blob: fd48236ae4beda4870da77f9bdcfd36d83d26af2 [file] [log] [blame]
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::{fmt, hash::Hash};
use super::*;
/// A type with no alignment requirement.
///
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and bit validity as `T`, but not necessarily the same
/// alignment [or ABI]. This is useful if a type with an alignment requirement
/// needs to be read from a chunk of memory which provides no alignment
/// guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory. There are five ways to access the inner `T`:
/// - by value, using [`get`] or [`into_inner`]
/// - by reference inside of a callback, using [`update`]
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
/// runtime
/// - unsafely by reference, using [`deref_unchecked`] or
/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
/// the `Unalign` satisfies `T`'s alignment requirement
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
/// [`DerefMut::deref_mut`]
///
/// [or ABI]: https://github.com/google/zerocopy/issues/164
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
/// [`update`]: Unalign::update
/// [`try_deref`]: Unalign::try_deref
/// [`try_deref_mut`]: Unalign::try_deref_mut
/// [`deref_unchecked`]: Unalign::deref_unchecked
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
///
/// # Example
///
/// In this example, we need `EthernetFrame` to have no alignment requirement -
/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
/// alignment requirement so that `EthernetFrame` has no alignment requirement
/// and can implement `Unaligned`.
///
/// ```rust
/// use zerocopy::*;
/// # use zerocopy_derive::*;
/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
///
/// # #[derive(PartialEq, Copy, Clone, Debug)]
/// #[derive(TryFromBytes, KnownLayout, Immutable)]
/// #[repr(u16)]
/// enum EtherType {
/// Ipv4 = 0x0800u16.to_be(),
/// Arp = 0x0806u16.to_be(),
/// Ipv6 = 0x86DDu16.to_be(),
/// # /*
/// ...
/// # */
/// }
///
/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
/// #[repr(C)]
/// struct EthernetFrame {
/// src: Mac,
/// dst: Mac,
/// ethertype: Unalign<EtherType>,
/// payload: [u8],
/// }
///
/// let bytes = &[
/// # 0, 1, 2, 3, 4, 5,
/// # 6, 7, 8, 9, 10, 11,
/// # /*
/// ...
/// # */
/// 0x86, 0xDD, // EtherType
/// 0xDE, 0xAD, 0xBE, 0xEF // Payload
/// ][..];
///
/// // PANICS: Guaranteed not to panic because `bytes` is of the right
/// // length, has the right contents, and `EthernetFrame` has no
/// // alignment requirement.
/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
///
/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
/// ```
///
/// # Safety
///
/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
/// `Unalign<T>` is guaranteed to have alignment 1.
// NOTE: This type is sound to use with types that need to be dropped. The
// reason is that the compiler-generated drop code automatically moves all
// values to aligned memory slots before dropping them in-place. This is not
// well-documented, but it's hinted at in places like [1] and [2]. However, this
// also means that `T` must be `Sized`; unless something changes, we can never
// support unsized `T`. [3]
//
// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
// [3] https://github.com/google/zerocopy/issues/209
#[allow(missing_debug_implementations)]
#[derive(Default, Copy)]
#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
#[repr(C, packed)]
pub struct Unalign<T>(T);
// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
// smart enough to realize that `Unalign<T>` is always sized and thus emits a
// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
impl_known_layout!(T => Unalign<T>);
safety_comment! {
/// SAFETY:
/// - `Unalign<T>` promises to have alignment 1, and so we don't require
/// that `T: Unaligned`.
/// - `Unalign<T>` has the same bit validity as `T`, and so it is
/// `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
/// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
/// `UnsafeCell`s exactly when `T` does.
/// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
/// `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
/// Furthermore:
/// - Since `T` and `Unalign<T>` have the same layout, they have the same
/// size (as required by `unsafe_impl!`).
/// - Since `T` and `Unalign<T>` have the same fields, they have
/// `UnsafeCell`s at the same byte ranges (as required by
/// `unsafe_impl!`).
impl_or_verify!(T => Unaligned for Unalign<T>);
impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
impl_or_verify!(
T: TryFromBytes => TryFromBytes for Unalign<T>;
|c: Maybe<T>| T::is_bit_valid(c)
);
impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
}
// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
#[inline(always)]
fn clone(&self) -> Unalign<T> {
*self
}
}
impl<T> Unalign<T> {
/// Constructs a new `Unalign`.
#[inline(always)]
pub const fn new(val: T) -> Unalign<T> {
Unalign(val)
}
/// Consumes `self`, returning the inner `T`.
#[inline(always)]
pub const fn into_inner(self) -> T {
// SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
// and bit validity as `T`.
//
// We do this instead of just destructuring in order to prevent
// `Unalign`'s `Drop::drop` from being run, since dropping is not
// supported in `const fn`s.
