| // Copyright 2023 The Fuchsia Authors |
| // |
| // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| // This file may not be copied, modified, or distributed except according to |
| // those terms. |
| |
| /// Documents multiple unsafe blocks with a single safety comment. |
| /// |
| /// Invoked as: |
| /// |
| /// ```rust,ignore |
| /// safety_comment! { |
| /// // Non-doc comments come first. |
| /// /// SAFETY: |
| /// /// Safety comment starts on its own line. |
| /// macro_1!(args); |
| /// macro_2! { args }; |
| /// /// SAFETY: |
| /// /// Subsequent safety comments are allowed but not required. |
| /// macro_3! { args }; |
| /// } |
| /// ``` |
| /// |
| /// The macro invocations are emitted, each decorated with the following |
| /// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`. |
| macro_rules! safety_comment { |
| (#[doc = r" SAFETY:"] $($(#[$attr:meta])* $macro:ident!$args:tt;)*) => { |
| #[allow(clippy::undocumented_unsafe_blocks, unused_attributes)] |
| const _: () = { $($(#[$attr])* $macro!$args;)* }; |
| } |
| } |
| |
| /// Unsafely implements trait(s) for a type. |
| /// |
| /// # Safety |
| /// |
| /// The trait impl must be sound. |
| /// |
| /// When implementing `TryFromBytes`: |
| /// - If no `is_bit_valid` impl is provided, then it must be valid for |
| /// `is_bit_valid` to unconditionally return `true`. In other words, it must |
| /// be the case that any initialized sequence of bytes constitutes a valid |
| /// instance of `$ty`. |
| /// - If an `is_bit_valid` impl is provided, then: |
| /// - Regardless of whether the provided closure takes a `Ptr<$repr>` or |
| /// `&$repr` argument, if `$ty` and `$repr` are different types, then it |
| /// must be the case that, given `t: *mut $ty` and `let r = t as *mut |
| /// $repr`: |
| /// - `r` refers to an object of equal or lesser size than the object |
| /// referred to by `t`. |
| /// - `r` refers to an object with `UnsafeCell`s at the same byte ranges as |
| /// the object referred to by `t`. |
| /// - If the provided closure takes a `&$repr` argument, then given a `Ptr<'a, |
| /// $ty>` which satisfies the preconditions of |
| /// `TryFromBytes::<$ty>::is_bit_valid`, it must be guaranteed that the |
| /// memory referenced by that `Ptr` always contains a valid `$repr`. |
| /// - The impl of `is_bit_valid` must only return `true` for its argument |
| /// `Ptr<$repr>` if the original `Ptr<$ty>` refers to a valid `$ty`. |
| macro_rules! unsafe_impl { |
| // Implement `$trait` for `$ty` with no bounds. |
| ($(#[$attr:meta])* $ty:ty: $trait:ident $(; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr)?) => { |
| $(#[$attr])* |
| unsafe impl $trait for $ty { |
| unsafe_impl!(@method $trait $(; |$candidate: MaybeAligned<$repr>| $is_bit_valid)?); |
| } |
| }; |
| |
| // Implement all `$traits` for `$ty` with no bounds. |
| // |
| // The 2 arms under this one are there so we can apply |
| // N attributes for each one of M trait implementations. |
| // The simple solution of: |
| // |
| // ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => { |
| // $( unsafe_impl!( $(#[$attrs])* $ty: $traits ) );* |
| // } |
| // |
| // Won't work. The macro processor sees that the outer repetition |
| // contains both $attrs and $traits and expects them to match the same |
| // amount of fragments. |
| // |
| // To solve this we must: |
| // 1. Pack the attributes into a single token tree fragment we can match over. |
| // 2. Expand the traits. |
| // 3. Unpack and expand the attributes. |
| ($(#[$attrs:meta])* $ty:ty: $($traits:ident),*) => { |
| unsafe_impl!(@impl_traits_with_packed_attrs { $(#[$attrs])* } $ty: $($traits),*) |
| }; |
| |
| (@impl_traits_with_packed_attrs $attrs:tt $ty:ty: $($traits:ident),*) => { |
| $( unsafe_impl!(@unpack_attrs $attrs $ty: $traits); )* |
| }; |
| |
| (@unpack_attrs { $(#[$attrs:meta])* } $ty:ty: $traits:ident) => { |
| unsafe_impl!($(#[$attrs])* $ty: $traits); |
| }; |
| |
