| // Generated from vec.rs.tera template. Edit the template, not the generated file. |
| |
| use crate::{f32::math, BVec2, Vec3}; |
| |
| use core::fmt; |
| use core::iter::{Product, Sum}; |
| use core::{f32, ops::*}; |
| |
| /// Creates a 2-dimensional vector. |
| #[inline(always)] |
| #[must_use] |
| pub const fn vec2(x: f32, y: f32) -> Vec2 { |
| Vec2::new(x, y) |
| } |
| |
| /// A 2-dimensional vector. |
| #[derive(Clone, Copy, PartialEq)] |
| #[cfg_attr(feature = "cuda", repr(align(8)))] |
| #[cfg_attr(not(target_arch = "spirv"), repr(C))] |
| #[cfg_attr(target_arch = "spirv", repr(simd))] |
| pub struct Vec2 { |
| pub x: f32, |
| pub y: f32, |
| } |
| |
| impl Vec2 { |
| /// All zeroes. |
| pub const ZERO: Self = Self::splat(0.0); |
| |
| /// All ones. |
| pub const ONE: Self = Self::splat(1.0); |
| |
| /// All negative ones. |
| pub const NEG_ONE: Self = Self::splat(-1.0); |
| |
| /// All `f32::MIN`. |
| pub const MIN: Self = Self::splat(f32::MIN); |
| |
| /// All `f32::MAX`. |
| pub const MAX: Self = Self::splat(f32::MAX); |
| |
| /// All `f32::NAN`. |
| pub const NAN: Self = Self::splat(f32::NAN); |
| |
| /// All `f32::INFINITY`. |
| pub const INFINITY: Self = Self::splat(f32::INFINITY); |
| |
| /// All `f32::NEG_INFINITY`. |
| pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY); |
| |
| /// A unit vector pointing along the positive X axis. |
| pub const X: Self = Self::new(1.0, 0.0); |
| |
| /// A unit vector pointing along the positive Y axis. |
| pub const Y: Self = Self::new(0.0, 1.0); |
| |
| /// A unit vector pointing along the negative X axis. |
| pub const NEG_X: Self = Self::new(-1.0, 0.0); |
| |
| /// A unit vector pointing along the negative Y axis. |
| pub const NEG_Y: Self = Self::new(0.0, -1.0); |
| |
| /// The unit axes. |
| pub const AXES: [Self; 2] = [Self::X, Self::Y]; |
| |
| /// Creates a new vector. |
| #[inline(always)] |
| #[must_use] |
| pub const fn new(x: f32, y: f32) -> Self { |
| Self { x, y } |
| } |
| |
| /// Creates a vector with all elements set to `v`. |
| #[inline] |
| #[must_use] |
| pub const fn splat(v: f32) -> Self { |
| Self { x: v, y: v } |
| } |
| |
| /// Returns a vector containing each element of `self` modified by a mapping function `f`. |
| #[inline] |
| #[must_use] |
| pub fn map<F>(self, f: F) -> Self |
| where |
| F: Fn(f32) -> f32, |
| { |
| Self::new(f(self.x), f(self.y)) |
| } |
| |
| /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use |
| /// for each element of `self`. |
| /// |
| /// A true element in the mask uses the corresponding element from `if_true`, and false |
| /// uses the element from `if_false`. |
| #[inline] |
| #[must_use] |
| pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self { |
| Self { |
| x: if mask.test(0) { if_true.x } else { if_false.x }, |
| y: if mask.test(1) { if_true.y } else { if_false.y }, |
| } |
| } |
| |
| /// Creates a new vector from an array. |
| #[inline] |
| #[must_use] |
| pub const fn from_array(a: [f32; 2]) -> Self { |
| Self::new(a[0], a[1]) |
| } |
| |
| /// `[x, y]` |
| #[inline] |
| #[must_use] |
| pub const fn to_array(&self) -> [f32; 2] { |
| [self.x, self.y] |
| } |
| |
| /// Creates a vector from the first 2 values in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 2 elements long. |
| #[inline] |
| #[must_use] |
| pub const fn from_slice(slice: &[f32]) -> Self { |
| assert!(slice.len() >= 2); |
| Self::new(slice[0], slice[1]) |
| } |
| |
| /// Writes the elements of `self` to the first 2 elements in `slice`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `slice` is less than 2 elements long. |
| #[inline] |
| pub fn write_to_slice(self, slice: &mut [f32]) { |
| slice[..2].copy_from_slice(&self.to_array()); |
| } |
| |
| /// Creates a 3D vector from `self` and the given `z` value. |
| #[inline] |
| #[must_use] |
| pub const fn extend(self, z: f32) -> Vec3 { |
| Vec3::new(self.x, self.y, z) |
| } |
| |
| /// Creates a 2D vector from `self` with the given value of `x`. |
| #[inline] |
| #[must_use] |
| pub fn with_x(mut self, x: f32) -> Self { |
| self.x = x; |
| self |
| } |
| |
| /// Creates a 2D vector from `self` with the given value of `y`. |
| #[inline] |
| #[must_use] |
| pub fn with_y(mut self, y: f32) -> Self { |
| self.y = y; |
| self |
| } |
| |
| /// Computes the dot product of `self` and `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn dot(self, rhs: Self) -> f32 { |
| (self.x * rhs.x) + (self.y * rhs.y) |
| } |
| |
| /// Returns a vector where every component is the dot product of `self` and `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn dot_into_vec(self, rhs: Self) -> Self { |
| Self::splat(self.dot(rhs)) |
| } |
| |
| /// Returns a vector containing the minimum values for each element of `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`. |
| #[inline] |
| #[must_use] |
| pub fn min(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.min(rhs.x), |
| y: self.y.min(rhs.y), |
| } |
| } |
| |
| /// Returns a vector containing the maximum values for each element of `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`. |
