blob: fe08d2e0745256f31ca656ccf69dc0c2059539b0 [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{f32::math, neon::*, BVec3, BVec3A, Vec2, Vec3, Vec4};
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
use core::arch::aarch64::*;
#[repr(C)]
union UnionCast {
a: [f32; 4],
v: Vec3A,
}
/// Creates a 3-dimensional vector.
#[inline(always)]
#[must_use]
pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A {
Vec3A::new(x, y, z)
}
/// A 3-dimensional vector.
///
/// SIMD vector types are used for storage on supported platforms for better
/// performance than the [`Vec3`] type.
///
/// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`]
/// or [`Into`] trait implementations.
///
/// This type is 16 byte aligned.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct Vec3A(pub(crate) float32x4_t);
impl Vec3A {
/// All zeroes.
pub const ZERO: Self = Self::splat(0.0);
/// All ones.
pub const ONE: Self = Self::splat(1.0);
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
/// All `f32::MIN`.
pub const MIN: Self = Self::splat(f32::MIN);
/// All `f32::MAX`.
pub const MAX: Self = Self::splat(f32::MAX);
/// All `f32::NAN`.
pub const NAN: Self = Self::splat(f32::NAN);
/// All `f32::INFINITY`.
pub const INFINITY: Self = Self::splat(f32::INFINITY);
/// All `f32::NEG_INFINITY`.
pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0, 0.0);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0, 0.0);
/// A unit vector pointing along the positive Z axis.
pub const Z: Self = Self::new(0.0, 0.0, 1.0);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0);
/// A unit vector pointing along the negative Z axis.
pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0);
/// The unit axes.
pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z];
/// Creates a new vector.
#[inline(always)]
#[must_use]
pub const fn new(x: f32, y: f32, z: f32) -> Self {
unsafe { UnionCast { a: [x, y, z, z] }.v }
}
/// Creates a vector with all elements set to `v`.
#[inline]
#[must_use]
pub const fn splat(v: f32) -> Self {
unsafe { UnionCast { a: [v; 4] }.v }
}
/// Returns a vector containing each element of `self` modified by a mapping function `f`.
#[inline]
#[must_use]
pub fn map<F>(self, f: F) -> Self
where
F: Fn(f32) -> f32,
{
Self::new(f(self.x), f(self.y), f(self.z))
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
#[must_use]
pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self {
Self(unsafe { vbslq_f32(mask.0, if_true.0, if_false.0) })
}
/// Creates a new vector from an array.
#[inline]
#[must_use]
pub const fn from_array(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
/// `[x, y, z]`
#[inline]
#[must_use]
pub const fn to_array(&self) -> [f32; 3] {
unsafe { *(self as *const Vec3A as *const [f32; 3]) }
}
/// Creates a vector from the first 3 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
#[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
assert!(slice.len() >= 3);
Self::new(slice[0], slice[1], slice[2])
}
/// Writes the elements of `self` to the first 3 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 3 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [f32]) {
slice[..3].copy_from_slice(&self.to_array());
}
/// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`.
///
/// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop.
#[inline]
#[must_use]
pub fn from_vec4(v: Vec4) -> Self {
Self(v.0)
}
/// Creates a 4D vector from `self` and the given `w` value.
#[inline]
#[must_use]
pub fn extend(self, w: f32) -> Vec4 {
Vec4::new(self.x, self.y, self.z, w)
}
/// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`.
///
/// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()].
#[inline]
#[must_use]
pub fn truncate(self) -> Vec2 {
use crate::swizzles::Vec3Swizzles;
self.xy()
}
/// Creates a 3D vector from `self` with the given value of `x`.
#[inline]
#[must_use]
pub fn with_x(mut self, x: f32) -> Self {
self.x = x;
self
}
/// Creates a 3D vector from `self` with the given value of `y`.
#[inline]
#[must_use]
pub fn with_y(mut self, y: f32) -> Self {
self.y = y;
self
}
/// Creates a 3D vector from `self` with the given value of `z`.
