blob: f4b7fdf86f588d156ec2bddabcf690ec8577a0f0 [file] [log] [blame]
// Generated from vec.rs.tera template. Edit the template, not the generated file.
use crate::{f32::math, BVec2, Vec3};
use core::fmt;
use core::iter::{Product, Sum};
use core::{f32, ops::*};
/// Creates a 2-dimensional vector.
#[inline(always)]
#[must_use]
pub const fn vec2(x: f32, y: f32) -> Vec2 {
Vec2::new(x, y)
}
/// A 2-dimensional vector.
#[derive(Clone, Copy, PartialEq)]
#[cfg_attr(feature = "cuda", repr(align(8)))]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct Vec2 {
pub x: f32,
pub y: f32,
}
impl Vec2 {
/// All zeroes.
pub const ZERO: Self = Self::splat(0.0);
/// All ones.
pub const ONE: Self = Self::splat(1.0);
/// All negative ones.
pub const NEG_ONE: Self = Self::splat(-1.0);
/// All `f32::MIN`.
pub const MIN: Self = Self::splat(f32::MIN);
/// All `f32::MAX`.
pub const MAX: Self = Self::splat(f32::MAX);
/// All `f32::NAN`.
pub const NAN: Self = Self::splat(f32::NAN);
/// All `f32::INFINITY`.
pub const INFINITY: Self = Self::splat(f32::INFINITY);
/// All `f32::NEG_INFINITY`.
pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
/// A unit vector pointing along the positive X axis.
pub const X: Self = Self::new(1.0, 0.0);
/// A unit vector pointing along the positive Y axis.
pub const Y: Self = Self::new(0.0, 1.0);
/// A unit vector pointing along the negative X axis.
pub const NEG_X: Self = Self::new(-1.0, 0.0);
/// A unit vector pointing along the negative Y axis.
pub const NEG_Y: Self = Self::new(0.0, -1.0);
/// The unit axes.
pub const AXES: [Self; 2] = [Self::X, Self::Y];
/// Creates a new vector.
#[inline(always)]
#[must_use]
pub const fn new(x: f32, y: f32) -> Self {
Self { x, y }
}
/// Creates a vector with all elements set to `v`.
#[inline]
#[must_use]
pub const fn splat(v: f32) -> Self {
Self { x: v, y: v }
}
/// Returns a vector containing each element of `self` modified by a mapping function `f`.
#[inline]
#[must_use]
pub fn map<F>(self, f: F) -> Self
where
F: Fn(f32) -> f32,
{
Self::new(f(self.x), f(self.y))
}
/// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
/// for each element of `self`.
///
/// A true element in the mask uses the corresponding element from `if_true`, and false
/// uses the element from `if_false`.
#[inline]
#[must_use]
pub fn select(mask: BVec2, if_true: Self, if_false: Self) -> Self {
Self {
x: if mask.test(0) { if_true.x } else { if_false.x },
y: if mask.test(1) { if_true.y } else { if_false.y },
}
}
/// Creates a new vector from an array.
#[inline]
#[must_use]
pub const fn from_array(a: [f32; 2]) -> Self {
Self::new(a[0], a[1])
}
/// `[x, y]`
#[inline]
#[must_use]
pub const fn to_array(&self) -> [f32; 2] {
[self.x, self.y]
}
/// Creates a vector from the first 2 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
#[must_use]
pub const fn from_slice(slice: &[f32]) -> Self {
assert!(slice.len() >= 2);
Self::new(slice[0], slice[1])
}
/// Writes the elements of `self` to the first 2 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 2 elements long.
#[inline]
pub fn write_to_slice(self, slice: &mut [f32]) {
slice[..2].copy_from_slice(&self.to_array());
}
/// Creates a 3D vector from `self` and the given `z` value.
#[inline]
#[must_use]
pub const fn extend(self, z: f32) -> Vec3 {
Vec3::new(self.x, self.y, z)
}
/// Creates a 2D vector from `self` with the given value of `x`.
#[inline]
#[must_use]
pub fn with_x(mut self, x: f32) -> Self {
self.x = x;
self
}
/// Creates a 2D vector from `self` with the given value of `y`.
#[inline]
#[must_use]
pub fn with_y(mut self, y: f32) -> Self {
self.y = y;
self
}
/// Computes the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot(self, rhs: Self) -> f32 {
(self.x * rhs.x) + (self.y * rhs.y)
}
/// Returns a vector where every component is the dot product of `self` and `rhs`.
#[inline]
#[must_use]
pub fn dot_into_vec(self, rhs: Self) -> Self {
Self::splat(self.dot(rhs))
}
/// Returns a vector containing the minimum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn min(self, rhs: Self) -> Self {
Self {
x: self.x.min(rhs.x),
y: self.y.min(rhs.y),
}
}
/// Returns a vector containing the maximum values for each element of `self` and `rhs`.