| // This arm is identical to the following one, except it contains a |
| // preceding `const`. If we attempt to handle these with a single arm, there |
| // is an inherent ambiguity between `const` (the keyword) and `const` (the |
| // ident match for `$tyvar:ident`). |
| // |
| // To explain how this works, consider the following invocation: |
| // |
| // unsafe_impl!(const N: usize, T: ?Sized + Copy => Clone for Foo<T>); |
| // |
| // In this invocation, here are the assignments to meta-variables: |
| // |
| // |---------------|------------| |
| // | Meta-variable | Assignment | |
| // |---------------|------------| |
| // | $constname | N | |
| // | $constty | usize | |
| // | $tyvar | T | |
| // | $optbound | Sized | |
| // | $bound | Copy | |
| // | $trait | Clone | |
| // | $ty | Foo<T> | |
| // |---------------|------------| |
| // |
| // The following arm has the same behavior with the exception of the lack of |
| // support for a leading `const` parameter. |
| ( |
| $(#[$attr:meta])* |
| const $constname:ident : $constty:ident $(,)? |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| @inner |
| $(#[$attr])* |
| @const $constname: $constty, |
| $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)* |
| => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| }; |
| ( |
| $(#[$attr:meta])* |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| @inner |
| $(#[$attr])* |
| $($tyvar $(: $(? $optbound +)* + $($bound +)*)?,)* |
| => $trait for $ty $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| }; |
| ( |
| @inner |
| $(#[$attr:meta])* |
| $(@const $constname:ident : $constty:ident,)* |
| $($tyvar:ident $(: $(? $optbound:ident +)* + $($bound:ident +)* )?,)* |
| => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| $(#[$attr])* |
| #[allow(non_local_definitions)] |
| unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),* $(, const $constname: $constty,)*> $trait for $ty { |
| unsafe_impl!(@method $trait $(; |$candidate: $(MaybeAligned<$ref_repr>)? $(Maybe<$ptr_repr>)?| $is_bit_valid)?); |
| } |
| }; |
| |
| (@method TryFromBytes ; |$candidate:ident: MaybeAligned<$repr:ty>| $is_bit_valid:expr) => { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| |
| #[inline] |
| fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool { |
| // SAFETY: |
| // - The cast preserves address. The caller has promised that the |
| // cast results in an object of equal or lesser size, and so the |
| // cast returns a pointer which references a subset of the bytes |
| // of `p`. |
| // - The cast preserves provenance. |
| // - The caller has promised that the destination type has |
| // `UnsafeCell`s at the same byte ranges as the source type. |
| #[allow(clippy::as_conversions)] |
| let candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) }; |
| |
| // SAFETY: The caller has promised that the referenced memory region |
| // will contain a valid `$repr`. |
| let $candidate = unsafe { candidate.assume_validity::<crate::pointer::invariant::Valid>() }; |
| $is_bit_valid |
| } |
| }; |
| (@method TryFromBytes ; |$candidate:ident: Maybe<$repr:ty>| $is_bit_valid:expr) => { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| |
| #[inline] |
| fn is_bit_valid<AA: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, AA>) -> bool { |
| // SAFETY: |
| // - The cast preserves address. The caller has promised that the |
| // cast results in an object of equal or lesser size, and so the |
| // cast returns a pointer which references a subset of the bytes |
| // of `p`. |
| // - The cast preserves provenance. |
| // - The caller has promised that the destination type has |
| // `UnsafeCell`s at the same byte ranges as the source type. |
| #[allow(clippy::as_conversions)] |
| let $candidate = unsafe { candidate.cast_unsized::<$repr, _>(|p| p as *mut _) }; |
| |
| // Restore the invariant that the referent bytes are initialized. |
| // SAFETY: The above cast does not uninitialize any referent bytes; |
| // they remain initialized. |
