blob: fa03af9edc7cc0c336a18533da075edb8d28e417 [file] [log] [blame]
// Copyright 2007 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Compiled regular expression representation.
// Tested by compile_test.cc
#include "re2/prog.h"
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <memory>
#include <utility>
#include "util/util.h"
#include "util/logging.h"
#include "util/strutil.h"
#include "re2/bitmap256.h"
#include "re2/stringpiece.h"
namespace re2 {
// Constructors per Inst opcode
void Prog::Inst::InitAlt(uint32_t out, uint32_t out1) {
DCHECK_EQ(out_opcode_, 0);
set_out_opcode(out, kInstAlt);
out1_ = out1;
}
void Prog::Inst::InitByteRange(int lo, int hi, int foldcase, uint32_t out) {
DCHECK_EQ(out_opcode_, 0);
set_out_opcode(out, kInstByteRange);
lo_ = lo & 0xFF;
hi_ = hi & 0xFF;
foldcase_ = foldcase & 0xFF;
}
void Prog::Inst::InitCapture(int cap, uint32_t out) {
DCHECK_EQ(out_opcode_, 0);
set_out_opcode(out, kInstCapture);
cap_ = cap;
}
void Prog::Inst::InitEmptyWidth(EmptyOp empty, uint32_t out) {
DCHECK_EQ(out_opcode_, 0);
set_out_opcode(out, kInstEmptyWidth);
empty_ = empty;
}
void Prog::Inst::InitMatch(int32_t id) {
DCHECK_EQ(out_opcode_, 0);
set_opcode(kInstMatch);
match_id_ = id;
}
void Prog::Inst::InitNop(uint32_t out) {
DCHECK_EQ(out_opcode_, 0);
set_opcode(kInstNop);
}
void Prog::Inst::InitFail() {
DCHECK_EQ(out_opcode_, 0);
set_opcode(kInstFail);
}
string Prog::Inst::Dump() {
switch (opcode()) {
default:
return StringPrintf("opcode %d", static_cast<int>(opcode()));
case kInstAlt:
return StringPrintf("alt -> %d | %d", out(), out1_);
case kInstAltMatch:
return StringPrintf("altmatch -> %d | %d", out(), out1_);
case kInstByteRange:
return StringPrintf("byte%s [%02x-%02x] -> %d",
foldcase_ ? "/i" : "",
lo_, hi_, out());
case kInstCapture:
return StringPrintf("capture %d -> %d", cap_, out());
case kInstEmptyWidth:
return StringPrintf("emptywidth %#x -> %d",
static_cast<int>(empty_), out());
case kInstMatch:
return StringPrintf("match! %d", match_id());
case kInstNop:
return StringPrintf("nop -> %d", out());
case kInstFail:
return StringPrintf("fail");
}
}
Prog::Prog()
: anchor_start_(false),
anchor_end_(false),
reversed_(false),
did_flatten_(false),
did_onepass_(false),
start_(0),
start_unanchored_(0),
size_(0),
bytemap_range_(0),
first_byte_(-1),
flags_(0),
list_count_(0),
onepass_nodes_(NULL),
dfa_mem_(0),
dfa_first_(NULL),
dfa_longest_(NULL) {
}
Prog::~Prog() {
DeleteDFA(dfa_longest_);
DeleteDFA(dfa_first_);
delete[] onepass_nodes_;
}
typedef SparseSet Workq;
static inline void AddToQueue(Workq* q, int id) {
if (id != 0)
q->insert(id);
}
static string ProgToString(Prog* prog, Workq* q) {
string s;
for (Workq::iterator i = q->begin(); i != q->end(); ++i) {
int id = *i;
Prog::Inst* ip = prog->inst(id);
StringAppendF(&s, "%d. %s\n", id, ip->Dump().c_str());
AddToQueue(q, ip->out());
if (ip->opcode() == kInstAlt || ip->opcode() == kInstAltMatch)
AddToQueue(q, ip->out1());
}
return s;
}
static string FlattenedProgToString(Prog* prog, int start) {
string s;
for (int id = start; id < prog->size(); id++) {
Prog::Inst* ip = prog->inst(id);
if (ip->last())
StringAppendF(&s, "%d. %s\n", id, ip->Dump().c_str());
else
StringAppendF(&s, "%d+ %s\n", id, ip->Dump().c_str());
}
return s;
}
string Prog::Dump() {
if (did_flatten_)
return FlattenedProgToString(this, start_);
Workq q(size_);