| #[inline] |
| #[must_use] |
| pub fn max(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.max(rhs.x), |
| y: self.y.max(rhs.y), |
| } |
| } |
| |
| /// Component-wise clamping of values, similar to [`f32::clamp`]. |
| /// |
| /// Each element in `min` must be less-or-equal to the corresponding element in `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is greater than `max` when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp(self, min: Self, max: Self) -> Self { |
| glam_assert!(min.cmple(max).all(), "clamp: expected min <= max"); |
| self.max(min).min(max) |
| } |
| |
| /// Returns the horizontal minimum of `self`. |
| /// |
| /// In other words this computes `min(x, y, ..)`. |
| #[inline] |
| #[must_use] |
| pub fn min_element(self) -> f32 { |
| self.x.min(self.y) |
| } |
| |
| /// Returns the horizontal maximum of `self`. |
| /// |
| /// In other words this computes `max(x, y, ..)`. |
| #[inline] |
| #[must_use] |
| pub fn max_element(self) -> f32 { |
| self.x.max(self.y) |
| } |
| |
| /// Returns the sum of all elements of `self`. |
| /// |
| /// In other words, this computes `self.x + self.y + ..`. |
| #[inline] |
| #[must_use] |
| pub fn element_sum(self) -> f32 { |
| self.x + self.y |
| } |
| |
| /// Returns the product of all elements of `self`. |
| /// |
| /// In other words, this computes `self.x * self.y * ..`. |
| #[inline] |
| #[must_use] |
| pub fn element_product(self) -> f32 { |
| self.x * self.y |
| } |
| |
| /// Returns a vector mask containing the result of a `==` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpeq(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y)) |
| } |
| |
| /// Returns a vector mask containing the result of a `!=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpne(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y)) |
| } |
| |
| /// Returns a vector mask containing the result of a `>=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpge(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y)) |
| } |
| |
| /// Returns a vector mask containing the result of a `>` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmpgt(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y)) |
| } |
| |
| /// Returns a vector mask containing the result of a `<=` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmple(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y)) |
| } |
| |
| /// Returns a vector mask containing the result of a `<` comparison for each element of |
| /// `self` and `rhs`. |
| /// |
| /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all |
| /// elements. |
| #[inline] |
| #[must_use] |
| pub fn cmplt(self, rhs: Self) -> BVec2 { |
| BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y)) |
| } |
| |
| /// Returns a vector containing the absolute value of each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn abs(self) -> Self { |
| Self { |
| x: math::abs(self.x), |
| y: math::abs(self.y), |
| } |
| } |
| |
| /// Returns a vector with elements representing the sign of `self`. |
| /// |
| /// - `1.0` if the number is positive, `+0.0` or `INFINITY` |
| /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` |
| /// - `NAN` if the number is `NAN` |
| #[inline] |
| #[must_use] |
| pub fn signum(self) -> Self { |
| Self { |
| x: math::signum(self.x), |
| y: math::signum(self.y), |
| } |
| } |
| |
| /// Returns a vector with signs of `rhs` and the magnitudes of `self`. |
| #[inline] |
| #[must_use] |
| pub fn copysign(self, rhs: Self) -> Self { |
| Self { |
| x: math::copysign(self.x, rhs.x), |
| y: math::copysign(self.y, rhs.y), |
| } |
| } |
| |
| /// Returns a bitmask with the lowest 2 bits set to the sign bits from the elements of `self`. |
| /// |
| /// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes |
| /// into the first lowest bit, element `y` into the second, etc. |
| #[inline] |
| #[must_use] |
| pub fn is_negative_bitmask(self) -> u32 { |
| (self.x.is_sign_negative() as u32) | (self.y.is_sign_negative() as u32) << 1 |
| } |
| |
| /// Returns `true` if, and only if, all elements are finite. If any element is either |
| /// `NaN`, positive or negative infinity, this will return `false`. |
| #[inline] |
| #[must_use] |
| pub fn is_finite(self) -> bool { |
| self.x.is_finite() && self.y.is_finite() |
| } |
| |
| /// Performs `is_finite` on each element of self, returning a vector mask of the results. |
| /// |
| /// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`. |
| pub fn is_finite_mask(self) -> BVec2 { |
| BVec2::new(self.x.is_finite(), self.y.is_finite()) |
| } |
| |
| /// Returns `true` if any elements are `NaN`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan(self) -> bool { |
| self.x.is_nan() || self.y.is_nan() |
| } |
| |
| /// Performs `is_nan` on each element of self, returning a vector mask of the results. |
| /// |
| /// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`. |
| #[inline] |
| #[must_use] |
| pub fn is_nan_mask(self) -> BVec2 { |