///
/// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
#[inline]
#[must_use]
pub fn max(self, rhs: Self) -> Self {
Self {
x: self.x.max(rhs.x),
y: self.y.max(rhs.y),
}
}
/// Component-wise clamping of values, similar to [`f32::clamp`].
///
/// Each element in `min` must be less-or-equal to the corresponding element in `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp(self, min: Self, max: Self) -> Self {
glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
self.max(min).min(max)
}
/// Returns the horizontal minimum of `self`.
///
/// In other words this computes `min(x, y, ..)`.
#[inline]
#[must_use]
pub fn min_element(self) -> f32 {
self.x.min(self.y)
}
/// Returns the horizontal maximum of `self`.
///
/// In other words this computes `max(x, y, ..)`.
#[inline]
#[must_use]
pub fn max_element(self) -> f32 {
self.x.max(self.y)
}
/// Returns the sum of all elements of `self`.
///
/// In other words, this computes `self.x + self.y + ..`.
#[inline]
#[must_use]
pub fn element_sum(self) -> f32 {
self.x + self.y
}
/// Returns the product of all elements of `self`.
///
/// In other words, this computes `self.x * self.y * ..`.
#[inline]
#[must_use]
pub fn element_product(self) -> f32 {
self.x * self.y
}
/// Returns a vector mask containing the result of a `==` comparison for each element of
/// `self` and `rhs`.
///
/// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpeq(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.eq(&rhs.x), self.y.eq(&rhs.y))
}
/// Returns a vector mask containing the result of a `!=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpne(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ne(&rhs.x), self.y.ne(&rhs.y))
}
/// Returns a vector mask containing the result of a `>=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpge(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.ge(&rhs.x), self.y.ge(&rhs.y))
}
/// Returns a vector mask containing the result of a `>` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmpgt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.gt(&rhs.x), self.y.gt(&rhs.y))
}
/// Returns a vector mask containing the result of a `<=` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmple(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.le(&rhs.x), self.y.le(&rhs.y))
}
/// Returns a vector mask containing the result of a `<` comparison for each element of
/// `self` and `rhs`.
///
/// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
/// elements.
#[inline]
#[must_use]
pub fn cmplt(self, rhs: Self) -> BVec2 {
BVec2::new(self.x.lt(&rhs.x), self.y.lt(&rhs.y))
}
/// Returns a vector containing the absolute value of each element of `self`.
#[inline]
#[must_use]
pub fn abs(self) -> Self {
Self {
x: math::abs(self.x),
y: math::abs(self.y),
}
}
/// Returns a vector with elements representing the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is `NAN`
#[inline]
#[must_use]
pub fn signum(self) -> Self {
Self {
x: math::signum(self.x),
y: math::signum(self.y),
}
}
/// Returns a vector with signs of `rhs` and the magnitudes of `self`.
#[inline]
#[must_use]
pub fn copysign(self, rhs: Self) -> Self {
Self {
x: math::copysign(self.x, rhs.x),
y: math::copysign(self.y, rhs.y),
}
}
/// Returns a bitmask with the lowest 2 bits set to the sign bits from the elements of `self`.
///
/// A negative element results in a `1` bit and a positive element in a `0` bit. Element `x` goes
/// into the first lowest bit, element `y` into the second, etc.
#[inline]
#[must_use]
pub fn is_negative_bitmask(self) -> u32 {
(self.x.is_sign_negative() as u32) | (self.y.is_sign_negative() as u32) << 1
}
/// Returns `true` if, and only if, all elements are finite. If any element is either
/// `NaN`, positive or negative infinity, this will return `false`.
#[inline]
#[must_use]
pub fn is_finite(self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
/// Performs `is_finite` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_finite(), y.is_finite(), ...]`.
pub fn is_finite_mask(self) -> BVec2 {
BVec2::new(self.x.is_finite(), self.y.is_finite())
}
/// Returns `true` if any elements are `NaN`.
#[inline]
#[must_use]
pub fn is_nan(self) -> bool {
self.x.is_nan() || self.y.is_nan()
}
/// Performs `is_nan` on each element of self, returning a vector mask of the results.
///
/// In other words, this computes `[x.is_nan(), y.is_nan(), ...]`.
#[inline]
#[must_use]
pub fn is_nan_mask(self) -> BVec2 {
BVec2::new(self.x.is_nan(), self.y.is_nan())
}
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
#[must_use]
pub fn length(self) -> f32 {
math::sqrt(self.dot(self))
}
/// Computes the squared length of `self`.
