blob: d1d32c81b4c02e9dc5545c1d1bdb47a300fe3021 [file] [log] [blame]
// Copyright 2024 The Fuchsia Authors
//
// Licensed under the 2-Clause BSD License <LICENSE-BSD or
// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
/// Safely transmutes a value of one type to a value of another type of the same
/// size.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// const fn transmute<Src, Dst>(src: Src) -> Dst
/// where
/// Src: IntoBytes,
/// Dst: FromBytes,
/// size_of::<Src>() == size_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// Note that the `Src` produced by the expression `$e` will *not* be dropped.
/// Semantically, its bits will be copied into a new value of type `Dst`, the
/// original `Src` will be forgotten, and the value of type `Dst` will be
/// returned.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute;
/// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: [[u8; 4]; 2] = transmute!(one_dimensional);
///
/// assert_eq!(two_dimensional, [[0, 1, 2, 3], [4, 5, 6, 7]]);
/// ```
///
/// # Use in `const` contexts
///
/// This macro can be invoked in `const` contexts.
#[macro_export]
macro_rules! transmute {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size. `core::mem::transmute` uses compiler magic
// to enforce this so long as the types are concrete.
let e = $e;
if false {
// This branch, though never taken, ensures that the type of `e` is
// `IntoBytes` and that the type of this macro invocation expression
// is `FromBytes`.
struct AssertIsIntoBytes<T: $crate::IntoBytes>(T);
let _ = AssertIsIntoBytes(e);
struct AssertIsFromBytes<U: $crate::FromBytes>(U);
#[allow(unused, unreachable_code)]
let u = AssertIsFromBytes(loop {});
u.0
} else {
// SAFETY: `core::mem::transmute` ensures that the type of `e` and
// the type of this macro invocation expression have the same size.
// We know this transmute is safe thanks to the `IntoBytes` and
// `FromBytes` bounds enforced by the `false` branch.
//
// We use this reexport of `core::mem::transmute` because we know it
// will always be available for crates which are using the 2015
// edition of Rust. By contrast, if we were to use
// `std::mem::transmute`, this macro would not work for such crates
// in `no_std` contexts, and if we were to use
// `core::mem::transmute`, this macro would not work in `std`
// contexts in which `core` was not manually imported. This is not a
// problem for 2018 edition crates.
let u = unsafe {
// Clippy: We can't annotate the types; this macro is designed
// to infer the types from the calling context.
#[allow(clippy::missing_transmute_annotations)]
$crate::util::macro_util::core_reexport::mem::transmute(e)
};
$crate::util::macro_util::must_use(u)
}
}}
}
/// Safely transmutes a mutable or immutable reference of one type to an
/// immutable reference of another type of the same size and compatible
/// alignment.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// const fn transmute_ref<'src, 'dst, Src, Dst>(src: &'src Src) -> &'dst Dst
/// where
/// 'src: 'dst,
/// Src: IntoBytes + Immutable,
/// Dst: FromBytes + Immutable,
/// size_of::<Src>() == size_of::<Dst>(),
/// align_of::<Src>() >= align_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute_ref;
/// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: &[[u8; 4]; 2] = transmute_ref!(&one_dimensional);
///
/// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]);
/// ```
///
/// # Use in `const` contexts
///
/// This macro can be invoked in `const` contexts.
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `transmute_ref!` is used to transmute from a type of lower alignment to a
/// type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
/// --> src/lib.rs:1524:34
/// |
/// 5 | const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]);
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = note: source type: `AlignOf<[u8; 2]>` (8 bits)
/// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
/// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_ref` (in Nightly builds, run with -Z macro-backtrace for more info)
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! transmute_ref {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size or alignment.
// Ensure that the source type is a reference or a mutable reference
// (note that mutable references are implicitly reborrowed here).
let e: &_ = $e;
#[allow(unused, clippy::diverging_sub_expression)]
if false {
// This branch, though never taken, ensures that the type of `e` is
// `&T` where `T: 't + Sized + IntoBytes + Immutable`, that the type of
// this macro expression is `&U` where `U: 'u + Sized + FromBytes +
// Immutable`, and that `'t` outlives `'u`.
