
CharClassBuilder *cc,
RegexpStatus* status) {
// Check begins with [:
const char* p = s->data();
const char* ep = s->data() + s->size();
if (ep - p < 2 || p[0] != '[' || p[1] != ':')
return kParseNothing;
// Look for closing :].
const char* q;
for (q = p+2; q <= ep-2 && (*q != ':' || *(q+1) != ']'); q++)
;
// If no closing :], then ignore.
if (q > ep-2)
return kParseNothing;
// Got it. Check that it's valid.
q += 2;
StringPiece name(p, static_cast<size_t>(q - p));
const UGroup *g = LookupPosixGroup(name);
if (g == NULL) {
status->set_code(kRegexpBadCharRange);
status->set_error_arg(name);
return kParseError;
}
s->remove_prefix(name.size());
AddUGroup(cc, g, g->sign, parse_flags);
return kParseOk;
}
// Parses a character inside a character class.
// There are fewer special characters here than in the rest of the regexp.
// Sets *s to span the remainder of the string.
// Sets *rp to the character.
bool Regexp::ParseState::ParseCCCharacter(StringPiece* s, Rune *rp,
const StringPiece& whole_class,
RegexpStatus* status) {
if (s->size() == 0) {
status->set_code(kRegexpMissingBracket);
status->set_error_arg(whole_class);
return false;
}
// Allow regular escape sequences even though
// many need not be escaped in this context.
if (s->size() >= 1 && (*s)[0] == '\\')
return ParseEscape(s, rp, status, rune_max_);
// Otherwise take the next rune.
return StringPieceToRune(rp, s, status) >= 0;
}
// Parses a character class character, or, if the character
// is followed by a hyphen, parses a character class range.
// For single characters, rr->lo == rr->hi.
// Sets *s to span the remainder of the string.
// Sets *rp to the character.
bool Regexp::ParseState::ParseCCRange(StringPiece* s, RuneRange* rr,
const StringPiece& whole_class,
RegexpStatus* status) {
StringPiece os = *s;
if (!ParseCCCharacter(s, &rr->lo, whole_class, status))
return false;
// [a-] means (a|-), so check for final ].
if (s->size() >= 2 && (*s)[0] == '-' && (*s)[1] != ']') {
s->remove_prefix(1); // '-'
if (!ParseCCCharacter(s, &rr->hi, whole_class, status))
return false;
if (rr->hi < rr->lo) {
status->set_code(kRegexpBadCharRange);
status->set_error_arg(
StringPiece(os.data(), static_cast<size_t>(s->data() - os.data())));
return false;
}
} else {
rr->hi = rr->lo;
}
return true;
}
// Parses a possibly-negated character class expression like [^abx-z[:digit:]].
// Sets *s to span the remainder of the string.
// Sets *out_re to the regexp for the class.
bool Regexp::ParseState::ParseCharClass(StringPiece* s,
Regexp** out_re,
RegexpStatus* status) {
StringPiece whole_class = *s;
if (s->size() == 0 || (*s)[0] != '[') {
// Caller checked this.
status->set_code(kRegexpInternalError);
status->set_error_arg(StringPiece());
return false;
}
bool negated = false;
Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
re->ccb_ = new CharClassBuilder;
s->remove_prefix(1); // '['
if (s->size() > 0 && (*s)[0] == '^') {
s->remove_prefix(1); // '^'
negated = true;
if (!(flags_ & ClassNL) || (flags_ & NeverNL)) {
// If NL can't match implicitly, then pretend
// negated classes include a leading \n.
re->ccb_->AddRange('\n', '\n');
}
}
bool first = true; // ] is okay as first char in class
while (s->size() > 0 && ((*s)[0] != ']' || first)) {
// - is only okay unescaped as first or last in class.
// Except that Perl allows - anywhere.
if ((*s)[0] == '-' && !first && !(flags_&PerlX) &&
(s->size() == 1 || (*s)[1] != ']')) {
StringPiece t = *s;
t.remove_prefix(1); // '-'
Rune r;
int n = StringPieceToRune(&r, &t, status);
if (n < 0) {
re->Decref();
return false;
}
status->set_code(kRegexpBadCharRange);
status->set_error_arg(StringPiece(s->data(), 1+n));
re->Decref();
return false;
}
first = false;
// Look for [:alnum:] etc.
if (s->size() > 2 && (*s)[0] == '[' && (*s)[1] == ':') {
switch (ParseCCName(s, flags_, re->ccb_, status)) {
case kParseOk:
continue;
case kParseError:
re->Decref();
return false;
case kParseNothing:
break;
}
}
// Look for Unicode character group like \p{Han}
if (s->size() > 2 &&
(*s)[0] == '\\' &&
((*s)[1] == 'p' || (*s)[1] == 'P')) {
switch (ParseUnicodeGroup(s, flags_, re->ccb_, status)) {
case kParseOk:
continue;
case kParseError:
re->Decref();
return false;
case kParseNothing:
break;
}
}
// Look for Perl character class symbols (extension).
const UGroup *g = MaybeParsePerlCCEscape(s, flags_);
if (g != NULL) {
AddUGroup(re->ccb_, g, g->sign, flags_);
continue;
}
// Otherwise assume single character or simple range.