| let $candidate = unsafe { $candidate.assume_validity::<crate::pointer::invariant::Initialized>() }; |
| |
| $is_bit_valid |
| } |
| }; |
| (@method TryFromBytes) => { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| #[inline(always)] fn is_bit_valid<A: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>(_: Maybe<'_, Self, A>) -> bool { true } |
| }; |
| (@method $trait:ident) => { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| }; |
| (@method $trait:ident; |$_candidate:ident $(: &$_ref_repr:ty)? $(: NonNull<$_ptr_repr:ty>)?| $_is_bit_valid:expr) => { |
| compile_error!("Can't provide `is_bit_valid` impl for trait other than `TryFromBytes`"); |
| }; |
| } |
| |
| /// Implements `$trait` for a type which implements `TransparentWrapper`. |
| /// |
| /// Calling this macro is safe; the internals of the macro emit appropriate |
| /// trait bounds which ensure that the given impl is sound. |
| macro_rules! impl_for_transparent_wrapper { |
| ( |
| $(#[$attr:meta])* |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?)? |
| => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| $(#[$attr])* |
| #[allow(non_local_definitions)] |
| |
| // This block implements `$trait` for `$ty` under the following |
| // conditions: |
| // - `$ty: TransparentWrapper` |
| // - `$ty::Inner: $trait` |
| // - For some `Xxx`, `$ty::XxxVariance = Covariant` (`Xxx` is determined |
| // by the `@define_is_transparent_wrapper` macro arms). This bound |
| // ensures that some layout property is the same between `$ty` and |
| // `$ty::Inner`. Which layout property this is depends on the trait |
| // being implemented (for example, `FromBytes` is not concerned with |
| // alignment, but is concerned with bit validity). |
| // |
| // In other words, `$ty` is guaranteed to soundly implement `$trait` |
| // because some property of its layout is the same as `$ty::Inner`, |
| // which implements `$trait`. Most of the complexity in this macro is to |
| // ensure that the above-mentioned conditions are actually met, and that |
| // the proper variance (ie, the proper layout property) is chosen. |
| |
| // SAFETY: |
| // - `is_transparent_wrapper<I, W>` requires: |
| // - `W: TransparentWrapper<I>` |
| // - `W::Inner: $trait` |
| // - `f` is generic over `I: Invariants`, and in its body, calls |
| // `is_transparent_wrapper::<I, $ty>()`. Thus, this code will only |
| // compile if, for all `I: Invariants`: |
| // - `$ty: TransparentWrapper<I>` |
| // - `$ty::Inner: $trait` |
| // |
| // These two facts - that `$ty: TransparentWrapper<I>` and that |
| // `$ty::Inner: $trait` - are the preconditions to the full safety |
| // proofs, which are completed below in the |
| // `@define_is_transparent_wrapper` macro arms. The safety proof is |
| // slightly different for each trait. |
| unsafe impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?)?> $trait for $ty { |
| #[allow(dead_code, clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() { |
| use crate::{pointer::invariant::Invariants, util::*}; |
| |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper $trait); |
| |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn f<I: Invariants, $($tyvar $(: $(? $optbound +)* $($bound +)*)?)?>() { |
| is_transparent_wrapper::<I, $ty>(); |
| } |
| } |
| |
| impl_for_transparent_wrapper!( |
| @is_bit_valid |
| $(<$tyvar $(: $(? $optbound +)* $($bound +)*)?>)? |
| $trait for $ty |
| ); |
| } |
| }; |
| (@define_is_transparent_wrapper Immutable) => { |
| // SAFETY: `W: TransparentWrapper<UnsafeCellVariance = Covariant>` |
| // requires that `W` has `UnsafeCell`s at the same byte offsets as |
| // `W::Inner`. `W::Inner: Immutable` implies that `W::Inner` does not |
| // contain any `UnsafeCell`s, and so `W` does not contain any |
| // `UnsafeCell`s. Since `W = $ty`, `$ty` can soundly implement |
| // `Immutable`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper Immutable, UnsafeCellVariance) |
| }; |
