blob: dfc9949b52c4755d78be887a9099bb418cf69b30 [file] [log] [blame]
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::ptr::NonNull;
use crate::{util::AsAddress, CastType, KnownLayout};
/// Module used to gate access to [`Ptr`]'s fields.
mod def {
#[cfg(doc)]
use super::invariant;
use super::Invariants;
use core::{marker::PhantomData, ptr::NonNull};
/// A raw pointer with more restrictions.
///
/// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
/// following ways (note that these requirements only hold of non-zero-sized
/// referents):
/// - It must derive from a valid allocation.
/// - It must reference a byte range which is contained inside the
/// allocation from which it derives.
/// - As a consequence, the byte range it references must have a size
/// which does not overflow `isize`.
///
/// Depending on how `Ptr` is parameterized, it may have additional
/// invariants:
/// - `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// - `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// - `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
///
/// `Ptr<'a, T>` is [covariant] in `'a` and `T`.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
pub struct Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// # Invariants
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live
/// for at least `'a`.
/// 6. `T: 'a`.
/// 7. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 8. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 9. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
// SAFETY: `NonNull<T>` is covariant over `T` [1].
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html
ptr: NonNull<T>,
// SAFETY: `&'a ()` is covariant over `'a` [1].
//
// [1]: https://doc.rust-lang.org/reference/subtyping.html#variance
_invariants: PhantomData<&'a I>,
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Constructs a `Ptr` from a [`NonNull`].
///
/// # Safety
///
/// The caller promises that:
///
/// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
/// some valid Rust allocation, `A`.
/// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
/// provenance for `A`.
/// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
/// byte range which is entirely contained in `A`.
/// 3. `ptr` addresses a byte range whose length fits in an `isize`.
/// 4. `ptr` addresses a byte range which does not wrap around the
/// address space.
/// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
/// live for at least `'a`.
/// 6. `ptr` conforms to the aliasing invariant of
/// [`I::Aliasing`](invariant::Aliasing).
/// 7. `ptr` conforms to the alignment invariant of
/// [`I::Alignment`](invariant::Alignment).
/// 8. `ptr` conforms to the validity invariant of
/// [`I::Validity`](invariant::Validity).
pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
// SAFETY: The caller has promised to satisfy all safety invariants
// of `Ptr`.
Self { ptr, _invariants: PhantomData }
}
/// Converts this `Ptr<T>` to a [`NonNull<T>`].
///
/// Note that this method does not consume `self`. The caller should
/// watch out for `unsafe` code which uses the returned `NonNull` in a
/// way that violates the safety invariants of `self`.
pub(crate) fn as_non_null(&self) -> NonNull<T> {
self.ptr
}
}
}
#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
pub use def::Ptr;
/// Used to define the system of [invariants][invariant] of `Ptr`.
macro_rules! define_system {
($(#[$system_attr:meta])* $system:ident {
$($(#[$set_attr:meta])* $set:ident {
$( $(#[$elem_attr:meta])* $elem:ident $(< $($stronger_elem:ident)|*)?,)*
})*
}) => {
/// No requirement - any invariant is allowed.
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum Any {}
/// `Self` imposes a requirement at least as strict as `I`.
pub trait AtLeast<I> {}
mod sealed {
pub trait Sealed {}
impl<$($set,)*> Sealed for ($($set,)*)
where
$($set: super::$set,)*
{}
impl Sealed for super::Any {}
$($(
impl Sealed for super::$elem {}
)*)*
}
$(#[$system_attr])*
///
#[doc = concat!(
stringify!($system),
" are encoded as tuples of (",
)]
$(#[doc = concat!(
"[`",
stringify!($set),
"`],"
)])*
#[doc = concat!(
").",
)]
/// This trait is implemented for such tuples, and can be used to
/// project out the components of these tuples via its associated types.
pub trait $system: sealed::Sealed {
$(
$(#[$set_attr])*
type $set: $set;
)*
}
impl<$($set,)*> $system for ($($set,)*)
where
$($set: self::$set,)*
{
$(type $set = $set;)*
}
$(
$(#[$set_attr])*
pub trait $set: 'static + sealed::Sealed {
// This only exists for use in
// `into_exclusive_or_post_monomorphization_error`.
#[doc(hidden)]
const NAME: &'static str;
}
impl $set for Any {
const NAME: &'static str = stringify!(Any);
}
$(
$(#[$elem_attr])*
#[allow(missing_copy_implementations, missing_debug_implementations)]
pub enum $elem {}
$(#[$elem_attr])*
impl $set for $elem {
const NAME: &'static str = stringify!($elem);
}
)*
)*
$($(
impl AtLeast<Any> for $elem {}
impl AtLeast<$elem> for $elem {}
$($(impl AtLeast<$elem> for $stronger_elem {})*)?
)*)*
};
}
/// The parameterized invariants of a [`Ptr`].
///
/// Invariants are encoded as ([`Aliasing`], [`Alignment`], [`Validity`])
/// triples implementing the [`Invariants`] trait.
#[doc(hidden)]
pub mod invariant {
define_system! {
/// The invariants of a [`Ptr`][super::Ptr].
Invariants {
/// The aliasing invariant of a [`Ptr`][super::Ptr].
Aliasing {
/// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a T`.
///
/// The referent of a shared-aliased `Ptr` may be concurrently
/// referenced by any number of shared-aliased `Ptr` or `&T`
/// references, and may not be concurrently referenced by any
/// exclusively-aliased `Ptr`s or `&mut T` references. The
/// referent must not be mutated, except via [`UnsafeCell`]s.
///
/// [`UnsafeCell`]: core::cell::UnsafeCell
Shared < Exclusive,
/// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a mut
/// T`.
///
/// The referent of an exclusively-aliased `Ptr` may not be
/// concurrently referenced by any other `Ptr`s or references,
/// and may not be accessed (read or written) other than via
/// this `Ptr`.
Exclusive,
}
/// The alignment invariant of a [`Ptr`][super::Ptr].
Alignment {
/// The referent is aligned: for `Ptr<T>`, the referent's
/// address is a multiple of the `T`'s alignment.
Aligned,
}
/// The validity invariant of a [`Ptr`][super::Ptr].
Validity {
/// The byte ranges initialized in `T` are also initialized in
/// the referent.
///
/// Formally: uninitialized bytes may only be present in
/// `Ptr<T>`'s referent where they are guaranteed to be present
/// in `T`. This is a dynamic property: if, at a particular byte
/// offset, a valid enum discriminant is set, the subsequent
/// bytes may only have uninitialized bytes as specificed by the
/// corresponding enum.
///
/// Formally, given `len = size_of_val_raw(ptr)`, at every byte
/// offset, `b`, in the range `[0, len)`:
/// - If, in any instance `t: T` of length `len`, the byte at
/// offset `b` in `t` is initialized, then the byte at offset
/// `b` within `*ptr` must be initialized.
/// - Let `c` be the contents of the byte range `[0, b)` in
/// `*ptr`. Let `S` be the subset of valid instances of `T` of
/// length `len` which contain `c` in the offset range `[0,
/// b)`. If, in any instance of `t: T` in `S`, the byte at
/// offset `b` in `t` is initialized, then the byte at offset
/// `b` in `*ptr` must be initialized.
