blob: 1d9c2d3d2c34d245d4dd78978c363e6b694041c5 [file] [log] [blame]
// Copyright 2001-2010 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef RE2_STRINGPIECE_H_
#define RE2_STRINGPIECE_H_
// A string-like object that points to a sized piece of memory.
//
// Functions or methods may use const StringPiece& parameters to accept either
// a "const char*" or a "string" value that will be implicitly converted to
// a StringPiece. The implicit conversion means that it is often appropriate
// to include this .h file in other files rather than forward-declaring
// StringPiece as would be appropriate for most other Google classes.
//
// Systematic usage of StringPiece is encouraged as it will reduce unnecessary
// conversions from "const char*" to "string" and back again.
//
//
// Arghh! I wish C++ literals were "string".
// Doing this simplifies the logic below.
#ifndef __has_include
#define __has_include(x) 0
#endif
#include <stddef.h>
#include <string.h>
#include <algorithm>
#include <iosfwd>
#include <iterator>
#include <string>
#if __has_include(<string_view>) && __cplusplus >= 201703L
#include <string_view>
#endif
namespace re2 {
class StringPiece {
public:
typedef std::char_traits<char> traits_type;
typedef char value_type;
typedef char* pointer;
typedef const char* const_pointer;
typedef char& reference;
typedef const char& const_reference;
typedef const char* const_iterator;
typedef const_iterator iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef const_reverse_iterator reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
static const size_type npos = static_cast<size_type>(-1);
// We provide non-explicit singleton constructors so users can pass
// in a "const char*" or a "string" wherever a "StringPiece" is
// expected.
StringPiece()
: data_(NULL), size_(0) {}
#if __has_include(<string_view>) && __cplusplus >= 201703L
StringPiece(const std::string_view& str)
: data_(str.data()), size_(str.size()) {}
#endif
StringPiece(const std::string& str)
: data_(str.data()), size_(str.size()) {}
StringPiece(const char* str)
: data_(str), size_(str == NULL ? 0 : strlen(str)) {}
StringPiece(const char* str, size_type len)
: data_(str), size_(len) {}
const_iterator begin() const { return data_; }
const_iterator end() const { return data_ + size_; }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(data_ + size_);
}
const_reverse_iterator rend() const {
return const_reverse_iterator(data_);
}
size_type size() const { return size_; }
size_type length() const { return size_; }
bool empty() const { return size_ == 0; }
const_reference operator[](size_type i) const { return data_[i]; }
const_pointer data() const { return data_; }
void remove_prefix(size_type n) {
data_ += n;
size_ -= n;
}
void remove_suffix(size_type n) {
size_ -= n;
}
void set(const char* str) {
data_ = str;
size_ = str == NULL ? 0 : strlen(str);
}
void set(const char* str, size_type len) {
data_ = str;
size_ = len;
}
// Converts to `std::basic_string`.
template <typename A>
explicit operator std::basic_string<char, traits_type, A>() const {
if (!data_) return {};
return std::basic_string<char, traits_type, A>(data_, size_);
}
std::string as_string() const {
return std::string(data_, size_);
}
// We also define ToString() here, since many other string-like
// interfaces name the routine that converts to a C++ string
// "ToString", and it's confusing to have the method that does that
// for a StringPiece be called "as_string()". We also leave the
// "as_string()" method defined here for existing code.
std::string ToString() const {
return std::string(data_, size_);
}
void CopyToString(std::string* target) const {
target->assign(data_, size_);
}
void AppendToString(std::string* target) const {
target->append(data_, size_);
}
size_type copy(char* buf, size_type n, size_type pos = 0) const;
StringPiece substr(size_type pos = 0, size_type n = npos) const;
int compare(const StringPiece& x) const {
size_type min_size = std::min(size(), x.size());
if (min_size > 0) {
int r = memcmp(data(), x.data(), min_size);
if (r < 0) return -1;
if (r > 0) return 1;
}
if (size() < x.size()) return -1;
if (size() > x.size()) return 1;
return 0;
}
// Does "this" start with "x"?
bool starts_with(const StringPiece& x) const {
return x.empty() ||
(size() >= x.size() && memcmp(data(), x.data(), x.size()) == 0);
}
// Does "this" end with "x"?
bool ends_with(const StringPiece& x) const {
return x.empty() ||
(size() >= x.size() &&
memcmp(data() + (size() - x.size()), x.data(), x.size()) == 0);
}
bool contains(const StringPiece& s) const {
return find(s) != npos;
}
size_type find(const StringPiece& s, size_type pos = 0) const;
size_type find(char c, size_type pos = 0) const;
size_type rfind(const StringPiece& s, size_type pos = npos) const;
size_type rfind(char c, size_type pos = npos) const;
private:
const_pointer data_;
size_type size_;
};
inline bool operator==(const StringPiece& x, const StringPiece& y) {
StringPiece::size_type len = x.size();
if (len != y.size()) return false;
return x.data() == y.data() || len == 0 ||
memcmp(x.data(), y.data(), len) == 0;
}
inline bool operator!=(const StringPiece& x, const StringPiece& y) {
return !(x == y);
}
inline bool operator<(const StringPiece& x, const StringPiece& y) {
StringPiece::size_type min_size = std::min(x.size(), y.size());
int r = min_size == 0 ? 0 : memcmp(x.data(), y.data(), min_size);
return (r < 0) || (r == 0 && x.size() < y.size());
}
inline bool operator>(const StringPiece& x, const StringPiece& y) {
return y < x;
}
inline bool operator<=(const StringPiece& x, const StringPiece& y) {
return !(x > y);
}
inline bool operator>=(const StringPiece& x, const StringPiece& y) {
return !(x < y);
}
// Allow StringPiece to be logged.
std::ostream& operator<<(std::ostream& o, const StringPiece& p);
} // namespace re2
#endif // RE2_STRINGPIECE_H_