AddToQueue(&q, start_);
return ProgToString(this, &q);
}
string Prog::DumpUnanchored() {
if (did_flatten_)
return FlattenedProgToString(this, start_unanchored_);
Workq q(size_);
AddToQueue(&q, start_unanchored_);
return ProgToString(this, &q);
}
string Prog::DumpByteMap() {
string map;
for (int c = 0; c < 256; c++) {
int b = bytemap_[c];
int lo = c;
while (c < 256-1 && bytemap_[c+1] == b)
c++;
int hi = c;
StringAppendF(&map, "[%02x-%02x] -> %d\n", lo, hi, b);
}
return map;
}
int Prog::first_byte() {
std::call_once(first_byte_once_, [](Prog* prog) {
prog->first_byte_ = prog->ComputeFirstByte();
}, this);
return first_byte_;
}
static bool IsMatch(Prog*, Prog::Inst*);
// Peep-hole optimizer.
void Prog::Optimize() {
Workq q(size_);
// Eliminate nops. Most are taken out during compilation
// but a few are hard to avoid.
q.clear();
AddToQueue(&q, start_);
for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
int id = *i;
Inst* ip = inst(id);
int j = ip->out();
Inst* jp;
while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
j = jp->out();
}
ip->set_out(j);
AddToQueue(&q, ip->out());
if (ip->opcode() == kInstAlt) {
j = ip->out1();
while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
j = jp->out();
}
ip->out1_ = j;
AddToQueue(&q, ip->out1());
}
}
// Insert kInstAltMatch instructions
// Look for
// ip: Alt -> j | k
// j: ByteRange [00-FF] -> ip
// k: Match
// or the reverse (the above is the greedy one).
// Rewrite Alt to AltMatch.
q.clear();
AddToQueue(&q, start_);
for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
int id = *i;
Inst* ip = inst(id);
AddToQueue(&q, ip->out());
if (ip->opcode() == kInstAlt)
AddToQueue(&q, ip->out1());
if (ip->opcode() == kInstAlt) {
Inst* j = inst(ip->out());
Inst* k = inst(ip->out1());
if (j->opcode() == kInstByteRange && j->out() == id &&
j->lo() == 0x00 && j->hi() == 0xFF &&
IsMatch(this, k)) {
ip->set_opcode(kInstAltMatch);
continue;
}
if (IsMatch(this, j) &&
k->opcode() == kInstByteRange && k->out() == id &&
k->lo() == 0x00 && k->hi() == 0xFF) {
ip->set_opcode(kInstAltMatch);
}
}
}
}
// Is ip a guaranteed match at end of text, perhaps after some capturing?
static bool IsMatch(Prog* prog, Prog::Inst* ip) {
for (;;) {
switch (ip->opcode()) {
default:
LOG(DFATAL) << "Unexpected opcode in IsMatch: " << ip->opcode();
return false;
case kInstAlt:
case kInstAltMatch:
case kInstByteRange:
case kInstFail:
case kInstEmptyWidth:
return false;
case kInstCapture:
case kInstNop:
ip = prog->inst(ip->out());
break;
case kInstMatch:
return true;
}
}
}
uint32_t Prog::EmptyFlags(const StringPiece& text, const char* p) {
int flags = 0;
// ^ and \A
if (p == text.begin())
flags |= kEmptyBeginText | kEmptyBeginLine;
else if (p[-1] == '\n')
flags |= kEmptyBeginLine;
// $ and \z
if (p == text.end())
flags |= kEmptyEndText | kEmptyEndLine;
else if (p < text.end() && p[0] == '\n')
flags |= kEmptyEndLine;
// \b and \B
if (p == text.begin() && p == text.end()) {
// no word boundary here
} else if (p == text.begin()) {
if (IsWordChar(p[0]))
flags |= kEmptyWordBoundary;
} else if (p == text.end()) {
if (IsWordChar(p[-1]))
flags |= kEmptyWordBoundary;
} else {
if (IsWordChar(p[-1]) != IsWordChar(p[0]))
flags |= kEmptyWordBoundary;
}
if (!(flags & kEmptyWordBoundary))
flags |= kEmptyNonWordBoundary;
return flags;
}
// ByteMapBuilder implements a coloring algorithm.