RuneRange rr;
if (!ParseCCRange(s, &rr, whole_class, status)) {
re->Decref();
return false;
}
// AddRangeFlags is usually called in response to a class like
// \p{Foo} or [[:foo:]]; for those, it filters \n out unless
// Regexp::ClassNL is set. In an explicit range or singleton
// like we just parsed, we do not filter \n out, so set ClassNL
// in the flags.
re->ccb_->AddRangeFlags(rr.lo, rr.hi, flags_ | Regexp::ClassNL);
}
if (s->size() == 0) {
status->set_code(kRegexpMissingBracket);
status->set_error_arg(whole_class);
re->Decref();
return false;
}
s->remove_prefix(1); // ']'
if (negated)
re->ccb_->Negate();
*out_re = re;
return true;
}
// Is this a valid capture name? [A-Za-z0-9_]+
// PCRE limits names to 32 bytes.
// Python rejects names starting with digits.
// We don't enforce either of those.
static bool IsValidCaptureName(const StringPiece& name) {
if (name.size() == 0)
return false;
for (size_t i = 0; i < name.size(); i++) {
int c = name[i];
if (('0' <= c && c <= '9') ||
('a' <= c && c <= 'z') ||
('A' <= c && c <= 'Z') ||
c == '_')
continue;
return false;
}
return true;
}
// Parses a Perl flag setting or non-capturing group or both,
// like (?i) or (?: or (?i:. Removes from s, updates parse state.
// The caller must check that s begins with "(?".
// Returns true on success. If the Perl flag is not
// well-formed or not supported, sets status_ and returns false.
bool Regexp::ParseState::ParsePerlFlags(StringPiece* s) {
StringPiece t = *s;
// Caller is supposed to check this.
if (!(flags_ & PerlX) || t.size() < 2 || t[0] != '(' || t[1] != '?') {
LOG(DFATAL) << "Bad call to ParseState::ParsePerlFlags";
status_->set_code(kRegexpInternalError);
return false;
}
t.remove_prefix(2); // "(?"
// Check for named captures, first introduced in Python's regexp library.
// As usual, there are three slightly different syntaxes:
//
// (?P<name>expr) the original, introduced by Python
// (?<name>expr) the .NET alteration, adopted by Perl 5.10
// (?'name'expr) another .NET alteration, adopted by Perl 5.10
//
// Perl 5.10 gave in and implemented the Python version too,
// but they claim that the last two are the preferred forms.
// PCRE and languages based on it (specifically, PHP and Ruby)
// support all three as well. EcmaScript 4 uses only the Python form.
//
// In both the open source world (via Code Search) and the
// Google source tree, (?P<expr>name) is the dominant form,
// so that's the one we implement. One is enough.
if (t.size() > 2 && t[0] == 'P' && t[1] == '<') {
// Pull out name.
size_t end = t.find('>', 2);
if (end == StringPiece::npos) {
if (!IsValidUTF8(*s, status_))
return false;
status_->set_code(kRegexpBadNamedCapture);
status_->set_error_arg(*s);
return false;
}
// t is "P<name>...", t[end] == '>'
StringPiece capture(t.begin()-2, end+3); // "(?P<name>"
StringPiece name(t.begin()+2, end-2); // "name"
if (!IsValidUTF8(name, status_))
return false;
if (!IsValidCaptureName(name)) {
status_->set_code(kRegexpBadNamedCapture);
status_->set_error_arg(capture);
return false;
}
if (!DoLeftParen(name)) {
// DoLeftParen's failure set status_.
return false;
}
s->remove_prefix(static_cast<size_t>(capture.end() - s->begin()));
return true;
}
bool negated = false;
bool sawflags = false;
int nflags = flags_;
Rune c;
for (bool done = false; !done; ) {
if (t.size() == 0)
goto BadPerlOp;
if (StringPieceToRune(&c, &t, status_) < 0)
return false;
switch (c) {
default:
goto BadPerlOp;
// Parse flags.