| (@define_is_transparent_wrapper FromZeros) => { |
| // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>` |
| // requires that `W` has the same bit validity as `W::Inner`. `W::Inner: |
| // FromZeros` implies that the all-zeros bit pattern is a bit-valid |
| // instance of `W::Inner`, and so the all-zeros bit pattern is a |
| // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly |
| // implement `FromZeros`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromZeros, ValidityVariance) |
| }; |
| (@define_is_transparent_wrapper FromBytes) => { |
| // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>` |
| // requires that `W` has the same bit validity as `W::Inner`. `W::Inner: |
| // FromBytes` implies that any initialized bit pattern is a bit-valid |
| // instance of `W::Inner`, and so any initialized bit pattern is a |
| // bit-valid instance of `W`. Since `W = $ty`, `$ty` can soundly |
| // implement `FromBytes`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper FromBytes, ValidityVariance) |
| }; |
| (@define_is_transparent_wrapper IntoBytes) => { |
| // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>` |
| // requires that `W` has the same bit validity as `W::Inner`. `W::Inner: |
| // IntoBytes` implies that no bit-valid instance of `W::Inner` contains |
| // uninitialized bytes, and so no bit-valid instance of `W` contains |
| // uninitialized bytes. Since `W = $ty`, `$ty` can soundly implement |
| // `IntoBytes`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper IntoBytes, ValidityVariance) |
| }; |
| (@define_is_transparent_wrapper Unaligned) => { |
| // SAFETY: `W: TransparentWrapper<AlignmentVariance = Covariant>` |
| // requires that `W` has the same alignment as `W::Inner`. `W::Inner: |
| // Unaligned` implies `W::Inner`'s alignment is 1, and so `W`'s |
| // alignment is 1. Since `W = $ty`, `W` can soundly implement |
| // `Unaligned`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper Unaligned, AlignmentVariance) |
| }; |
| (@define_is_transparent_wrapper TryFromBytes) => { |
| // SAFETY: `W: TransparentWrapper<ValidityVariance = Covariant>` |
| // requires that `W` has the same bit validity as `W::Inner`. `W::Inner: |
| // TryFromBytes` implies that `<W::Inner as |
| // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references |
| // a bit-valid instance of `W::Inner`. Thus, `<W::Inner as |
| // TryFromBytes>::is_bit_valid(c)` only returns `true` if `c` references |
| // a bit-valid instance of `W`. Below, we implement `<W as |
| // TryFromBytes>::is_bit_valid` by deferring to `<W::Inner as |
| // TryFromBytes>::is_bit_valid`. Since `W = $ty`, it is sound for `$ty` |
| // to implement `TryFromBytes` with this implementation of |
| // `is_bit_valid`. |
| impl_for_transparent_wrapper!(@define_is_transparent_wrapper TryFromBytes, ValidityVariance) |
| }; |
| (@define_is_transparent_wrapper $trait:ident, $variance:ident) => { |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn is_transparent_wrapper<I: Invariants, W: TransparentWrapper<I, $variance = Covariant> + ?Sized>() |
| where |
| W::Inner: $trait, |
| {} |
| }; |
| ( |
| @is_bit_valid |
| $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)? |
| TryFromBytes for $ty:ty |
| ) => { |
| // SAFETY: See safety comment in `(@define_is_transparent_wrapper |
| // TryFromBytes)` macro arm for an explanation of why this is a sound |
| // implementation of `is_bit_valid`. |
| #[inline] |
| fn is_bit_valid<A: crate::pointer::invariant::Aliasing + crate::pointer::invariant::AtLeast<invariant::Shared>>(candidate: Maybe<'_, Self, A>) -> bool { |
| TryFromBytes::is_bit_valid(candidate.transparent_wrapper_into_inner()) |
| } |
| }; |
| ( |
| @is_bit_valid |
| $(<$tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?>)? |
| $trait:ident for $ty:ty |
| ) => { |
| // Trait other than `TryFromBytes`; no `is_bit_valid` impl. |
| }; |
| } |
| |
| /// Implements a trait for a type, bounding on each memeber of the power set of |