//
// The first phase is a series of "mark and merge" batches: we mark one or more
// [lo-hi] ranges, then merge them into our internal state. Batching is not for
// performance; rather, it means that the ranges are treated indistinguishably.
//
// Internally, the ranges are represented using a bitmap that stores the splits
// and a vector that stores the colors; both of them are indexed by the ranges'
// last bytes. Thus, in order to merge a [lo-hi] range, we split at lo-1 and at
// hi (if not already split), then recolor each range in between. The color map
// (i.e. from the old color to the new color) is maintained for the lifetime of
// the batch and so underpins this somewhat obscure approach to set operations.
//
// The second phase builds the bytemap from our internal state: we recolor each
// range, then store the new color (which is now the byte class) in each of the
// corresponding array elements. Finally, we output the number of byte classes.
class ByteMapBuilder {
public:
ByteMapBuilder() {
// Initial state: the [0-255] range has color 256.
// This will avoid problems during the second phase,
// in which we assign byte classes numbered from 0.
splits_.Set(255);
colors_.resize(256);
colors_[255] = 256;
nextcolor_ = 257;
}
void Mark(int lo, int hi);
void Merge();
void Build(uint8_t* bytemap, int* bytemap_range);
private:
int Recolor(int oldcolor);
Bitmap256 splits_;
std::vector<int> colors_;
int nextcolor_;
std::vector<std::pair<int, int>> colormap_;
std::vector<std::pair<int, int>> ranges_;
ByteMapBuilder(const ByteMapBuilder&) = delete;
ByteMapBuilder& operator=(const ByteMapBuilder&) = delete;
};
void ByteMapBuilder::Mark(int lo, int hi) {
DCHECK_GE(lo, 0);
DCHECK_GE(hi, 0);
DCHECK_LE(lo, 255);
DCHECK_LE(hi, 255);
DCHECK_LE(lo, hi);
// Ignore any [0-255] ranges. They cause us to recolor every range, which
// has no effect on the eventual result and is therefore a waste of time.
if (lo == 0 && hi == 255)
return;
ranges_.emplace_back(lo, hi);
}
void ByteMapBuilder::Merge() {
for (std::vector<std::pair<int, int>>::const_iterator it = ranges_.begin();
it != ranges_.end();
++it) {
int lo = it->first-1;
int hi = it->second;
if (0 <= lo && !splits_.Test(lo)) {
splits_.Set(lo);
int next = splits_.FindNextSetBit(lo+1);
colors_[lo] = colors_[next];
}
if (!splits_.Test(hi)) {
splits_.Set(hi);
int next = splits_.FindNextSetBit(hi+1);
colors_[hi] = colors_[next];
}
int c = lo+1;
while (c < 256) {
int next = splits_.FindNextSetBit(c);
colors_[next] = Recolor(colors_[next]);
if (next == hi)
break;
c = next+1;
}
}
colormap_.clear();
ranges_.clear();
}
void ByteMapBuilder::Build(uint8_t* bytemap, int* bytemap_range) {
// Assign byte classes numbered from 0.
nextcolor_ = 0;
int c = 0;
while (c < 256) {
int next = splits_.FindNextSetBit(c);
uint8_t b = static_cast<uint8_t>(Recolor(colors_[next]));
while (c <= next) {
bytemap[c] = b;
c++;
}
}
*bytemap_range = nextcolor_;
}
int ByteMapBuilder::Recolor(int oldcolor) {
// Yes, this is a linear search. There can be at most 256
// colors and there will typically be far fewer than that.
