| // Generated from vec.rs.tera template. Edit the template, not the generated file. |
| |
| use crate::{f32::math, neon::*, BVec3, BVec3A, Vec2, Vec3, Vec4}; |
| |
| use core::fmt; |
| use core::iter::{Product, Sum}; |
| use core::{f32, ops::*}; |
| |
| use core::arch::aarch64::*; |
| |
| #[repr(C)] |
| union UnionCast { |
| a: [f32; 4], |
| v: Vec3A, |
| } |
| |
| /// Creates a 3-dimensional vector. |
| #[inline(always)] |
| #[must_use] |
| pub const fn vec3a(x: f32, y: f32, z: f32) -> Vec3A { |
| Vec3A::new(x, y, z) |
| } |
| |
| /// A 3-dimensional vector. |
| /// |
| /// SIMD vector types are used for storage on supported platforms for better |
| /// performance than the [`Vec3`] type. |
| /// |
| /// It is possible to convert between [`Vec3`] and [`Vec3A`] types using [`From`] |
| /// or [`Into`] trait implementations. |
| /// |
| /// This type is 16 byte aligned. |
| #[derive(Clone, Copy)] |
| #[repr(transparent)] |
| pub struct Vec3A(pub(crate) float32x4_t); |
| |
| impl Vec3A { |
| /// All zeroes. |
| pub const ZERO: Self = Self::splat(0.0); |
| |
| /// All ones. |
| pub const ONE: Self = Self::splat(1.0); |
| |
| /// All negative ones. |
| pub const NEG_ONE: Self = Self::splat(-1.0); |
| |
| /// All `f32::MIN`. |
| pub const MIN: Self = Self::splat(f32::MIN); |
| |
| /// All `f32::MAX`. |
| pub const MAX: Self = Self::splat(f32::MAX); |
| |
| /// All `f32::NAN`. |
| pub const NAN: Self = Self::splat(f32::NAN); |
| |
| /// All `f32::INFINITY`. |
| pub const INFINITY: Self = Self::splat(f32::INFINITY); |
| |
| /// All `f32::NEG_INFINITY`. |
| pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY); |
| |
| /// A unit vector pointing along the positive X axis. |
| pub const X: Self = Self::new(1.0, 0.0, 0.0); |
| |
| /// A unit vector pointing along the positive Y axis. |
| pub const Y: Self = Self::new(0.0, 1.0, 0.0); |
| |
| /// A unit vector pointing along the positive Z axis. |
| pub const Z: Self = Self::new(0.0, 0.0, 1.0); |
| |
| /// A unit vector pointing along the negative X axis. |
| pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0); |
| |
| /// A unit vector pointing along the negative Y axis. |
| pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0); |
| |
| /// A unit vector pointing along the negative Z axis. |
| pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0); |
| |
| /// The unit axes. |
| pub const AXES: [Self; 3] = [Self::X, Self::Y, Self::Z]; |
| |
| /// Creates a new vector. |
| #[inline(always)] |
| #[must_use] |
| pub const fn new(x: f32, y: f32, z: f32) -> Self { |
| unsafe { UnionCast { a: [x, y, z, z] }.v } |
| } |
| |
| /// Creates a vector with all elements set to `v`. |
| #[inline] |
| #[must_use] |
| pub const fn splat(v: f32) -> Self { |
| unsafe { UnionCast { a: [v; 4] }.v } |
| } |
| |
| /// Returns a vector containing each element of `self` modified by a mapping function `f`. |
| #[inline] |
| #[must_use] |
| pub fn map<F>(self, f: F) -> Self |
| where |
| F: Fn(f32) -> f32, |
| { |
| Self::new(f(self.x), f(self.y), f(self.z)) |
| } |
| |
| /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use |
| /// for each element of `self`. |
| /// |
| /// A true element in the mask uses the corresponding element from `if_true`, and false |
| /// uses the element from `if_false`. |
| #[inline] |
| #[must_use] |
| pub fn select(mask: BVec3A, if_true: Self, if_false: Self) -> Self { |
| Self(unsafe { vbslq_f32(mask.0, if_true.0, if_false.0) }) |
| } |
| |
| /// Creates a new vector from an array. |
| #[inline] |
| #[must_use] |
| pub const fn from_array(a: [f32; 3]) -> Self { |
| Self::new(a[0], a[1], a[2]) |
| } |
| |
| /// `[x, y, z]` |
| #[inline] |
| #[must_use] |
| pub const fn to_array(&self) -> [f32; 3] { |
| unsafe { *(self as *const Vec3A as *const [f32; 3]) } |
| } |
| |
| /// Creates a vector from the first 3 values in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 3 elements long. |
| #[inline] |
| #[must_use] |
| pub const fn from_slice(slice: &[f32]) -> Self { |
| assert!(slice.len() >= 3); |
| Self::new(slice[0], slice[1], slice[2]) |
| } |
| |
| /// Writes the elements of `self` to the first 3 elements in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 3 elements long. |
| #[inline] |
| pub fn write_to_slice(self, slice: &mut [f32]) { |
| slice[..3].copy_from_slice(&self.to_array()); |
| } |
| |
| /// Creates a [`Vec3A`] from the `x`, `y` and `z` elements of `self` discarding `w`. |
| /// |
| /// On architectures where SIMD is supported such as SSE2 on `x86_64` this conversion is a noop. |
| #[inline] |
| #[must_use] |
| pub fn from_vec4(v: Vec4) -> Self { |
| Self(v.0) |
| } |
| |
| /// Creates a 4D vector from `self` and the given `w` value. |
| #[inline] |
| #[must_use] |
| pub fn extend(self, w: f32) -> Vec4 { |
| Vec4::new(self.x, self.y, self.z, w) |
| } |
| |
| /// Creates a 2D vector from the `x` and `y` elements of `self`, discarding `z`. |
| /// |
| /// Truncation may also be performed by using [`self.xy()`][crate::swizzles::Vec3Swizzles::xy()]. |
| #[inline] |
| #[must_use] |
| pub fn truncate(self) -> Vec2 { |
| use crate::swizzles::Vec3Swizzles; |
| self.xy() |
| } |
| |
| /// Creates a 3D vector from `self` with the given value of `x`. |
| #[inline] |
| #[must_use] |
| pub fn with_x(mut self, x: f32) -> Self { |
| self.x = x; |
| self |
| } |
| |
| /// Creates a 3D vector from `self` with the given value of `y`. |
| #[inline] |
| #[must_use] |
| pub fn with_y(mut self, y: f32) -> Self { |