| /// a set of type variables. This is useful for implementing traits for tuples |
| /// or `fn` types. |
| /// |
| /// The last argument is the name of a macro which will be called in every |
| /// `impl` block, and is expected to expand to the name of the type for which to |
| /// implement the trait. |
| /// |
| /// For example, the invocation: |
| /// ```ignore |
| /// unsafe_impl_for_power_set!(A, B => Foo for type!(...)) |
| /// ``` |
| /// ...expands to: |
| /// ```ignore |
| /// unsafe impl Foo for type!() { ... } |
| /// unsafe impl<B> Foo for type!(B) { ... } |
| /// unsafe impl<A, B> Foo for type!(A, B) { ... } |
| /// ``` |
| macro_rules! unsafe_impl_for_power_set { |
| ( |
| $first:ident $(, $rest:ident)* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl_for_power_set!( |
| $($rest),* $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| unsafe_impl_for_power_set!( |
| @impl $first $(, $rest)* $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| }; |
| ( |
| $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl_for_power_set!( |
| @impl $(-> $ret)? => $trait for $macro!(...) |
| $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| }; |
| ( |
| @impl $($vars:ident),* $(-> $ret:ident)? => $trait:ident for $macro:ident!(...) |
| $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| unsafe_impl!( |
| $($vars,)* $($ret)? => $trait for $macro!($($vars),* $(-> $ret)?) |
| $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); |
| }; |
| } |
| |
| /// Expands to an `Option<extern "C" fn>` type with the given argument types and |
| /// return type. Designed for use with `unsafe_impl_for_power_set`. |
| macro_rules! opt_extern_c_fn { |
| ($($args:ident),* -> $ret:ident) => { Option<extern "C" fn($($args),*) -> $ret> }; |
| } |
| |
| /// Expands to a `Option<fn>` type with the given argument types and return |
| /// type. Designed for use with `unsafe_impl_for_power_set`. |
| macro_rules! opt_fn { |
| ($($args:ident),* -> $ret:ident) => { Option<fn($($args),*) -> $ret> }; |
| } |
| |
| /// Implements trait(s) for a type or verifies the given implementation by |
| /// referencing an existing (derived) implementation. |
| /// |
| /// This macro exists so that we can provide zerocopy-derive as an optional |
| /// dependency and still get the benefit of using its derives to validate that |
| /// our trait impls are sound. |
| /// |
| /// When compiling without `--cfg 'feature = "derive"` and without `--cfg test`, |
| /// `impl_or_verify!` emits the provided trait impl. When compiling with either |
| /// of those cfgs, it is expected that the type in question is deriving the |
| /// traits instead. In this case, `impl_or_verify!` emits code which validates |
| /// that the given trait impl is at least as restrictive as the the impl emitted |
| /// by the custom derive. This has the effect of confirming that the impl which |
| /// is emitted when the `derive` feature is disabled is actually sound (on the |
| /// assumption that the impl emitted by the custom derive is sound). |
| /// |
| /// The caller is still required to provide a safety comment (e.g. using the |
| /// `safety_comment!` macro) . The reason for this restriction is that, while |
| /// `impl_or_verify!` can guarantee that the provided impl is sound when it is |
| /// compiled with the appropriate cfgs, there is no way to guarantee that it is |
| /// ever compiled with those cfgs. In particular, it would be possible to |
| /// accidentally place an `impl_or_verify!` call in a context that is only ever |
| /// compiled when the `derive` feature is disabled. If that were to happen, |
| /// there would be nothing to prevent an unsound trait impl from being emitted. |
| /// Requiring a safety comment reduces the likelihood of emitting an unsound |
| /// impl in this case, and also provides useful documentation for readers of the |
| /// code. |
| /// |
| /// Finally, if a `TryFromBytes::is_bit_valid` impl is provided, it must adhere |