struct AssertSrcIsSized<'a, T: ::core::marker::Sized>(&'a T);
struct AssertSrcIsIntoBytes<'a, T: ?::core::marker::Sized + $crate::IntoBytes>(&'a T);
struct AssertSrcIsImmutable<'a, T: ?::core::marker::Sized + $crate::Immutable>(&'a T);
struct AssertDstIsSized<'a, T: ::core::marker::Sized>(&'a T);
struct AssertDstIsFromBytes<'a, U: ?::core::marker::Sized + $crate::FromBytes>(&'a U);
struct AssertDstIsImmutable<'a, T: ?::core::marker::Sized + $crate::Immutable>(&'a T);
let _ = AssertSrcIsSized(e);
let _ = AssertSrcIsIntoBytes(e);
let _ = AssertSrcIsImmutable(e);
if true {
#[allow(unused, unreachable_code)]
let u = AssertDstIsSized(loop {});
u.0
} else if true {
#[allow(unused, unreachable_code)]
let u = AssertDstIsFromBytes(loop {});
u.0
} else {
#[allow(unused, unreachable_code)]
let u = AssertDstIsImmutable(loop {});
u.0
}
} else if false {
// This branch, though never taken, ensures that `size_of::<T>() ==
// size_of::<U>()` and that that `align_of::<T>() >=
// align_of::<U>()`.
// `t` is inferred to have type `T` because it's assigned to `e` (of
// type `&T`) as `&t`.
let mut t = loop {};
e = &t;
// `u` is inferred to have type `U` because it's used as `&u` as the
// value returned from this branch.
let u;
$crate::assert_size_eq!(t, u);
$crate::assert_align_gt_eq!(t, u);
&u
} else {
// SAFETY: For source type `Src` and destination type `Dst`:
// - We know that `Src: IntoBytes + Immutable` and `Dst: FromBytes +
// Immutable` thanks to the uses of `AssertSrcIsIntoBytes`,
// `AssertSrcIsImmutable`, `AssertDstIsFromBytes`, and
// `AssertDstIsImmutable` above.
// - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to
// the use of `assert_size_eq!` above.
// - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to
// the use of `assert_align_gt_eq!` above.
let u = unsafe { $crate::util::macro_util::transmute_ref(e) };
$crate::util::macro_util::must_use(u)
}
}}
}
/// Safely transmutes a mutable reference of one type to a mutable reference of
/// another type of the same size and compatible alignment.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// const fn transmute_mut<'src, 'dst, Src, Dst>(src: &'src mut Src) -> &'dst mut Dst
/// where
/// 'src: 'dst,
/// Src: FromBytes + IntoBytes + Immutable,
/// Dst: FromBytes + IntoBytes + Immutable,
/// size_of::<Src>() == size_of::<Dst>(),
/// align_of::<Src>() >= align_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// # Examples
///
/// ```
/// # use zerocopy::transmute_mut;
/// let mut one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
///
/// let two_dimensional: &mut [[u8; 4]; 2] = transmute_mut!(&mut one_dimensional);
///
/// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]);
///
/// two_dimensional.reverse();
///
/// assert_eq!(one_dimensional, [4, 5, 6, 7, 0, 1, 2, 3]);
/// ```
///
/// # Use in `const` contexts
///
/// This macro can be invoked in `const` contexts.
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `transmute_mut!` is used to transmute from a type of lower alignment to a
/// type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
/// --> src/lib.rs:1524:34
/// |
/// 5 | const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]);
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = note: source type: `AlignOf<[u8; 2]>` (8 bits)
/// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
/// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_mut` (in Nightly builds, run with -Z macro-backtrace for more info)
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! transmute_mut {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size or alignment.
// Ensure that the source type is a mutable reference.
let e: &mut _ = $e;
#[allow(unused, clippy::diverging_sub_expression)]
if false {
// This branch, though never taken, ensures that the type of `e` is
// `&mut T` where `T: 't + Sized + FromBytes + IntoBytes + Immutable`
// and that the type of this macro expression is `&mut U` where `U:
// 'u + Sized + FromBytes + IntoBytes + Immutable`.