///
/// Pragmatically, this means that if `*ptr` is guaranteed to
/// contain an enum type at a particular offset, and the enum
/// discriminant stored in `*ptr` corresponds to a valid
/// variant of that enum type, then it is guaranteed that the
/// appropriate bytes of `*ptr` are initialized as defined by
/// that variant's bit validity (although note that the
/// variant may contain another enum type, in which case the
/// same rules apply depending on the state of its
/// discriminant, and so on recursively).
AsInitialized < Initialized | Valid,
/// The byte ranges in the referent are fully initialized. In
/// other words, if the referent is `N` bytes long, then it
/// contains a bit-valid `[u8; N]`.
Initialized,
/// The referent is bit-valid for `T`.
Valid,
}
}
}
}
pub(crate) use invariant::*;
/// External trait implementations on [`Ptr`].
mod _external {
use super::*;
use core::fmt::{Debug, Formatter};
/// SAFETY: Shared pointers are safely `Copy`. We do not implement `Copy`
/// for exclusive pointers, since at most one may exist at a time. `Ptr`'s
/// other invariants are unaffected by the number of references that exist
/// to `Ptr`'s referent.
impl<'a, T, I> Copy for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
Shared: AtLeast<I::Aliasing>,
{
}
/// SAFETY: Shared pointers are safely `Clone`. We do not implement `Clone`
/// for exclusive pointers, since at most one may exist at a time. `Ptr`'s
/// other invariants are unaffected by the number of references that exist
/// to `Ptr`'s referent.
impl<'a, T, I> Clone for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
Shared: AtLeast<I::Aliasing>,
{
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<'a, T, I> Debug for Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
self.as_non_null().fmt(f)
}
}
}
/// Methods for converting to and from `Ptr` and Rust's safe reference types.
mod _conversions {
use super::*;
use crate::util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance};
/// `&'a T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from a shared reference.
#[doc(hidden)]
#[inline]
pub fn from_ref(ptr: &'a T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, is derived from some valid Rust
// allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a T`, addresses a byte range which is entirely
// contained in `A`.
// 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose
// length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a T`, addresses a byte range which
// does not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant
// on `&'a T`, is guaranteed to live for at least `'a`.
// 6. `T: 'a`.
// 7. `ptr`, by invariant on `&'a T`, conforms to the aliasing
// invariant of `Shared`.
// 8. `ptr`, by invariant on `&'a T`, conforms to the alignment
// invariant of `Aligned`.
// 9. `ptr`, by invariant on `&'a T`, conforms to the validity
// invariant of `Valid`.
unsafe { Self::new(ptr) }
}
}
/// `&'a mut T` → `Ptr<'a, T>`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Constructs a `Ptr` from an exclusive reference.
#[inline]
pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
let ptr = NonNull::from(ptr);
// SAFETY:
// 0. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, is derived from some valid Rust
// allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, has valid provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr`, by
// invariant on `&'a mut T`, addresses a byte range which is
// entirely contained in `A`.
// 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range
// whose length fits in an `isize`.
// 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range
// which does not wrap around the address space.
// 5. If `ptr`'s referent is not zero sized, then `A`, by invariant
// on `&'a mut T`, is guaranteed to live for at least `'a`.
// 6. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
// invariant of `Exclusive`.
// 7. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
// invariant of `Aligned`.
// 8. `ptr`, by invariant on `&'a mut T`, conforms to the validity
// invariant of `Valid`.
unsafe { Self::new(ptr) }
}
}
/// `Ptr<'a, T>` → `&'a T`
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Alignment = Aligned, Validity = Valid>,
I::Aliasing: AtLeast<Shared>,
{
/// Converts `self` to a shared reference.
// This consumes `self`, not `&self`, because `self` is, logically, a
// pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
// this doesn't prevent the caller from still using the pointer after
// calling `as_ref`.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_ref(self) -> &'a T {
let raw = self.as_non_null();
// SAFETY: This invocation of `NonNull::as_ref` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `I::Alignment` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `Ptr`s.
//
// 3. The pointer must point to an initialized instance of `T`. This
// is ensured by-contract on `Ptr`, because the `I::Validity` is
// `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because the `I::Aliasing` is
// `AtLeast<Shared>`. Either it is `Shared` or `Exclusive`. If it
// is `Shared`, other references may not mutate the referent
// outside of `UnsafeCell`s.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_ref() }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
I::Aliasing: AtLeast<Shared>,
{
/// Reborrows `self`, producing another `Ptr`.
///
/// Since `self` is borrowed immutably, this prevents any mutable
/// methods from being called on `self` as long as the returned `Ptr`
/// exists.
#[doc(hidden)]
#[inline]
#[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
where
'a: 'b,
{
// SAFETY: The following all hold by invariant on `self`, and thus
// hold of `ptr = self.as_non_null()`:
// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived
// from some valid Rust allocation, `A`.
// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
// provenance for `A`.
// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
// byte range which is entirely contained in `A`.
// 3. `ptr` addresses a byte range whose length fits in an `isize`.
// 4. `ptr` addresses a byte range which does not wrap around the
// address space.
// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed
// to live for at least `'a`.
// 6. SEE BELOW.
// 7. `ptr` conforms to the alignment invariant of
// [`I::Alignment`](invariant::Alignment).
// 8. `ptr` conforms to the validity invariant of
// [`I::Validity`](invariant::Validity).
//
// For aliasing (6 above), since `I::Aliasing: AtLeast<Shared>`,
// there are two cases for `I::Aliasing`:
// - For `invariant::Shared`: `'a` outlives `'b`, and so the
// returned `Ptr` does not permit accessing the referent any
// longer than is possible via `self`. For shared aliasing, it is
// sound for multiple `Ptr`s to exist simultaneously which
// reference the same memory, so creating a new one is not
// problematic.
// - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
// return a `Ptr` with lifetime `'b`, `self` is inaccessible to
// the caller for the lifetime `'b` - in other words, `self` is
// inaccessible to the caller as long as the returned `Ptr`
// exists. Since `self` is an exclusive `Ptr`, no other live
// references or `Ptr`s may exist which refer to the same memory
// while `self` is live. Thus, as long as the returned `Ptr`
// exists, no other references or `Ptr`s which refer to the same
// memory may be live.
unsafe { Ptr::new(self.as_non_null()) }
}
}
/// `Ptr<'a, T>` → `&'a mut T`
impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
where
T: 'a + ?Sized,
{
/// Converts `self` to a mutable reference.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_mut(self) -> &'a mut T {
let mut raw = self.as_non_null();
// SAFETY: This invocation of `NonNull::as_mut` satisfies its
// documented safety preconditions:
//
// 1. The pointer is properly aligned. This is ensured by-contract
// on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
//
// 2. If the pointer's referent is not zero-sized, then the pointer
// must be “dereferenceable” in the sense defined in the module
// documentation; i.e.:
//
// > The memory range of the given size starting at the pointer
// > must all be within the bounds of a single allocated object.
// > [2]
//
// This is ensured by contract on all `Ptr`s.
//
// 3. The pointer must point to an initialized instance of `T`. This
// is ensured by-contract on `Ptr`, because the
// `VALIDITY_INVARIANT` is `Valid`.