case 'i':
sawflags = true;
if (negated)
nflags &= ~FoldCase;
else
nflags |= FoldCase;
break;
case 'm': // opposite of our OneLine
sawflags = true;
if (negated)
nflags |= OneLine;
else
nflags &= ~OneLine;
break;
case 's':
sawflags = true;
if (negated)
nflags &= ~DotNL;
else
nflags |= DotNL;
break;
case 'U':
sawflags = true;
if (negated)
nflags &= ~NonGreedy;
else
nflags |= NonGreedy;
break;
// Negation
case '-':
if (negated)
goto BadPerlOp;
negated = true;
sawflags = false;
break;
// Open new group.
case ':':
if (!DoLeftParenNoCapture()) {
// DoLeftParenNoCapture's failure set status_.
return false;
}
done = true;
break;
// Finish flags.
case ')':
done = true;
break;
}
}
if (negated && !sawflags)
goto BadPerlOp;
flags_ = static_cast<Regexp::ParseFlags>(nflags);
*s = t;
return true;
BadPerlOp:
status_->set_code(kRegexpBadPerlOp);
status_->set_error_arg(
StringPiece(s->begin(), static_cast<size_t>(t.begin() - s->begin())));
return false;
}
// Converts latin1 (assumed to be encoded as Latin1 bytes)
// into UTF8 encoding in string.
// Can't use EncodingUtils::EncodeLatin1AsUTF8 because it is
// deprecated and because it rejects code points 0x80-0x9F.
void ConvertLatin1ToUTF8(const StringPiece& latin1, string* utf) {
char buf[UTFmax];
utf->clear();
for (size_t i = 0; i < latin1.size(); i++) {
Rune r = latin1[i] & 0xFF;
int n = runetochar(buf, &r);
utf->append(buf, n);
}
}
// Parses the regular expression given by s,
// returning the corresponding Regexp tree.
// The caller must Decref the return value when done with it.
// Returns NULL on error.
Regexp* Regexp::Parse(const StringPiece& s, ParseFlags global_flags,
RegexpStatus* status) {
// Make status non-NULL (easier on everyone else).
RegexpStatus xstatus;
if (status == NULL)
status = &xstatus;
ParseState ps(global_flags, s, status);
StringPiece t = s;
// Convert regexp to UTF-8 (easier on the rest of the parser).
if (global_flags & Latin1) {
string* tmp = new string;
ConvertLatin1ToUTF8(t, tmp);
status->set_tmp(tmp);
t = *tmp;
}
if (global_flags & Literal) {
// Special parse loop for literal string.
while (t.size() > 0) {
Rune r;
if (StringPieceToRune(&r, &t, status) < 0)
return NULL;
if (!ps.PushLiteral(r))
return NULL;
}
return ps.DoFinish();
}
StringPiece lastunary = StringPiece();
while (t.size() > 0) {
StringPiece isunary = StringPiece();
switch (t[0]) {
default: {
Rune r;
if (StringPieceToRune(&r, &t, status) < 0)
return NULL;
if (!ps.PushLiteral(r))
return NULL;
break;
}
case '(':
// "(?" introduces Perl escape.
if ((ps.flags() & PerlX) && (t.size() >= 2 && t[1] == '?')) {
// Flag changes and non-capturing groups.
if (!ps.ParsePerlFlags(&t))
return NULL;
break;
}
if (ps.flags() & NeverCapture) {
if (!ps.DoLeftParenNoCapture())
return NULL;
} else {
if (!ps.DoLeftParen(StringPiece()))
return NULL;
}
t.remove_prefix(1); // '('
break;
case '|':
if (!ps.DoVerticalBar())
return NULL;
t.remove_prefix(1); // '|'
break;
case ')':
if (!ps.DoRightParen())
return NULL;
t.remove_prefix(1); // ')'
break;
case '^': // Beginning of line.
if (!ps.PushCarat())
return NULL;
t.remove_prefix(1); // '^'
break;
case '$': // End of line.
if (!ps.PushDollar())
return NULL;
t.remove_prefix(1); // '$'
break;
case '.': // Any character (possibly except newline).
if (!ps.PushDot())
return NULL;
t.remove_prefix(1); // '.'
break;
case '[': { // Character class.
Regexp* re;
if (!ps.ParseCharClass(&t, &re, status))
return NULL;
if (!ps.PushRegexp(re))
return NULL;
break;
}
case '*': { // Zero or more.