| self.y = y; |
| self |
| } |
| |
| /// Creates a 3D vector from `self` with the given value of `z`. |
| #[inline] |
| #[must_use] |
| pub fn with_z(mut self, z: f32) -> Self { |
| self.z = z; |
| self |
| } |
| |
| /// Computes the dot product of `self` and `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn dot(self, rhs: Self) -> f32 { |
| // this was faster than intrinsics in testing |
| (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) |
| } |
| |
| /// Returns a vector where every component is the dot product of `self` and `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn dot_into_vec(self, rhs: Self) -> Self { |
| Self(unsafe { dot3_into_f32x4(self.0, rhs.0) }) |
| } |
| |
| /// Computes the cross product of `self` and `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn cross(self, rhs: Self) -> Self { |
| unsafe { |
| // Implementation taken from Realtime Math |
| let lhs = self.0; |
| let rhs = rhs.0; |
| // cross(a, b) = (a.yzx * b.zxy) - (a.zxy * b.yzx) |
| let lhs_yzwx = vextq_f32(lhs, lhs, 1); |
| let rhs_wxyz = vextq_f32(rhs, rhs, 3); |
| |
| let lhs_yzx = vsetq_lane_f32(vgetq_lane_f32(lhs, 0), lhs_yzwx, 2); |
| let rhs_zxy = vsetq_lane_f32(vgetq_lane_f32(rhs, 2), rhs_wxyz, 0); |
| |
| // part_a = (a.yzx * b.zxy) |
| let part_a = vmulq_f32(lhs_yzx, rhs_zxy); |
| |
| let lhs_wxyz = vextq_f32(lhs, lhs, 3); |
| let rhs_yzwx = vextq_f32(rhs, rhs, 1); |
| let lhs_zxy = vsetq_lane_f32(vgetq_lane_f32(lhs, 2), lhs_wxyz, 0); |
| let rhs_yzx = vsetq_lane_f32(vgetq_lane_f32(rhs, 0), rhs_yzwx, 2); |
| |
| // result = part_a - (a.zxy * b.yzx) |
| let result = vmlsq_f32(part_a, lhs_zxy, rhs_yzx); |
| Self(result) |
| } |
| } |
| |
| /// Returns a vector containing the minimum values for each element of `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. |
| #[inline] |
| #[must_use] |
| pub fn min(self, rhs: Self) -> Self { |
| Self(unsafe { vminq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector containing the maximum values for each element of `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. |
| #[inline] |
| #[must_use] |
| pub fn max(self, rhs: Self) -> Self { |
| Self(unsafe { vmaxq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Component-wise clamping of values, similar to [`f32::clamp`]. |
| /// |
| /// Each element in `min` must be less-or-equal to the corresponding element in `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp(self, min: Self, max: Self) -> Self { |
| glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); |
| self.max(min).min(max) |
| } |
| |
| /// Returns the horizontal minimum of `self`. |
| /// |
| /// In other words this computes `min(x, y, ..)`. |
| #[inline] |
| #[must_use] |
| pub fn min_element(self) -> f32 { |
| self.x.min(self.y.min(self.z)) |
| } |
| |
| /// Returns the horizontal maximum of `self`. |
| /// |
| /// In other words this computes `max(x, y, ..)`. |
| #[inline] |
| #[must_use] |
| pub fn max_element(self) -> f32 { |
| self.x.max(self.y.max(self.z)) |
| } |
| |
| /// Returns the sum of all elements of `self`. |
| /// |
| /// In other words, this computes `self.x + self.y + ..`. |
| #[inline] |
| #[must_use] |
| pub fn element_sum(self) -> f32 { |
| unsafe { vaddvq_f32(vsetq_lane_f32(0.0, self.0, 3)) } |
| } |
| |
| /// Returns the product of all elements of `self`. |
| /// |
| /// In other words, this computes `self.x * self.y * ..`. |
| #[inline] |
| #[must_use] |
| pub fn element_product(self) -> f32 { |
| unsafe { |
| let s = vmuls_laneq_f32(vgetq_lane_f32(self.0, 0), self.0, 1); |
| vmuls_laneq_f32(s, self.0, 2) |
| } |
| } |
| |
| /// Returns a vector mask containing the result of a `==` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpeq(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vceqq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector mask containing the result of a `!=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpne(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vmvnq_u32(vceqq_f32(self.0, rhs.0)) }) |
| } |
| |
| /// Returns a vector mask containing the result of a `>=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpge(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vcgeq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector mask containing the result of a `>` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpgt(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vcgtq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector mask containing the result of a `<=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmple(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vcleq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector mask containing the result of a `<` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmplt(self, rhs: Self) -> BVec3A { |
| BVec3A(unsafe { vcltq_f32(self.0, rhs.0) }) |
| } |
| |
| /// Returns a vector containing the absolute value of each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn abs(self) -> Self { |
| Self(unsafe { vabsq_f32(self.0) }) |
| } |
| |
| /// Returns a vector with elements representing the sign of `self`. |
| /// |
| /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
| /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
| /// - `NAN` if the number is `NAN` |
| #[inline] |
| #[must_use] |
| pub fn signum(self) -> Self { |
| let result = Self(unsafe { |
| vreinterpretq_f32_u32(vorrq_u32( |
| vandq_u32( |
| vreinterpretq_u32_f32(self.0), |