//
// 4. You must enforce Rust’s aliasing rules. This is ensured by
// contract on `Ptr`, because the `ALIASING_INVARIANT` is
// `Exclusive`.
//
// [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
// [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
unsafe { raw.as_mut() }
}
}
/// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>`
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized,
I: Invariants,
{
/// Converts `self` to a transparent wrapper type into a `Ptr` to the
/// wrapped inner type.
pub(crate) fn transparent_wrapper_into_inner(
self,
) -> Ptr<
'a,
T::Inner,
(
I::Aliasing,
<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied,
<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied,
),
> {
// SAFETY:
// - By invariant on `TransparentWrapper::cast_into_inner`:
// - This cast preserves address and referent size, and thus the
// returned pointer addresses the same bytes as `p`
// - This cast preserves provenance
// - By invariant on `TransparentWrapper<UnsafeCellVariance =
// Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same
// byte ranges. Since `p` and the returned pointer address the
// same byte range, they refer to `UnsafeCell`s at the same byte
// ranges.
let c = unsafe { self.cast_unsized(|p| T::cast_into_inner(p)) };
// SAFETY: By invariant on `TransparentWrapper`, since `self`
// satisfies the alignment invariant `I::Alignment`, `c` (of type
// `T::Inner`) satisfies the given "applied" alignment invariant.
let c = unsafe {
c.assume_alignment::<<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied>()
};
// SAFETY: By invariant on `TransparentWrapper`, since `self`
// satisfies the validity invariant `I::Validity`, `c` (of type
// `T::Inner`) satisfies the given "applied" validity invariant.
let c = unsafe {
c.assume_validity::<<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied>()
};
c
}
}
/// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
impl<'a, T, I> Ptr<'a, T, I>
where
I: Invariants,
{
/// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
/// `Unalign<T>`.
pub(crate) fn into_unalign(
self,
) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
// SAFETY:
// - This cast preserves provenance.
// - This cast preserves address. `Unalign<T>` promises to have the
// same size as `T`, and so the cast returns a pointer addressing
// the same byte range as `p`.
// - By the same argument, the returned pointer refers to
// `UnsafeCell`s at the same locations as `p`.
let ptr = unsafe {
#[allow(clippy::as_conversions)]
self.cast_unsized(|p: *mut T| p as *mut crate::Unalign<T>)
};
// SAFETY: `Unalign<T>` promises to have the same bit validity as
// `T`.
let ptr = unsafe { ptr.assume_validity::<I::Validity>() };
// SAFETY: `Unalign<T>` promises to have alignment 1, and so it is
// trivially aligned.
let ptr = unsafe { ptr.assume_alignment::<Aligned>() };
ptr
}
}
}
/// State transitions between invariants.
mod _transitions {
use super::*;
use crate::{AlignmentError, TryFromBytes, ValidityError};
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
/// `Exclusive` aliasing.
///
/// This allows code which is generic over aliasing to down-cast to a
/// concrete aliasing.
///
/// [`Exclusive`]: invariant::Exclusive
#[inline]
pub(crate) fn into_exclusive_or_post_monomorphization_error(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
trait AliasingExt: Aliasing {
const IS_EXCLUSIVE: bool;
}
impl<A: Aliasing> AliasingExt for A {
const IS_EXCLUSIVE: bool = {
let is_exclusive =
strs_are_equal(<Self as Aliasing>::NAME, <Exclusive as Aliasing>::NAME);
const_assert!(is_exclusive);
true
};
}
const fn strs_are_equal(s: &str, t: &str) -> bool {
if s.len() != t.len() {
return false;
}
let s = s.as_bytes();
let t = t.as_bytes();
let mut i = 0;
#[allow(clippy::arithmetic_side_effects)]
while i < s.len() {
#[allow(clippy::indexing_slicing)]
if s[i] != t[i] {
return false;
}
i += 1;
}
true
}
assert!(I::Aliasing::IS_EXCLUSIVE);
// SAFETY: We've confirmed that `self` already has the aliasing
// `Exclusive`. If it didn't, either the preceding assert would fail
// or evaluating `I::Aliasing::IS_EXCLUSIVE` would fail. We're
// *pretty* sure that it's guaranteed to fail const eval, but the
// `assert!` provides a backstop in case that doesn't work.
unsafe { self.assume_exclusive() }
}
/// Assumes that `self` satisfies the invariants `H`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the invariants `H`.
unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
// SAFETY: The caller has promised to satisfy all parameterized
// invariants of `Ptr`. `Ptr`'s other invariants are satisfied
// by-contract by the source `Ptr`.
unsafe { Ptr::new(self.as_non_null()) }
}
/// Helps the type system unify two distinct invariant types which are
/// actually the same.
pub(crate) fn unify_invariants<
H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
>(
self,
) -> Ptr<'a, T, H> {
// SAFETY: The associated type bounds on `H` ensure that the
// invariants are unchanged.
unsafe { self.assume_invariants::<H>() }
}
/// Assumes that `self` satisfies the aliasing requirement of `A`.
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `A`.
#[inline]
pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
self,
) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `A`.
unsafe { self.assume_invariants() }
}
/// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
///
/// # Safety
///
/// The caller promises that `self` satisfies the aliasing requirement
/// of `Exclusive`.
///
/// [`Exclusive`]: invariant::Exclusive
#[inline]
pub(crate) unsafe fn assume_exclusive(
self,
) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
// SAFETY: The caller promises that `self` satisfies the aliasing
// requirements of `Exclusive`.
unsafe { self.assume_aliasing::<Exclusive>() }
}
/// Assumes that `self`'s referent is validly-aligned for `T` if
/// required by `A`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the alignment
/// invariant of `T` if required by `A`.
#[inline]
pub(crate) unsafe fn assume_alignment<A: Alignment>(
self,
) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
// SAFETY: The caller promises that `self`'s referent is
// well-aligned for `T` if required by `A` .
unsafe { self.assume_invariants() }
}
/// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
/// on success.
pub(crate) fn bikeshed_try_into_aligned(
self,
) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
where
T: Sized,
{
if let Err(err) = crate::util::validate_aligned_to::<_, T>(self.as_non_null()) {
return Err(err.with_src(self));
}
// SAFETY: We just checked the alignment.
Ok(unsafe { self.assume_alignment::<Aligned>() })
}
/// Recalls that `self`'s referent is validly-aligned for `T`.
#[inline]
// TODO(#859): Reconsider the name of this method before making it
// public.
pub(crate) fn bikeshed_recall_aligned(
self,
) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
where
T: crate::Unaligned,
{
// SAFETY: The bound `T: Unaligned` ensures that `T` has no
// non-trivial alignment requirement.
unsafe { self.assume_alignment::<Aligned>() }
}
/// Assumes that `self`'s referent conforms to the validity requirement
/// of `V`.
///
/// # Safety
///
/// The caller promises that `self`'s referent conforms to the validity
/// requirement of `V`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_validity<V: Validity>(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
// SAFETY: The caller promises that `self`'s referent conforms to
// the validity requirement of `V`.
unsafe { self.assume_invariants() }
}
/// A shorthand for `self.assume_validity<invariant::Initialized>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<invariant::Initialized>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_initialized(
self,
) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Initialized>() }
}
/// A shorthand for `self.assume_validity<Valid>()`.