//
// TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
// instead of using unsafe.
unsafe { crate::util::transmute_unchecked(self) }
}
/// Attempts to return a reference to the wrapped `T`, failing if `self` is
/// not properly aligned.
///
/// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
/// `Err`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
/// may prefer [`Deref::deref`], which is infallible.
#[inline(always)]
pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
match inner.bikeshed_try_into_aligned() {
Ok(aligned) => Ok(aligned.as_ref()),
Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
}
}
/// Attempts to return a mutable reference to the wrapped `T`, failing if
/// `self` is not properly aligned.
///
/// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
/// `Err`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is infallible.
#[inline(always)]
pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
match inner.bikeshed_try_into_aligned() {
Ok(aligned) => Ok(aligned.as_mut()),
Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
}
}
/// Returns a reference to the wrapped `T` without checking alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
/// may prefer [`Deref::deref`], which is safe.
///
/// # Safety
///
/// The caller must guarantee that `self` satisfies `align_of::<T>()`.
#[inline(always)]
pub const unsafe fn deref_unchecked(&self) -> &T {
// SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
// at the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that it is sound to create a reference to `T` at this memory
// location.
//
// We use `mem::transmute` instead of `&*self.get_ptr()` because
// dereferencing pointers is not stable in `const` on our current MSRV
// (1.56 as of this writing).
unsafe { mem::transmute(self) }
}
/// Returns a mutable reference to the wrapped `T` without checking
/// alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is safe.
///
/// # Safety
///
/// The caller must guarantee that `self` satisfies `align_of::<T>()`.
#[inline(always)]
pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
// SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
// the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that the pointer itself is aligned, and thus that it is sound to
// create a reference to a `T` at this memory location.
unsafe { &mut *self.get_mut_ptr() }
}
/// Gets an unaligned raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will result in undefined behavior if alignment is not
/// guaranteed using some out-of-band mechanism. In general, the only
/// functions which are safe to call with this pointer are those which are
/// explicitly documented as being sound to use with an unaligned pointer,
/// such as [`read_unaligned`].
///
/// Even if the caller is permitted to mutate `self` (e.g. they have
/// ownership or a mutable borrow), it is not guaranteed to be sound to
/// write through the returned pointer. If writing is required, prefer
/// [`get_mut_ptr`] instead.
///
/// [`read_unaligned`]: core::ptr::read_unaligned
/// [`get_mut_ptr`]: Unalign::get_mut_ptr
#[inline(always)]
pub const fn get_ptr(&self) -> *const T {
ptr::addr_of!(self.0)
}
/// Gets an unaligned mutable raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will result in undefined behavior if alignment is not
/// guaranteed using some out-of-band mechanism. In general, the only
/// functions which are safe to call with this pointer are those which are
/// explicitly documented as being sound to use with an unaligned pointer,
/// such as [`read_unaligned`].
///
/// [`read_unaligned`]: core::ptr::read_unaligned
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn get_mut_ptr(&mut self) -> *mut T {
ptr::addr_of_mut!(self.0)
}
/// Sets the inner `T`, dropping the previous value.
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn set(&mut self, t: T) {
*self = Unalign::new(t);
}
/// Updates the inner `T` by calling a function on it.
///
/// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
/// impl should be preferred over this method when performing updates, as it
/// will usually be faster and more ergonomic.
///
/// For large types, this method may be expensive, as it requires copying
/// `2 * size_of::<T>()` bytes. \[1\]
///
/// \[1\] Since the inner `T` may not be aligned, it would not be sound to
/// invoke `f` on it directly. Instead, `update` moves it into a
/// properly-aligned location in the local stack frame, calls `f` on it, and
/// then moves it back to its original location in `self`.
///
/// [`T: Unaligned`]: Unaligned
#[inline]
pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
if mem::align_of::<T>() == 1 {
// While we advise callers to use `DerefMut` when `T: Unaligned`,
// not all callers will be able to guarantee `T: Unaligned` in all
// cases. In particular, callers who are themselves providing an API
// which is generic over `T` may sometimes be called by *their*
// callers with `T` such that `align_of::<T>() == 1`, but cannot
// guarantee this in the general case. Thus, this optimization may
// sometimes be helpful.
// SAFETY: Since `T`'s alignment is 1, `self` satisfies its
// alignment by definition.
let t = unsafe { self.deref_mut_unchecked() };
return f(t);
}
// On drop, this moves `copy` out of itself and uses `ptr::write` to
// overwrite `slf`.
struct WriteBackOnDrop<T> {
copy: ManuallyDrop<T>,
slf: *mut Unalign<T>,
}
impl<T> Drop for WriteBackOnDrop<T> {
fn drop(&mut self) {
// SAFETY: We never use `copy` again as required by
// `ManuallyDrop::take`.
let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
// SAFETY: `slf` is the raw pointer value of `self`. We know it
// is valid for writes and properly aligned because `self` is a
// mutable reference, which guarantees both of these properties.
unsafe { ptr::write(self.slf, Unalign::new(copy)) };
}
}
// SAFETY: We know that `self` is valid for reads, properly aligned, and
// points to an initialized `Unalign<T>` because it is a mutable
// reference, which guarantees all of these properties.