///
/// This is faster than `length()` as it avoids a square root operation.
#[doc(alias = "magnitude2")]
#[inline]
#[must_use]
pub fn length_squared(self) -> f32 {
self.dot(self)
}
/// Computes `1.0 / length()`.
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
#[must_use]
pub fn length_recip(self) -> f32 {
self.length().recip()
}
/// Computes the Euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance(self, rhs: Self) -> f32 {
(self - rhs).length()
}
/// Compute the squared euclidean distance between two points in space.
#[inline]
#[must_use]
pub fn distance_squared(self, rhs: Self) -> f32 {
(self - rhs).length_squared()
}
/// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
#[inline]
#[must_use]
pub fn div_euclid(self, rhs: Self) -> Self {
Self::new(
math::div_euclid(self.x, rhs.x),
math::div_euclid(self.y, rhs.y),
)
}
/// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
///
/// [Euclidean division]: f32::rem_euclid
#[inline]
#[must_use]
pub fn rem_euclid(self, rhs: Self) -> Self {
Self::new(
math::rem_euclid(self.x, rhs.x),
math::rem_euclid(self.y, rhs.y),
)
}
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must be finite and _not_ of length zero, nor very close to zero.
///
/// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
///
/// Panics
///
/// Will panic if the resulting normalized vector is not finite when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn normalize(self) -> Self {
#[allow(clippy::let_and_return)]
let normalized = self.mul(self.length_recip());
glam_assert!(normalized.is_finite());
normalized
}
/// Returns `self` normalized to length 1.0 if possible, else returns `None`.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be `None`.
///
/// See also [`Self::normalize_or_zero()`].
#[inline]
#[must_use]
pub fn try_normalize(self) -> Option<Self> {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
Some(self * rcp)
} else {
None
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns a
/// fallback value.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be the fallback value.
///
/// See also [`Self::try_normalize()`].
#[inline]
#[must_use]
pub fn normalize_or(self, fallback: Self) -> Self {
let rcp = self.length_recip();
if rcp.is_finite() && rcp > 0.0 {
self * rcp
} else {
fallback
}
}
/// Returns `self` normalized to length 1.0 if possible, else returns zero.
///
/// In particular, if the input is zero (or very close to zero), or non-finite,
/// the result of this operation will be zero.
///
/// See also [`Self::try_normalize()`].
#[inline]
#[must_use]
pub fn normalize_or_zero(self) -> Self {
self.normalize_or(Self::ZERO)
}
/// Returns whether `self` is length `1.0` or not.
///
/// Uses a precision threshold of approximately `1e-4`.
#[inline]
#[must_use]
pub fn is_normalized(self) -> bool {
math::abs(self.length_squared() - 1.0) <= 2e-4
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` is zero length when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto(self, rhs: Self) -> Self {
let other_len_sq_rcp = rhs.dot(rhs).recip();
glam_assert!(other_len_sq_rcp.is_finite());
rhs * self.dot(rhs) * other_len_sq_rcp
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be of non-zero length.
///
/// # Panics
///
/// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from(self, rhs: Self) -> Self {
self - self.project_onto(rhs)
}
/// Returns the vector projection of `self` onto `rhs`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn project_onto_normalized(self, rhs: Self) -> Self {
glam_assert!(rhs.is_normalized());
rhs * self.dot(rhs)
}
/// Returns the vector rejection of `self` from `rhs`.
///
/// The vector rejection is the vector perpendicular to the projection of `self` onto
/// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
///
/// `rhs` must be normalized.
///
/// # Panics
///
/// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
#[doc(alias("plane"))]
#[inline]
#[must_use]
pub fn reject_from_normalized(self, rhs: Self) -> Self {
self - self.project_onto_normalized(rhs)
}
/// Returns a vector containing the nearest integer to a number for each element of `self`.
/// Round half-way cases away from 0.0.
#[inline]
#[must_use]
pub fn round(self) -> Self {
Self {
x: math::round(self.x),
y: math::round(self.y),
}
}
/// Returns a vector containing the largest integer less than or equal to a number for each
/// element of `self`.
#[inline]
#[must_use]
pub fn floor(self) -> Self {
Self {
x: math::floor(self.x),
y: math::floor(self.y),
}
}
/// Returns a vector containing the smallest integer greater than or equal to a number for
/// each element of `self`.
#[inline]
#[must_use]
pub fn ceil(self) -> Self {
Self {
x: math::ceil(self.x),
y: math::ceil(self.y),
}
}
/// Returns a vector containing the integer part each element of `self`. This means numbers are
/// always truncated towards zero.