// Also, we need to consider keys *and* values in order to
// avoid recoloring a given range more than once per batch.
std::vector<std::pair<int, int>>::const_iterator it =
std::find_if(colormap_.begin(), colormap_.end(),
[=](const std::pair<int, int>& kv) -> bool {
return kv.first == oldcolor || kv.second == oldcolor;
});
if (it != colormap_.end())
return it->second;
int newcolor = nextcolor_;
nextcolor_++;
colormap_.emplace_back(oldcolor, newcolor);
return newcolor;
}
void Prog::ComputeByteMap() {
// Fill in bytemap with byte classes for the program.
// Ranges of bytes that are treated indistinguishably
// will be mapped to a single byte class.
ByteMapBuilder builder;
// Don't repeat the work for ^ and $.
bool marked_line_boundaries = false;
// Don't repeat the work for \b and \B.
bool marked_word_boundaries = false;
for (int id = 0; id < size(); id++) {
Inst* ip = inst(id);
if (ip->opcode() == kInstByteRange) {
int lo = ip->lo();
int hi = ip->hi();
builder.Mark(lo, hi);
if (ip->foldcase() && lo <= 'z' && hi >= 'a') {
int foldlo = lo;
int foldhi = hi;
if (foldlo < 'a')
foldlo = 'a';
if (foldhi > 'z')
foldhi = 'z';
if (foldlo <= foldhi)
builder.Mark(foldlo + 'A' - 'a', foldhi + 'A' - 'a');
}
// If this Inst is not the last Inst in its list AND the next Inst is
// also a ByteRange AND the Insts have the same out, defer the merge.
if (!ip->last() &&
inst(id+1)->opcode() == kInstByteRange &&
ip->out() == inst(id+1)->out())
continue;
builder.Merge();
} else if (ip->opcode() == kInstEmptyWidth) {
if (ip->empty() & (kEmptyBeginLine|kEmptyEndLine) &&
!marked_line_boundaries) {
builder.Mark('\n', '\n');
builder.Merge();
marked_line_boundaries = true;
}
if (ip->empty() & (kEmptyWordBoundary|kEmptyNonWordBoundary) &&
!marked_word_boundaries) {
// We require two batches here: the first for ranges that are word
// characters, the second for ranges that are not word characters.
for (bool isword : {true, false}) {
int j;
for (int i = 0; i < 256; i = j) {
for (j = i + 1; j < 256 &&
Prog::IsWordChar(static_cast<uint8_t>(i)) ==
Prog::IsWordChar(static_cast<uint8_t>(j));
j++)
;
if (Prog::IsWordChar(static_cast<uint8_t>(i)) == isword)
builder.Mark(i, j - 1);
}
builder.Merge();
}
marked_word_boundaries = true;
}
}
}
builder.Build(bytemap_, &bytemap_range_);
if (0) { // For debugging, use trivial bytemap.
LOG(ERROR) << "Using trivial bytemap.";
for (int i = 0; i < 256; i++)
bytemap_[i] = static_cast<uint8_t>(i);
bytemap_range_ = 256;
}
}
// Prog::Flatten() implements a graph rewriting algorithm.
//
// The overall process is similar to epsilon removal, but retains some epsilon
// transitions: those from Capture and EmptyWidth instructions; and those from
// nullable subexpressions. (The latter avoids quadratic blowup in transitions
// in the worst case.) It might be best thought of as Alt instruction elision.
//
// In conceptual terms, it divides the Prog into "trees" of instructions, then
// traverses the "trees" in order to produce "lists" of instructions. A "tree"
// is one or more instructions that grow from one "root" instruction to one or
// more "leaf" instructions; if a "tree" has exactly one instruction, then the
// "root" is also the "leaf". In most cases, a "root" is the successor of some
// "leaf" (i.e. the "leaf" instruction's out() returns the "root" instruction)
// and is considered a "successor root". A "leaf" can be a ByteRange, Capture,
// EmptyWidth or Match instruction. However, this is insufficient for handling
// nested nullable subexpressions correctly, so in some cases, a "root" is the
// dominator of the instructions reachable from some "successor root" (i.e. it
// has an unreachable predecessor) and is considered a "dominator root". Since
// only Alt instructions can be "dominator roots" (other instructions would be
// "leaves"), only Alt instructions are required to be marked as predecessors.