///
/// # Safety
///
/// The caller promises to uphold the safety preconditions of
/// `self.assume_validity<Valid>()`.
#[doc(hidden)]
#[must_use]
#[inline]
pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
// SAFETY: The caller has promised to uphold the safety
// preconditions.
unsafe { self.assume_validity::<Valid>() }
}
/// Recalls that `self`'s referent is bit-valid for `T`.
#[doc(hidden)]
#[must_use]
#[inline]
// TODO(#859): Reconsider the name of this method before making it
// public.
pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>
where
T: crate::FromBytes,
I: Invariants<Validity = Initialized>,
{
// SAFETY: The bound `T: FromBytes` ensures that any initialized
// sequence of bytes is bit-valid for `T`. `I: Invariants<Validity =
// invariant::Initialized>` ensures that all of the referent bytes
// are initialized.
unsafe { self.assume_valid() }
}
/// Checks that `self`'s referent is validly initialized for `T`,
/// returning a `Ptr` with `Valid` on success.
///
/// # Panics
///
/// This method will panic if
/// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
///
/// # Safety
///
/// On error, unsafe code may rely on this method's returned
/// `ValidityError` containing `self`.
#[inline]
pub(crate) fn try_into_valid(
mut self,
) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
where
T: TryFromBytes,
I::Aliasing: AtLeast<Shared>,
I: Invariants<Validity = Initialized>,
{
// This call may panic. If that happens, it doesn't cause any soundness
// issues, as we have not generated any invalid state which we need to
// fix before returning.
if T::is_bit_valid(self.reborrow().forget_aligned()) {
// SAFETY: If `T::is_bit_valid`, code may assume that `self`
// contains a bit-valid instance of `Self`.
Ok(unsafe { self.assume_valid() })
} else {
Err(ValidityError::new(self))
}
}
/// Forgets that `self`'s referent exclusively references `T`,
/// downgrading to a shared reference.
#[doc(hidden)]
#[must_use]
#[inline]
pub fn forget_exclusive(self) -> Ptr<'a, T, (Shared, I::Alignment, I::Validity)>
where
I::Aliasing: AtLeast<Shared>,
{
// SAFETY: `I::Aliasing` is at least as restrictive as `Shared`.
unsafe { self.assume_invariants() }
}
/// Forgets that `self`'s referent is validly-aligned for `T`.
#[doc(hidden)]
#[must_use]
#[inline]
pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Any, I::Validity)> {
// SAFETY: `Any` is less restrictive than `Aligned`.
unsafe { self.assume_invariants() }
}
}
}
/// Casts of the referent type.
mod _casts {
use super::*;
use crate::{
layout::{DstLayout, MetadataCastError},
pointer::aliasing_safety::*,
AlignmentError, CastError, PointerMetadata, SizeError,
};
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants,
{
/// Casts to a different (unsized) target type.
///
/// # Safety
///
/// The caller promises that `u = cast(p)` is a pointer cast with the
/// following properties:
/// - `u` addresses a subset of the bytes addressed by `p`
/// - `u` has the same provenance as `p`
/// - If `I::Aliasing` is [`Any`] or [`Shared`], `UnsafeCell`s in `*u`
/// must exist at ranges identical to those at which `UnsafeCell`s
/// exist in `*p`
#[doc(hidden)]
#[inline]
pub unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>(
self,
cast: F,
) -> Ptr<'a, U, (I::Aliasing, Any, Any)> {
let ptr = cast(self.as_non_null().as_ptr());
// SAFETY: Caller promises that `cast` returns a pointer whose
// address is in the range of `self.as_non_null()`'s referent. By
// invariant, none of these addresses are null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
//
// Lemma 1: `ptr` has the same provenance as `self`. The caller
// promises that `cast` preserves provenance, and we call it with
// `self.as_non_null()`.
//
// 0. By invariant, if `self`'s referent is not zero sized, then
// `self` is derived from some valid Rust allocation, `A`. By
// Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr`
// is derived from `A`.
// 1. By invariant, if `self`'s referent is not zero sized, then
// `self` has valid provenance for `A`. By Lemma 1, so does
// `ptr`.
// 2. By invariant on `self` and caller precondition, if `ptr`'s
// referent is not zero sized, then `ptr` addresses a byte range
// which is entirely contained in `A`.
// 3. By invariant on `self` and caller precondition, `ptr`
// addresses a byte range whose length fits in an `isize`.
// 4. By invariant on `self` and caller precondition, `ptr`
// addresses a byte range which does not wrap around the address
// space.
// 5. By invariant on `self`, if `self`'s referent is not zero
// sized, then `A` is guaranteed to live for at least `'a`.
// 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
// - `Exclusive`: `self` is the only `Ptr` or reference which is
// permitted to read or modify the referent for the lifetime
// `'a`. Since we consume `self` by value, the returned pointer
// remains the only `Ptr` or reference which is permitted to
// read or modify the referent for the lifetime `'a`.
// - `Shared`: Since `self` has aliasing `Shared`, we know that
// no other code may mutate the referent during the lifetime
// `'a`, except via `UnsafeCell`s. The caller promises that
// `UnsafeCell`s cover the same byte ranges in `*self` and
// `*ptr`. For each byte in the referent, there are two cases:
// - If the byte is not covered by an `UnsafeCell` in `*ptr`,
// then it is not covered in `*self`. By invariant on `self`,
// it will not be mutated during `'a`, as required by the
// constructed pointer. Similarly, the returned pointer will
// not permit any mutations to these locations, as required
// by the invariant on `self`.
// - If the byte is covered by an `UnsafeCell` in `*ptr`, then
// the returned pointer's invariants do not assume that the
// byte will not be mutated during `'a`. While the returned
// pointer will permit mutation of this byte during `'a`, by
// invariant on `self`, no other code assumes that this will
// not happen.
// 7. `ptr`, trivially, conforms to the alignment invariant of
// `Any`.
// 8. `ptr`, trivially, conforms to the validity invariant of `Any`.
unsafe { Ptr::new(ptr) }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + KnownLayout + ?Sized,
I: Invariants<Validity = Initialized>,
{
/// Casts this pointer-to-initialized into a pointer-to-bytes.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
where
[u8]: AliasingSafe<T, I::Aliasing, R>,
R: AliasingSafeReason,
{
let bytes = match T::size_of_val_raw(self.as_non_null()) {
Some(bytes) => bytes,
// SAFETY: `KnownLayout::size_of_val_raw` promises to always
// return `Some` so long as the resulting size fits in a
// `usize`. By invariant on `Ptr`, `self` refers to a range of
// bytes whose size fits in an `isize`, which implies that it
// also fits in a `usize`.