| /// to the safety preconditions of [`unsafe_impl!`]. |
| /// |
| /// ## Example |
| /// |
| /// ```rust,ignore |
| /// // Note that these derives are gated by `feature = "derive"` |
| /// #[cfg_attr(any(feature = "derive", test), derive(FromZeros, FromBytes, IntoBytes, Unaligned))] |
| /// #[repr(transparent)] |
| /// struct Wrapper<T>(T); |
| /// |
| /// safety_comment! { |
| /// /// SAFETY: |
| /// /// `Wrapper<T>` is `repr(transparent)`, so it is sound to implement any |
| /// /// zerocopy trait if `T` implements that trait. |
| /// impl_or_verify!(T: FromZeros => FromZeros for Wrapper<T>); |
| /// impl_or_verify!(T: FromBytes => FromBytes for Wrapper<T>); |
| /// impl_or_verify!(T: IntoBytes => IntoBytes for Wrapper<T>); |
| /// impl_or_verify!(T: Unaligned => Unaligned for Wrapper<T>); |
| /// } |
| /// ``` |
| macro_rules! impl_or_verify { |
| // The following two match arms follow the same pattern as their |
| // counterparts in `unsafe_impl!`; see the documentation on those arms for |
| // more details. |
| ( |
| const $constname:ident : $constty:ident $(,)? |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty |
| ) => { |
| impl_or_verify!(@impl { unsafe_impl!( |
| const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty |
| ); }); |
| impl_or_verify!(@verify $trait, { |
| impl<const $constname: $constty, $($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {} |
| }); |
| }; |
| ( |
| $($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* |
| => $trait:ident for $ty:ty $(; |$candidate:ident $(: MaybeAligned<$ref_repr:ty>)? $(: Maybe<$ptr_repr:ty>)?| $is_bit_valid:expr)? |
| ) => { |
| impl_or_verify!(@impl { unsafe_impl!( |
| $($tyvar $(: $(? $optbound +)* $($bound +)*)?),* => $trait for $ty |
| $(; |$candidate $(: MaybeAligned<$ref_repr>)? $(: Maybe<$ptr_repr>)?| $is_bit_valid)? |
| ); }); |
| impl_or_verify!(@verify $trait, { |
| impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?),*> Subtrait for $ty {} |
| }); |
| }; |
| (@impl $impl_block:tt) => { |
| #[cfg(not(any(feature = "derive", test)))] |
| const _: () = { $impl_block }; |
| }; |
| (@verify $trait:ident, $impl_block:tt) => { |
| #[cfg(any(feature = "derive", test))] |
| const _: () = { |
| trait Subtrait: $trait {} |
| $impl_block |
| }; |
| }; |
| } |
| |
| /// Implements `KnownLayout` for a sized type. |
| macro_rules! impl_known_layout { |
| ($(const $constvar:ident : $constty:ty, $tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => { |
| $(impl_known_layout!(@inner const $constvar: $constty, $tyvar $(: ?$optbound)? => $ty);)* |
| }; |
| ($($tyvar:ident $(: ?$optbound:ident)? => $ty:ty),* $(,)?) => { |
| $(impl_known_layout!(@inner , $tyvar $(: ?$optbound)? => $ty);)* |
| }; |
| ($($ty:ty),*) => { $(impl_known_layout!(@inner , => $ty);)* }; |
| (@inner $(const $constvar:ident : $constty:ty)? , $($tyvar:ident $(: ?$optbound:ident)?)? => $ty:ty) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| |
| #[allow(non_local_definitions)] |
| // SAFETY: Delegates safety to `DstLayout::for_type`. |
| unsafe impl<$($tyvar $(: ?$optbound)?)? $(, const $constvar : $constty)?> KnownLayout for $ty { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {} |
| |
| type PointerMetadata = (); |
| |
| // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are |
| // identical because `CoreMaybeUninit<T>` has the same size and |
| // alignment as `T` [1], and `CoreMaybeUninit` admits |
| // uninitialized bytes in all positions. |
| // |
| // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: |
| // |
| // `MaybeUninit<T>` is guaranteed to have the same size, |
| // alignment, and ABI as `T` |
| type MaybeUninit = core::mem::MaybeUninit<Self>; |
| |
| const LAYOUT: crate::DstLayout = crate::DstLayout::for_type::<$ty>(); |
| |
| // SAFETY: `.cast` preserves address and provenance. |
| // |
| // TODO(#429): Add documentation to `.cast` that promises that |
| // it preserves provenance. |