#[inline]
#[must_use]
pub fn with_z(mut self, z: f32) -> Self {
self.z = z;
self
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot(self, rhs: Self) -> f32 {
// this was faster than intrinsics in testing
(self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self(unsafe { dot3_into_f32x4(self.0, rhs.0) })
}
/// Computes the cross product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn cross(self, rhs: Self) -> Self {
unsafe {
// Implementation taken from Realtime Math
let lhs = self.0;
let rhs = rhs.0;
// cross(a, b) = (a.yzx * b.zxy) - (a.zxy * b.yzx)
let lhs_yzwx = vextq_f32(lhs, lhs, 1);
let rhs_wxyz = vextq_f32(rhs, rhs, 3);
let lhs_yzx = vsetq_lane_f32(vgetq_lane_f32(lhs, 0), lhs_yzwx, 2);
let rhs_zxy = vsetq_lane_f32(vgetq_lane_f32(rhs, 2), rhs_wxyz, 0);
// part_a = (a.yzx * b.zxy)
let part_a = vmulq_f32(lhs_yzx, rhs_zxy);
let lhs_wxyz = vextq_f32(lhs, lhs, 3);
let rhs_yzwx = vextq_f32(rhs, rhs, 1);
let lhs_zxy = vsetq_lane_f32(vgetq_lane_f32(lhs, 2), lhs_wxyz, 0);
let rhs_yzx = vsetq_lane_f32(vgetq_lane_f32(rhs, 0), rhs_yzwx, 2);
// result = part_a - (a.zxy * b.yzx)
let result = vmlsq_f32(part_a, lhs_zxy, rhs_yzx);
Self(result)
}
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self(unsafe { vminq_f32(self.0, rhs.0) })
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self(unsafe { vmaxq_f32(self.0, rhs.0) })
}
/// Component-wise clamping of values, similar to [`f32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
#[must_use]
pub fn min_element(self) -> f32 {
self.x.min(self.y.min(self.z))
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
#[must_use]
pub fn max_element(self) -> f32 {
self.x.max(self.y.max(self.z))
}
/// Returns the sum of all elements of `self`.
///
/// In other words, this computes `self.x + self.y + ..`.
#[inline]
#[must_use]
pub fn element_sum(self) -> f32 {
unsafe { vaddvq_f32(vsetq_lane_f32(0.0, self.0, 3)) }
}
/// Returns the product of all elements of `self`.
///
/// In other words, this computes `self.x * self.y * ..`.
#[inline]
#[must_use]
pub fn element_product(self) -> f32 {
unsafe {
let s = vmuls_laneq_f32(vgetq_lane_f32(self.0, 0), self.0, 1);
vmuls_laneq_f32(s, self.0, 2)
}
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vceqq_f32(self.0, rhs.0) })
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpne(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vmvnq_u32(vceqq_f32(self.0, rhs.0)) })
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpge(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vcgeq_f32(self.0, rhs.0) })
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vcgtq_f32(self.0, rhs.0) })
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmple(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vcleq_f32(self.0, rhs.0) })
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmplt(self, rhs: Self) -> BVec3A {
BVec3A(unsafe { vcltq_f32(self.0, rhs.0) })
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
#[must_use]
pub fn abs(self) -> Self {
Self(unsafe { vabsq_f32(self.0) })
}
/// Returns a vector with elements representing the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
#[must_use]
pub fn signum(self) -> Self {
let result = Self(unsafe {
vreinterpretq_f32_u32(vorrq_u32(
vandq_u32(
vreinterpretq_u32_f32(self.0),
vreinterpretq_u32_f32(Self::NEG_ONE.0),
),
vreinterpretq_u32_f32(Self::ONE.0),
))
});
let mask = self.is_nan_mask();
Self::select(mask, self, result)
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
#[must_use]
pub fn copysign(self, rhs: Self) -> Self {
let mask = Self::splat(-0.0);
Self(unsafe {
vreinterpretq_f32_u32(vorrq_u32(
vandq_u32(vreinterpretq_u32_f32(rhs.0), vreinterpretq_u32_f32(mask.0)),
vandq_u32(
vreinterpretq_u32_f32(self.0),
vmvnq_u32(vreinterpretq_u32_f32(mask.0)),
),
))
})
}
/// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`.