None => unsafe { core::hint::unreachable_unchecked() },
};
// SAFETY:
// - `slice_from_raw_parts_mut` and `.cast` both preserve the
// pointer's address, and `bytes` is the length of `p`, so the
// returned pointer addresses the same bytes as `p`
// - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
// - Because `[u8]: AliasingSafe<T, I::Aliasing, _>`, either:
// - `I::Aliasing` is `Exclusive`
// - `T` and `[u8]` are both `Immutable`, in which case they
// trivially contain `UnsafeCell`s at identical locations
let ptr: Ptr<'a, [u8], _> = unsafe {
self.cast_unsized(|p: *mut T| {
#[allow(clippy::as_conversions)]
core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes)
})
};
let ptr = ptr.bikeshed_recall_aligned();
// SAFETY: `ptr`'s referent begins as `Initialized`, denoting that
// all bytes of the referent are initialized bytes. The referent
// type is then casted to `[u8]`, whose only validity invariant is
// that its bytes are initialized. This validity invariant is
// satisfied by the `Initialized` invariant on the starting `ptr`.
unsafe { ptr.assume_validity::<Valid>() }
}
}
impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
where
T: 'a,
I: Invariants,
{
/// Casts this pointer-to-array into a slice.
#[allow(clippy::wrong_self_convention)]
pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
let start = self.as_non_null().cast::<T>().as_ptr();
let slice = core::ptr::slice_from_raw_parts_mut(start, N);
// SAFETY: `slice` is not null, because it is derived from `start`
// which is non-null.
let slice = unsafe { NonNull::new_unchecked(slice) };
// SAFETY: Lemma: In the following safety arguments, note that
// `slice` is derived from `self` in two steps: first, by casting
// `self: [T; N]` to `start: T`, then by constructing a pointer to a
// slice starting at `start` of length `N`. As a result, `slice`
// references exactly the same allocation as `self`, if any.
//
// 0. By the above lemma, if `slice`'s referent is not zero sized,
// then `slice` is derived from the same allocation as `self`,
// which, by invariant on `Ptr`, is valid.
// 1. By the above lemma, if `slice`'s referent is not zero sized,
// then , `slice` has valid provenance for `A`, since it is
// derived from the pointer `self`, which, by invariant on `Ptr`,
// has valid provenance for `A`.
// 2. By the above lemma, if `slice`'s referent is not zero sized,
// then `slice` addresses a byte range which is entirely
// contained in `A`, because it references exactly the same byte
// range as `self`, which, by invariant on `Ptr`, is entirely
// contained in `A`.
// 3. By the above lemma, `slice` addresses a byte range whose
// length fits in an `isize`, since it addresses exactly the same
// byte range as `self`, which, by invariant on `Ptr`, has a
// length that fits in an `isize`.
// 4. By the above lemma, `slice` addresses a byte range which does
// not wrap around the address space, since it addresses exactly
// the same byte range as `self`, which, by invariant on `Ptr`,
// does not wrap around the address space.
// 5. By the above lemma, if `slice`'s referent is not zero sized,
// then `A` is guaranteed to live for at least `'a`, because it
// is derived from the same allocation as `self`, which, by
// invariant on `Ptr`, lives for at least `'a`.
// 6. By the above lemma, `slice` conforms to the aliasing invariant
// of `I::Aliasing`, because the operations that produced `slice`
// from `self` do not impact aliasing.
// 7. By the above lemma, `slice` conforms to the alignment
// invariant of `I::Alignment`, because the operations that
// produced `slice` from `self` do not impact alignment.
// 8. By the above lemma, `slice` conforms to the validity invariant
// of `I::Validity`, because the operations that produced `slice`
// from `self` do not impact validity.
unsafe { Ptr::new(slice) }
}
}
/// For caller convenience, these methods are generic over alignment
/// invariant. In practice, the referent is always well-aligned, because the
/// alignment of `[u8]` is 1.
impl<'a, I> Ptr<'a, [u8], I>
where
I: Invariants<Validity = Valid>,
{
/// Attempts to cast `self` to a `U` using the given cast type.
///
/// If `U` is a slice DST and pointer metadata (`meta`) is provided,
/// then the cast will only succeed if it would produce an object with
/// the given metadata.
///
/// Returns `None` if the resulting `U` would be invalidly-aligned, if
/// no `U` can fit in `self`, or if the provided pointer metadata
/// describes an invalid instance of `U`. On success, returns a pointer
/// to the largest-possible `U` which fits in `self`.
///
/// # Safety
///
/// The caller may assume that this implementation is correct, and may
/// rely on that assumption for the soundness of their code. In
/// particular, the caller may assume that, if `try_cast_into` returns
/// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
/// non-overlapping byte ranges within `self`, and that `ptr` and
/// `remainder` entirely cover `self`. Finally:
/// - If this is a prefix cast, `ptr` has the same address as `self`.
/// - If this is a suffix cast, `remainder` has the same address as
/// `self`.
#[inline(always)]
pub(crate) fn try_cast_into<U, R>(
self,
cast_type: CastType,
meta: Option<U::PointerMetadata>,
) -> Result<
(Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
CastError<Self, U>,
>
where
R: AliasingSafeReason,
U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>,
{
let layout = match meta {
None => U::LAYOUT,
// This can return `None` if the metadata describes an object
// which can't fit in an `isize`.
Some(meta) => {
let size = match meta.size_for_metadata(U::LAYOUT) {
Some(size) => size,
None => return Err(CastError::Size(SizeError::new(self))),
};
DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } }
}
};
// PANICS: By invariant, the byte range addressed by `self.ptr` does
// not wrap around the address space. This implies that the sum of
// the address (represented as a `usize`) and length do not overflow
// `usize`, as required by `validate_cast_and_convert_metadata`.
// Thus, this call to `validate_cast_and_convert_metadata` will only
// panic if `U` is a DST whose trailing slice element is zero-sized.
let maybe_metadata = layout.validate_cast_and_convert_metadata(
AsAddress::addr(self.as_non_null().as_ptr()),
self.len(),
cast_type,
);
let (elems, split_at) = match maybe_metadata {
Ok((elems, split_at)) => (elems, split_at),
Err(MetadataCastError::Alignment) => {
// SAFETY: Since `validate_cast_and_convert_metadata`
// returned an alignment error, `U` must have an alignment
// requirement greater than one.
let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) };
return Err(CastError::Alignment(err));
}
Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))),
};
// SAFETY: `validate_cast_and_convert_metadata` promises to return
// `split_at <= self.len()`.
let (l_slice, r_slice) = unsafe { self.split_at(split_at) };
let (target, remainder) = match cast_type {
CastType::Prefix => (l_slice, r_slice),
CastType::Suffix => (r_slice, l_slice),
};
let base = target.as_non_null().cast::<u8>();
let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems);
// For a slice DST type, if `meta` is `Some(elems)`, then we
// synthesize `layout` to describe a sized type whose size is equal
// to the size of the instance that we are asked to cast. For sized
// types, `validate_cast_and_convert_metadata` returns `elems == 0`.
// Thus, in this case, we need to use the `elems` passed by the
// caller, not the one returned by
// `validate_cast_and_convert_metadata`.
let elems = meta.unwrap_or(elems);
let ptr = U::raw_from_ptr_len(base, elems);
// SAFETY:
// 0. By invariant, if `target`'s referent is not zero sized, then
// `target` is derived from some valid Rust allocation, `A`. By
// contract on `cast`, `ptr` is derived from `self`, and thus
// from the same valid Rust allocation, `A`.
// 1. By invariant, if `target`'s referent is not zero sized, then
// `target` has provenance valid for some Rust allocation, `A`.
// Because `ptr` is derived from `target` via
// provenance-preserving operations, `ptr` will also have
// provenance valid for `A`.