| vreinterpretq_u32_f32(Self::NEG_ONE.0), |
| ), |
| vreinterpretq_u32_f32(Self::ONE.0), |
| )) |
| }); |
| let mask = self.is_nan_mask(); |
| Self::select(mask, self, result) |
| } |
| |
| /// Returns a vector with signs of `rhs` and the magnitudes of `self`. |
| #[inline] |
| #[must_use] |
| pub fn copysign(self, rhs: Self) -> Self { |
| let mask = Self::splat(-0.0); |
| Self(unsafe { |
| vreinterpretq_f32_u32(vorrq_u32( |
| vandq_u32(vreinterpretq_u32_f32(rhs.0), vreinterpretq_u32_f32(mask.0)), |
| vandq_u32( |
| vreinterpretq_u32_f32(self.0), |
| vmvnq_u32(vreinterpretq_u32_f32(mask.0)), |
| ), |
| )) |
| }) |
| } |
| |
| /// Returns a bitmask with the lowest 3 bits set to the sign bits from the elements of `self`. |
| /// |
| /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes |
| /// into the first lowest bit, element `y` into the second, etc. |
| #[inline] |
| #[must_use] |
| pub fn is_negative_bitmask(self) -> u32 { |
| unsafe { |
| let nmask = vreinterpretq_u32_f32(vdupq_n_f32(-0.0)); |
| let m = vandq_u32(vreinterpretq_u32_f32(self.0), nmask); |
| let x = vgetq_lane_u32(m, 0) >> 31; |
| let y = vgetq_lane_u32(m, 1) >> 31; |
| let z = vgetq_lane_u32(m, 2) >> 31; |
| |
| x | y << 1 | z << 2 |
| } |
| } |
| |
| /// Returns `true` if, and only if, all elements are finite. If any element is either |
| /// `NaN`, positive or negative infinity, this will return `false`. |
| #[inline] |
| #[must_use] |
| pub fn is_finite(self) -> bool { |
| self.is_finite_mask().all() |
| } |
| |
| /// Performs `is_finite` on each element of self, returning a vector mask of the results. |
| /// |
| /// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`. |
| pub fn is_finite_mask(self) -> BVec3A { |
| BVec3A(unsafe { vcltq_f32(vabsq_f32(self.0), Self::INFINITY.0) }) |
| } |
| |
| /// Returns `true` if any elements are `NaN`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan(self) -> bool { |
| self.is_nan_mask().any() |
| } |
| |
| /// Performs `is_nan` on each element of self, returning a vector mask of the results. |
| /// |
| /// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan_mask(self) -> BVec3A { |
| BVec3A(unsafe { vmvnq_u32(vceqq_f32(self.0, self.0)) }) |
| } |
| |
| /// Computes the length of `self`. |
| #[doc(alias = "magnitude")] |
| #[inline] |
| #[must_use] |
| pub fn length(self) -> f32 { |
| math::sqrt(self.dot(self)) |
| } |
| |
| /// Computes the squared length of `self`. |
| /// |
| /// This is faster than `length()` as it avoids a square root operation. |
| #[doc(alias = "magnitude2")] |
| #[inline] |
| #[must_use] |
| pub fn length_squared(self) -> f32 { |
| self.dot(self) |
| } |
| |
| /// Computes `1.0 / length()`. |
| /// |
| /// For valid results, `self` must _not_ be of length zero. |
| #[inline] |
| #[must_use] |
| pub fn length_recip(self) -> f32 { |
| self.length().recip() |
| } |
| |
| /// Computes the Euclidean distance between two points in space. |
| #[inline] |
| #[must_use] |
| pub fn distance(self, rhs: Self) -> f32 { |
| (self - rhs).length() |
| } |
| |
| /// Compute the squared euclidean distance between two points in space. |
| #[inline] |
| #[must_use] |
| pub fn distance_squared(self, rhs: Self) -> f32 { |
| (self - rhs).length_squared() |
| } |
| |
| /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn div_euclid(self, rhs: Self) -> Self { |
| Self::new( |
| math::div_euclid(self.x, rhs.x), |
| math::div_euclid(self.y, rhs.y), |
| math::div_euclid(self.z, rhs.z), |
| ) |
| } |
| |
| /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`. |
| /// |
| /// [Euclidean division]: f32::rem_euclid |
| #[inline] |
| #[must_use] |
| pub fn rem_euclid(self, rhs: Self) -> Self { |
| Self::new( |
| math::rem_euclid(self.x, rhs.x), |
| math::rem_euclid(self.y, rhs.y), |
| math::rem_euclid(self.z, rhs.z), |
| ) |
| } |
| |
| /// Returns `self` normalized to length 1.0. |
| /// |
| /// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero. |
| /// |
| /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`]. |
| /// |
| /// Panics |
| /// |
| /// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn normalize(self) -> Self { |
| #[allow(clippy::let_and_return)] |
| let normalized = self.mul(self.length_recip()); |
| glam_assert!(normalized.is_finite()); |
| normalized |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns `None`. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be `None`. |
| /// |
| /// See also [`Self::normalize_or_zero()`]. |
| #[inline] |
| #[must_use] |
| pub fn try_normalize(self) -> Option<Self> { |
| let rcp = self.length_recip(); |
| if rcp.is_finite() && rcp > 0.0 { |
| Some(self * rcp) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns a |
| /// fallback value. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be the fallback value. |
| /// |
| /// See also [`Self::try_normalize()`]. |
| #[inline] |
| #[must_use] |
| pub fn normalize_or(self, fallback: Self) -> Self { |
| let rcp = self.length_recip(); |
| if rcp.is_finite() && rcp > 0.0 { |
| self * rcp |
| } else { |
| fallback |
| } |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns zero. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be zero. |
| /// |
| /// See also [`Self::try_normalize()`]. |
| #[inline] |
| #[must_use] |
| pub fn normalize_or_zero(self) -> Self { |
| self.normalize_or(Self::ZERO) |
| } |
| |
| /// Returns whether `self` is length `1.0` or not. |
| /// |
| /// Uses a precision threshold of approximately `1e-4`. |
| #[inline] |