//
// Since `T: !Copy`, it would be unsound in the general case to allow
// both the original `Unalign<T>` and the copy to be used by safe code.
// We guarantee that the copy is used to overwrite the original in the
// `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
// called before any other safe code executes, soundness is upheld.
// While this method can terminate in two ways (by returning normally or
// by unwinding due to a panic in `f`), in both cases, `write_back` is
// dropped - and its `drop` called - before any other safe code can
// execute.
let copy = unsafe { ptr::read(self) }.into_inner();
let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
let ret = f(&mut write_back.copy);
drop(write_back);
ret
}
}
impl<T: Copy> Unalign<T> {
/// Gets a copy of the inner `T`.
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn get(&self) -> T {
let Unalign(val) = *self;
val
}
}
impl<T: Unaligned> Deref for Unalign<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
}
}
impl<T: Unaligned> DerefMut for Unalign<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
}
}
impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + Ord> Ord for Unalign<T> {
#[inline(always)]
fn cmp(&self, other: &Unalign<T>) -> Ordering {
Ord::cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn eq(&self, other: &Unalign<T>) -> bool {
PartialEq::eq(self.deref(), other.deref())
}
}
impl<T: Unaligned + Eq> Eq for Unalign<T> {}
impl<T: Unaligned + Hash> Hash for Unalign<T> {
#[inline(always)]
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.deref().hash(state);
}
}
impl<T: Unaligned + Debug> Debug for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(self.deref(), f)
}
}
impl<T: Unaligned + Display> Display for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(self.deref(), f)
}
}
/// A wrapper type to construct uninitialized instances of `T`.
///
/// `MaybeUninit` is identical to the [standard library
/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
/// types.
///
/// # Layout
///
/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
/// types, the following are guaranteed:
/// - Every [valid size][valid-size] for `T` is a valid size for
/// `MaybeUninit<T>` and vice versa
/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
/// pointer metadata, `t` and `m` address the same number of bytes (and
/// likewise for `*mut`)
///
/// [core-maybe-uninit]: core::mem::MaybeUninit
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
#[repr(transparent)]
#[doc(hidden)]
pub struct MaybeUninit<T: ?Sized + KnownLayout>(
// SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
// on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
// and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
// accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
// it admits uninitialized bytes in all positions. Because `MabyeUninit` is
// marked `repr(transparent)`, these properties additionally hold true for
// `Self`.
T::MaybeUninit,
);
#[doc(hidden)]
impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
/// Constructs a `MaybeUninit<T>` initialized with the given value.
#[inline(always)]
pub fn new(val: T) -> Self
where
T: Sized,
Self: Sized,
{
// SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
// is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
// to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
//
// First, it is valid to transmute `val` to `T::MaybeUninit` because, by
// invariant on `T::MaybeUninit`:
// - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
// - All byte sequences of the correct size are valid values of
// `T::MaybeUninit`.
//
// Second, it is additionally valid to transmute from `T::MaybeUninit`
// to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
// `repr(transparent)` wrapper around `T::MaybeUninit`.
//
// These two transmutes are collapsed into one so we don't need to add a
// `T::MaybeUninit: Sized` bound to this function's `where` clause.
unsafe { crate::util::transmute_unchecked(val) }
}
/// Constructs an uninitialized `MaybeUninit<T>`.
#[must_use]
#[inline(always)]
pub fn uninit() -> Self
where
T: Sized,
Self: Sized,
{
let uninit = CoreMaybeUninit::<T>::uninit();
// SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
// `MaybeUninit<T>` since they both admit uninitialized bytes in all
// positions, and they have the same size (i.e., that of `T`).
//
// `MaybeUninit<T>` has the same size as `T`, because (by invariant on
// `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
// and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
// accurately reflects the layout of `T`.
//
// `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
// uninitialized bytes in all positions.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
//
// `MaybeUninit<T>` is guaranteed to have the same size, alignment,
// and ABI as `T`
unsafe { crate::util::transmute_unchecked(uninit) }
}
/// Creates a `Box<MaybeUninit<T>>`.
///
/// This function is useful for allocating large, uninit values on the heap
/// without ever creating a temporary instance of `Self` on the stack.
///
/// # Errors
///
/// Returns an error on allocation failure. Allocation failure is guaranteed
/// never to cause a panic or an abort.
#[cfg(feature = "alloc")]
#[inline]
pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
// SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
// `new_box`. The referent of the pointer returned by `alloc` (and,
// consequently, the `Box` derived from it) is a valid instance of
// `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
// (un)initialized bytes.
unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
}
/// Extracts the value from the `MaybeUninit<T>` container.