// - `validate_cast_and_convert_metadata` promises that the object
// described by `elems` and `split_at` lives at a byte range
// which is a subset of the input byte range. Thus:
// 2. Since, by invariant, if `target`'s referent is not zero
// sized, then `target` addresses a byte range which is
// entirely contained in `A`, so does `ptr`.
// 3. Since, by invariant, `target` addresses a byte range whose
// length fits in an `isize`, so does `ptr`.
// 4. Since, by invariant, `target` addresses a byte range which
// does not wrap around the address space, so does `ptr`.
// 5. Since, by invariant, if `target`'s referent is not zero
// sized, then `target` refers to an allocation which is
// guaranteed to live for at least `'a`, so does `ptr`.
// 6. Since `U: AliasingSafe<[u8], I::Aliasing, _>`, either:
// - `I::Aliasing` is `Exclusive`, in which case both `src`
// and `ptr` conform to `Exclusive`
// - `I::Aliasing` is `Shared` or `Any` and both `U` and
// `[u8]` are `Immutable`. In this case, neither pointer
// permits mutation, and so `Shared` aliasing is satisfied.
// 7. `ptr` conforms to the alignment invariant of `Aligned` because
// it is derived from `validate_cast_and_convert_metadata`, which
// promises that the object described by `target` is validly
// aligned for `U`.
// 8. By trait bound, `self` - and thus `target` - is a bit-valid
// `[u8]`. All bit-valid `[u8]`s have all of their bytes
// initialized, so `ptr` conforms to the validity invariant of
// `Initialized`.
Ok((unsafe { Ptr::new(ptr) }, remainder))
}
/// Attempts to cast `self` into a `U`, failing if all of the bytes of
/// `self` cannot be treated as a `U`.
///
/// In particular, this method fails if `self` is not validly-aligned
/// for `U` or if `self`'s size is not a valid size for `U`.
///
/// # Safety
///
/// On success, the caller may assume that the returned pointer
/// references the same byte range as `self`.
#[allow(unused)]
#[inline(always)]
pub(crate) fn try_cast_into_no_leftover<U, R>(
self,
meta: Option<U::PointerMetadata>,
) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
where
U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>,
R: AliasingSafeReason,
{
// TODO(#67): Remove this allow. See NonNulSlicelExt for more
// details.
#[allow(unstable_name_collisions)]
match self.try_cast_into(CastType::Prefix, meta) {
Ok((slf, remainder)) => {
if remainder.len() == 0 {
Ok(slf)
} else {
// Undo the cast so we can return the original bytes.
let slf = slf.as_bytes();
// Restore the initial alignment invariant of `self`.
//
// SAFETY: The referent type of `slf` is now equal to
// that of `self`, but the alignment invariants
// nominally differ. Since `slf` and `self` refer to the
// same memory and no actions have been taken that would
// violate the original invariants on `self`, it is
// sound to apply the alignment invariant of `self` onto
// `slf`.
let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
let slf = slf.unify_invariants();
Err(CastError::Size(SizeError::<_, U>::new(slf)))
}
}
Err(err) => Err(err),
}
}
}
impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
where
T: 'a + ?Sized,
I: Invariants<Aliasing = Exclusive>,
{
/// Converts this `Ptr` into a pointer to the underlying data.
///
/// This call borrows the `UnsafeCell` mutably (at compile-time) which
/// guarantees that we possess the only reference.
///
/// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
///
/// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
#[must_use]
#[inline(always)]
pub fn get_mut(self) -> Ptr<'a, T, I> {
// SAFETY:
// - The closure uses an `as` cast, which preserves address range
// and provenance.
// - We require `I: Invariants<Aliasing = Exclusive>`, so we are not
// required to uphold `UnsafeCell` equality.
#[allow(clippy::as_conversions)]
let ptr = unsafe { self.cast_unsized(|p| p as *mut T) };
// SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
// and so if `self` is guaranteed to be aligned, then so is the
// returned `Ptr`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as
// its inner type `T`. A consequence of this guarantee is that
// it is possible to convert between `T` and `UnsafeCell<T>`.
let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
// SAFETY: `UnsafeCell<T>` has the same bit validity as `T` [1], and
// so if `self` has a particular validity invariant, then the same
// holds of the returned `Ptr`. Technically the term
// "representation" doesn't guarantee this, but the subsequent
// sentence in the documentation makes it clear that this is the
// intention.
//
// [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
//
// `UnsafeCell<T>` has the same in-memory representation as its
// inner type `T`. A consequence of this guarantee is that it is
// possible to convert between `T` and `UnsafeCell<T>`.
let ptr = unsafe { ptr.assume_validity::<I::Validity>() };
ptr.unify_invariants()
}
}
}
/// Projections through the referent.
mod _project {
use core::ops::Range;
#[allow(unused_imports)]
use crate::util::polyfills::NumExt as _;
use super::*;
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + ?Sized,
I: Invariants<Validity = Initialized>,
{
/// Projects a field from `self`.
///
/// # Safety
///
/// `project` has the same safety preconditions as `cast_unsized`.
#[doc(hidden)]
#[inline]
pub unsafe fn project<U: 'a + ?Sized>(
self,
projector: impl FnOnce(*mut T) -> *mut U,
) -> Ptr<'a, U, (I::Aliasing, Any, Initialized)> {
// TODO(#1122): If `cast_unsized` were able to reason that, when
// casting from an `Initialized` pointer, the result is another
// `Initialized` pointer, we could remove this method entirely.
// SAFETY: This method has the same safety preconditions as
// `cast_unsized`.
let ptr = unsafe { self.cast_unsized(projector) };
// SAFETY: If all of the bytes of `self` are initialized (as
// promised by `I: Invariants<Validity = Initialized>`), then any
// subset of those bytes are also all initialized.
unsafe { ptr.assume_validity::<Initialized>() }
}
}
impl<'a, T, I> Ptr<'a, T, I>
where
T: 'a + KnownLayout<PointerMetadata = usize> + ?Sized,
I: Invariants,
{
/// The number of trailing slice elements in the object referenced by
/// `self`.
///
/// # Safety
///
/// Unsafe code my rely on `trailing_slice_len` satisfying the above
/// contract.
pub(super) fn trailing_slice_len(&self) -> usize {
T::pointer_to_metadata(self.as_non_null().as_ptr())
}
}
impl<'a, T, I> Ptr<'a, [T], I>
where
T: 'a,
I: Invariants,
{
/// The number of slice elements in the object referenced by `self`.
///
/// # Safety
///
/// Unsafe code my rely on `len` satisfying the above contract.
pub(crate) fn len(&self) -> usize {
self.trailing_slice_len()
}
/// Creates a pointer which addresses the given `range` of self.
///
/// # Safety
///
/// `range` is a valid range (`start <= end`) and `end <= self.len()`.
pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self {
let base = self.as_non_null().cast::<T>().as_ptr();
// SAFETY: The caller promises that `start <= end <= self.len()`. By
// invariant, if `self`'s referent is not zero-sized, then `self`
// refers to a byte range which is contained within a single
// allocation, which is no more than `isize::MAX` bytes long, and
// which does not wrap around the address space. Thus, this pointer
// arithmetic remains in-bounds of the same allocation, and does not
// wrap around the address space. The offset (in bytes) does not
// overflow `isize`.