| #[must_use] |
| pub fn is_normalized(self) -> bool { |
| math::abs(self.length_squared() - 1.0) <= 2e-4 |
| } |
| |
| /// Returns the vector projection of `self` onto `rhs`. |
| /// |
| /// `rhs` must be of non-zero length. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is zero length when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn project_onto(self, rhs: Self) -> Self { |
| let other_len_sq_rcp = rhs.dot(rhs).recip(); |
| glam_assert!(other_len_sq_rcp.is_finite()); |
| rhs * self.dot(rhs) * other_len_sq_rcp |
| } |
| |
| /// Returns the vector rejection of `self` from `rhs`. |
| /// |
| /// The vector rejection is the vector perpendicular to the projection of `self` onto |
| /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. |
| /// |
| /// `rhs` must be of non-zero length. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled. |
| #[doc(alias("plane"))] |
| #[inline] |
| #[must_use] |
| pub fn reject_from(self, rhs: Self) -> Self { |
| self - self.project_onto(rhs) |
| } |
| |
| /// Returns the vector projection of `self` onto `rhs`. |
| /// |
| /// `rhs` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn project_onto_normalized(self, rhs: Self) -> Self { |
| glam_assert!(rhs.is_normalized()); |
| rhs * self.dot(rhs) |
| } |
| |
| /// Returns the vector rejection of `self` from `rhs`. |
| /// |
| /// The vector rejection is the vector perpendicular to the projection of `self` onto |
| /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. |
| /// |
| /// `rhs` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. |
| #[doc(alias("plane"))] |
| #[inline] |
| #[must_use] |
| pub fn reject_from_normalized(self, rhs: Self) -> Self { |
| self - self.project_onto_normalized(rhs) |
| } |
| |
| /// Returns a vector containing the nearest integer to a number for each element of `self`. |
| /// Round half-way cases away from 0.0. |
| #[inline] |
| #[must_use] |
| pub fn round(self) -> Self { |
| Self(unsafe { vrndnq_f32(self.0) }) |
| } |
| |
| /// Returns a vector containing the largest integer less than or equal to a number for each |
| /// element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn floor(self) -> Self { |
| Self(unsafe { vrndmq_f32(self.0) }) |
| } |
| |
| /// Returns a vector containing the smallest integer greater than or equal to a number for |
| /// each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn ceil(self) -> Self { |
| Self(unsafe { vrndpq_f32(self.0) }) |
| } |
| |
| /// Returns a vector containing the integer part each element of `self`. This means numbers are |
| /// always truncated towards zero. |
| #[inline] |
| #[must_use] |
| pub fn trunc(self) -> Self { |
| Self(unsafe { vrndq_f32(self.0) }) |
| } |
| |
| /// Returns a vector containing the fractional part of the vector as `self - self.trunc()`. |
| /// |
| /// Note that this differs from the GLSL implementation of `fract` which returns |
| /// `self - self.floor()`. |
| /// |
| /// Note that this is fast but not precise for large numbers. |
| #[inline] |
| #[must_use] |
| pub fn fract(self) -> Self { |
| self - self.trunc() |
| } |
| |
| /// Returns a vector containing the fractional part of the vector as `self - self.floor()`. |
| /// |
| /// Note that this differs from the Rust implementation of `fract` which returns |
| /// `self - self.trunc()`. |
| /// |
| /// Note that this is fast but not precise for large numbers. |
| #[inline] |
| #[must_use] |
| pub fn fract_gl(self) -> Self { |
| self - self.floor() |
| } |
| |
| /// Returns a vector containing `e^self` (the exponential function) for each element of |
| /// `self`. |
| #[inline] |
| #[must_use] |
| pub fn exp(self) -> Self { |
| Self::new(math::exp(self.x), math::exp(self.y), math::exp(self.z)) |
| } |
| |
| /// Returns a vector containing each element of `self` raised to the power of `n`. |
| #[inline] |
| #[must_use] |
| pub fn powf(self, n: f32) -> Self { |
| Self::new( |
| math::powf(self.x, n), |
| math::powf(self.y, n), |
| math::powf(self.z, n), |
| ) |
| } |
| |
| /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn recip(self) -> Self { |
| Self(unsafe { vdivq_f32(Self::ONE.0, self.0) }) |
| } |
| |
| /// Performs a linear interpolation between `self` and `rhs` based on the value `s`. |
| /// |
| /// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result |
| /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly |
| /// extrapolated. |
| #[doc(alias = "mix")] |
| #[inline] |
| #[must_use] |
| pub fn lerp(self, rhs: Self, s: f32) -> Self { |
| self * (1.0 - s) + rhs * s |
| } |
| |
| /// Moves towards `rhs` based on the value `d`. |
| /// |
| /// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to |
| /// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn move_towards(&self, rhs: Self, d: f32) -> Self { |
| let a = rhs - *self; |
| let len = a.length(); |
| if len <= d || len <= 1e-4 { |
| return rhs; |
| } |
| *self + a / len * d |
| } |
| |
| /// Calculates the midpoint between `self` and `rhs`. |
| /// |
| /// The midpoint is the average of, or halfway point between, two vectors. |
| /// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)` |
| /// while being slightly cheaper to compute. |
| #[inline] |
| pub fn midpoint(self, rhs: Self) -> Self { |
| (self + rhs) * 0.5 |
| } |
| |
| /// Returns true if the absolute difference of all elements between `self` and `rhs` is |
| /// less than or equal to `max_abs_diff`. |
| /// |