RegexpOp op;
op = kRegexpStar;
goto Rep;
case '+': // One or more.
op = kRegexpPlus;
goto Rep;
case '?': // Zero or one.
op = kRegexpQuest;
goto Rep;
Rep:
StringPiece opstr = t;
bool nongreedy = false;
t.remove_prefix(1); // '*' or '+' or '?'
if (ps.flags() & PerlX) {
if (t.size() > 0 && t[0] == '?') {
nongreedy = true;
t.remove_prefix(1); // '?'
}
if (lastunary.size() > 0) {
// In Perl it is not allowed to stack repetition operators:
// a** is a syntax error, not a double-star.
// (and a++ means something else entirely, which we don't support!)
status->set_code(kRegexpRepeatOp);
status->set_error_arg(StringPiece(
lastunary.begin(),
static_cast<size_t>(t.begin() - lastunary.begin())));
return NULL;
}
}
opstr = StringPiece(opstr.data(),
static_cast<size_t>(t.data() - opstr.data()));
if (!ps.PushRepeatOp(op, opstr, nongreedy))
return NULL;
isunary = opstr;
break;
}
case '{': { // Counted repetition.
int lo, hi;
StringPiece opstr = t;
if (!MaybeParseRepetition(&t, &lo, &hi)) {
// Treat like a literal.
if (!ps.PushLiteral('{'))
return NULL;
t.remove_prefix(1); // '{'
break;
}
bool nongreedy = false;
if (ps.flags() & PerlX) {
if (t.size() > 0 && t[0] == '?') {
nongreedy = true;
t.remove_prefix(1); // '?'
}
if (lastunary.size() > 0) {
// Not allowed to stack repetition operators.
status->set_code(kRegexpRepeatOp);
status->set_error_arg(StringPiece(
lastunary.begin(),
static_cast<size_t>(t.begin() - lastunary.begin())));
return NULL;
}
}
opstr = StringPiece(opstr.data(),
static_cast<size_t>(t.data() - opstr.data()));
if (!ps.PushRepetition(lo, hi, opstr, nongreedy))
return NULL;
isunary = opstr;
break;
}
case '\\': { // Escaped character or Perl sequence.
// \b and \B: word boundary or not
if ((ps.flags() & Regexp::PerlB) &&
t.size() >= 2 && (t[1] == 'b' || t[1] == 'B')) {
if (!ps.PushWordBoundary(t[1] == 'b'))
return NULL;
t.remove_prefix(2); // '\\', 'b'
break;
}
if ((ps.flags() & Regexp::PerlX) && t.size() >= 2) {
if (t[1] == 'A') {
if (!ps.PushSimpleOp(kRegexpBeginText))
return NULL;
t.remove_prefix(2); // '\\', 'A'
break;
}
if (t[1] == 'z') {
if (!ps.PushSimpleOp(kRegexpEndText))
return NULL;
t.remove_prefix(2); // '\\', 'z'
break;
}
// Do not recognize \Z, because this library can't
// implement the exact Perl/PCRE semantics.
// (This library treats "(?-m)$" as \z, even though
// in Perl and PCRE it is equivalent to \Z.)
if (t[1] == 'C') { // \C: any byte [sic]
if (!ps.PushSimpleOp(kRegexpAnyByte))
return NULL;
t.remove_prefix(2); // '\\', 'C'
break;
}
if (t[1] == 'Q') { // \Q ... \E: the ... is always literals
t.remove_prefix(2); // '\\', 'Q'
while (t.size() > 0) {
if (t.size() >= 2 && t[0] == '\\' && t[1] == 'E') {
t.remove_prefix(2); // '\\', 'E'
break;
}
Rune r;
if (StringPieceToRune(&r, &t, status) < 0)
return NULL;
if (!ps.PushLiteral(r))
return NULL;
}
break;
}
}
if (t.size() >= 2 && (t[1] == 'p' || t[1] == 'P')) {
Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
re->ccb_ = new CharClassBuilder;
switch (ParseUnicodeGroup(&t, ps.flags(), re->ccb_, status)) {
case kParseOk:
if (!ps.PushRegexp(re))
return NULL;
goto Break2;
case kParseError:
re->Decref();
return NULL;
case kParseNothing:
re->Decref();
break;
}
}
const UGroup *g = MaybeParsePerlCCEscape(&t, ps.flags());
if (g != NULL) {
Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
re->ccb_ = new CharClassBuilder;
AddUGroup(re->ccb_, g, g->sign, ps.flags());
if (!ps.PushRegexp(re))
return NULL;
break;
}
Rune r;
if (!ParseEscape(&t, &r, status, ps.rune_max()))
return NULL;
if (!ps.PushLiteral(r))
return NULL;
break;
}
}
Break2:
lastunary = isunary;
}
return ps.DoFinish();
}
} // namespace re2