///
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
#[must_use]
pub fn is_negative_bitmask(self) -> u32 {
unsafe {
let nmask = vreinterpretq_u32_f32(vdupq_n_f32(-0.0));
let m = vandq_u32(vreinterpretq_u32_f32(self.0), nmask);
let x = vgetq_lane_u32(m, 0) >> 31;
let y = vgetq_lane_u32(m, 1) >> 31;
let z = vgetq_lane_u32(m, 2) >> 31;
x | y << 1 | z << 2
}
}
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
#[must_use]
pub fn is_finite(self) -> bool {
self.is_finite_mask().all()
}
/// Performs `is_finite` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`.
pub fn is_finite_mask(self) -> BVec3A {
BVec3A(unsafe { vcltq_f32(vabsq_f32(self.0), Self::INFINITY.0) })
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(self) -> bool {
self.is_nan_mask().any()
}
/// Performs `is_nan` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`.
#[inline]
#[must_use]
pub fn is_nan_mask(self) -> BVec3A {
BVec3A(unsafe { vmvnq_u32(vceqq_f32(self.0, self.0)) })
}
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
#[must_use]
pub fn length(self) -> f32 {
math::sqrt(self.dot(self))
}
/// Computes the squared length of `self`.
///
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
#[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
/// Computes `1.0 / length()`.
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
#[must_use]
pub fn length_recip(self) -> f32 {
self.length().recip()
}
/// Computes the Euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
/// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
#[inline]
#[must_use]
pub fn div_euclid(self, rhs: Self) -> Self {
Self::new(
math::div_euclid(self.x, rhs.x),
math::div_euclid(self.y, rhs.y),
math::div_euclid(self.z, rhs.z),
)
}
/// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
///
/// [Euclidean division]: f32::rem_euclid
#[inline]
#[must_use]
pub fn rem_euclid(self, rhs: Self) -> Self {
Self::new(
math::rem_euclid(self.x, rhs.x),
math::rem_euclid(self.y, rhs.y),
math::rem_euclid(self.z, rhs.z),
)
}
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero.
///
/// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
///
/// Panics
///
/// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
/// Returns `self` normalized to length 1.0 if possible, else returns `None`.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
/// See also [`Self::normalize_or_zero()`].
#[inline]
#[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns a
/// fallback value.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be the fallback value.
///
/// See also [`Self::try_normalize()`].
#[inline]
#[must_use]
pub fn normalize_or(self, fallback: Self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
fallback
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns zero.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
/// See also [`Self::try_normalize()`].
#[inline]
#[must_use]
pub fn normalize_or_zero(self) -> Self {
self.normalize_or(Self::ZERO)
}
/// Returns whether `self` is length `1.0` or not.
///
/// Uses a precision threshold of approximately `1e-4`.
#[inline]
#[must_use]
pub fn is_normalized(self) -> bool {
math::abs(self.length_squared() - 1.0) <= 2e-4
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
#[must_use]
pub fn round(self) -> Self {
Self(unsafe { vrndnq_f32(self.0) })
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
#[must_use]
pub fn floor(self) -> Self {
Self(unsafe { vrndmq_f32(self.0) })
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
#[must_use]
pub fn ceil(self) -> Self {
Self(unsafe { vrndpq_f32(self.0) })
}
/// Returns a vector containing the integer part each element of `self`. This means numbers are
/// always truncated towards zero.
#[inline]
#[must_use]
pub fn trunc(self) -> Self {
Self(unsafe { vrndq_f32(self.0) })
}
/// Returns a vector containing the fractional part of the vector as `self - self.trunc()`.