| #[inline(always)] |
| fn raw_from_ptr_len(bytes: NonNull<u8>, _meta: ()) -> NonNull<Self> { |
| bytes.cast::<Self>() |
| } |
| |
| #[inline(always)] |
| fn pointer_to_metadata(_ptr: *mut Self) -> () { |
| } |
| } |
| }; |
| }; |
| } |
| |
| /// Implements `KnownLayout` for a type in terms of the implementation of |
| /// another type with the same representation. |
| /// |
| /// # Safety |
| /// |
| /// - `$ty` and `$repr` must have the same: |
| /// - Fixed prefix size |
| /// - Alignment |
| /// - (For DSTs) trailing slice element size |
| /// - It must be valid to perform an `as` cast from `*mut $repr` to `*mut $ty`, |
| /// and this operation must preserve referent size (ie, `size_of_val_raw`). |
| macro_rules! unsafe_impl_known_layout { |
| ($($tyvar:ident: ?Sized + KnownLayout =>)? #[repr($repr:ty)] $ty:ty) => { |
| const _: () = { |
| use core::ptr::NonNull; |
| |
| #[allow(non_local_definitions)] |
| unsafe impl<$($tyvar: ?Sized + KnownLayout)?> KnownLayout for $ty { |
| #[allow(clippy::missing_inline_in_public_items)] |
| #[cfg_attr(coverage_nightly, coverage(off))] |
| fn only_derive_is_allowed_to_implement_this_trait() {} |
| |
| type PointerMetadata = <$repr as KnownLayout>::PointerMetadata; |
| type MaybeUninit = <$repr as KnownLayout>::MaybeUninit; |
| |
| const LAYOUT: DstLayout = <$repr as KnownLayout>::LAYOUT; |
| |
| // SAFETY: All operations preserve address and provenance. |
| // Caller has promised that the `as` cast preserves size. |
| // |
| // TODO(#429): Add documentation to `NonNull::new_unchecked` |
| // that it preserves provenance. |
| #[inline(always)] |
| fn raw_from_ptr_len(bytes: NonNull<u8>, meta: <$repr as KnownLayout>::PointerMetadata) -> NonNull<Self> { |
| #[allow(clippy::as_conversions)] |
| let ptr = <$repr>::raw_from_ptr_len(bytes, meta).as_ptr() as *mut Self; |
| // SAFETY: `ptr` was converted from `bytes`, which is non-null. |
| unsafe { NonNull::new_unchecked(ptr) } |
| } |
| |
| #[inline(always)] |
| fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata { |
| #[allow(clippy::as_conversions)] |
| let ptr = ptr as *mut $repr; |
| <$repr>::pointer_to_metadata(ptr) |
| } |
| } |
| }; |
| }; |
| } |
| |
| /// Uses `align_of` to confirm that a type or set of types have alignment 1. |
| /// |
| /// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for |
| /// unsized types. |
| macro_rules! assert_unaligned { |
| ($($tys:ty),*) => { |
| $( |
| // We only compile this assertion under `cfg(test)` to avoid taking |
| // an extra non-dev dependency (and making this crate more expensive |
| // to compile for our dependents). |
| #[cfg(test)] |
| static_assertions::const_assert_eq!(core::mem::align_of::<$tys>(), 1); |
| )* |
| }; |
| } |
| |
| /// Emits a function definition as either `const fn` or `fn` depending on |
| /// whether the current toolchain version supports `const fn` with generic trait |
| /// bounds. |
| macro_rules! maybe_const_trait_bounded_fn { |
| // This case handles both `self` methods (where `self` is by value) and |
| // non-method functions. Each `$args` may optionally be followed by `: |
| // $arg_tys:ty`, which can be omitted for `self`. |
| ($(#[$attr:meta])* $vis:vis const fn $name:ident($($args:ident $(: $arg_tys:ty)?),* $(,)?) $(-> $ret_ty:ty)? $body:block) => { |
| #[cfg(zerocopy_generic_bounds_in_const_fn_1_61_0)] |
| $(#[$attr])* $vis const fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body |
| |
| #[cfg(not(zerocopy_generic_bounds_in_const_fn_1_61_0))] |
| $(#[$attr])* $vis fn $name($($args $(: $arg_tys)?),*) $(-> $ret_ty)? $body |
| }; |
| } |
| |
| /// Either panic (if the current Rust toolchain supports panicking in `const |
| /// fn`) or evaluate a constant that will cause an array indexing error whose |
| /// error message will include the format string. |
| /// |
| /// The type that this expression evaluates to must be `Copy`, or else the |
| /// non-panicking desugaring will fail to compile. |
| macro_rules! const_panic { |