| BVec2::new(self.x.is_nan(), self.y.is_nan()) |
| } |
| |
| /// Computes the length of `self`. |
| #[doc(alias = "magnitude")] |
| #[inline] |
| #[must_use] |
| pub fn length(self) -> f32 { |
| math::sqrt(self.dot(self)) |
| } |
| |
| /// Computes the squared length of `self`. |
| /// |
| /// This is faster than `length()` as it avoids a square root operation. |
| #[doc(alias = "magnitude2")] |
| #[inline] |
| #[must_use] |
| pub fn length_squared(self) -> f32 { |
| self.dot(self) |
| } |
| |
| /// Computes `1.0 / length()`. |
| /// |
| /// For valid results, `self` must _not_ be of length zero. |
| #[inline] |
| #[must_use] |
| pub fn length_recip(self) -> f32 { |
| self.length().recip() |
| } |
| |
| /// Computes the Euclidean distance between two points in space. |
| #[inline] |
| #[must_use] |
| pub fn distance(self, rhs: Self) -> f32 { |
| (self - rhs).length() |
| } |
| |
| /// Compute the squared euclidean distance between two points in space. |
| #[inline] |
| #[must_use] |
| pub fn distance_squared(self, rhs: Self) -> f32 { |
| (self - rhs).length_squared() |
| } |
| |
| /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn div_euclid(self, rhs: Self) -> Self { |
| Self::new( |
| math::div_euclid(self.x, rhs.x), |
| math::div_euclid(self.y, rhs.y), |
| ) |
| } |
| |
| /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`. |
| /// |
| /// [Euclidean division]: f32::rem_euclid |
| #[inline] |
| #[must_use] |
| pub fn rem_euclid(self, rhs: Self) -> Self { |
| Self::new( |
| math::rem_euclid(self.x, rhs.x), |
| math::rem_euclid(self.y, rhs.y), |
| ) |
| } |
| |
| /// Returns `self` normalized to length 1.0. |
| /// |
| /// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero. |
| /// |
| /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`]. |
| /// |
| /// Panics |
| /// |
| /// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn normalize(self) -> Self { |
| #[allow(clippy::let_and_return)] |
| let normalized = self.mul(self.length_recip()); |
| glam_assert!(normalized.is_finite()); |
| normalized |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns `None`. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be `None`. |
| /// |
| /// See also [`Self::normalize_or_zero()`]. |
| #[inline] |
| #[must_use] |
| pub fn try_normalize(self) -> Option<Self> { |
| let rcp = self.length_recip(); |
| if rcp.is_finite() && rcp > 0.0 { |
| Some(self * rcp) |
| } else { |
| None |
| } |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns a |
| /// fallback value. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be the fallback value. |
| /// |
| /// See also [`Self::try_normalize()`]. |
| #[inline] |
| #[must_use] |
| pub fn normalize_or(self, fallback: Self) -> Self { |
| let rcp = self.length_recip(); |
| if rcp.is_finite() && rcp > 0.0 { |
| self * rcp |
| } else { |
| fallback |
| } |
| } |
| |
| /// Returns `self` normalized to length 1.0 if possible, else returns zero. |
| /// |
| /// In particular, if the input is zero (or very close to zero), or non-finite, |
| /// the result of this operation will be zero. |
| /// |
| /// See also [`Self::try_normalize()`]. |
| #[inline] |
| #[must_use] |
| pub fn normalize_or_zero(self) -> Self { |
| self.normalize_or(Self::ZERO) |
| } |
| |
| /// Returns whether `self` is length `1.0` or not. |
| /// |
| /// Uses a precision threshold of approximately `1e-4`. |
| #[inline] |
| #[must_use] |
| pub fn is_normalized(self) -> bool { |
| math::abs(self.length_squared() - 1.0) <= 2e-4 |
| } |
| |
| /// Returns the vector projection of `self` onto `rhs`. |
| /// |
| /// `rhs` must be of non-zero length. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is zero length when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn project_onto(self, rhs: Self) -> Self { |
| let other_len_sq_rcp = rhs.dot(rhs).recip(); |
| glam_assert!(other_len_sq_rcp.is_finite()); |
| rhs * self.dot(rhs) * other_len_sq_rcp |
| } |
| |
| /// Returns the vector rejection of `self` from `rhs`. |
| /// |
| /// The vector rejection is the vector perpendicular to the projection of `self` onto |
| /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. |
| /// |
| /// `rhs` must be of non-zero length. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled. |
| #[doc(alias("plane"))] |
| #[inline] |
| #[must_use] |
| pub fn reject_from(self, rhs: Self) -> Self { |
| self - self.project_onto(rhs) |
| } |
| |
| /// Returns the vector projection of `self` onto `rhs`. |
| /// |
| /// `rhs` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn project_onto_normalized(self, rhs: Self) -> Self { |
| glam_assert!(rhs.is_normalized()); |
| rhs * self.dot(rhs) |
| } |
| |
| /// Returns the vector rejection of `self` from `rhs`. |
| /// |
| /// The vector rejection is the vector perpendicular to the projection of `self` onto |
| /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`. |
| /// |
| /// `rhs` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `rhs` is not normalized when `glam_assert` is enabled. |