///
/// Note that this differs from the GLSL implementation of `fract` which returns
/// `self - self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
#[must_use]
pub fn fract(self) -> Self {
self - self.trunc()
}
/// Returns a vector containing the fractional part of the vector as `self - self.floor()`.
///
/// Note that this differs from the Rust implementation of `fract` which returns
/// `self - self.trunc()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
#[must_use]
pub fn fract_gl(self) -> Self {
self - self.floor()
}
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
#[must_use]
pub fn exp(self) -> Self {
Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z))
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
#[must_use]
pub fn powf(self, n: f32) -> Self {
Self::new(
math::powf(self.x, n),
math::powf(self.y, n),
math::powf(self.z, n),
)
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
#[must_use]
pub fn recip(self) -> Self {
Self(unsafe { vdivq_f32(Self::ONE.0, self.0) })
}
/// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result
/// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
#[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self * (1.0 - s) + rhs * s
}
/// Moves towards `rhs` based on the value `d`.
///
/// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to
/// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`.
#[inline]
#[must_use]
pub fn move_towards(&self, rhs: Self, d: f32) -> Self {
let a = rhs - *self;
let len = a.length();
if len <= d || len <= 1e-4 {
return rhs;
}
*self + a / len * d
}
/// Calculates the midpoint between `self` and `rhs`.
///
/// The midpoint is the average of, or halfway point between, two vectors.
/// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)`
/// while being slightly cheaper to compute.
#[inline]
pub fn midpoint(self, rhs: Self) -> Self {
(self + rhs) * 0.5
}
/// Returns true if the absolute difference of all elements between `self` and `rhs` is
/// less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two vectors contain similar elements. It works best when
/// comparing with a known value. The `max_abs_diff` that should be used used depends on
/// the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
/// Returns a vector with a length no less than `min` and no more than `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(0.0 <= min);
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no more than `max`.
///
/// # Panics
///
/// Will panic if `max` is negative when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
glam_assert!(0.0 <= max);
let length_sq = self.length_squared();
if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no less than `min`.
///
/// # Panics
///
/// Will panic if `min` is negative when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
glam_assert!(0.0 <= min);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
/// architecture has a dedicated fma CPU instruction. However, this is not always true,
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
#[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self(unsafe { vfmaq_f32(b.0, self.0, a.0) })
}
/// Returns the reflection vector for a given incident vector `self` and surface normal
/// `normal`.
///
/// `normal` must be normalized.
///
/// # Panics
///
/// Will panic if `normal` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn reflect(self, normal: Self) -> Self {
glam_assert!(normal.is_normalized());
self - 2.0 * self.dot(normal) * normal
}
/// Returns the refraction direction for a given incident vector `self`, surface normal
/// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs,
/// a zero vector will be returned.
///
/// `self` and `normal` must be normalized.
///
/// # Panics
///
/// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn refract(self, normal: Self, eta: f32) -> Self {
glam_assert!(self.is_normalized());
glam_assert!(normal.is_normalized());
let n_dot_i = normal.dot(self);
let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
if k >= 0.0 {
eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
} else {
Self::ZERO
}
}
/// Returns the angle (in radians) between two vectors in the range `[0, +Ï€]`.
///
/// The inputs do not need to be unit vectors however they must be non-zero.
#[inline]
#[must_use]
pub fn angle_between(self, rhs: Self) -> f32 {
math::acos_approx(
self.dot(rhs)
.div(math::sqrt(self.length_squared().mul(rhs.length_squared()))),
)
}
/// Returns some vector that is orthogonal to the given one.
///
/// The input vector must be finite and non-zero.
///
/// The output vector is not necessarily unit length. For that use
/// [`Self::any_orthonormal_vector()`] instead.
#[inline]
#[must_use]
pub fn any_orthogonal_vector(&self) -> Self {
// This can probably be optimized
if math::abs(self.x) > math::abs(self.y) {
Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y)
} else {
Self::new(0.0, self.z, -self.y) // self.cross(Self::X)
}
}
/// Returns any unit vector that is orthogonal to the given one.