#[inline]
#[must_use]
pub fn trunc(self) -> Self {
Self {
x: math::trunc(self.x),
y: math::trunc(self.y),
}
}
/// Returns a vector containing the fractional part of the vector as `self - self.trunc()`.
///
/// Note that this differs from the GLSL implementation of `fract` which returns
/// `self - self.floor()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
#[must_use]
pub fn fract(self) -> Self {
self - self.trunc()
}
/// Returns a vector containing the fractional part of the vector as `self - self.floor()`.
///
/// Note that this differs from the Rust implementation of `fract` which returns
/// `self - self.trunc()`.
///
/// Note that this is fast but not precise for large numbers.
#[inline]
#[must_use]
pub fn fract_gl(self) -> Self {
self - self.floor()
}
/// Returns a vector containing `e^self` (the exponential function) for each element of
/// `self`.
#[inline]
#[must_use]
pub fn exp(self) -> Self {
Self::new(math::exp(self.x), math::exp(self.y))
}
/// Returns a vector containing each element of `self` raised to the power of `n`.
#[inline]
#[must_use]
pub fn powf(self, n: f32) -> Self {
Self::new(math::powf(self.x, n), math::powf(self.y, n))
}
/// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
#[inline]
#[must_use]
pub fn recip(self) -> Self {
Self {
x: 1.0 / self.x,
y: 1.0 / self.y,
}
}
/// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s` is `1.0`, the result
/// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
/// extrapolated.
#[doc(alias = "mix")]
#[inline]
#[must_use]
pub fn lerp(self, rhs: Self, s: f32) -> Self {
self * (1.0 - s) + rhs * s
}
/// Moves towards `rhs` based on the value `d`.
///
/// When `d` is `0.0`, the result will be equal to `self`. When `d` is equal to
/// `self.distance(rhs)`, the result will be equal to `rhs`. Will not go past `rhs`.
#[inline]
#[must_use]
pub fn move_towards(&self, rhs: Self, d: f32) -> Self {
let a = rhs - *self;
let len = a.length();
if len <= d || len <= 1e-4 {
return rhs;
}
*self + a / len * d
}
/// Calculates the midpoint between `self` and `rhs`.
///
/// The midpoint is the average of, or halfway point between, two vectors.
/// `a.midpoint(b)` should yield the same result as `a.lerp(b, 0.5)`
/// while being slightly cheaper to compute.
#[inline]
pub fn midpoint(self, rhs: Self) -> Self {
(self + rhs) * 0.5
}
/// Returns true if the absolute difference of all elements between `self` and `rhs` is
/// less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two vectors contain similar elements. It works best when
/// comparing with a known value. The `max_abs_diff` that should be used used depends on
/// the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
#[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
}
/// Returns a vector with a length no less than `min` and no more than `max`.
///
/// # Panics
///
/// Will panic if `min` is greater than `max`, or if either `min` or `max` is negative, when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length(self, min: f32, max: f32) -> Self {
glam_assert!(0.0 <= min);
glam_assert!(min <= max);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no more than `max`.
///
/// # Panics
///
/// Will panic if `max` is negative when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length_max(self, max: f32) -> Self {
glam_assert!(0.0 <= max);
let length_sq = self.length_squared();
if length_sq > max * max {
max * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Returns a vector with a length no less than `min`.
///
/// # Panics
///
/// Will panic if `min` is negative when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn clamp_length_min(self, min: f32) -> Self {
glam_assert!(0.0 <= min);
let length_sq = self.length_squared();
if length_sq < min * min {
min * (self / math::sqrt(length_sq))
} else {
self
}
}
/// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
/// architecture has a dedicated fma CPU instruction. However, this is not always true,
/// and will be heavily dependant on designing algorithms with specific target hardware in
/// mind.
#[inline]
#[must_use]
pub fn mul_add(self, a: Self, b: Self) -> Self {
Self::new(
math::mul_add(self.x, a.x, b.x),
math::mul_add(self.y, a.y, b.y),
)
}
/// Returns the reflection vector for a given incident vector `self` and surface normal
/// `normal`.
///
/// `normal` must be normalized.
///
/// # Panics
///
/// Will panic if `normal` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn reflect(self, normal: Self) -> Self {
glam_assert!(normal.is_normalized());
self - 2.0 * self.dot(normal) * normal
}
/// Returns the refraction direction for a given incident vector `self`, surface normal
/// `normal` and ratio of indices of refraction, `eta`. When total internal reflection occurs,
/// a zero vector will be returned.
///
/// `self` and `normal` must be normalized.
///
/// # Panics
///
/// Will panic if `self` or `normal` is not normalized when `glam_assert` is enabled.