| #[doc(alias("plane"))] |
| #[inline] |
| #[must_use] |
| pub fn reject_from_normalized(self, rhs: Self) -> Self { |
| self - self.project_onto_normalized(rhs) |
| } |
| |
| /// Returns a vector containing the nearest integer to a number for each element of `self`. |
| /// Round half-way cases away from 0.0. |
| #[inline] |
| #[must_use] |
| pub fn round(self) -> Self { |
| Self { |
| x: math::round(self.x), |
| y: math::round(self.y), |
| } |
| } |
| |
| /// Returns a vector containing the largest integer less than or equal to a number for each |
| /// element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn floor(self) -> Self { |
| Self { |
| x: math::floor(self.x), |
| y: math::floor(self.y), |
| } |
| } |
| |
| /// Returns a vector containing the smallest integer greater than or equal to a number for |
| /// each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn ceil(self) -> Self { |
| Self { |
| x: math::ceil(self.x), |
| y: math::ceil(self.y), |
| } |
| } |
| |
| /// Returns a vector containing the integer part each element of `self`. This means numbers are |
| /// always truncated towards zero. |
| #[inline] |
| #[must_use] |
| pub fn trunc(self) -> Self { |
| Self { |
| x: math::trunc(self.x), |
| y: math::trunc(self.y), |
| } |
| } |
| |
| /// Returns a vector containing the fractional part of the vector as `self - self.trunc()`. |
| /// |
| /// Note that this differs from the GLSL implementation of `fract` which returns |
| /// `self - self.floor()`. |
| /// |
| /// Note that this is fast but not precise for large numbers. |
| #[inline] |
| #[must_use] |
| pub fn fract(self) -> Self { |
| self - self.trunc() |
| } |
| |
| /// Returns a vector containing the fractional part of the vector as `self - self.floor()`. |
| /// |
| /// Note that this differs from the Rust implementation of `fract` which returns |
| /// `self - self.trunc()`. |
| /// |
| /// Note that this is fast but not precise for large numbers. |
| #[inline] |
| #[must_use] |
| pub fn fract_gl(self) -> Self { |
| self - self.floor() |
| } |
| |
| /// Returns a vector containing `e^self` (the exponential function) for each element of |
| /// `self`. |
| #[inline] |
| #[must_use] |
| pub fn exp(self) -> Self { |
| Self::new(math::exp(self.x), math::exp(self.y)) |
| } |
| |
| /// Returns a vector containing each element of `self` raised to the power of `n`. |
| #[inline] |
| #[must_use] |
| pub fn powf(self, n: f32) -> Self { |
| Self::new(math::powf(self.x, n), math::powf(self.y, n)) |
| } |
| |
| /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`. |
| #[inline] |
| #[must_use] |
| pub fn recip(self) -> Self { |
| Self { |
| x: 1.0 / self.x, |
| y: 1.0 / self.y, |
| } |
| } |
| |
| /// Performs a linear interpolation between `self` and `rhs` based on the value `s`. |
| /// |
| /// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result |
| /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly |
| /// extrapolated. |
| #[doc(alias = "mix")] |
| #[inline] |
| #[must_use] |
| pub fn lerp(self, rhs: Self, s: f32) -> Self { |
| self * (1.0 - s) + rhs * s |
| } |
| |
| /// Moves towards `rhs` based on the value `d`. |
| /// |
| /// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to |
| /// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`. |
| #[inline] |
| #[must_use] |
| pub fn move_towards(&self, rhs: Self, d: f32) -> Self { |
| let a = rhs - *self; |
| let len = a.length(); |
| if len <= d || len <= 1e-4 { |
| return rhs; |
| } |
| *self + a / len * d |
| } |
| |
| /// Calculates the midpoint between `self` and `rhs`. |
| /// |
| /// The midpoint is the average of, or halfway point between, two vectors. |
| /// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)` |
| /// while being slightly cheaper to compute. |
| #[inline] |
| pub fn midpoint(self, rhs: Self) -> Self { |
| (self + rhs) * 0.5 |
| } |
| |
| /// Returns true if the absolute difference of all elements between `self` and `rhs` is |
| /// less than or equal to `max_abs_diff`. |
| /// |
| /// This can be used to compare if two vectors contain similar elements. It works best when |
| /// comparing with a known value. The `max_abs_diff` that should be used used depends on |
| /// the values being compared against. |
| /// |
| /// For more see |
| /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). |
| #[inline] |
| #[must_use] |
| pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool { |
| self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all() |
| } |
| |
| /// Returns a vector with a length no less than `min` and no more than `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length(self, min: f32, max: f32) -> Self { |
| glam_assert!(0.0 <= min); |
| glam_assert!(min <= max); |
| let length_sq = self.length_squared(); |
| if length_sq < min * min { |
| min * (self / math::sqrt(length_sq)) |
| } else if length_sq > max * max { |