///
/// The input vector must be unit length.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn any_orthonormal_vector(&self) -> Self {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
let sign = math::signum(self.z);
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
Self::new(b, sign + self.y * self.y * a, -self.y)
}
/// Given a unit vector return two other vectors that together form an orthonormal
/// basis. That is, all three vectors are orthogonal to each other and are normalized.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn any_orthonormal_pair(&self) -> (Self, Self) {
glam_assert!(self.is_normalized());
// From https://graphics.pixar.com/library/OrthonormalB/paper.pdf
let sign = math::signum(self.z);
let a = -1.0 / (sign + self.z);
let b = self.x * self.y * a;
(
Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x),
Self::new(b, sign + self.y * self.y * a, -self.y),
)
}
/// Casts all elements of `self` to `f64`.
#[inline]
#[must_use]
pub fn as_dvec3(&self) -> crate::DVec3 {
crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64)
}
/// Casts all elements of `self` to `i8`.
#[inline]
#[must_use]
pub fn as_i8vec3(&self) -> crate::I8Vec3 {
crate::I8Vec3::new(self.x as i8, self.y as i8, self.z as i8)
}
/// Casts all elements of `self` to `u8`.
#[inline]
#[must_use]
pub fn as_u8vec3(&self) -> crate::U8Vec3 {
crate::U8Vec3::new(self.x as u8, self.y as u8, self.z as u8)
}
/// Casts all elements of `self` to `i16`.
#[inline]
#[must_use]
pub fn as_i16vec3(&self) -> crate::I16Vec3 {
crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16)
}
/// Casts all elements of `self` to `u16`.
#[inline]
#[must_use]
pub fn as_u16vec3(&self) -> crate::U16Vec3 {
crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16)
}
/// Casts all elements of `self` to `i32`.
#[inline]
#[must_use]
pub fn as_ivec3(&self) -> crate::IVec3 {
crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
#[must_use]
pub fn as_uvec3(&self) -> crate::UVec3 {
crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32)
}
/// Casts all elements of `self` to `i64`.
#[inline]
#[must_use]
pub fn as_i64vec3(&self) -> crate::I64Vec3 {
crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64)
}
/// Casts all elements of `self` to `u64`.
#[inline]
#[must_use]
pub fn as_u64vec3(&self) -> crate::U64Vec3 {
crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64)
}
}
impl Default for Vec3A {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl PartialEq for Vec3A {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.cmpeq(*rhs).all()
}
}
impl Div<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self(unsafe { vdivq_f32(self.0, rhs.0) })
}
}
impl Div<&Vec3A> for Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &Vec3A) -> Vec3A {
self.div(*rhs)
}
}
impl Div<&Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &Vec3A) -> Vec3A {
(*self).div(*rhs)
}
}
impl Div<Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: Vec3A) -> Vec3A {
(*self).div(rhs)
}
}
impl DivAssign<Vec3A> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.0 = unsafe { vdivq_f32(self.0, rhs.0) };
}
}
impl DivAssign<&Self> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: &Self) {
self.div_assign(*rhs)
}
}
impl Div<f32> for Vec3A {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self {
Self(unsafe { vdivq_f32(self.0, vld1q_dup_f32(&rhs)) })
}
}
impl Div<&f32> for Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &f32) -> Vec3A {
self.div(*rhs)
}
}
impl Div<&f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &f32) -> Vec3A {
(*self).div(*rhs)
}
}
impl Div<f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn div(self, rhs: f32) -> Vec3A {
(*self).div(rhs)
}
}
impl DivAssign<f32> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.0 = unsafe { vdivq_f32(self.0, vld1q_dup_f32(&rhs)) };