//
// Dividing the Prog into "trees" comprises two passes: marking the "successor
// roots" and the predecessors; and marking the "dominator roots". Sorting the
// "successor roots" by their bytecode offsets enables iteration in order from
// greatest to least during the second pass; by working backwards in this case
// and flooding the graph no further than "leaves" and already marked "roots",
// it becomes possible to mark "dominator roots" without doing excessive work.
//
// Traversing the "trees" is just iterating over the "roots" in order of their
// marking and flooding the graph no further than "leaves" and "roots". When a
// "leaf" is reached, the instruction is copied with its successor remapped to
// its "root" number. When a "root" is reached, a Nop instruction is generated
// with its successor remapped similarly. As each "list" is produced, its last
// instruction is marked as such. After all of the "lists" have been produced,
// a pass over their instructions remaps their successors to bytecode offsets.
void Prog::Flatten() {
if (did_flatten_)
return;
did_flatten_ = true;
// Scratch structures. It's important that these are reused by functions
// that we call in loops because they would thrash the heap otherwise.
SparseSet reachable(size());
std::vector<int> stk;
stk.reserve(size());
// First pass: Marks "successor roots" and predecessors.
// Builds the mapping from inst-ids to root-ids.
SparseArray<int> rootmap(size());
SparseArray<int> predmap(size());
std::vector<std::vector<int>> predvec;
MarkSuccessors(&rootmap, &predmap, &predvec, &reachable, &stk);
// Second pass: Marks "dominator roots".
SparseArray<int> sorted(rootmap);
std::sort(sorted.begin(), sorted.end(), sorted.less);
for (SparseArray<int>::const_iterator i = sorted.end() - 1;
i != sorted.begin();
--i) {
if (i->index() != start_unanchored() && i->index() != start())
MarkDominator(i->index(), &rootmap, &predmap, &predvec, &reachable, &stk);
}
// Third pass: Emits "lists". Remaps outs to root-ids.
// Builds the mapping from root-ids to flat-ids.
std::vector<int> flatmap(rootmap.size());
std::vector<Inst> flat;
flat.reserve(size());
for (SparseArray<int>::const_iterator i = rootmap.begin();
i != rootmap.end();
++i) {
flatmap[i->value()] = static_cast<int>(flat.size());
EmitList(i->index(), &rootmap, &flat, &reachable, &stk);
flat.back().set_last();
}
list_count_ = static_cast<int>(flatmap.size());
for (int i = 0; i < kNumInst; i++)
inst_count_[i] = 0;
// Fourth pass: Remaps outs to flat-ids.
// Counts instructions by opcode.
for (int id = 0; id < static_cast<int>(flat.size()); id++) {
Inst* ip = &flat[id];
if (ip->opcode() != kInstAltMatch) // handled in EmitList()
ip->set_out(flatmap[ip->out()]);
inst_count_[ip->opcode()]++;
}
int total = 0;
for (int i = 0; i < kNumInst; i++)
total += inst_count_[i];
DCHECK_EQ(total, static_cast<int>(flat.size()));
// Remap start_unanchored and start.
if (start_unanchored() == 0) {
DCHECK_EQ(start(), 0);
} else if (start_unanchored() == start()) {
set_start_unanchored(flatmap[1]);
set_start(flatmap[1]);
} else {
set_start_unanchored(flatmap[1]);
set_start(flatmap[2]);
}
// Finally, replace the old instructions with the new instructions.
size_ = static_cast<int>(flat.size());
inst_ = PODArray<Inst>(size_);
memmove(inst_.data(), flat.data(), size_*sizeof(inst_[0]));
}
void Prog::MarkSuccessors(SparseArray<int>* rootmap,
SparseArray<int>* predmap,
std::vector<std::vector<int>>* predvec,
SparseSet* reachable, std::vector<int>* stk) {
// Mark the kInstFail instruction.
rootmap->set_new(0, rootmap->size());
// Mark the start_unanchored and start instructions.