| max * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Returns a vector with a length no more than `max`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `max` is negative when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length_max(self, max: f32) -> Self { |
| glam_assert!(0.0 <= max); |
| let length_sq = self.length_squared(); |
| if length_sq > max * max { |
| max * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Returns a vector with a length no less than `min`. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `min` is negative when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn clamp_length_min(self, min: f32) -> Self { |
| glam_assert!(0.0 <= min); |
| let length_sq = self.length_squared(); |
| if length_sq < min * min { |
| min * (self / math::sqrt(length_sq)) |
| } else { |
| self |
| } |
| } |
| |
| /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding |
| /// error, yielding a more accurate result than an unfused multiply-add. |
| /// |
| /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target |
| /// architecture has a dedicated fma CPU instruction. However, this is not always true, |
| /// and will be heavily dependant on designing algorithms with specific target hardware in |
| /// mind. |
| #[inline] |
| #[must_use] |
| pub fn mul_add(self, a: Self, b: Self) -> Self { |
| Self::new( |
| math::mul_add(self.x, a.x, b.x), |
| math::mul_add(self.y, a.y, b.y), |
| ) |
| } |
| |
| /// Returns the reflection vector for a given incident vector `self` and surface normal |
| /// `normal`. |
| /// |
| /// `normal` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `normal` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn reflect(self, normal: Self) -> Self { |
| glam_assert!(normal.is_normalized()); |
| self - 2.0 * self.dot(normal) * normal |
| } |
| |
| /// Returns the refraction direction for a given incident vector `self`, surface normal |
| /// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs, |
| /// a zero vector will be returned. |
| /// |
| /// `self` and `normal` must be normalized. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled. |
| #[inline] |
| #[must_use] |
| pub fn refract(self, normal: Self, eta: f32) -> Self { |
| glam_assert!(self.is_normalized()); |
| glam_assert!(normal.is_normalized()); |
| let n_dot_i = normal.dot(self); |
| let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i); |
| if k >= 0.0 { |
| eta * self - (eta * n_dot_i + math::sqrt(k)) * normal |
| } else { |
| Self::ZERO |
| } |
| } |
| |
| /// Creates a 2D vector containing `[angle.cos(), angle.sin()]`. This can be used in |
| /// conjunction with the [`rotate()`][Self::rotate()] method, e.g. |
| /// `Vec2::from_angle(PI).rotate(Vec2::Y)` will create the vector `[-1, 0]` |
| /// and rotate [`Vec2::Y`] around it returning `-Vec2::Y`. |
| #[inline] |
| #[must_use] |
| pub fn from_angle(angle: f32) -> Self { |
| let (sin, cos) = math::sin_cos(angle); |
| Self { x: cos, y: sin } |
| } |
| |
| /// Returns the angle (in radians) of this vector in the range `[-Ï€, +Ï€]`. |
| /// |
| /// The input does not need to be a unit vector however it must be non-zero. |
| #[inline] |
| #[must_use] |
| pub fn to_angle(self) -> f32 { |
| math::atan2(self.y, self.x) |
| } |
| |
| #[inline] |
| #[must_use] |
| #[deprecated( |
| since = "0.27.0", |
| note = "Use angle_to() instead, the semantics of angle_between will change in the future." |
| )] |
| pub fn angle_between(self, rhs: Self) -> f32 { |
| self.angle_to(rhs) |
| } |
| |
| /// Returns the angle of rotation (in radians) from `self` to `rhs` in the range `[-Ï€, +Ï€]`. |
| /// |
| /// The inputs do not need to be unit vectors however they must be non-zero. |
| #[inline] |
| #[must_use] |
| pub fn angle_to(self, rhs: Self) -> f32 { |
| let angle = math::acos_approx( |
| self.dot(rhs) / math::sqrt(self.length_squared() * rhs.length_squared()), |
| ); |
| |
| angle * math::signum(self.perp_dot(rhs)) |
| } |
| |
| /// Returns a vector that is equal to `self` rotated by 90 degrees. |
| #[inline] |
| #[must_use] |
| pub fn perp(self) -> Self { |
| Self { |
| x: -self.y, |
| y: self.x, |
| } |
| } |
| |
| /// The perpendicular dot product of `self` and `rhs`. |
| /// Also known as the wedge product, 2D cross product, and determinant. |
| #[doc(alias = "wedge")] |
| #[doc(alias = "cross")] |
| #[doc(alias = "determinant")] |
| #[inline] |
| #[must_use] |
| pub fn perp_dot(self, rhs: Self) -> f32 { |
| (self.x * rhs.y) - (self.y * rhs.x) |
| } |
| |
| /// Returns `rhs` rotated by the angle of `self`. If `self` is normalized, |
| /// then this just rotation. This is what you usually want. Otherwise, |
| /// it will be like a rotation with a multiplication by `self`'s length. |
| #[inline] |
| #[must_use] |
| pub fn rotate(self, rhs: Self) -> Self { |
| Self { |
| x: self.x * rhs.x - self.y * rhs.y, |
| y: self.y * rhs.x + self.x * rhs.y, |
| } |
| } |
| |
| /// Rotates towards `rhs` up to `max_angle` (in radians). |
| /// |
| /// When `max_angle` is `0.0`, the result will be equal to `self`. When `max_angle` is equal to |