}
}
impl DivAssign<&f32> for Vec3A {
#[inline]
fn div_assign(&mut self, rhs: &f32) {
self.div_assign(*rhs)
}
}
impl Div<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn div(self, rhs: Vec3A) -> Vec3A {
Vec3A(unsafe { vdivq_f32(vld1q_dup_f32(&self), rhs.0) })
}
}
impl Div<&Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &Vec3A) -> Vec3A {
self.div(*rhs)
}
}
impl Div<&Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn div(self, rhs: &Vec3A) -> Vec3A {
(*self).div(*rhs)
}
}
impl Div<Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn div(self, rhs: Vec3A) -> Vec3A {
(*self).div(rhs)
}
}
impl Mul<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self(unsafe { vmulq_f32(self.0, rhs.0) })
}
}
impl Mul<&Vec3A> for Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &Vec3A) -> Vec3A {
self.mul(*rhs)
}
}
impl Mul<&Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &Vec3A) -> Vec3A {
(*self).mul(*rhs)
}
}
impl Mul<Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Vec3A {
(*self).mul(rhs)
}
}
impl MulAssign<Vec3A> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.0 = unsafe { vmulq_f32(self.0, rhs.0) };
}
}
impl MulAssign<&Self> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: &Self) {
self.mul_assign(*rhs)
}
}
impl Mul<f32> for Vec3A {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self {
Self(unsafe { vmulq_n_f32(self.0, rhs) })
}
}
impl Mul<&f32> for Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &f32) -> Vec3A {
self.mul(*rhs)
}
}
impl Mul<&f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &f32) -> Vec3A {
(*self).mul(*rhs)
}
}
impl Mul<f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: f32) -> Vec3A {
(*self).mul(rhs)
}
}
impl MulAssign<f32> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.0 = unsafe { vmulq_n_f32(self.0, rhs) };
}
}
impl MulAssign<&f32> for Vec3A {
#[inline]
fn mul_assign(&mut self, rhs: &f32) {
self.mul_assign(*rhs)
}
}
impl Mul<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Vec3A {
Vec3A(unsafe { vmulq_n_f32(rhs.0, self) })
}
}
impl Mul<&Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &Vec3A) -> Vec3A {
self.mul(*rhs)
}
}
impl Mul<&Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: &Vec3A) -> Vec3A {
(*self).mul(*rhs)
}
}
impl Mul<Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn mul(self, rhs: Vec3A) -> Vec3A {
(*self).mul(rhs)
}
}
impl Add<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self(unsafe { vaddq_f32(self.0, rhs.0) })
}
}
impl Add<&Vec3A> for Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &Vec3A) -> Vec3A {
self.add(*rhs)
}
}
impl Add<&Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &Vec3A) -> Vec3A {
(*self).add(*rhs)
}
}
impl Add<Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: Vec3A) -> Vec3A {
(*self).add(rhs)
}
}
impl AddAssign<Vec3A> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.0 = unsafe { vaddq_f32(self.0, rhs.0) };
}
}
impl AddAssign<&Self> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: &Self) {
self.add_assign(*rhs)
}
}
impl Add<f32> for Vec3A {
type Output = Self;
#[inline]
fn add(self, rhs: f32) -> Self {
Self(unsafe { vaddq_f32(self.0, vld1q_dup_f32(&rhs)) })
}
}
impl Add<&f32> for Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &f32) -> Vec3A {
self.add(*rhs)
}
}
impl Add<&f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &f32) -> Vec3A {
(*self).add(*rhs)
}
}
impl Add<f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn add(self, rhs: f32) -> Vec3A {
(*self).add(rhs)
}
}
impl AddAssign<f32> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.0 = unsafe { vaddq_f32(self.0, vld1q_dup_f32(&rhs)) };
}
}
impl AddAssign<&f32> for Vec3A {
#[inline]
fn add_assign(&mut self, rhs: &f32) {
self.add_assign(*rhs)
}
}
impl Add<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn add(self, rhs: Vec3A) -> Vec3A {