// We use immutable references here rather than mutable so that, if
// this macro is used in a const context (in which, as of this
// writing, mutable references are banned), the error message
// appears to originate in the user's code rather than in the
// internals of this macro.
struct AssertSrcIsSized<'a, T: ::core::marker::Sized>(&'a T);
struct AssertSrcIsFromBytes<'a, T: ?::core::marker::Sized + $crate::FromBytes>(&'a T);
struct AssertSrcIsIntoBytes<'a, T: ?::core::marker::Sized + $crate::IntoBytes>(&'a T);
struct AssertDstIsSized<'a, T: ::core::marker::Sized>(&'a T);
struct AssertDstIsFromBytes<'a, T: ?::core::marker::Sized + $crate::FromBytes>(&'a T);
struct AssertDstIsIntoBytes<'a, T: ?::core::marker::Sized + $crate::IntoBytes>(&'a T);
if true {
let _ = AssertSrcIsSized(&*e);
} else if true {
let _ = AssertSrcIsFromBytes(&*e);
} else {
let _ = AssertSrcIsIntoBytes(&*e);
}
if true {
#[allow(unused, unreachable_code)]
let u = AssertDstIsSized(loop {});
&mut *u.0
} else if true {
#[allow(unused, unreachable_code)]
let u = AssertDstIsFromBytes(loop {});
&mut *u.0
} else {
#[allow(unused, unreachable_code)]
let u = AssertDstIsIntoBytes(loop {});
&mut *u.0
}
} else if false {
// This branch, though never taken, ensures that `size_of::<T>() ==
// size_of::<U>()` and that that `align_of::<T>() >=
// align_of::<U>()`.
// `t` is inferred to have type `T` because it's assigned to `e` (of
// type `&mut T`) as `&mut t`.
let mut t = loop {};
e = &mut t;
// `u` is inferred to have type `U` because it's used as `&mut u` as
// the value returned from this branch.
let u;
$crate::assert_size_eq!(t, u);
$crate::assert_align_gt_eq!(t, u);
&mut u
} else {
// SAFETY: For source type `Src` and destination type `Dst`:
// - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to
// the use of `assert_size_eq!` above.
// - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to
// the use of `assert_align_gt_eq!` above.
let u = unsafe { $crate::util::macro_util::transmute_mut(e) };
$crate::util::macro_util::must_use(u)
}
}}
}
/// Conditionally transmutes a value of one type to a value of another type of
/// the same size.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// fn try_transmute<Src, Dst>(src: Src) -> Result<Dst, ValidityError<Src, Dst>>
/// where
/// Src: IntoBytes,
/// Dst: TryFromBytes,
/// size_of::<Src>() == size_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// Note that the `Src` produced by the expression `$e` will *not* be dropped.
/// Semantically, its bits will be copied into a new value of type `Dst`, the
/// original `Src` will be forgotten, and the value of type `Dst` will be
/// returned.
///
/// # Examples
///
/// ```
/// # use zerocopy::*;
/// // 0u8 → bool = false
/// assert_eq!(try_transmute!(0u8), Ok(false));
///
/// // 1u8 → bool = true
/// assert_eq!(try_transmute!(1u8), Ok(true));
///
/// // 2u8 → bool = error
/// assert!(matches!(
/// try_transmute!(2u8),
/// Result::<bool, _>::Err(ValidityError { .. })
/// ));
/// ```
#[macro_export]
macro_rules! try_transmute {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size. `core::mem::transmute` uses compiler magic
// to enforce this so long as the types are concrete.
let e = $e;
if false {
// Check that the sizes of the source and destination types are
// equal.
// SAFETY: This code is never executed.
Ok(unsafe {
// Clippy: We can't annotate the types; this macro is designed
// to infer the types from the calling context.
#[allow(clippy::missing_transmute_annotations)]
$crate::util::macro_util::core_reexport::mem::transmute(e)
})
} else {
$crate::util::macro_util::try_transmute::<_, _>(e)
}
}}
}
/// Conditionally transmutes a mutable or immutable reference of one type to an
/// immutable reference of another type of the same size and compatible
/// alignment.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// fn try_transmute_ref<Src, Dst>(src: &Src) -> Result<&Dst, ValidityError<&Src, Dst>>
/// where
/// Src: IntoBytes + Immutable,
/// Dst: TryFromBytes + Immutable,
/// size_of::<Src>() == size_of::<Dst>(),
/// align_of::<Src>() >= align_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// # Examples
///
/// ```
/// # use zerocopy::*;
/// // 0u8 → bool = false
/// assert_eq!(try_transmute_ref!(&0u8), Ok(&false));
///
/// // 1u8 → bool = true
/// assert_eq!(try_transmute_ref!(&1u8), Ok(&true));
///
/// // 2u8 → bool = error
/// assert!(matches!(
/// try_transmute_ref!(&2u8),
/// Result::<&bool, _>::Err(ValidityError { .. })
/// ));
/// ```
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `try_transmute_ref!` is used to transmute from a type of lower alignment to
/// a type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// let increase_alignment: Result<&u16, _> = zerocopy::try_transmute_ref!(&[0u8; 2]);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
/// --> example.rs:1:47
/// |
/// 1 | let increase_alignment: Result<&u16, _> = zerocopy::try_transmute_ref!(&[0u8; 2]);
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = note: source type: `AlignOf<[u8; 2]>` (8 bits)
/// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
/// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `zerocopy::try_transmute_ref` (in Nightly builds, run with -Z macro-backtrace for more info)/// ```
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! try_transmute_ref {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size. `core::mem::transmute` uses compiler magic
// to enforce this so long as the types are concrete.