| (@non_panic $($_arg:tt)+) => {{ |
| // This will type check to whatever type is expected based on the call |
| // site. |
| let panic: [_; 0] = []; |
| // This will always fail (since we're indexing into an array of size 0. |
| #[allow(unconditional_panic)] |
| panic[0] |
| }}; |
| ($($arg:tt)+) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| panic!($($arg)+); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| const_panic!(@non_panic $($arg)+) |
| }}; |
| } |
| |
| /// Either assert (if the current Rust toolchain supports panicking in `const |
| /// fn`) or evaluate the expression and, if it evaluates to `false`, call |
| /// `const_panic!`. This is used in place of `assert!` in const contexts to |
| /// accommodate old toolchains. |
| macro_rules! const_assert { |
| ($e:expr) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| assert!($e); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e))); |
| } |
| } |
| }}; |
| ($e:expr, $($args:tt)+) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| assert!($e, $($args)+); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e), ": ", stringify!($arg)), $($args)*); |
| } |
| } |
| }}; |
| } |
| |
| /// Like `const_assert!`, but relative to `debug_assert!`. |
| macro_rules! const_debug_assert { |
| ($e:expr $(, $msg:expr)?) => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| debug_assert!($e $(, $msg)?); |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| { |
| // Use this (rather than `#[cfg(debug_assertions)]`) to ensure that |
| // `$e` is always compiled even if it will never be evaluated at |
| // runtime. |
| if cfg!(debug_assertions) { |
| let e = $e; |
| if !e { |
| let _: () = const_panic!(@non_panic concat!("assertion failed: ", stringify!($e) $(, ": ", $msg)?)); |
| } |
| } |
| } |
| }} |
| } |
| |
| /// Either invoke `unreachable!()` or `loop {}` depending on whether the Rust |
| /// toolchain supports panicking in `const fn`. |
| macro_rules! const_unreachable { |
| () => {{ |
| #[cfg(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
| unreachable!(); |
| |
| #[cfg(not(zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))] |
| loop {} |
| }}; |
| } |
| |
| /// Asserts at compile time that `$condition` is true for `Self` or the given |
| /// `$tyvar`s. Unlike `const_assert`, this is *strictly* a compile-time check; |
| /// it cannot be evaluated in a runtime context. The condition is checked after |
| /// monomorphization and, upon failure, emits a compile error. |
| macro_rules! static_assert { |
| (Self $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )? => $condition:expr $(, $args:tt)*) => {{ |
| trait StaticAssert { |
| const ASSERT: bool; |
| } |
| |
| impl<T $(: $(? $optbound +)* $($bound +)*)?> StaticAssert for T { |
| const ASSERT: bool = { |
| const_assert!($condition $(, $args)*); |
| $condition |
| }; |
| } |
| |
| const_assert!(<Self as StaticAssert>::ASSERT); |
| }}; |
| ($($tyvar:ident $(: $(? $optbound:ident $(+)?)* $($bound:ident $(+)?)* )?),* => $condition:expr $(, $args:tt)*) => {{ |
| trait StaticAssert { |
| const ASSERT: bool; |
| } |
| |
| impl<$($tyvar $(: $(? $optbound +)* $($bound +)*)?,)*> StaticAssert for ($($tyvar,)*) { |
| const ASSERT: bool = { |
| const_assert!($condition $(, $args)*); |
| $condition |
| }; |
| } |
| |
| const_assert!(<($($tyvar,)*) as StaticAssert>::ASSERT); |
| }}; |
| } |
| |
| /// Assert at compile time that `tyvar` does not have a zero-sized DST |
| /// component. |
| macro_rules! static_assert_dst_is_not_zst { |
| ($tyvar:ident) => {{ |
| use crate::KnownLayout; |
| static_assert!($tyvar: ?Sized + KnownLayout => { |
| let dst_is_zst = match $tyvar::LAYOUT.size_info { |
| crate::SizeInfo::Sized { .. } => false, |
| crate::SizeInfo::SliceDst(TrailingSliceLayout { elem_size, .. }) => { |
| elem_size == 0 |
| } |
| }; |
| !dst_is_zst |
| }, "cannot call this method on a dynamically-sized type whose trailing slice element is zero-sized"); |
| }} |
| } |