blob: 54a027551607d7e4a3023b6dc168dae3a18bc6b4 [file] [log] [blame]
use core::array;
use core::borrow::BorrowMut;
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;
use crate::adaptors::checked_binomial;
/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations)
pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>;
/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations)
pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>;
/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I>
where
I::Item: Clone,
{
Combinations::new(iter, (0..k).collect())
}
/// Create a new `ArrayCombinations` from a clonable iterator.
pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K>
where
I::Item: Clone,
{
ArrayCombinations::new(iter, array::from_fn(|i| i))
}
/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct CombinationsGeneric<I: Iterator, Idx> {
indices: Idx,
pool: LazyBuffer<I>,
first: bool,
}
/// A type holding indices of elements in a pool or buffer of items from an inner iterator
/// and used to pick out different combinations in a generic way.
pub trait PoolIndex<T>: BorrowMut<[usize]> {
type Item;
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item
where
T: Clone;
fn len(&self) -> usize {
self.borrow().len()
}
}
impl<T> PoolIndex<T> for Vec<usize> {
type Item = Vec<T>;
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T>
where
T: Clone,
{
pool.get_at(self)
}
}
impl<T, const K: usize> PoolIndex<T> for [usize; K] {
type Item = [T; K];
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K]
where
T: Clone,
{
pool.get_array(*self)
}
}
impl<I, Idx> Clone for CombinationsGeneric<I, Idx>
where
I: Iterator + Clone,
I::Item: Clone,
Idx: Clone,
{
clone_fields!(indices, pool, first);
}
impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
Idx: fmt::Debug,
{
debug_fmt_fields!(Combinations, indices, pool, first);
}
impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> {
/// Constructor with arguments the inner iterator and the initial state for the indices.
fn new(iter: I, indices: Idx) -> Self {
Self {
indices,
pool: LazyBuffer::new(iter),
first: true,
}
}
/// Returns the length of a combination produced by this iterator.
#[inline]
pub fn k(&self) -> usize {
self.indices.len()
}
/// Returns the (current) length of the pool from which combination elements are
/// selected. This value can change between invocations of [`next`](Combinations::next).
#[inline]
pub fn n(&self) -> usize {
self.pool.len()
}
/// Returns a reference to the source pool.
#[inline]
pub(crate) fn src(&self) -> &LazyBuffer<I> {
&self.pool
}
/// Return the length of the inner iterator and the count of remaining combinations.
pub(crate) fn n_and_count(self) -> (usize, usize) {
let Self {
indices,
pool,
first,
} = self;
let n = pool.count();
(n, remaining_for(n, first, indices.borrow()).unwrap())
}
/// Initialises the iterator by filling a buffer with elements from the
/// iterator. Returns true if there are no combinations, false otherwise.
fn init(&mut self) -> bool {
self.pool.prefill(self.k());
let done = self.k() > self.n();
if !done {
self.first = false;
}
done
}
/// Increments indices representing the combination to advance to the next
/// (in lexicographic order by increasing sequence) combination. For example
/// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
///
/// Returns true if we've run out of combinations, false otherwise.
fn increment_indices(&mut self) -> bool {
// Borrow once instead of noise each time it's indexed
let indices = self.indices.borrow_mut();
if indices.is_empty() {
return true; // Done
}
// Scan from the end, looking for an index to increment
let mut i: usize = indices.len() - 1;
// Check if we need to consume more from the iterator
if indices[i] == self.pool.len() - 1 {
self.pool.get_next(); // may change pool size
}
while indices[i] == i + self.pool.len() - indices.len() {
if i > 0 {
i -= 1;
} else {
// Reached the last combination
return true;
}
}
// Increment index, and reset the ones to its right
indices[i] += 1;
for j in i + 1..indices.len() {
indices[j] = indices[j - 1] + 1;
}
// If we've made it this far, we haven't run out of combos
false
}
/// Returns the n-th item or the number of successful steps.
pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
where
I: Iterator,
I::Item: Clone,
{
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return Err(0);
}
for i in 0..n {
if self.increment_indices() {
return Err(i + 1);
}
}
Ok(self.indices.extract_item(&self.pool))
}
}
impl<I, Idx> Iterator for CombinationsGeneric<I, Idx>
where
I: Iterator,
I::Item: Clone,
Idx: PoolIndex<I::Item>,
{
type Item = Idx::Item;
fn next(&mut self) -> Option<Self::Item> {
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return None;
}
Some(self.indices.extract_item(&self.pool))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.try_nth(n).ok()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (mut low, mut upp) = self.pool.size_hint();
low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX);
upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow()));
(low, upp)
}
#[inline]
fn count(self) -> usize {
self.n_and_count().1
}
}
impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx>
where
I: Iterator,
I::Item: Clone,
Idx: PoolIndex<I::Item>,
{
}
impl<I: Iterator> Combinations<I> {
/// Resets this `Combinations` back to an initial state for combinations of length
/// `k` over the same pool data source. If `k` is larger than the current length
/// of the data pool an attempt is made to prefill the pool so that it holds `k`
/// elements.
pub(crate) fn reset(&mut self, k: usize) {
self.first = true;
if k < self.indices.len() {
self.indices.truncate(k);
for i in 0..k {
self.indices[i] = i;
}
} else {
for i in 0..self.indices.len() {
self.indices[i] = i;
}
self.indices.extend(self.indices.len()..k);
self.pool.prefill(k);
}
}
}
/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
let k = indices.len();
if n < k {
Some(0)
} else if first {
checked_binomial(n, k)
} else {
// https://en.wikipedia.org/wiki/Combinatorial_number_system
// http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf
// The combinations generated after the current one can be counted by counting as follows:
// - The subsequent combinations that differ in indices[0]:
// If subsequent combinations differ in indices[0], then their value for indices[0]
// must be at least 1 greater than the current indices[0].
// As indices is strictly monotonically sorted, this means we can effectively choose k values
// from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
// - The subsequent combinations with same indices[0], but differing indices[1]:
// Here we can choose k - 1 values from (n - 1 - indices[1]) values,
// leading to binomial(n - 1 - indices[1], k - 1) possibilities.
// - (...)
// - The subsequent combinations with same indices[0..=i], but differing indices[i]:
// Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
// Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
// Below, `n0` resembles indices[i].
indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
})
}
}