// Ensure that the source type is a reference or a mutable reference
// (note that mutable references are implicitly reborrowed here).
let e: &_ = $e;
#[allow(unreachable_code, unused, clippy::diverging_sub_expression)]
if false {
// This branch, though never taken, ensures that `size_of::<T>() ==
// size_of::<U>()` and that that `align_of::<T>() >=
// align_of::<U>()`.
// `t` is inferred to have type `T` because it's assigned to `e` (of
// type `&T`) as `&t`.
let mut t = loop {};
e = &t;
// `u` is inferred to have type `U` because it's used as `Ok(&u)` as
// the value returned from this branch.
let u;
$crate::assert_size_eq!(t, u);
$crate::assert_align_gt_eq!(t, u);
Ok(&u)
} else {
$crate::util::macro_util::try_transmute_ref::<_, _>(e)
}
}}
}
/// Conditionally transmutes a mutable reference of one type to a mutable
/// reference of another type of the same size and compatible alignment.
///
/// This macro behaves like an invocation of this function:
///
/// ```ignore
/// fn try_transmute_mut<Src, Dst>(src: &mut Src) -> Result<&mut Dst, ValidityError<&mut Src, Dst>>
/// where
/// Src: IntoBytes,
/// Dst: TryFromBytes,
/// size_of::<Src>() == size_of::<Dst>(),
/// align_of::<Src>() >= align_of::<Dst>(),
/// {
/// # /*
/// ...
/// # */
/// }
/// ```
///
/// However, unlike a function, this macro can only be invoked when the types of
/// `Src` and `Dst` are completely concrete. The types `Src` and `Dst` are
/// inferred from the calling context; they cannot be explicitly specified in
/// the macro invocation.
///
/// # Examples
///
/// ```
/// # use zerocopy::*;
/// // 0u8 → bool = false
/// let src = &mut 0u8;
/// assert_eq!(try_transmute_mut!(src), Ok(&mut false));
///
/// // 1u8 → bool = true
/// let src = &mut 1u8;
/// assert_eq!(try_transmute_mut!(src), Ok(&mut true));
///
/// // 2u8 → bool = error
/// let src = &mut 2u8;
/// assert!(matches!(
/// try_transmute_mut!(src),
/// Result::<&mut bool, _>::Err(ValidityError { .. })
/// ));
/// ```
///
/// # Alignment increase error message
///
/// Because of limitations on macros, the error message generated when
/// `try_transmute_ref!` is used to transmute from a type of lower alignment to
/// a type of higher alignment is somewhat confusing. For example, the following
/// code:
///
/// ```compile_fail
/// let src = &mut [0u8; 2];
/// let increase_alignment: Result<&mut u16, _> = zerocopy::try_transmute_mut!(src);
/// ```
///
/// ...generates the following error:
///
/// ```text
/// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types
/// --> example.rs:2:51
/// |
/// 2 | let increase_alignment: Result<&mut u16, _> = zerocopy::try_transmute_mut!(src);
/// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
/// |
/// = note: source type: `AlignOf<[u8; 2]>` (8 bits)
/// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits)
/// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `zerocopy::try_transmute_mut` (in Nightly builds, run with -Z macro-backtrace for more info)
/// ```
///
/// This is saying that `max(align_of::<T>(), align_of::<U>()) !=
/// align_of::<T>()`, which is equivalent to `align_of::<T>() <
/// align_of::<U>()`.