#[inline]
#[must_use]
pub fn refract(self, normal: Self, eta: f32) -> Self {
glam_assert!(self.is_normalized());
glam_assert!(normal.is_normalized());
let n_dot_i = normal.dot(self);
let k = 1.0 - eta * eta * (1.0 - n_dot_i * n_dot_i);
if k >= 0.0 {
eta * self - (eta * n_dot_i + math::sqrt(k)) * normal
} else {
Self::ZERO
}
}
/// Creates a 2D vector containing `[angle.cos(), angle.sin()]`. This can be used in
/// conjunction with the [`rotate()`][Self::rotate()] method, e.g.
/// `Vec2::from_angle(PI).rotate(Vec2::Y)` will create the vector `[-1, 0]`
/// and rotate [`Vec2::Y`] around it returning `-Vec2::Y`.
#[inline]
#[must_use]
pub fn from_angle(angle: f32) -> Self {
let (sin, cos) = math::sin_cos(angle);
Self { x: cos, y: sin }
}
/// Returns the angle (in radians) of this vector in the range `[-Ï€, +Ï€]`.
///
/// The input does not need to be a unit vector however it must be non-zero.
#[inline]
#[must_use]
pub fn to_angle(self) -> f32 {
math::atan2(self.y, self.x)
}
#[inline]
#[must_use]
#[deprecated(
since = "0.27.0",
note = "Use angle_to() instead, the semantics of angle_between will change in the future."
)]
pub fn angle_between(self, rhs: Self) -> f32 {
self.angle_to(rhs)
}
/// Returns the angle of rotation (in radians) from `self` to `rhs` in the range `[-Ï€, +Ï€]`.
///
/// The inputs do not need to be unit vectors however they must be non-zero.
#[inline]
#[must_use]
pub fn angle_to(self, rhs: Self) -> f32 {
let angle = math::acos_approx(
self.dot(rhs) / math::sqrt(self.length_squared() * rhs.length_squared()),
);
angle * math::signum(self.perp_dot(rhs))
}
/// Returns a vector that is equal to `self` rotated by 90 degrees.
#[inline]
#[must_use]
pub fn perp(self) -> Self {
Self {
x: -self.y,
y: self.x,
}
}
/// The perpendicular dot product of `self` and `rhs`.
/// Also known as the wedge product, 2D cross product, and determinant.
#[doc(alias = "wedge")]
#[doc(alias = "cross")]
#[doc(alias = "determinant")]
#[inline]
#[must_use]
pub fn perp_dot(self, rhs: Self) -> f32 {
(self.x * rhs.y) - (self.y * rhs.x)
}
/// Returns `rhs` rotated by the angle of `self`. If `self` is normalized,
/// then this just rotation. This is what you usually want. Otherwise,
/// it will be like a rotation with a multiplication by `self`'s length.
#[inline]
#[must_use]
pub fn rotate(self, rhs: Self) -> Self {
Self {
x: self.x * rhs.x - self.y * rhs.y,
y: self.y * rhs.x + self.x * rhs.y,
}
}
/// Rotates towards `rhs` up to `max_angle` (in radians).
///
/// When `max_angle` is `0.0`, the result will be equal to `self`. When `max_angle` is equal to
/// `self.angle_between(rhs)`, the result will be equal to `rhs`. If `max_angle` is negative,
/// rotates towards the exact opposite of `rhs`. Will not go past the target.
#[inline]
#[must_use]
pub fn rotate_towards(&self, rhs: Self, max_angle: f32) -> Self {
let a = self.angle_to(rhs);
let abs_a = math::abs(a);
if abs_a <= 1e-4 {
return rhs;
}
// When `max_angle < 0`, rotate no further than `PI` radians away
let angle = max_angle.clamp(abs_a - core::f32::consts::PI, abs_a) * math::signum(a);
Self::from_angle(angle).rotate(*self)
}
/// Casts all elements of `self` to `f64`.
#[inline]
#[must_use]
pub fn as_dvec2(&self) -> crate::DVec2 {
crate::DVec2::new(self.x as f64, self.y as f64)
}
/// Casts all elements of `self` to `i8`.
#[inline]
#[must_use]
pub fn as_i8vec2(&self) -> crate::I8Vec2 {
crate::I8Vec2::new(self.x as i8, self.y as i8)
}
/// Casts all elements of `self` to `u8`.
#[inline]
#[must_use]
pub fn as_u8vec2(&self) -> crate::U8Vec2 {
crate::U8Vec2::new(self.x as u8, self.y as u8)
}
/// Casts all elements of `self` to `i16`.
#[inline]
#[must_use]
pub fn as_i16vec2(&self) -> crate::I16Vec2 {
crate::I16Vec2::new(self.x as i16, self.y as i16)
}
/// Casts all elements of `self` to `u16`.