Vec3A(unsafe { vaddq_f32(vld1q_dup_f32(&self), rhs.0) })
}
}
impl Add<&Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &Vec3A) -> Vec3A {
self.add(*rhs)
}
}
impl Add<&Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn add(self, rhs: &Vec3A) -> Vec3A {
(*self).add(*rhs)
}
}
impl Add<Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn add(self, rhs: Vec3A) -> Vec3A {
(*self).add(rhs)
}
}
impl Sub<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self(unsafe { vsubq_f32(self.0, rhs.0) })
}
}
impl Sub<&Vec3A> for Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &Vec3A) -> Vec3A {
self.sub(*rhs)
}
}
impl Sub<&Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &Vec3A) -> Vec3A {
(*self).sub(*rhs)
}
}
impl Sub<Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: Vec3A) -> Vec3A {
(*self).sub(rhs)
}
}
impl SubAssign<Vec3A> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: Vec3A) {
self.0 = unsafe { vsubq_f32(self.0, rhs.0) };
}
}
impl SubAssign<&Self> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: &Self) {
self.sub_assign(*rhs)
}
}
impl Sub<f32> for Vec3A {
type Output = Self;
#[inline]
fn sub(self, rhs: f32) -> Self {
Self(unsafe { vsubq_f32(self.0, vld1q_dup_f32(&rhs)) })
}
}
impl Sub<&f32> for Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &f32) -> Vec3A {
self.sub(*rhs)
}
}
impl Sub<&f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &f32) -> Vec3A {
(*self).sub(*rhs)
}
}
impl Sub<f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: f32) -> Vec3A {
(*self).sub(rhs)
}
}
impl SubAssign<f32> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.0 = unsafe { vsubq_f32(self.0, vld1q_dup_f32(&rhs)) };
}
}
impl SubAssign<&f32> for Vec3A {
#[inline]
fn sub_assign(&mut self, rhs: &f32) {
self.sub_assign(*rhs)
}
}
impl Sub<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: Vec3A) -> Vec3A {
Vec3A(unsafe { vsubq_f32(vld1q_dup_f32(&self), rhs.0) })
}
}
impl Sub<&Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &Vec3A) -> Vec3A {
self.sub(*rhs)
}
}
impl Sub<&Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: &Vec3A) -> Vec3A {
(*self).sub(*rhs)
}
}
impl Sub<Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn sub(self, rhs: Vec3A) -> Vec3A {
(*self).sub(rhs)
}
}
impl Rem<Vec3A> for Vec3A {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
unsafe {
let n = vrndmq_f32(vdivq_f32(self.0, rhs.0));
Self(vsubq_f32(self.0, vmulq_f32(n, rhs.0)))
}
}
}
impl Rem<&Vec3A> for Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &Vec3A) -> Vec3A {
self.rem(*rhs)
}
}
impl Rem<&Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &Vec3A) -> Vec3A {
(*self).rem(*rhs)
}
}
impl Rem<Vec3A> for &Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: Vec3A) -> Vec3A {
(*self).rem(rhs)
}
}
impl RemAssign<Vec3A> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
*self = self.rem(rhs);
}
}
impl RemAssign<&Self> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: &Self) {
self.rem_assign(*rhs)
}
}
impl Rem<f32> for Vec3A {
type Output = Self;
#[inline]
fn rem(self, rhs: f32) -> Self {
self.rem(Self::splat(rhs))
}
}
impl Rem<&f32> for Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &f32) -> Vec3A {
self.rem(*rhs)
}
}
impl Rem<&f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &f32) -> Vec3A {
(*self).rem(*rhs)
}
}
impl Rem<f32> for &Vec3A {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: f32) -> Vec3A {
(*self).rem(rhs)
}
}
impl RemAssign<f32> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: f32) {
*self = self.rem(Self::splat(rhs));
}
}
impl RemAssign<&f32> for Vec3A {
#[inline]
fn rem_assign(&mut self, rhs: &f32) {
self.rem_assign(*rhs)
}
}
impl Rem<Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: Vec3A) -> Vec3A {
Vec3A::splat(self).rem(rhs)
}
}