#[macro_export]
macro_rules! try_transmute_mut {
($e:expr) => {{
// NOTE: This must be a macro (rather than a function with trait bounds)
// because there's no way, in a generic context, to enforce that two
// types have the same size. `core::mem::transmute` uses compiler magic
// to enforce this so long as the types are concrete.
// Ensure that the source type is a mutable reference.
let e: &mut _ = $e;
#[allow(unreachable_code, unused, clippy::diverging_sub_expression)]
if false {
// This branch, though never taken, ensures that `size_of::<T>() ==
// size_of::<U>()` and that that `align_of::<T>() >=
// align_of::<U>()`.
// `t` is inferred to have type `T` because it's assigned to `e` (of
// type `&mut T`) as `&mut t`.
let mut t = loop {};
e = &mut t;
// `u` is inferred to have type `U` because it's used as `Ok(&mut
// u)` as the value returned from this branch.
let u;
$crate::assert_size_eq!(t, u);
$crate::assert_align_gt_eq!(t, u);
Ok(&mut u)
} else {
$crate::util::macro_util::try_transmute_mut::<_, _>(e)
}
}}
}
/// Includes a file and safely transmutes it to a value of an arbitrary type.
///
/// The file will be included as a byte array, `[u8; N]`, which will be
/// transmuted to another type, `T`. `T` is inferred from the calling context,
/// and must implement [`FromBytes`].
///
/// The file is located relative to the current file (similarly to how modules
/// are found). The provided path is interpreted in a platform-specific way at
/// compile time. So, for instance, an invocation with a Windows path containing
/// backslashes `\` would not compile correctly on Unix.
///
/// `include_value!` is ignorant of byte order. For byte order-aware types, see
/// the [`byteorder`] module.
///
/// [`FromBytes`]: crate::FromBytes
/// [`byteorder`]: crate::byteorder
///
/// # Examples
///
/// Assume there are two files in the same directory with the following
/// contents:
///
/// File `data` (no trailing newline):
///
/// ```text
/// abcd
/// ```
///
/// File `main.rs`:
///
/// ```rust
/// use zerocopy::include_value;
/// # macro_rules! include_value {
/// # ($file:expr) => { zerocopy::include_value!(concat!("../testdata/include_value/", $file)) };
/// # }
///
/// fn main() {
/// let as_u32: u32 = include_value!("data");
/// assert_eq!(as_u32, u32::from_ne_bytes([b'a', b'b', b'c', b'd']));
/// let as_i32: i32 = include_value!("data");
/// assert_eq!(as_i32, i32::from_ne_bytes([b'a', b'b', b'c', b'd']));
/// }
/// ```
///
/// # Use in `const` contexts
///
/// This macro can be invoked in `const` contexts.
#[doc(alias("include_bytes", "include_data", "include_type"))]
#[macro_export]
macro_rules! include_value {
($file:expr $(,)?) => {
$crate::transmute!(*::core::include_bytes!($file))
};
}
#[cfg(test)]
mod tests {
use crate::util::testutil::*;
use crate::*;
#[test]
fn test_transmute() {
// Test that memory is transmuted as expected.
let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
let x: [[u8; 2]; 4] = transmute!(array_of_u8s);
assert_eq!(x, array_of_arrays);
let x: [u8; 8] = transmute!(array_of_arrays);
assert_eq!(x, array_of_u8s);
// Test that the source expression's value is forgotten rather than
// dropped.
#[derive(IntoBytes)]
#[repr(transparent)]
struct PanicOnDrop(());
impl Drop for PanicOnDrop {
fn drop(&mut self) {
panic!("PanicOnDrop::drop");
}
}
#[allow(clippy::let_unit_value)]
let _: () = transmute!(PanicOnDrop(()));
// Test that `transmute!` is legal in a const context.
const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7];
const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]];
const X: [[u8; 2]; 4] = transmute!(ARRAY_OF_U8S);
assert_eq!(X, ARRAY_OF_ARRAYS);
// Test that `transmute!` works with `!Immutable` types.
let x: usize = transmute!(UnsafeCell::new(1usize));
assert_eq!(x, 1);
let x: UnsafeCell<usize> = transmute!(1usize);
assert_eq!(x.into_inner(), 1);
let x: UnsafeCell<isize> = transmute!(UnsafeCell::new(1usize));
assert_eq!(x.into_inner(), 1);
}
#[test]
fn test_transmute_ref() {
// Test that memory is transmuted as expected.