| /// `self.angle_between(rhs)`, the result will be equal to `rhs`. If `max_angle` is negative, |
| /// rotates towards the exact opposite of `rhs`. Will not go past the target. |
| #[inline] |
| #[must_use] |
| pub fn rotate_towards(&self, rhs: Self, max_angle: f32) -> Self { |
| let a = self.angle_to(rhs); |
| let abs_a = math::abs(a); |
| if abs_a <= 1e-4 { |
| return rhs; |
| } |
| // When `max_angle < 0`, rotate no further than `PI` radians away |
| let angle = max_angle.clamp(abs_a - core::f32::consts::PI, abs_a) * math::signum(a); |
| Self::from_angle(angle).rotate(*self) |
| } |
| |
| /// Casts all elements of `self` to `f64`. |
| #[inline] |
| #[must_use] |
| pub fn as_dvec2(&self) -> crate::DVec2 { |
| crate::DVec2::new(self.x as f64, self.y as f64) |
| } |
| |
| /// Casts all elements of `self` to `i8`. |
| #[inline] |
| #[must_use] |
| pub fn as_i8vec2(&self) -> crate::I8Vec2 { |
| crate::I8Vec2::new(self.x as i8, self.y as i8) |
| } |
| |
| /// Casts all elements of `self` to `u8`. |
| #[inline] |
| #[must_use] |
| pub fn as_u8vec2(&self) -> crate::U8Vec2 { |
| crate::U8Vec2::new(self.x as u8, self.y as u8) |
| } |
| |
| /// Casts all elements of `self` to `i16`. |
| #[inline] |
| #[must_use] |
| pub fn as_i16vec2(&self) -> crate::I16Vec2 { |
| crate::I16Vec2::new(self.x as i16, self.y as i16) |
| } |
| |
| /// Casts all elements of `self` to `u16`. |
| #[inline] |
| #[must_use] |
| pub fn as_u16vec2(&self) -> crate::U16Vec2 { |
| crate::U16Vec2::new(self.x as u16, self.y as u16) |
| } |
| |
| /// Casts all elements of `self` to `i32`. |
| #[inline] |
| #[must_use] |
| pub fn as_ivec2(&self) -> crate::IVec2 { |
| crate::IVec2::new(self.x as i32, self.y as i32) |
| } |
| |
| /// Casts all elements of `self` to `u32`. |
| #[inline] |
| #[must_use] |
| pub fn as_uvec2(&self) -> crate::UVec2 { |
| crate::UVec2::new(self.x as u32, self.y as u32) |
| } |
| |
| /// Casts all elements of `self` to `i64`. |
| #[inline] |
| #[must_use] |
| pub fn as_i64vec2(&self) -> crate::I64Vec2 { |
| crate::I64Vec2::new(self.x as i64, self.y as i64) |
| } |
| |
| /// Casts all elements of `self` to `u64`. |
| #[inline] |
| #[must_use] |
| pub fn as_u64vec2(&self) -> crate::U64Vec2 { |
| crate::U64Vec2::new(self.x as u64, self.y as u64) |
| } |
| } |
| |
| impl Default for Vec2 { |
| #[inline(always)] |
| fn default() -> Self { |
| Self::ZERO |
| } |
| } |
| |
| impl Div<Vec2> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn div(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.div(rhs.x), |
| y: self.y.div(rhs.y), |
| } |
| } |
| } |
| |
| impl Div<&Vec2> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &Vec2) -> Vec2 { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &Vec2) -> Vec2 { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: Vec2) -> Vec2 { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign<Vec2> for Vec2 { |
| #[inline] |
| fn div_assign(&mut self, rhs: Self) { |
| self.x.div_assign(rhs.x); |
| self.y.div_assign(rhs.y); |
| } |
| } |
| |
| impl DivAssign<&Self> for Vec2 { |
| #[inline] |
| fn div_assign(&mut self, rhs: &Self) { |
| self.div_assign(*rhs) |
| } |
| } |
| |
| impl Div<f32> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn div(self, rhs: f32) -> Self { |
| Self { |
| x: self.x.div(rhs), |
| y: self.y.div(rhs), |
| } |
| } |
| } |
| |
| impl Div<&f32> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &f32) -> Vec2 { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &f32) -> Vec2 { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: f32) -> Vec2 { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign<f32> for Vec2 { |
| #[inline] |
| fn div_assign(&mut self, rhs: f32) { |
| self.x.div_assign(rhs); |
| self.y.div_assign(rhs); |
| } |
| } |
| |
| impl DivAssign<&f32> for Vec2 { |
| #[inline] |
| fn div_assign(&mut self, rhs: &f32) { |
| self.div_assign(*rhs) |
| } |
| } |
| |
| impl Div<Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: Vec2) -> Vec2 { |
| Vec2 { |
| x: self.div(rhs.x), |
| y: self.div(rhs.y), |
| } |
| } |
| } |
| |
| impl Div<&Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &Vec2) -> Vec2 { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: &Vec2) -> Vec2 { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn div(self, rhs: Vec2) -> Vec2 { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl Mul<Vec2> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.mul(rhs.x), |
| y: self.y.mul(rhs.y), |
| } |
| } |
| } |
| |
| impl Mul<&Vec2> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &Vec2) -> Vec2 { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &Vec2) -> Vec2 { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: Vec2) -> Vec2 { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign<Vec2> for Vec2 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Self) { |
| self.x.mul_assign(rhs.x); |
| self.y.mul_assign(rhs.y); |
| } |
| } |
| |
| impl MulAssign<&Self> for Vec2 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &Self) { |
| self.mul_assign(*rhs) |
| } |
| } |
| |