| /// This can be used to compare if two vectors contain similar elements. It works best when |
| /// comparing with a known value. The `max_abs_diff` that should be used used depends on |
| /// the values being compared against. |
| /// |
| /// For more see |
| /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). |
| #[inline] |
| #[must_use] |
| pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool { |
| self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all() |
| } |
| |
| /// Returns a vector with a length no less than `min` and no more than `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length(self, min: f32, max: f32) -> Self { |
| glam_assert!(0.0 <= min); |
| glam_assert!(min <= max); |
| let length_sq = self.length_squared(); |
| if length_sq < min * min { |
| min * (self / math::sqrt(length_sq)) |
| } else if length_sq > max * max { |
| max * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Returns a vector with a length no more than `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `max` is negative when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length_max(self, max: f32) -> Self { |
| glam_assert!(0.0 <= max); |
| let length_sq = self.length_squared(); |
| if length_sq > max * max { |
| max * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Returns a vector with a length no less than `min`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is negative when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length_min(self, min: f32) -> Self { |
| glam_assert!(0.0 <= min); |
| let length_sq = self.length_squared(); |
| if length_sq < min * min { |
| min * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding |
| /// error, yielding a more accurate result than an unfused multiply-add. |
| /// |
| /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target |
| /// architecture has a dedicated fma CPU instruction. However, this is not always true, |
| /// and will be heavily dependant on designing algorithms with specific target hardware in |
| /// mind. |
| #[inline] |
| #[must_use] |
| pub fn mul_add(self, a: Self, b: Self) -> Self { |
| Self(unsafe { vfmaq_f32(b.0, self.0, a.0) }) |
| } |
| |
| /// Returns the reflection vector for a given incident vector `self` and surface normal |
| /// `normal`. |
| /// |
| /// `normal` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `normal` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn reflect(self, normal: Self) -> Self { |
| glam_assert!(normal.is_normalized()); |
| self - 2.0 * self.dot(normal) * normal |
| } |
| |
| /// Returns the refraction direction for a given incident vector `self`, surface normal |
| /// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs, |
| /// a zero vector will be returned. |
| /// |
| /// `self` and `normal` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn refract(self, normal: Self, eta: f32) -> Self { |
| glam_assert!(self.is_normalized()); |
| glam_assert!(normal.is_normalized()); |
| let n_dot_i = normal.dot(self); |
| let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i); |
| if k >= 0.0 { |
| eta * self - (eta * n_dot_i + math::sqrt(k)) * normal |
| } else { |
| Self::ZERO |
| } |
| } |
| |
| /// Returns the angle (in radians) between two vectors in the range `[0, +Ï€]`. |
| /// |
| /// The inputs do not need to be unit vectors however they must be non-zero. |
| #[inline] |
| #[must_use] |
| pub fn angle_between(self, rhs: Self) -> f32 { |
| math::acos_approx( |
| self.dot(rhs) |
| .div(math::sqrt(self.length_squared().mul(rhs.length_squared()))), |
| ) |
| } |
| |
| /// Returns some vector that is orthogonal to the given one. |
| /// |
| /// The input vector must be finite and non-zero. |
| /// |
| /// The output vector is not necessarily unit length. For that use |
| /// [`Self::any_orthonormal_vector()`] instead. |
| #[inline] |
| #[must_use] |
| pub fn any_orthogonal_vector(&self) -> Self { |
| // This can probably be optimized |
| if math::abs(self.x) > math::abs(self.y) { |
| Self::new(-self.z, 0.0, self.x) // self.cross(Self::Y) |
| } else { |
| Self::new(0.0, self.z, -self.y) // self.cross(Self::X) |
| } |
| } |
| |
| /// Returns any unit vector that is orthogonal to the given one. |
| /// |
| /// The input vector must be unit length. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `self` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn any_orthonormal_vector(&self) -> Self { |
| glam_assert!(self.is_normalized()); |
| // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf |
| let sign = math::signum(self.z); |
| let a = -1.0 / (sign + self.z); |
| let b = self.x * self.y * a; |
| Self::new(b, sign + self.y * self.y * a, -self.y) |
| } |
| |
| /// Given a unit vector return two other vectors that together form an orthonormal |
| /// basis. That is, all three vectors are orthogonal to each other and are normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `self` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn any_orthonormal_pair(&self) -> (Self, Self) { |
| glam_assert!(self.is_normalized()); |
| // From https://graphics.pixar.com/library/OrthonormalB/paper.pdf |
| let sign = math::signum(self.z); |
| let a = -1.0 / (sign + self.z); |
| let b = self.x * self.y * a; |
| ( |
| Self::new(1.0 + sign * self.x * self.x * a, sign * b, -sign * self.x), |
| Self::new(b, sign + self.y * self.y * a, -self.y), |
| ) |
| } |
| |
| /// Casts all elements of `self` to `f64`. |
| #[inline] |
| #[must_use] |
| pub fn as_dvec3(&self) -> crate::DVec3 { |