impl Rem<&Vec3A> for f32 {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &Vec3A) -> Vec3A {
self.rem(*rhs)
}
}
impl Rem<&Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: &Vec3A) -> Vec3A {
(*self).rem(*rhs)
}
}
impl Rem<Vec3A> for &f32 {
type Output = Vec3A;
#[inline]
fn rem(self, rhs: Vec3A) -> Vec3A {
(*self).rem(rhs)
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 3]> for Vec3A {
#[inline]
fn as_ref(&self) -> &[f32; 3] {
unsafe { &*(self as *const Vec3A as *const [f32; 3]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 3]> for Vec3A {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 3] {
unsafe { &mut *(self as *mut Vec3A as *mut [f32; 3]) }
}
}
impl Sum for Vec3A {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for Vec3A {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for Vec3A {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for Vec3A {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for Vec3A {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self(unsafe { vnegq_f32(self.0) })
}
}
impl Neg for &Vec3A {
type Output = Vec3A;
#[inline]
fn neg(self) -> Vec3A {
(*self).neg()
}
}
impl Index<usize> for Vec3A {
type Output = f32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
2 => &self.z,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for Vec3A {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => panic!("index out of bounds"),
}
}
}
impl fmt::Display for Vec3A {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(p) = f.precision() {
write!(f, "[{:.*}, {:.*}, {:.*}]", p, self.x, p, self.y, p, self.z)
} else {
write!(f, "[{}, {}, {}]", self.x, self.y, self.z)
}
}
}
impl fmt::Debug for Vec3A {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(Vec3A))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.finish()
}
}
impl From<Vec3A> for float32x4_t {
#[inline(always)]
fn from(t: Vec3A) -> Self {
t.0
}
}
impl From<float32x4_t> for Vec3A {
#[inline(always)]
fn from(t: float32x4_t) -> Self {
Self(t)
}
}
impl From<[f32; 3]> for Vec3A {
#[inline]
fn from(a: [f32; 3]) -> Self {
Self::new(a[0], a[1], a[2])
}
}
impl From<Vec3A> for [f32; 3] {
#[inline]
fn from(v: Vec3A) -> Self {
use crate::align16::Align16;
use core::mem::MaybeUninit;
let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit();
unsafe {
vst1q_f32(out.as_mut_ptr().cast(), v.0);
out.assume_init().0
}
}
}
impl From<(f32, f32, f32)> for Vec3A {
#[inline]
fn from(t: (f32, f32, f32)) -> Self {
Self::new(t.0, t.1, t.2)
}
}
impl From<Vec3A> for (f32, f32, f32) {
#[inline]
fn from(v: Vec3A) -> Self {
use crate::align16::Align16;
use core::mem::MaybeUninit;
let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit();
unsafe {
vst1q_f32(out.as_mut_ptr().cast(), v.0);
out.assume_init().0
}
}
}
impl From<Vec3> for Vec3A {
#[inline]
fn from(v: Vec3) -> Self {
Self::new(v.x, v.y, v.z)
}
}
impl From<Vec3A> for Vec3 {
#[inline]
fn from(v: Vec3A) -> Self {
use crate::align16::Align16;
use core::mem::MaybeUninit;
let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit();
unsafe {
vst1q_f32(out.as_mut_ptr().cast(), v.0);
out.assume_init().0
}
}
}
impl From<(Vec2, f32)> for Vec3A {
#[inline]
fn from((v, z): (Vec2, f32)) -> Self {
Self::new(v.x, v.y, z)
}
}
impl Deref for Vec3A {
type Target = crate::deref::Vec3<f32>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &*(self as *const Self).cast() }
}
}
impl DerefMut for Vec3A {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(self as *mut Self).cast() }
}
}
impl From<BVec3> for Vec3A {
#[inline]
fn from(v: BVec3) -> Self {
Self::new(f32::from(v.x), f32::from(v.y), f32::from(v.z))
}
}
impl From<BVec3A> for Vec3A {
#[inline]
fn from(v: BVec3A) -> Self {
let bool_array: [bool; 3] = v.into();
Self::new(
f32::from(bool_array[0]),
f32::from(bool_array[1]),
f32::from(bool_array[2]),
)
}
}