#[inline]
#[must_use]
pub fn as_u16vec2(&self) -> crate::U16Vec2 {
crate::U16Vec2::new(self.x as u16, self.y as u16)
}
/// Casts all elements of `self` to `i32`.
#[inline]
#[must_use]
pub fn as_ivec2(&self) -> crate::IVec2 {
crate::IVec2::new(self.x as i32, self.y as i32)
}
/// Casts all elements of `self` to `u32`.
#[inline]
#[must_use]
pub fn as_uvec2(&self) -> crate::UVec2 {
crate::UVec2::new(self.x as u32, self.y as u32)
}
/// Casts all elements of `self` to `i64`.
#[inline]
#[must_use]
pub fn as_i64vec2(&self) -> crate::I64Vec2 {
crate::I64Vec2::new(self.x as i64, self.y as i64)
}
/// Casts all elements of `self` to `u64`.
#[inline]
#[must_use]
pub fn as_u64vec2(&self) -> crate::U64Vec2 {
crate::U64Vec2::new(self.x as u64, self.y as u64)
}
}
impl Default for Vec2 {
#[inline(always)]
fn default() -> Self {
Self::ZERO
}
}
impl Div<Vec2> for Vec2 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self {
Self {
x: self.x.div(rhs.x),
y: self.y.div(rhs.y),
}
}
}
impl Div<&Vec2> for Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &Vec2) -> Vec2 {
self.div(*rhs)
}
}
impl Div<&Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &Vec2) -> Vec2 {
(*self).div(*rhs)
}
}
impl Div<Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: Vec2) -> Vec2 {
(*self).div(rhs)
}
}
impl DivAssign<Vec2> for Vec2 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
self.x.div_assign(rhs.x);
self.y.div_assign(rhs.y);
}
}
impl DivAssign<&Self> for Vec2 {
#[inline]
fn div_assign(&mut self, rhs: &Self) {
self.div_assign(*rhs)
}
}
impl Div<f32> for Vec2 {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self {
Self {
x: self.x.div(rhs),
y: self.y.div(rhs),
}
}
}
impl Div<&f32> for Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &f32) -> Vec2 {
self.div(*rhs)
}
}
impl Div<&f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &f32) -> Vec2 {
(*self).div(*rhs)
}
}
impl Div<f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn div(self, rhs: f32) -> Vec2 {
(*self).div(rhs)
}
}
impl DivAssign<f32> for Vec2 {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.x.div_assign(rhs);
self.y.div_assign(rhs);
}
}
impl DivAssign<&f32> for Vec2 {
#[inline]
fn div_assign(&mut self, rhs: &f32) {
self.div_assign(*rhs)
}
}
impl Div<Vec2> for f32 {
type Output = Vec2;
#[inline]
fn div(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.div(rhs.x),
y: self.div(rhs.y),
}
}
}
impl Div<&Vec2> for f32 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &Vec2) -> Vec2 {
self.div(*rhs)
}
}
impl Div<&Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn div(self, rhs: &Vec2) -> Vec2 {
(*self).div(*rhs)
}
}
impl Div<Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn div(self, rhs: Vec2) -> Vec2 {
(*self).div(rhs)
}
}
impl Mul<Vec2> for Vec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self {
x: self.x.mul(rhs.x),
y: self.y.mul(rhs.y),
}
}
}
impl Mul<&Vec2> for Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &Vec2) -> Vec2 {
self.mul(*rhs)
}
}
impl Mul<&Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &Vec2) -> Vec2 {
(*self).mul(*rhs)
}
}
impl Mul<Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: Vec2) -> Vec2 {
(*self).mul(rhs)
}
}
impl MulAssign<Vec2> for Vec2 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
self.x.mul_assign(rhs.x);
self.y.mul_assign(rhs.y);
}
}
impl MulAssign<&Self> for Vec2 {
#[inline]
fn mul_assign(&mut self, rhs: &Self) {
self.mul_assign(*rhs)
}
}
impl Mul<f32> for Vec2 {
type Output = Self;
#[inline]
fn mul(self, rhs: f32) -> Self {
Self {
x: self.x.mul(rhs),
y: self.y.mul(rhs),
}
}
}
impl Mul<&f32> for Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &f32) -> Vec2 {
self.mul(*rhs)
}
}
impl Mul<&f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &f32) -> Vec2 {
(*self).mul(*rhs)
}
}
impl Mul<f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: f32) -> Vec2 {
(*self).mul(rhs)
}
}
impl MulAssign<f32> for Vec2 {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.x.mul_assign(rhs);
self.y.mul_assign(rhs);
}
}
impl MulAssign<&f32> for Vec2 {
#[inline]
fn mul_assign(&mut self, rhs: &f32) {