| crate::DVec3::new(self.x as f64, self.y as f64, self.z as f64) |
| } |
| |
| /// Casts all elements of `self` to `i8`. |
| #[inline] |
| #[must_use] |
| pub fn as_i8vec3(&self) -> crate::I8Vec3 { |
| crate::I8Vec3::new(self.x as i8, self.y as i8, self.z as i8) |
| } |
| |
| /// Casts all elements of `self` to `u8`. |
| #[inline] |
| #[must_use] |
| pub fn as_u8vec3(&self) -> crate::U8Vec3 { |
| crate::U8Vec3::new(self.x as u8, self.y as u8, self.z as u8) |
| } |
| |
| /// Casts all elements of `self` to `i16`. |
| #[inline] |
| #[must_use] |
| pub fn as_i16vec3(&self) -> crate::I16Vec3 { |
| crate::I16Vec3::new(self.x as i16, self.y as i16, self.z as i16) |
| } |
| |
| /// Casts all elements of `self` to `u16`. |
| #[inline] |
| #[must_use] |
| pub fn as_u16vec3(&self) -> crate::U16Vec3 { |
| crate::U16Vec3::new(self.x as u16, self.y as u16, self.z as u16) |
| } |
| |
| /// Casts all elements of `self` to `i32`. |
| #[inline] |
| #[must_use] |
| pub fn as_ivec3(&self) -> crate::IVec3 { |
| crate::IVec3::new(self.x as i32, self.y as i32, self.z as i32) |
| } |
| |
| /// Casts all elements of `self` to `u32`. |
| #[inline] |
| #[must_use] |
| pub fn as_uvec3(&self) -> crate::UVec3 { |
| crate::UVec3::new(self.x as u32, self.y as u32, self.z as u32) |
| } |
| |
| /// Casts all elements of `self` to `i64`. |
| #[inline] |
| #[must_use] |
| pub fn as_i64vec3(&self) -> crate::I64Vec3 { |
| crate::I64Vec3::new(self.x as i64, self.y as i64, self.z as i64) |
| } |
| |
| /// Casts all elements of `self` to `u64`. |
| #[inline] |
| #[must_use] |
| pub fn as_u64vec3(&self) -> crate::U64Vec3 { |
| crate::U64Vec3::new(self.x as u64, self.y as u64, self.z as u64) |
| } |
| } |
| |
| impl Default for Vec3A { |
| #[inline(always)] |
| fn default() -> Self { |
| Self::ZERO |
| } |
| } |
| |
| impl PartialEq for Vec3A { |
| #[inline] |
| fn eq(&self, rhs: &Self) -> bool { |
| self.cmpeq(*rhs).all() |
| } |
| } |
| |
| impl Div<Vec3A> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn div(self, rhs: Self) -> Self { |
| Self(unsafe { vdivq_f32(self.0, rhs.0) }) |
| } |
| } |
| |
| impl Div<&Vec3A> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &Vec3A) -> Vec3A { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &Vec3A) -> Vec3A { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: Vec3A) -> Vec3A { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign<Vec3A> for Vec3A { |
| #[inline] |
| fn div_assign(&mut self, rhs: Self) { |
| self.0 = unsafe { vdivq_f32(self.0, rhs.0) }; |
| } |
| } |
| |
| impl DivAssign<&Self> for Vec3A { |
| #[inline] |
| fn div_assign(&mut self, rhs: &Self) { |
| self.div_assign(*rhs) |
| } |
| } |
| |
| impl Div<f32> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn div(self, rhs: f32) -> Self { |
| Self(unsafe { vdivq_f32(self.0, vld1q_dup_f32(&rhs)) }) |
| } |
| } |
| |
| impl Div<&f32> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &f32) -> Vec3A { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &f32) -> Vec3A { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: f32) -> Vec3A { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign<f32> for Vec3A { |
| #[inline] |
| fn div_assign(&mut self, rhs: f32) { |
| self.0 = unsafe { vdivq_f32(self.0, vld1q_dup_f32(&rhs)) }; |
| } |
| } |
| |
| impl DivAssign<&f32> for Vec3A { |
| #[inline] |
| fn div_assign(&mut self, rhs: &f32) { |
| self.div_assign(*rhs) |
| } |
| } |
| |
| impl Div<Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: Vec3A) -> Vec3A { |
| Vec3A(unsafe { vdivq_f32(vld1q_dup_f32(&self), rhs.0) }) |
| } |
| } |
| |
| impl Div<&Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &Vec3A) -> Vec3A { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: &Vec3A) -> Vec3A { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn div(self, rhs: Vec3A) -> Vec3A { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl Mul<Vec3A> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: Self) -> Self { |
| Self(unsafe { vmulq_f32(self.0, rhs.0) }) |
| } |
| } |
| |
| impl Mul<&Vec3A> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &Vec3A) -> Vec3A { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &Vec3A) -> Vec3A { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: Vec3A) -> Vec3A { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign<Vec3A> for Vec3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Self) { |
| self.0 = unsafe { vmulq_f32(self.0, rhs.0) }; |
| } |
| } |
| |
| impl MulAssign<&Self> for Vec3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &Self) { |
| self.mul_assign(*rhs) |
| } |
| } |
| |
| impl Mul<f32> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: f32) -> Self { |
| Self(unsafe { vmulq_n_f32(self.0, rhs) }) |
| } |
| } |
| |
| impl Mul<&f32> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &f32) -> Vec3A { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &f32) -> Vec3A { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: f32) -> Vec3A { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign<f32> for Vec3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: f32) { |
| self.0 = unsafe { vmulq_n_f32(self.0, rhs) }; |
| } |
| } |
| |
| impl MulAssign<&f32> for Vec3A { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &f32) { |
| self.mul_assign(*rhs) |
| } |
| } |
| |
| impl Mul<Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: Vec3A) -> Vec3A { |
| Vec3A(unsafe { vmulq_n_f32(rhs.0, self) }) |
| } |
| } |
| |