///
/// # Safety
///
/// The caller must ensure that `self` is in an bit-valid state. Depending
/// on subsequent use, it may also need to be in a library-valid state.
#[inline(always)]
pub unsafe fn assume_init(self) -> T
where
T: Sized,
Self: Sized,
{
// SAFETY: The caller guarantees that `self` is in an bit-valid state.
unsafe { crate::util::transmute_unchecked(self) }
}
}
impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad(core::any::type_name::<Self>())
}
}
#[cfg(test)]
mod tests {
use core::panic::AssertUnwindSafe;
use super::*;
use crate::util::testutil::*;
#[test]
fn test_unalign() {
// Test methods that don't depend on alignment.
let mut u = Unalign::new(AU64(123));
assert_eq!(u.get(), AU64(123));
assert_eq!(u.into_inner(), AU64(123));
assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
u.set(AU64(321));
assert_eq!(u.get(), AU64(321));
// Test methods that depend on alignment (when alignment is satisfied).
let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
*u.t.try_deref_mut().unwrap() = AU64(321);
assert_eq!(u.t.get(), AU64(321));
// Test methods that depend on alignment (when alignment is not
// satisfied).
let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
// Test methods that depend on `T: Unaligned`.
let mut u = Unalign::new(123u8);
assert_eq!(u.try_deref(), Ok(&123));
assert_eq!(u.try_deref_mut(), Ok(&mut 123));
assert_eq!(u.deref(), &123);
assert_eq!(u.deref_mut(), &mut 123);
*u = 21;
assert_eq!(u.get(), 21);
// Test that some `Unalign` functions and methods are `const`.
const _UNALIGN: Unalign<u64> = Unalign::new(0);
const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
const _U64: u64 = _UNALIGN.into_inner();
// Make sure all code is considered "used".
//
// TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
// attribute.
#[allow(dead_code)]
const _: () = {
let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
// Make sure that `deref_unchecked` is `const`.
//
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
let au64 = unsafe { x.t.deref_unchecked() };
match au64 {
AU64(123) => {}
_ => const_unreachable!(),
}
};
}
#[test]
fn test_unalign_update() {
let mut u = Unalign::new(AU64(123));
u.update(|a| a.0 += 1);
assert_eq!(u.get(), AU64(124));
// Test that, even if the callback panics, the original is still
// correctly overwritten. Use a `Box` so that Miri is more likely to
// catch any unsoundness (which would likely result in two `Box`es for
// the same heap object, which is the sort of thing that Miri would
// probably catch).
let mut u = Unalign::new(Box::new(AU64(123)));
let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
u.update(|a| {
a.0 += 1;
panic!();
})
}));
assert!(res.is_err());
assert_eq!(u.into_inner(), Box::new(AU64(124)));
// Test the align_of::<T>() == 1 optimization.
let mut u = Unalign::new([0u8, 1]);
u.update(|a| a[0] += 1);
assert_eq!(u.get(), [1u8, 1]);
}
#[test]
fn test_unalign_copy_clone() {
// Test that `Copy` and `Clone` do not cause soundness issues. This test
// is mainly meant to exercise UB that would be caught by Miri.
// `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
#[allow(clippy::clone_on_copy)]
let v = u.t.clone();
let w = u.t;
assert_eq!(u.t.get(), v.get());
assert_eq!(u.t.get(), w.get());
assert_eq!(v.get(), w.get());
}
#[test]
fn test_unalign_trait_impls() {
let zero = Unalign::new(0u8);
let one = Unalign::new(1u8);
assert!(zero < one);
assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
assert_ne!(zero, one);
assert_eq!(zero, zero);
assert!(!PartialEq::eq(&zero, &one));
assert!(PartialEq::eq(&zero, &zero));
fn hash<T: Hash>(t: &T) -> u64 {
let mut h = std::collections::hash_map::DefaultHasher::new();
t.hash(&mut h);
h.finish()
}
assert_eq!(hash(&zero), hash(&0u8));
assert_eq!(hash(&one), hash(&1u8));
assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
assert_eq!(format!("{}", zero), format!("{}", 0u8));
assert_eq!(format!("{}", one), format!("{}", 1u8));
}
#[test]
#[allow(clippy::as_conversions)]
fn test_maybe_uninit() {
// int
{
let input = 42;
let uninit = MaybeUninit::new(input);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(input, output);
}
// thin ref
{
let input = 42;
let uninit = MaybeUninit::new(&input);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(&input as *const _, output as *const _);
assert_eq!(input, *output);
}
// wide ref
{
let input = [1, 2, 3, 4];
let uninit = MaybeUninit::new(&input[..]);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(&input[..] as *const _, output as *const _);
assert_eq!(input, *output);
}
}
}