self.mul_assign(*rhs)
}
}
impl Mul<Vec2> for f32 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.mul(rhs.x),
y: self.mul(rhs.y),
}
}
}
impl Mul<&Vec2> for f32 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &Vec2) -> Vec2 {
self.mul(*rhs)
}
}
impl Mul<&Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: &Vec2) -> Vec2 {
(*self).mul(*rhs)
}
}
impl Mul<Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn mul(self, rhs: Vec2) -> Vec2 {
(*self).mul(rhs)
}
}
impl Add<Vec2> for Vec2 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self {
x: self.x.add(rhs.x),
y: self.y.add(rhs.y),
}
}
}
impl Add<&Vec2> for Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &Vec2) -> Vec2 {
self.add(*rhs)
}
}
impl Add<&Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &Vec2) -> Vec2 {
(*self).add(*rhs)
}
}
impl Add<Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: Vec2) -> Vec2 {
(*self).add(rhs)
}
}
impl AddAssign<Vec2> for Vec2 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.x.add_assign(rhs.x);
self.y.add_assign(rhs.y);
}
}
impl AddAssign<&Self> for Vec2 {
#[inline]
fn add_assign(&mut self, rhs: &Self) {
self.add_assign(*rhs)
}
}
impl Add<f32> for Vec2 {
type Output = Self;
#[inline]
fn add(self, rhs: f32) -> Self {
Self {
x: self.x.add(rhs),
y: self.y.add(rhs),
}
}
}
impl Add<&f32> for Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &f32) -> Vec2 {
self.add(*rhs)
}
}
impl Add<&f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &f32) -> Vec2 {
(*self).add(*rhs)
}
}
impl Add<f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn add(self, rhs: f32) -> Vec2 {
(*self).add(rhs)
}
}
impl AddAssign<f32> for Vec2 {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.x.add_assign(rhs);
self.y.add_assign(rhs);
}
}
impl AddAssign<&f32> for Vec2 {
#[inline]
fn add_assign(&mut self, rhs: &f32) {
self.add_assign(*rhs)
}
}
impl Add<Vec2> for f32 {
type Output = Vec2;
#[inline]
fn add(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.add(rhs.x),
y: self.add(rhs.y),
}
}
}
impl Add<&Vec2> for f32 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &Vec2) -> Vec2 {
self.add(*rhs)
}
}
impl Add<&Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn add(self, rhs: &Vec2) -> Vec2 {
(*self).add(*rhs)
}
}
impl Add<Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn add(self, rhs: Vec2) -> Vec2 {
(*self).add(rhs)
}
}
impl Sub<Vec2> for Vec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self {
x: self.x.sub(rhs.x),
y: self.y.sub(rhs.y),
}
}
}
impl Sub<&Vec2> for Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &Vec2) -> Vec2 {
self.sub(*rhs)
}
}
impl Sub<&Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &Vec2) -> Vec2 {
(*self).sub(*rhs)
}
}
impl Sub<Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: Vec2) -> Vec2 {
(*self).sub(rhs)
}
}
impl SubAssign<Vec2> for Vec2 {
#[inline]
fn sub_assign(&mut self, rhs: Vec2) {
self.x.sub_assign(rhs.x);
self.y.sub_assign(rhs.y);
}
}
impl SubAssign<&Self> for Vec2 {
#[inline]
fn sub_assign(&mut self, rhs: &Self) {
self.sub_assign(*rhs)
}
}
impl Sub<f32> for Vec2 {
type Output = Self;
#[inline]
fn sub(self, rhs: f32) -> Self {
Self {
x: self.x.sub(rhs),
y: self.y.sub(rhs),
}
}
}
impl Sub<&f32> for Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &f32) -> Vec2 {
self.sub(*rhs)
}
}
impl Sub<&f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &f32) -> Vec2 {
(*self).sub(*rhs)
}
}
impl Sub<f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: f32) -> Vec2 {
(*self).sub(rhs)
}
}
impl SubAssign<f32> for Vec2 {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.x.sub_assign(rhs);
self.y.sub_assign(rhs);
}
}
impl SubAssign<&f32> for Vec2 {
#[inline]
fn sub_assign(&mut self, rhs: &f32) {
self.sub_assign(*rhs)
}
}
impl Sub<Vec2> for f32 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.sub(rhs.x),
y: self.sub(rhs.y),
}
}
}
impl Sub<&Vec2> for f32 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &Vec2) -> Vec2 {
self.sub(*rhs)
}
}
impl Sub<&Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: &Vec2) -> Vec2 {