| impl Mul<&Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &Vec3A) -> Vec3A { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: &Vec3A) -> Vec3A { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn mul(self, rhs: Vec3A) -> Vec3A { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl Add<Vec3A> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn add(self, rhs: Self) -> Self { |
| Self(unsafe { vaddq_f32(self.0, rhs.0) }) |
| } |
| } |
| |
| impl Add<&Vec3A> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &Vec3A) -> Vec3A { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &Vec3A) -> Vec3A { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: Vec3A) -> Vec3A { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign<Vec3A> for Vec3A { |
| #[inline] |
| fn add_assign(&mut self, rhs: Self) { |
| self.0 = unsafe { vaddq_f32(self.0, rhs.0) }; |
| } |
| } |
| |
| impl AddAssign<&Self> for Vec3A { |
| #[inline] |
| fn add_assign(&mut self, rhs: &Self) { |
| self.add_assign(*rhs) |
| } |
| } |
| |
| impl Add<f32> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn add(self, rhs: f32) -> Self { |
| Self(unsafe { vaddq_f32(self.0, vld1q_dup_f32(&rhs)) }) |
| } |
| } |
| |
| impl Add<&f32> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &f32) -> Vec3A { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &f32) -> Vec3A { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: f32) -> Vec3A { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign<f32> for Vec3A { |
| #[inline] |
| fn add_assign(&mut self, rhs: f32) { |
| self.0 = unsafe { vaddq_f32(self.0, vld1q_dup_f32(&rhs)) }; |
| } |
| } |
| |
| impl AddAssign<&f32> for Vec3A { |
| #[inline] |
| fn add_assign(&mut self, rhs: &f32) { |
| self.add_assign(*rhs) |
| } |
| } |
| |
| impl Add<Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: Vec3A) -> Vec3A { |
| Vec3A(unsafe { vaddq_f32(vld1q_dup_f32(&self), rhs.0) }) |
| } |
| } |
| |
| impl Add<&Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &Vec3A) -> Vec3A { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: &Vec3A) -> Vec3A { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn add(self, rhs: Vec3A) -> Vec3A { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl Sub<Vec3A> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn sub(self, rhs: Self) -> Self { |
| Self(unsafe { vsubq_f32(self.0, rhs.0) }) |
| } |
| } |
| |
| impl Sub<&Vec3A> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &Vec3A) -> Vec3A { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &Vec3A) -> Vec3A { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: Vec3A) -> Vec3A { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign<Vec3A> for Vec3A { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Vec3A) { |
| self.0 = unsafe { vsubq_f32(self.0, rhs.0) }; |
| } |
| } |
| |
| impl SubAssign<&Self> for Vec3A { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &Self) { |
| self.sub_assign(*rhs) |
| } |
| } |
| |
| impl Sub<f32> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn sub(self, rhs: f32) -> Self { |
| Self(unsafe { vsubq_f32(self.0, vld1q_dup_f32(&rhs)) }) |
| } |
| } |
| |
| impl Sub<&f32> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &f32) -> Vec3A { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &f32) -> Vec3A { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: f32) -> Vec3A { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign<f32> for Vec3A { |
| #[inline] |
| fn sub_assign(&mut self, rhs: f32) { |
| self.0 = unsafe { vsubq_f32(self.0, vld1q_dup_f32(&rhs)) }; |
| } |
| } |
| |
| impl SubAssign<&f32> for Vec3A { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &f32) { |
| self.sub_assign(*rhs) |
| } |
| } |
| |
| impl Sub<Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: Vec3A) -> Vec3A { |
| Vec3A(unsafe { vsubq_f32(vld1q_dup_f32(&self), rhs.0) }) |
| } |
| } |
| |
| impl Sub<&Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &Vec3A) -> Vec3A { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: &Vec3A) -> Vec3A { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn sub(self, rhs: Vec3A) -> Vec3A { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl Rem<Vec3A> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn rem(self, rhs: Self) -> Self { |
| unsafe { |
| let n = vrndmq_f32(vdivq_f32(self.0, rhs.0)); |
| Self(vsubq_f32(self.0, vmulq_f32(n, rhs.0))) |
| } |
| } |
| } |
| |
| impl Rem<&Vec3A> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &Vec3A) -> Vec3A { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &Vec3A) -> Vec3A { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<Vec3A> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: Vec3A) -> Vec3A { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign<Vec3A> for Vec3A { |
| #[inline] |
| fn rem_assign(&mut self, rhs: Self) { |
| *self = self.rem(rhs); |
| } |
| } |
| |
| impl RemAssign<&Self> for Vec3A { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &Self) { |
| self.rem_assign(*rhs) |
| } |
| } |
| |
| impl Rem<f32> for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn rem(self, rhs: f32) -> Self { |
| self.rem(Self::splat(rhs)) |
| } |
| } |
| |
| impl Rem<&f32> for Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &f32) -> Vec3A { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &f32) -> Vec3A { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<f32> for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: f32) -> Vec3A { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign<f32> for Vec3A { |