//
// If `self`'s referent is zero-sized, then these conditions are
// trivially satisfied.
let base = unsafe { base.add(range.start) };
// SAFETY: The caller promises that `start <= end`, and so this will
// not underflow.
#[allow(unstable_name_collisions, clippy::incompatible_msrv)]
let len = unsafe { range.end.unchecked_sub(range.start) };
let ptr = core::ptr::slice_from_raw_parts_mut(base, len);
// SAFETY: By invariant, `self`'s address is non-null and its range
// does not wrap around the address space. Since, by the preceding
// lemma, `ptr` addresses a range within that addressed by `self`,
// `ptr` is non-null.
let ptr = unsafe { NonNull::new_unchecked(ptr) };
// SAFETY:
//
// Lemma 0: `ptr` addresses a subset of the bytes addressed by
// `self`, and has the same provenance.
// Proof: The caller guarantees that `start <= end <= self.len()`.
// Thus, `base` is in-bounds of `self`, and `base + (end -
// start)` is also in-bounds of self. Finally, `ptr` is
// constructed using provenance-preserving operations.
//
// 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` is derived from some valid Rust
// allocation, `A`.
// 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` has valid provenance for `A`.
// 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `ptr` addresses a byte range which is
// entirely contained in `A`.
// 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range whose length fits in an `isize`.
// 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
// range which does not wrap around the address space.
// 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is
// not zero sized, then `A` is guaranteed to live for at least
// `'a`.
// 6. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// aliasing invariant of [`I::Aliasing`](invariant::Aliasing).
// 7. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// alignment invariant of [`I::Alignment`](invariant::Alignment).
// 8. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the
// validity invariant of [`I::Validity`](invariant::Validity).
unsafe { Ptr::new(ptr) }
}
/// Splits the slice in two.
///
/// # Safety
///
/// The caller promises that `l_len <= self.len()`.
pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) {
// SAFETY: `Any` imposes no invariants, and so this is always sound.
let slf = unsafe { self.assume_aliasing::<Any>() };
// SAFETY: The caller promises that `l_len <= self.len()`.
// Trivially, `0 <= l_len`.
let left = unsafe { slf.slice_unchecked(0..l_len) };
// SAFETY: The caller promises that `l_len <= self.len() =
// slf.len()`. Trivially, `slf.len() <= slf.len()`.
let right = unsafe { slf.slice_unchecked(l_len..slf.len()) };
// LEMMA: `left` and `right` are non-overlapping. Proof: `left` is
// constructed from `slf` with `l_len` as its (exclusive) upper
// bound, while `right` is constructed from `slf` with `l_len` as
// its (inclusive) lower bound. Thus, no index is a member of both
// ranges.
// SAFETY: By the preceding lemma, `left` and `right` do not alias.
// We do not construct any other `Ptr`s or references which alias
// `left` or `right`. Thus, the only `Ptr`s or references which
// alias `left` or `right` are outside of this method. By invariant,
// `self` obeys the aliasing invariant `I::Aliasing` with respect to
// those other `Ptr`s or references, and so `left` and `right` do as
// well.
let (left, right) = unsafe {
(left.assume_aliasing::<I::Aliasing>(), right.assume_aliasing::<I::Aliasing>())
};
(left.unify_invariants(), right.unify_invariants())
}
/// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
// TODO(#429): Once `NonNull::cast` documents that it preserves
// provenance, cite those docs.
let base = self.as_non_null().cast::<T>().as_ptr();
(0..self.len()).map(move |i| {
// TODO(https://github.com/rust-lang/rust/issues/74265): Use
// `NonNull::get_unchecked_mut`.
// SAFETY: If the following conditions are not satisfied
// `pointer::cast` may induce Undefined Behavior [1]:
//
// > - The computed offset, `count * size_of::<T>()` bytes, must
// > not overflow `isize``.
// > - If the computed offset is non-zero, then `self` must be
// > derived from a pointer to some allocated object, and the
// > entire memory range between `self` and the result must be
// > in bounds of that allocated object. In particular, this
// > range must not “wrap around” the edge of the address
// > space.
//
// [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
//
// We satisfy both of these conditions here:
// - By invariant on `Ptr`, `self` addresses a byte range whose
// length fits in an `isize`. Since `elem` is contained in
// `self`, the computed offset of `elem` must fit within
// `isize.`
// - If the computed offset is non-zero, then this means that
// the referent is not zero-sized. In this case, `base` points
// to an allocated object (by invariant on `self`). Thus:
// - By contract, `self.len()` accurately reflects the number
// of elements in the slice. `i` is in bounds of `c.len()`
// by construction, and so the result of this addition
// cannot overflow past the end of the allocation referred
// to by `c`.
// - By invariant on `Ptr`, `self` addresses a byte range
// which does not wrap around the address space. Since
// `elem` is contained in `self`, the computed offset of
// `elem` must wrap around the address space.
//
// TODO(#429): Once `pointer::add` documents that it preserves
// provenance, cite those docs.
let elem = unsafe { base.add(i) };
// SAFETY:
// - `elem` must not be null. `base` is constructed from a
// `NonNull` pointer, and the addition that produces `elem`
// must not overflow or wrap around, so `elem >= base > 0`.
//
// TODO(#429): Once `NonNull::new_unchecked` documents that it
// preserves provenance, cite those docs.
let elem = unsafe { NonNull::new_unchecked(elem) };
// SAFETY: The safety invariants of `Ptr::new` (see definition)
// are satisfied:
// 0. If `elem`'s referent is not zero sized, then `elem` is
// derived from a valid Rust allocation, because `self` is
// derived from a valid Rust allocation, by invariant on
// `Ptr`.
// 1. If `elem`'s referent is not zero sized, then `elem` has
// valid provenance for `self`, because it derived from
// `self` using a series of provenance-preserving operations.
// 2. If `elem`'s referent is not zero sized, then `elem` is
// entirely contained in the allocation of `self` (see
// above).
// 3. `elem` addresses a byte range whose length fits in an
// `isize` (see above).
// 4. `elem` addresses a byte range which does not wrap around
// the address space (see above).
// 5. If `elem`'s referent is not zero sized, then the
// allocation of `elem` is guaranteed to live for at least
// `'a`, because `elem` is entirely contained in `self`,
// which lives for at least `'a` by invariant on `Ptr`.
// 6. `elem` conforms to the aliasing invariant of `I::Aliasing`
// because projection does not impact the aliasing invariant.
// 7. `elem`, conditionally, conforms to the validity invariant
// of `I::Alignment`. If `elem` is projected from data
// well-aligned for `[T]`, `elem` will be valid for `T`.
// 8. `elem`, conditionally, conforms to the validity invariant
// of `I::Validity`. If `elem` is projected from data valid
// for `[T]`, `elem` will be valid for `T`.
unsafe { Ptr::new(elem) }
})
}
}
}
#[cfg(test)]
mod tests {
use core::mem::{self, MaybeUninit};
use static_assertions::{assert_impl_all, assert_not_impl_any};
use super::*;
use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
#[test]
fn test_split_at() {
const N: usize = 16;
let mut arr = [1; N];
let mut ptr = Ptr::from_mut(&mut arr).as_slice();
for i in 0..=N {
assert_eq!(ptr.len(), N);
// SAFETY: `i` is in bounds by construction.
let (l, r) = unsafe { ptr.reborrow().split_at(i) };
let l_sum: usize = l.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum();
let r_sum: usize = r.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum();
assert_eq!(l_sum, i);
assert_eq!(r_sum, N - i);
assert_eq!(l_sum + r_sum, N);
}
}
mod test_ptr_try_cast_into_soundness {
use super::*;
// This test is designed so that if `Ptr::try_cast_into_xxx` are
// buggy, it will manifest as unsoundness that Miri can detect.