(*self).sub(*rhs)
}
}
impl Sub<Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn sub(self, rhs: Vec2) -> Vec2 {
(*self).sub(rhs)
}
}
impl Rem<Vec2> for Vec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self {
Self {
x: self.x.rem(rhs.x),
y: self.y.rem(rhs.y),
}
}
}
impl Rem<&Vec2> for Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &Vec2) -> Vec2 {
self.rem(*rhs)
}
}
impl Rem<&Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &Vec2) -> Vec2 {
(*self).rem(*rhs)
}
}
impl Rem<Vec2> for &Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: Vec2) -> Vec2 {
(*self).rem(rhs)
}
}
impl RemAssign<Vec2> for Vec2 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
self.x.rem_assign(rhs.x);
self.y.rem_assign(rhs.y);
}
}
impl RemAssign<&Self> for Vec2 {
#[inline]
fn rem_assign(&mut self, rhs: &Self) {
self.rem_assign(*rhs)
}
}
impl Rem<f32> for Vec2 {
type Output = Self;
#[inline]
fn rem(self, rhs: f32) -> Self {
Self {
x: self.x.rem(rhs),
y: self.y.rem(rhs),
}
}
}
impl Rem<&f32> for Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &f32) -> Vec2 {
self.rem(*rhs)
}
}
impl Rem<&f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &f32) -> Vec2 {
(*self).rem(*rhs)
}
}
impl Rem<f32> for &Vec2 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: f32) -> Vec2 {
(*self).rem(rhs)
}
}
impl RemAssign<f32> for Vec2 {
#[inline]
fn rem_assign(&mut self, rhs: f32) {
self.x.rem_assign(rhs);
self.y.rem_assign(rhs);
}
}
impl RemAssign<&f32> for Vec2 {
#[inline]
fn rem_assign(&mut self, rhs: &f32) {
self.rem_assign(*rhs)
}
}
impl Rem<Vec2> for f32 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: Vec2) -> Vec2 {
Vec2 {
x: self.rem(rhs.x),
y: self.rem(rhs.y),
}
}
}
impl Rem<&Vec2> for f32 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &Vec2) -> Vec2 {
self.rem(*rhs)
}
}
impl Rem<&Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: &Vec2) -> Vec2 {
(*self).rem(*rhs)
}
}
impl Rem<Vec2> for &f32 {
type Output = Vec2;
#[inline]
fn rem(self, rhs: Vec2) -> Vec2 {
(*self).rem(rhs)
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f32; 2]> for Vec2 {
#[inline]
fn as_ref(&self) -> &[f32; 2] {
unsafe { &*(self as *const Vec2 as *const [f32; 2]) }
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f32; 2]> for Vec2 {
#[inline]
fn as_mut(&mut self) -> &mut [f32; 2] {
unsafe { &mut *(self as *mut Vec2 as *mut [f32; 2]) }
}
}
impl Sum for Vec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for Vec2 {
#[inline]
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for Vec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ONE, Self::mul)
}
}
impl<'a> Product<&'a Self> for Vec2 {
#[inline]
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
}
}
impl Neg for Vec2 {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self {
x: self.x.neg(),
y: self.y.neg(),
}
}
}
impl Neg for &Vec2 {
type Output = Vec2;
#[inline]
fn neg(self) -> Vec2 {
(*self).neg()
}
}
impl Index<usize> for Vec2 {
type Output = f32;
#[inline]
fn index(&self, index: usize) -> &Self::Output {
match index {
0 => &self.x,
1 => &self.y,
_ => panic!("index out of bounds"),
}
}
}
impl IndexMut<usize> for Vec2 {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
0 => &mut self.x,
1 => &mut self.y,
_ => panic!("index out of bounds"),
}
}
}
impl fmt::Display for Vec2 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(p) = f.precision() {
write!(f, "[{:.*}, {:.*}]", p, self.x, p, self.y)
} else {
write!(f, "[{}, {}]", self.x, self.y)
}
}
}
impl fmt::Debug for Vec2 {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(Vec2))
.field(&self.x)
.field(&self.y)
.finish()
}
}
impl From<[f32; 2]> for Vec2 {
#[inline]
fn from(a: [f32; 2]) -> Self {
Self::new(a[0], a[1])
}
}
impl From<Vec2> for [f32; 2] {
#[inline]
fn from(v: Vec2) -> Self {
[v.x, v.y]
}
}
impl From<(f32, f32)> for Vec2 {
#[inline]
fn from(t: (f32, f32)) -> Self {
Self::new(t.0, t.1)
}
}
impl From<Vec2> for (f32, f32) {
#[inline]
fn from(v: Vec2) -> Self {
(v.x, v.y)
}
}
impl From<BVec2> for Vec2 {
#[inline]
fn from(v: BVec2) -> Self {
Self::new(f32::from(v.x), f32::from(v.y))
}
}