| impl Mul<f32> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn mul(self, rhs: f32) -> Self { |
| Self { |
| x: self.x.mul(rhs), |
| y: self.y.mul(rhs), |
| } |
| } |
| } |
| |
| impl Mul<&f32> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &f32) -> Vec2 { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &f32) -> Vec2 { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: f32) -> Vec2 { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign<f32> for Vec2 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: f32) { |
| self.x.mul_assign(rhs); |
| self.y.mul_assign(rhs); |
| } |
| } |
| |
| impl MulAssign<&f32> for Vec2 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &f32) { |
| self.mul_assign(*rhs) |
| } |
| } |
| |
| impl Mul<Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: Vec2) -> Vec2 { |
| Vec2 { |
| x: self.mul(rhs.x), |
| y: self.mul(rhs.y), |
| } |
| } |
| } |
| |
| impl Mul<&Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &Vec2) -> Vec2 { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: &Vec2) -> Vec2 { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn mul(self, rhs: Vec2) -> Vec2 { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl Add<Vec2> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn add(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.add(rhs.x), |
| y: self.y.add(rhs.y), |
| } |
| } |
| } |
| |
| impl Add<&Vec2> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &Vec2) -> Vec2 { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &Vec2) -> Vec2 { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: Vec2) -> Vec2 { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign<Vec2> for Vec2 { |
| #[inline] |
| fn add_assign(&mut self, rhs: Self) { |
| self.x.add_assign(rhs.x); |
| self.y.add_assign(rhs.y); |
| } |
| } |
| |
| impl AddAssign<&Self> for Vec2 { |
| #[inline] |
| fn add_assign(&mut self, rhs: &Self) { |
| self.add_assign(*rhs) |
| } |
| } |
| |
| impl Add<f32> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn add(self, rhs: f32) -> Self { |
| Self { |
| x: self.x.add(rhs), |
| y: self.y.add(rhs), |
| } |
| } |
| } |
| |
| impl Add<&f32> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &f32) -> Vec2 { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &f32) -> Vec2 { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: f32) -> Vec2 { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign<f32> for Vec2 { |
| #[inline] |
| fn add_assign(&mut self, rhs: f32) { |
| self.x.add_assign(rhs); |
| self.y.add_assign(rhs); |
| } |
| } |
| |
| impl AddAssign<&f32> for Vec2 { |
| #[inline] |
| fn add_assign(&mut self, rhs: &f32) { |
| self.add_assign(*rhs) |
| } |
| } |
| |
| impl Add<Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: Vec2) -> Vec2 { |
| Vec2 { |
| x: self.add(rhs.x), |
| y: self.add(rhs.y), |
| } |
| } |
| } |
| |
| impl Add<&Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &Vec2) -> Vec2 { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: &Vec2) -> Vec2 { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn add(self, rhs: Vec2) -> Vec2 { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl Sub<Vec2> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn sub(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.sub(rhs.x), |
| y: self.y.sub(rhs.y), |
| } |
| } |
| } |
| |
| impl Sub<&Vec2> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &Vec2) -> Vec2 { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &Vec2) -> Vec2 { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: Vec2) -> Vec2 { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign<Vec2> for Vec2 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Vec2) { |
| self.x.sub_assign(rhs.x); |
| self.y.sub_assign(rhs.y); |
| } |
| } |
| |
| impl SubAssign<&Self> for Vec2 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &Self) { |
| self.sub_assign(*rhs) |
| } |
| } |
| |
| impl Sub<f32> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn sub(self, rhs: f32) -> Self { |
| Self { |
| x: self.x.sub(rhs), |
| y: self.y.sub(rhs), |
| } |
| } |
| } |
| |
| impl Sub<&f32> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &f32) -> Vec2 { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &f32) -> Vec2 { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: f32) -> Vec2 { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign<f32> for Vec2 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: f32) { |
| self.x.sub_assign(rhs); |
| self.y.sub_assign(rhs); |
| } |
| } |
| |
| impl SubAssign<&f32> for Vec2 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &f32) { |
| self.sub_assign(*rhs) |
| } |
| } |
| |
| impl Sub<Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: Vec2) -> Vec2 { |
| Vec2 { |
| x: self.sub(rhs.x), |
| y: self.sub(rhs.y), |
| } |
| } |
| } |
| |
| impl Sub<&Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &Vec2) -> Vec2 { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: &Vec2) -> Vec2 { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn sub(self, rhs: Vec2) -> Vec2 { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl Rem<Vec2> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn rem(self, rhs: Self) -> Self { |