let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
let x: &[[u8; 2]; 4] = transmute_ref!(&array_of_u8s);
assert_eq!(*x, array_of_arrays);
let x: &[u8; 8] = transmute_ref!(&array_of_arrays);
assert_eq!(*x, array_of_u8s);
// Test that `transmute_ref!` is legal in a const context.
const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7];
const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]];
#[allow(clippy::redundant_static_lifetimes)]
const X: &'static [[u8; 2]; 4] = transmute_ref!(&ARRAY_OF_U8S);
assert_eq!(*X, ARRAY_OF_ARRAYS);
// Test that it's legal to transmute a reference while shrinking the
// lifetime (note that `X` has the lifetime `'static`).
let x: &[u8; 8] = transmute_ref!(X);
assert_eq!(*x, ARRAY_OF_U8S);
// Test that `transmute_ref!` supports decreasing alignment.
let u = AU64(0);
let array = [0, 0, 0, 0, 0, 0, 0, 0];
let x: &[u8; 8] = transmute_ref!(&u);
assert_eq!(*x, array);
// Test that a mutable reference can be turned into an immutable one.
let mut x = 0u8;
#[allow(clippy::useless_transmute)]
let y: &u8 = transmute_ref!(&mut x);
assert_eq!(*y, 0);
}
#[test]
fn test_try_transmute() {
// Test that memory is transmuted with `try_transmute` as expected.
let array_of_bools = [false, true, false, true, false, true, false, true];
let array_of_arrays = [[0, 1], [0, 1], [0, 1], [0, 1]];
let x: Result<[[u8; 2]; 4], _> = try_transmute!(array_of_bools);
assert_eq!(x, Ok(array_of_arrays));
let x: Result<[bool; 8], _> = try_transmute!(array_of_arrays);
assert_eq!(x, Ok(array_of_bools));
// Test that `try_transmute!` works with `!Immutable` types.
let x: Result<usize, _> = try_transmute!(UnsafeCell::new(1usize));
assert_eq!(x.unwrap(), 1);
let x: Result<UnsafeCell<usize>, _> = try_transmute!(1usize);
assert_eq!(x.unwrap().into_inner(), 1);
let x: Result<UnsafeCell<isize>, _> = try_transmute!(UnsafeCell::new(1usize));
assert_eq!(x.unwrap().into_inner(), 1);
#[derive(FromBytes, IntoBytes, Debug, PartialEq)]
#[repr(transparent)]
struct PanicOnDrop<T>(T);
impl<T> Drop for PanicOnDrop<T> {
fn drop(&mut self) {
panic!("PanicOnDrop dropped");
}
}
// Since `try_transmute!` semantically moves its argument on failure,
// the `PanicOnDrop` is not dropped, and thus this shouldn't panic.
let x: Result<usize, _> = try_transmute!(PanicOnDrop(1usize));
assert_eq!(x, Ok(1));
// Since `try_transmute!` semantically returns ownership of its argument
// on failure, the `PanicOnDrop` is returned rather than dropped, and
// thus this shouldn't panic.
let y: Result<bool, _> = try_transmute!(PanicOnDrop(2u8));
// We have to use `map_err` instead of comparing against
// `Err(PanicOnDrop(2u8))` because the latter would create and then drop
// its `PanicOnDrop` temporary, which would cause a panic.
assert_eq!(y.as_ref().map_err(|p| &p.src.0), Err::<&bool, _>(&2u8));
mem::forget(y);
}
#[test]
fn test_try_transmute_ref() {
// Test that memory is transmuted with `try_transmute_ref` as expected.
let array_of_bools = &[false, true, false, true, false, true, false, true];
let array_of_arrays = &[[0, 1], [0, 1], [0, 1], [0, 1]];
let x: Result<&[[u8; 2]; 4], _> = try_transmute_ref!(array_of_bools);
assert_eq!(x, Ok(array_of_arrays));
let x: Result<&[bool; 8], _> = try_transmute_ref!(array_of_arrays);
assert_eq!(x, Ok(array_of_bools));
// Test that it's legal to transmute a reference while shrinking the
// lifetime.