if (!rootmap->has_index(start_unanchored()))
rootmap->set_new(start_unanchored(), rootmap->size());
if (!rootmap->has_index(start()))
rootmap->set_new(start(), rootmap->size());
reachable->clear();
stk->clear();
stk->push_back(start_unanchored());
while (!stk->empty()) {
int id = stk->back();
stk->pop_back();
Loop:
if (reachable->contains(id))
continue;
reachable->insert_new(id);
Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
break;
case kInstAltMatch:
case kInstAlt:
// Mark this instruction as a predecessor of each out.
for (int out : {ip->out(), ip->out1()}) {
if (!predmap->has_index(out)) {
predmap->set_new(out, static_cast<int>(predvec->size()));
predvec->emplace_back();
}
(*predvec)[predmap->get_existing(out)].emplace_back(id);
}
stk->push_back(ip->out1());
id = ip->out();
goto Loop;
case kInstByteRange:
case kInstCapture:
case kInstEmptyWidth:
// Mark the out of this instruction as a "root".
if (!rootmap->has_index(ip->out()))
rootmap->set_new(ip->out(), rootmap->size());
id = ip->out();
goto Loop;
case kInstNop:
id = ip->out();
goto Loop;
case kInstMatch:
case kInstFail:
break;
}
}
}
void Prog::MarkDominator(int root, SparseArray<int>* rootmap,
SparseArray<int>* predmap,
std::vector<std::vector<int>>* predvec,
SparseSet* reachable, std::vector<int>* stk) {
reachable->clear();
stk->clear();
stk->push_back(root);
while (!stk->empty()) {
int id = stk->back();
stk->pop_back();
Loop:
if (reachable->contains(id))
continue;
reachable->insert_new(id);
if (id != root && rootmap->has_index(id)) {
// We reached another "tree" via epsilon transition.
continue;
}
Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
break;
case kInstAltMatch:
case kInstAlt:
stk->push_back(ip->out1());
id = ip->out();
goto Loop;
case kInstByteRange:
case kInstCapture:
case kInstEmptyWidth:
break;
case kInstNop:
id = ip->out();
goto Loop;
case kInstMatch:
case kInstFail:
break;
}
}
for (SparseSet::const_iterator i = reachable->begin();
i != reachable->end();
++i) {
int id = *i;
if (predmap->has_index(id)) {
for (int pred : (*predvec)[predmap->get_existing(id)]) {
if (!reachable->contains(pred)) {
// id has a predecessor that cannot be reached from root!
// Therefore, id must be a "root" too - mark it as such.
if (!rootmap->has_index(id))
rootmap->set_new(id, rootmap->size());
}
}
}
}
}
void Prog::EmitList(int root, SparseArray<int>* rootmap,
std::vector<Inst>* flat,
SparseSet* reachable, std::vector<int>* stk) {
reachable->clear();
stk->clear();
stk->push_back(root);
while (!stk->empty()) {
int id = stk->back();
stk->pop_back();
Loop:
if (reachable->contains(id))
continue;
reachable->insert_new(id);
if (id != root && rootmap->has_index(id)) {
// We reached another "tree" via epsilon transition. Emit a kInstNop
// instruction so that the Prog does not become quadratically larger.
flat->emplace_back();
flat->back().set_opcode(kInstNop);
flat->back().set_out(rootmap->get_existing(id));
continue;
}
Inst* ip = inst(id);
switch (ip->opcode()) {
default:
LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
break;
case kInstAltMatch:
flat->emplace_back();
flat->back().set_opcode(kInstAltMatch);
flat->back().set_out(static_cast<int>(flat->size()));
flat->back().out1_ = static_cast<uint32_t>(flat->size())+1;
FALLTHROUGH_INTENDED;
case kInstAlt:
stk->push_back(ip->out1());
id = ip->out();
goto Loop;
case kInstByteRange:
case kInstCapture:
case kInstEmptyWidth:
flat->emplace_back();
memmove(&flat->back(), ip, sizeof *ip);
flat->back().set_out(rootmap->get_existing(ip->out()));
break;
case kInstNop:
id = ip->out();
goto Loop;
case kInstMatch:
case kInstFail:
flat->emplace_back();
memmove(&flat->back(), ip, sizeof *ip);
break;
}
}
}
} // namespace re2