| Self { |
| x: self.x.rem(rhs.x), |
| y: self.y.rem(rhs.y), |
| } |
| } |
| } |
| |
| impl Rem<&Vec2> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &Vec2) -> Vec2 { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &Vec2) -> Vec2 { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<Vec2> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: Vec2) -> Vec2 { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign<Vec2> for Vec2 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: Self) { |
| self.x.rem_assign(rhs.x); |
| self.y.rem_assign(rhs.y); |
| } |
| } |
| |
| impl RemAssign<&Self> for Vec2 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &Self) { |
| self.rem_assign(*rhs) |
| } |
| } |
| |
| impl Rem<f32> for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn rem(self, rhs: f32) -> Self { |
| Self { |
| x: self.x.rem(rhs), |
| y: self.y.rem(rhs), |
| } |
| } |
| } |
| |
| impl Rem<&f32> for Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &f32) -> Vec2 { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &f32) -> Vec2 { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<f32> for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: f32) -> Vec2 { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign<f32> for Vec2 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: f32) { |
| self.x.rem_assign(rhs); |
| self.y.rem_assign(rhs); |
| } |
| } |
| |
| impl RemAssign<&f32> for Vec2 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &f32) { |
| self.rem_assign(*rhs) |
| } |
| } |
| |
| impl Rem<Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: Vec2) -> Vec2 { |
| Vec2 { |
| x: self.rem(rhs.x), |
| y: self.rem(rhs.y), |
| } |
| } |
| } |
| |
| impl Rem<&Vec2> for f32 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &Vec2) -> Vec2 { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: &Vec2) -> Vec2 { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<Vec2> for &f32 { |
| type Output = Vec2; |
| #[inline] |
| fn rem(self, rhs: Vec2) -> Vec2 { |
| (*self).rem(rhs) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl AsRef<[f32; 2]> for Vec2 { |
| #[inline] |
| fn as_ref(&self) -> &[f32; 2] { |
| unsafe { &*(self as *const Vec2 as *const [f32; 2]) } |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl AsMut<[f32; 2]> for Vec2 { |
| #[inline] |
| fn as_mut(&mut self) -> &mut [f32; 2] { |
| unsafe { &mut *(self as *mut Vec2 as *mut [f32; 2]) } |
| } |
| } |
| |
| impl Sum for Vec2 { |
| #[inline] |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::ZERO, Self::add) |
| } |
| } |
| |
| impl<'a> Sum<&'a Self> for Vec2 { |
| #[inline] |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) |
| } |
| } |
| |
| impl Product for Vec2 { |
| #[inline] |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::ONE, Self::mul) |
| } |
| } |
| |
| impl<'a> Product<&'a Self> for Vec2 { |
| #[inline] |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Self>, |
| { |
| iter.fold(Self::ONE, |a, &b| Self::mul(a, b)) |
| } |
| } |
| |
| impl Neg for Vec2 { |
| type Output = Self; |
| #[inline] |
| fn neg(self) -> Self { |
| Self { |
| x: self.x.neg(), |
| y: self.y.neg(), |
| } |
| } |
| } |
| |
| impl Neg for &Vec2 { |
| type Output = Vec2; |
| #[inline] |
| fn neg(self) -> Vec2 { |
| (*self).neg() |
| } |
| } |
| |
| impl Index<usize> for Vec2 { |
| type Output = f32; |
| #[inline] |
| fn index(&self, index: usize) -> &Self::Output { |
| match index { |
| 0 => &self.x, |
| 1 => &self.y, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| } |
| |
| impl IndexMut<usize> for Vec2 { |
| #[inline] |
| fn index_mut(&mut self, index: usize) -> &mut Self::Output { |
| match index { |
| 0 => &mut self.x, |
| 1 => &mut self.y, |
| _ => panic!("index out of bounds"), |
| } |
| } |
| } |
| |
| impl fmt::Display for Vec2 { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if let Some(p) = f.precision() { |
| write!(f, "[{:.*}, {:.*}]", p, self.x, p, self.y) |
| } else { |
| write!(f, "[{}, {}]", self.x, self.y) |
| } |
| } |
| } |
| |
| impl fmt::Debug for Vec2 { |
| fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt.debug_tuple(stringify!(Vec2)) |
| .field(&self.x) |
| .field(&self.y) |
| .finish() |
| } |
| } |
| |
| impl From<[f32; 2]> for Vec2 { |
| #[inline] |
| fn from(a: [f32; 2]) -> Self { |
| Self::new(a[0], a[1]) |
| } |
| } |
| |
| impl From<Vec2> for [f32; 2] { |
| #[inline] |
| fn from(v: Vec2) -> Self { |
| [v.x, v.y] |
| } |
| } |
| |
| impl From<(f32, f32)> for Vec2 { |
| #[inline] |
| fn from(t: (f32, f32)) -> Self { |
| Self::new(t.0, t.1) |
| } |
| } |
| |
| impl From<Vec2> for (f32, f32) { |
| #[inline] |
| fn from(v: Vec2) -> Self { |
| (v.x, v.y) |
| } |
| } |
| |
| impl From<BVec2> for Vec2 { |
| #[inline] |
| fn from(v: BVec2) -> Self { |
| Self::new(f32::from(v.x), f32::from(v.y)) |
| } |
| } |