{
let x: Result<&[[u8; 2]; 4], _> = try_transmute_ref!(array_of_bools);
assert_eq!(x, Ok(array_of_arrays));
}
// Test that `try_transmute_ref!` supports decreasing alignment.
let u = AU64(0);
let array = [0u8, 0, 0, 0, 0, 0, 0, 0];
let x: Result<&[u8; 8], _> = try_transmute_ref!(&u);
assert_eq!(x, Ok(&array));
// Test that a mutable reference can be turned into an immutable one.
let mut x = 0u8;
#[allow(clippy::useless_transmute)]
let y: Result<&u8, _> = try_transmute_ref!(&mut x);
assert_eq!(y, Ok(&0));
}
#[test]
fn test_try_transmute_mut() {
// Test that memory is transmuted with `try_transmute_mut` as expected.
let array_of_bools = &mut [false, true, false, true, false, true, false, true];
let array_of_arrays = &mut [[0u8, 1], [0, 1], [0, 1], [0, 1]];
let x: Result<&mut [[u8; 2]; 4], _> = try_transmute_mut!(array_of_bools);
assert_eq!(x, Ok(array_of_arrays));
let array_of_bools = &mut [false, true, false, true, false, true, false, true];
let array_of_arrays = &mut [[0u8, 1], [0, 1], [0, 1], [0, 1]];
let x: Result<&mut [bool; 8], _> = try_transmute_mut!(array_of_arrays);
assert_eq!(x, Ok(array_of_bools));
// Test that it's legal to transmute a reference while shrinking the
// lifetime.
let array_of_bools = &mut [false, true, false, true, false, true, false, true];
let array_of_arrays = &mut [[0u8, 1], [0, 1], [0, 1], [0, 1]];
{
let x: Result<&mut [[u8; 2]; 4], _> = try_transmute_mut!(array_of_bools);
assert_eq!(x, Ok(array_of_arrays));
}
// Test that `try_transmute_mut!` supports decreasing alignment.
let u = &mut AU64(0);
let array = &mut [0u8, 0, 0, 0, 0, 0, 0, 0];
let x: Result<&mut [u8; 8], _> = try_transmute_mut!(u);
assert_eq!(x, Ok(array));
// Test that a mutable reference can be turned into an immutable one.
let mut x = 0u8;
#[allow(clippy::useless_transmute)]
let y: Result<&mut u8, _> = try_transmute_mut!(&mut x);
assert_eq!(y, Ok(&mut 0));
}
#[test]
fn test_transmute_mut() {
// Test that memory is transmuted as expected.
let mut array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
let mut array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
let x: &mut [[u8; 2]; 4] = transmute_mut!(&mut array_of_u8s);
assert_eq!(*x, array_of_arrays);
let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays);
assert_eq!(*x, array_of_u8s);
{
// Test that it's legal to transmute a reference while shrinking the
// lifetime.
let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays);
assert_eq!(*x, array_of_u8s);
}
// Test that `transmute_mut!` supports decreasing alignment.
let mut u = AU64(0);
let array = [0, 0, 0, 0, 0, 0, 0, 0];
let x: &[u8; 8] = transmute_mut!(&mut u);
assert_eq!(*x, array);
// Test that a mutable reference can be turned into an immutable one.
let mut x = 0u8;
#[allow(clippy::useless_transmute)]
let y: &u8 = transmute_mut!(&mut x);
assert_eq!(*y, 0);
}
#[test]
fn test_macros_evaluate_args_once() {
let mut ctr = 0;
#[allow(clippy::useless_transmute)]
let _: usize = transmute!({
ctr += 1;
0usize
});
assert_eq!(ctr, 1);
let mut ctr = 0;
let _: &usize = transmute_ref!({
ctr += 1;
&0usize
});
assert_eq!(ctr, 1);
let mut ctr: usize = 0;
let _: &mut usize = transmute_mut!({
ctr += 1;
&mut ctr
});
assert_eq!(ctr, 1);
let mut ctr = 0;
#[allow(clippy::useless_transmute)]
let _: usize = try_transmute!({
ctr += 1;
0usize
})
.unwrap();
assert_eq!(ctr, 1);
}
#[test]
fn test_include_value() {
const AS_U32: u32 = include_value!("../testdata/include_value/data");
assert_eq!(AS_U32, u32::from_ne_bytes([b'a', b'b', b'c', b'd']));
const AS_I32: i32 = include_value!("../testdata/include_value/data");
assert_eq!(AS_I32, i32::from_ne_bytes([b'a', b'b', b'c', b'd']));
}
}