| #[inline] |
| fn rem_assign(&mut self, rhs: f32) { |
| *self = self.rem(Self::splat(rhs)); |
| } |
| } |
| |
| impl RemAssign<&f32> for Vec3A { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &f32) { |
| self.rem_assign(*rhs) |
| } |
| } |
| |
| impl Rem<Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: Vec3A) -> Vec3A { |
| Vec3A::splat(self).rem(rhs) |
| } |
| } |
| |
| impl Rem<&Vec3A> for f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &Vec3A) -> Vec3A { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: &Vec3A) -> Vec3A { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<Vec3A> for &f32 { |
| type Output = Vec3A; |
| #[inline] |
| fn rem(self, rhs: Vec3A) -> Vec3A { |
| (*self).rem(rhs) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl AsRef<[f32; 3]> for Vec3A { |
| #[inline] |
| fn as_ref(&self) -> &[f32; 3] { |
| unsafe { &*(self as *const Vec3A as *const [f32; 3]) } |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl AsMut<[f32; 3]> for Vec3A { |
| #[inline] |
| fn as_mut(&mut self) -> &mut [f32; 3] { |
| unsafe { &mut *(self as *mut Vec3A as *mut [f32; 3]) } |
| } |
| } |
| |
| impl Sum for Vec3A { |
| #[inline] |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::ZERO, Self::add) |
| } |
| } |
| |
| impl<'a> Sum<&'a Self> for Vec3A { |
| #[inline] |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) |
| } |
| } |
| |
| impl Product for Vec3A { |
| #[inline] |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::ONE, Self::mul) |
| } |
| } |
| |
| impl<'a> Product<&'a Self> for Vec3A { |
| #[inline] |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) |
| } |
| } |
| |
| impl Neg for Vec3A { |
| type Output = Self; |
| #[inline] |
| fn neg(self) -> Self { |
| Self(unsafe { vnegq_f32(self.0) }) |
| } |
| } |
| |
| impl Neg for &Vec3A { |
| type Output = Vec3A; |
| #[inline] |
| fn neg(self) -> Vec3A { |
| (*self).neg() |
| } |
| } |
| |
| impl Index<usize> for Vec3A { |
| type Output = f32; |
| #[inline] |
| fn index(&self, index: usize) -> &Self::Output { |
| match index { |
| 0 => &self.x, |
| 1 => &self.y, |
| 2 => &self.z, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| } |
| |
| impl IndexMut<usize> for Vec3A { |
| #[inline] |
| fn index_mut(&mut self, index: usize) -> &mut Self::Output { |
| match index { |
| 0 => &mut self.x, |
| 1 => &mut self.y, |
| 2 => &mut self.z, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| } |
| |
| impl fmt::Display for Vec3A { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if let Some(p) = f.precision() { |
| write!(f, "[{:.*}, {:.*}, {:.*}]", p, self.x, p, self.y, p, self.z) |
| } else { |
| write!(f, "[{}, {}, {}]", self.x, self.y, self.z) |
| } |
| } |
| } |
| |
| impl fmt::Debug for Vec3A { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt.debug_tuple(stringify!(Vec3A)) |
| .field(&self.x) |
| .field(&self.y) |
| .field(&self.z) |
| .finish() |
| } |
| } |
| |
| impl From<Vec3A> for float32x4_t { |
| #[inline(always)] |
| fn from(t: Vec3A) -> Self { |
| t.0 |
| } |
| } |
| |
| impl From<float32x4_t> for Vec3A { |
| #[inline(always)] |
| fn from(t: float32x4_t) -> Self { |
| Self(t) |
| } |
| } |
| |
| impl From<[f32; 3]> for Vec3A { |
| #[inline] |
| fn from(a: [f32; 3]) -> Self { |
| Self::new(a[0], a[1], a[2]) |
| } |
| } |
| |
| impl From<Vec3A> for [f32; 3] { |
| #[inline] |
| fn from(v: Vec3A) -> Self { |
| use crate::align16::Align16; |
| use core::mem::MaybeUninit; |
| let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit(); |
| unsafe { |
| vst1q_f32(out.as_mut_ptr().cast(), v.0); |
| out.assume_init().0 |
| } |
| } |
| } |
| |
| impl From<(f32, f32, f32)> for Vec3A { |
| #[inline] |
| fn from(t: (f32, f32, f32)) -> Self { |
| Self::new(t.0, t.1, t.2) |
| } |
| } |
| |
| impl From<Vec3A> for (f32, f32, f32) { |
| #[inline] |
| fn from(v: Vec3A) -> Self { |
| use crate::align16::Align16; |
| use core::mem::MaybeUninit; |
| let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit(); |
| unsafe { |
| vst1q_f32(out.as_mut_ptr().cast(), v.0); |
| out.assume_init().0 |
| } |
| } |
| } |
| |
| impl From<Vec3> for Vec3A { |
| #[inline] |
| fn from(v: Vec3) -> Self { |
| Self::new(v.x, v.y, v.z) |
| } |
| } |
| |
| impl From<Vec3A> for Vec3 { |
| #[inline] |
| fn from(v: Vec3A) -> Self { |
| use crate::align16::Align16; |
| use core::mem::MaybeUninit; |
| let mut out: MaybeUninit<Align16<Self>> = MaybeUninit::uninit(); |
| unsafe { |
| vst1q_f32(out.as_mut_ptr().cast(), v.0); |
| out.assume_init().0 |
| } |
| } |
| } |
| |
| impl From<(Vec2, f32)> for Vec3A { |
| #[inline] |
| fn from((v, z): (Vec2, f32)) -> Self { |
| Self::new(v.x, v.y, z) |
| } |
| } |
| |
| impl Deref for Vec3A { |
| type Target = crate::deref::Vec3<f32>; |
| #[inline] |
| fn deref(&self) -> &Self::Target { |
| unsafe { &*(self as *const Self).cast() } |
| } |
| } |
| |
| impl DerefMut for Vec3A { |
| #[inline] |
| fn deref_mut(&mut self) -> &mut Self::Target { |
| unsafe { &mut *(self as *mut Self).cast() } |
| } |
| } |
| |
| impl From<BVec3> for Vec3A { |
| #[inline] |
| fn from(v: BVec3) -> Self { |
| Self::new(f32::from(v.x), f32::from(v.y), f32::from(v.z)) |
| } |
| } |
| |
| impl From<BVec3A> for Vec3A { |
| #[inline] |
| fn from(v: BVec3A) -> Self { |
| let bool_array: [bool; 3] = v.into(); |
| Self::new( |
| f32::from(bool_array[0]), |
| f32::from(bool_array[1]), |
| f32::from(bool_array[2]), |
| ) |
| } |
| } |