// - If `size_of::<T>() == 0`, `N == 4`
// - Else, `N == 4 * size_of::<T>()`
//
// Each test will be run for each metadata in `metas`.
fn test<T, I, const N: usize>(metas: I)
where
T: ?Sized + KnownLayout + Immutable + FromBytes,
I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
{
let mut bytes = [MaybeUninit::<u8>::uninit(); N];
let initialized = [MaybeUninit::new(0u8); N];
for start in 0..=bytes.len() {
for end in start..=bytes.len() {
// Set all bytes to uninitialized other than those in
// the range we're going to pass to `try_cast_from`.
// This allows Miri to detect out-of-bounds reads
// because they read uninitialized memory. Without this,
// some out-of-bounds reads would still be in-bounds of
// `bytes`, and so might spuriously be accepted.
bytes = [MaybeUninit::<u8>::uninit(); N];
let bytes = &mut bytes[start..end];
// Initialize only the byte range we're going to pass to
// `try_cast_from`.
bytes.copy_from_slice(&initialized[start..end]);
let bytes = {
let bytes: *const [MaybeUninit<u8>] = bytes;
#[allow(clippy::as_conversions)]
let bytes = bytes as *const [u8];
// SAFETY: We just initialized these bytes to valid
// `u8`s.
unsafe { &*bytes }
};
// SAFETY: The bytes in `slf` must be initialized.
unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
) -> usize {
let t = slf.bikeshed_recall_valid().as_ref();
let bytes = {
let len = mem::size_of_val(t);
let t: *const T = t;
// SAFETY:
// - We know `t`'s bytes are all initialized
// because we just read it from `slf`, which
// points to an initialized range of bytes. If
// there's a bug and this doesn't hold, then
// that's exactly what we're hoping Miri will
// catch!
// - Since `T: FromBytes`, `T` doesn't contain
// any `UnsafeCell`s, so it's okay for `t: T`
// and a `&[u8]` to the same memory to be
// alive concurrently.
unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
};
// This assertion ensures that `t`'s bytes are read
// and compared to another value, which in turn
// ensures that Miri gets a chance to notice if any
// of `t`'s bytes are uninitialized, which they
// shouldn't be (see the comment above).
assert_eq!(bytes, vec![0u8; bytes.len()]);
mem::size_of_val(t)
}
for meta in metas.clone().into_iter() {
for cast_type in [CastType::Prefix, CastType::Suffix] {
if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
.try_cast_into::<T, BecauseImmutable>(cast_type, meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(remaining.len(), bytes.len() - len);
#[allow(unstable_name_collisions)]
let bytes_addr = bytes.as_ptr().addr();
#[allow(unstable_name_collisions)]
let remaining_addr = remaining.as_non_null().as_ptr().addr();
match cast_type {
CastType::Prefix => {
assert_eq!(remaining_addr, bytes_addr + len)
}
CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
}
if let Some(want) = meta {
let got = KnownLayout::pointer_to_metadata(
slf.as_non_null().as_ptr(),
);
assert_eq!(got, want);
}
}
}
if let Ok(slf) = Ptr::from_ref(bytes)
.try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
{
// SAFETY: All bytes in `bytes` have been
// initialized.
let len = unsafe { validate_and_get_len(slf) };
assert_eq!(len, bytes.len());
if let Some(want) = meta {
let got =
KnownLayout::pointer_to_metadata(slf.as_non_null().as_ptr());
assert_eq!(got, want);
}
}
}
}
}
}
#[derive(FromBytes, KnownLayout, Immutable)]
#[repr(C)]
struct SliceDst<T> {
a: u8,
trailing: [T],
}
// Each test case becomes its own `#[test]` function. We do this because
// this test in particular takes far, far longer to execute under Miri
// than all of our other tests combined. Previously, we had these
// execute sequentially in a single test function. We run Miri tests in
// parallel in CI, but this test being sequential meant that most of
// that parallelism was wasted, as all other tests would finish in a
// fraction of the total execution time, leaving this test to execute on
// a single thread for the remainder of the test. By putting each test
// case in its own function, we permit better use of available
// parallelism.
macro_rules! test {
($test_name:ident: $ty:ty) => {
#[test]
#[allow(non_snake_case)]
fn $test_name() {
const S: usize = core::mem::size_of::<$ty>();
const N: usize = if S == 0 { 4 } else { S * 4 };
test::<$ty, _, N>([None]);
// If `$ty` is a ZST, then we can't pass `None` as the
// pointer metadata, or else computing the correct trailing
// slice length will panic.
if S == 0 {
test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
} else {
test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
}
}
};
($ty:ident) => {
test!($ty: $ty);
};
($($ty:ident),*) => { $(test!($ty);)* }
}
test!(empty_tuple: ());
test!(u8, u16, u32, u64, u128, usize, AU64);
test!(i8, i16, i32, i64, i128, isize);
test!(f32, f64);
}
#[test]
fn test_invariants() {
// Test that the correct invariant relationships hold.
use super::invariant::*;
assert_not_impl_any!(Any: AtLeast<Shared>);
assert_impl_all!(Shared: AtLeast<Shared>);
assert_impl_all!(Exclusive: AtLeast<Shared>);
assert_not_impl_any!(Any: AtLeast<AsInitialized>);
assert_impl_all!(AsInitialized: AtLeast<AsInitialized>);
assert_impl_all!(Initialized: AtLeast<AsInitialized>);
assert_impl_all!(Valid: AtLeast<AsInitialized>);
}
#[test]
fn test_try_cast_into_explicit_count() {
macro_rules! test {
($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
let bytes = [0u8; $bytes];
let ptr = Ptr::from_ref(&bytes[..]);
let res =
ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
if let Some(expect) = $expect {
let (ptr, _) = res.unwrap();
assert_eq!(
KnownLayout::pointer_to_metadata(ptr.as_non_null().as_ptr()),
expect
);
} else {
let _ = res.unwrap_err();
}
}};
}
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct ZstDst {
u: [u8; 8],
slc: [()],
}
test!(ZstDst, 8, 0, Some(0));
test!(ZstDst, 7, 0, None);
test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
test!(ZstDst, 7, usize::MAX, None);
#[derive(KnownLayout, Immutable)]
#[repr(C)]
struct Dst {
u: [u8; 8],
slc: [u8],
}
test!(Dst, 8, 0, Some(0));
test!(Dst, 7, 0, None);
test!(Dst, 9, 1, Some(1));
test!(Dst, 8, 1, None);
// If we didn't properly check for overflow, this would cause the
// metadata to overflow to 0, and thus the cast would spuriously
// succeed.
test!(Dst, 8, usize::MAX - 8 + 1, None);
}
}